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Abstract: The application of pattern recognition (PR) techniques, expert systems (ESs), 
artificial neural networks (ANNs), fuzzy systems (FSs) and nowadays hybrid artificial 
intelligence (AI) techniques in manufacturing can be regarded as consecutive elements 
of a process started two decades ago. On the one hand, the paper outlines the most 
important steps of this process and introduces some new results with special emphasis 
on hybrid AI and multistrategy machine learning (ML) approaches. On the other hand, 
agent-based (holonic) systems are highlighted as promising tools for managing 
complexity, changes and disturbances in production systems. Further integration of 
approaches is predicted. Copyright © 2002 IFAC 

Keywords: Artificial intelligence, machine learning, intelligent manufacturing systems. 
 

1. INTRODUCTION 

Growing complexity is one of the most significant 
characteristics of today’s manufacturing, which is 
manifested not only in manufacturing systems, but 
also the products to be manufactured, in the 
processes, and the company structures (Wiendahl 
and Scholtissek, 1994). The systems operate in a 
changing environment rife with uncertainty. 

The term of Intelligent Manufacturing Systems 
(IMSs) can be attributed to a tentative forecast of 
Hatvany and Nemes (1978). In another landmark 
paper of Hatvany in 1983, IMSs were outlined as the 
next generation of manufacturing systems that - 
utilising the results of the AI research - were 
expected to solve, within certain limits, 
unprecedented, unforeseen problems on the basis of 
even incomplete and imprecise information 
(Hatvany, 1983).  

The most frequently cited definition of learning 
comes from Simon (Simon, 1983): “Learning 
denotes changes in the system that is adaptive in the 
sense that they enable the system to do the same task 
or tasks drawn from the same population more 
effectively the next time”. With respect to advanced 
engineering automation, as stated in (Lu, 1990), “we 
need new computer technologies that cannot only 
generate, record, and retrieve information, but also 
digest and synthesise information into knowledge and 
represent this knowledge properly to support 
decision making”. It can be emphasised that 
intelligence is strongly connected with learning, and 
learning ability must be an indispensable feature of 
IMSs (Monostori, et al., 1996). 

The structure of the paper is as follows. Section 2 
gives a short survey of AI and ML techniques 
available. Approaches to handling changes and 
uncertainties in the process / machine level are 
treated in Section 3. System level issues are 
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addressed in Section 4, while Section 5 attempts to 
draw some conclusions and to highlight some future 
research directions. 

2. AI AND ML TECHNIQUES FOR 
INTELLIGENT MACHINES AND SYSTEMS 

Over the past decades, the field of artificial 
intelligence has made great progress toward 
computerising human reasoning. Symbolic 
approaches are based on the hypothesis of symbolic 
representation - the idea that perception and 
cognitive processes can be modelled as acquiring, 
manipulating, associating, and modifying symbolic 
representations. Expert systems represent the earliest 
and most established type of intelligent systems 
attempting to embody the “knowledge” of a human 
expert in a computer program. Knowledge 
representation in these systems proceeds 
symbolically in the form of production rules, frames 
or semantic networks.  

A different approach to intelligent systems involves 
constructing computers with architectures and 
processing capabilities that mimic the processing 
characteristics of the nervous system. The technology 
that attempts to achieve these results is called neural 
computing or artificial neural networks. These 
subsymbolic methods work with numeric values and 
seem to be more appropriate for dealing with 
perception tasks and perhaps even with tasks that call 
for combined perception and cognition. 

Investigations confirmed that - similarly to our 
present conception of biological structures - adaptive 
ANN techniques seem to be a viable solution for the 
lower level of intelligent, hierarchical control and 
monitoring systems where abilities for real-time 
functioning, uncertainty handling, sensor 
integration, and learning are essential features. Since 
the higher levels of the control and monitoring 
hierarchy require mostly symbolic knowledge 
representation and processing, the integration of 
symbolic and subsymbolic methods is straightforward 
(Monostori and Barschdorff, 1992).  

Several techniques for integrating expert systems and 
neural networks have emerged over the past few 
years spreading from stand-alone models, through 
transformational, loosely and tightly coupled models 
to fully-integrated expert system/neural network 
models (Kandel and Langholz, 1992). The 
integration of neural and fuzzy techniques, which can 
be considered as a “full integration”, is an approach 
of high importance. 

Over the past years significant research efforts have 
been devoted to the development and use of 
Distributed Artificial Intelligence (DAI) techniques 
(e.g. Bond and Gasser, 1988). An agent is a real or 
virtual entity able to act on itself and on the 
surrounding world, generally populated by other 
agents. Its behaviour is based on its observations, 
knowledge and interactions with the world of other 
agents. An agent has several important features. It 
has capabilities of perception and a partial 
representation of the environment, can communicate 
with other agents, can reproduce child agents, and 
has own objectives and an autonomous behaviour 
(Koussis, et al., 1997). A multi-agent system (MAS) 
is an artificial system composed of a population of 
autonomous agents, which co-operate with each 
other to reach common goals, while simultaneously 
pursuing individual objectives (Koussis, et al., 
1997). 

A learning agent (Fig. 1) can be outlined as one 
having several modules: first, it is the acting module, 
which takes percepts both of the external world and 
its own state and selects the external actions of the 
agent. The learning module improves the actions of 
the acting module. The learning process could be 
assisted by a critic module, which applies external 
performance standards, and the problem generator 
module, which suggests deliberate exploratory 
actions, so that the agent's view of the world should 
become more and more appropriate. (As it will be 
seen later, in most applications only some of these 
modules have been developed.) 
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Fig. 1. General model of a learning agent and its 
interactions with the external world 

Learning processes could be classified by the 
available feedback. These are  

• supervised learning: the correct response is 
provided by a teacher,  

• reinforcement learning: less feedback is given, 
since not the proper action, but only an evaluation 
of the chosen action is given by the teacher, 

• unsupervised learning: no evaluation of the action 
is provided, since there is no teacher.  



While in the first two methods the teach-in and 
application phases can be clearly distinguished even 
when they occur in cycles, in unsupervised learning 
usually there is no distinct, predefined teach-in 
phase; in most cases the learning system itself should 
give a signal of being fairly trained. 

While various kinds of simple learning methods 
work with examples only, the more powerful 
learning systems make use of some background 
knowledge of the world.  

Most research in machine learning has been 
concerned with methods that employ a single 
learning strategy, that is, with monostrategy methods. 
With the growing understanding of the capabilities 
and limitations of monostrategy methods, there has 
been an increasing interest in multistrategy systems 
that integrate multiple inference types and/or 
computational mechanisms in one learning system. 
Such systems are expected to learn from wider scope 
of input, and be applied to a wider range of problems 
than monostrategy methods (Monostori and 
Barschdorff, 1992). 

3. MANAGING UNCERTAINTIES AND 
CHANGES IN PROCESS / MACHINE LEVEL 

The pattern recognition - artificial neural networks - 
hybrid AI systems evolution in applications can be 
found in this section where the overlapping fields of 
tool condition monitoring, process modelling and 
adaptive control issues will be treated. Special 
emphasis is laid on learning abilities, admitting that 
learning cannot be treated separately from the other 
important issues (self-calibration, signal processing, 
decision making, fusion ability, etc. (Byrne, et al., 
1995)). 

3.1. Tool Condition Monitoring (TCM) 

The application of numerical PR techniques for 
monitoring purposes started with linear decision 
functions trained iteratively (Sata, et al., 1973; 
Dornfeld and Bollinger, 1977; Zhang, et al., 1982). 
Fuzzy PR techniques proved to be efficient tools for 
dealing with the uncertain nature of cutting processes 
(Monostori, et al., 1996). A number of multipurpose 
monitoring systems were developed on the basis of 
PR, multisensor integration and parallel processing 
through multiprocessor systems (Weck, et al., 1984; 
Monostori, 1986).  

Dornfeld applies ANNs for TCM (Dornfeld, 1990). 
The applicability of ANNs for multisensor 
integration (acoustic emission (AE) and cutting 
force) was demonstrated. The comparison of results 

gained by linear classifiers and ANNs’ trained by the 
back propagation (BP) technique, outlined the better 
noise suppression and classification abilities of 
neural networks. 

One of the main - but often neglected - problems in 
monitoring of machining processes is how to treat 
the varying process parameters. Some possibilities 
for incorporating process parameter information into 
the learning and classification phases were 
demonstrated in (Monostori, 1993): 

• networks trained under constant process 
parameters, 

• networks trained under varying process 
parameters, 

• networks incorporating process parameters as 
inputs. 

Comparing the different approaches, the best 
generalisation ability (networks’ performance for 
patterns generated under cutting conditions outside 
the region considered during the training phase) was 
achieved with the latter variant, i.e. the networks 
were able to filter out the disturbing effects of the 
varying process parameters, and to generalise.  

Due to the numeric, real-time nature of TCM, 
comparing with connectionist approaches, relatively 
few reports are available regarding the application 
symbolic learning techniques in this field. In (Junkar, 
et al., 1991), the identification of the plunge grinding 
by decision tree generation using vibration signals 
generated by the grinding wheel was described. 

The existence of low dimensional chaos in turning 
was proved, and a unified approach for tool 
condition monitoring using a combination of 
wavelets and fractal dimensions was developed in 
(Bukkapatnam, et al., 1995). 

Combined structure and parameter learning 
technique through a neuro-fuzzy (NF) system for the 
classification of the wear states of milling tools in 
four categories was described in (Monostori and 
Egresits, 1997). A four-step learning algorithm 
integrating self-organized clustering, competitive 
learning, and supervised BP learning techniques was 
applied for determining the fuzzy rules and the 
parameters of the membership (MBF) functions.  

As an example (Fig. 2), 14 rules have been 
automatically selected from the possible 1152 ones 
during the competitive learning phase in a self-
organising way. The mean values and variances of 
bell shaped MBFs were adjusted to reach a kind of 
optimum regarding the network error for training 
patterns (Monostori and Egresits, 1997). The NF 
technique with structure and parameter learning 



showed superior performance to the BP solution and 
previous investigations with a commercial NF 
system.  

Further improvements have been reached by using 
genetic algorithms for rule set generation (Egresits, 
et al., 1998). 

 

      
Fig. 2. NF structure for the four-class problem, after learning, with normalised inputs and output and the learnt 

membership functions for one of the input variables

3.2. Process Modelling 

Reliable process models are extremely important in 
different fields of computer integrated 
manufacturing, such as design, optimisation, control 
and simulation of processes and design of equipment 
(Merchant, 1998; Tönshoff, et al., 1988). Difficulties 
in modelling manufacturing processes are manifold: 
the great number of different machining operations, 
multidimensional, non-linear, stochastic nature of 
machining, partially understood relations between 
parameters, lack of reliable data, etc. In the CIRP 
survey on developments and trends in control and 
monitoring of machining processes, the necessity of 
sensor integration, sophisticated models, multimodel 
systems and learning ability was outlined (Tönshoff, 
et al., 1988).  

ANNs as learning structures for the lower level of an 
intelligent controller were suggested in (Rangwala 
and Dornfeld, 1989). A learning process (Fig. 3) 
enables the controller to understand how input 
variables (such as feed rate (f), depth of cut (d), and 
cutting velocity (v)) affect output variables (such as 
cutting force (F), power(P), temperature(T) and 
workpiece surface finish (R)) in the case of a turning 
operation. 

The decision-making approach of (Chryssolouris and 
Guillot, 1988) incorporates several process models 
that correlate process state variables such as surface 
roughness or chip merit mark to process parameters 
such as feed rate, cutting speed and tool rake angle. 
In (Monostori, 1993) inverse models of the milling 

process, i.e. separate models for three process 
parameters (axial depth of cut, cutting speed, and 
tooth feed) were generated always using the other 
two process parameters and force and vibration 
features as networks' inputs.  

 

Fig. 3. Learning of process models in machining 

Analytical models (e.g. for forces or wear occurring 
in profile grinding) are available and can be adapted 
to different quantities by using learning strategies. 
These analytical models can be combined by 
simulation techniques, e.g. by FEM simulation to 
estimate the thermoelastic behaviour of the 
workpiece. ANNs due to their high adaptivity and 
non-linearity can be advantageously used also here 
(Fig. 4, Westkämper, et al., 1995). The combination 
of multisensor integration, propound signal 
processing, adaptive models, process simulation can 
lead to the adaptive control of quality. 



In (Monostori and Viharos, 1999) a novel approach 
for generating multipurpose models of machining 
operations combining machine learning and search 
techniques is described. Simulated annealing search 
is used for finding the unknown parameters of the 
multipurpose model in certain applications including 
modelling of process chains.  
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3.3. Adaptive Control (AC) 

The above described investigations for determining 
suitable process models for machining operations 
aimed at realising powerful adaptive control 
schemes.  

The task to be fulfilled can be formulated as follows 
(Fig. 5). There exist some limitations on input 
variables (e.g. machine limitations), some output 
variables are to be kept sufficiently close to the 
desired values and others can have upper limits (e.g. 
vibration). The algorithm suggested in (Rangwala 
and Dornfeld, 1989) is based on an augmented 
Lagrangian method to minimise a properly selected 
combined performance index, which takes into 
consideration the above requirements. Their 
attractive algorithm, which implies forward and BP, 
has resulted in good performance using simulated 
data. 

As further improvement to this “batch mode” 
technique (where the learning and synthesis are done 
separately) a so-called incremental approach was 
introduced, where the learning and synthesis phases 
proceed simultaneously. However, during this 
incremental operation only a part of the possible 
input space is scanned, mostly the region near to the 
operating point. Tested with values further from this 
region, the network showed poor generalisation 
properties (Rangwala and Dornfeld, 1989). 

 

Fig. 5. Synthesis phase of the neural network based 
adaptive control 

One of the most well known models for intelligent 
machining was introduced in (Chryssolouris, et al., 
1987). The control strategy is based on the 
simultaneous measurement and processing of 
different signals (force, temperature, acoustic 
emission). These signals are fed into independent 
process models. The essential element of this 
structure is the synthesis of the different sensor 
information.  

Two hybrid AI systems for control and monitoring of 
manufacturing processes on different hardware and 
software bases were described in (Barschdorff, et al., 
1997). In these hybrid systems, networks outputs are 
conveyed to an expert system that provides process 
control information. On the base of accumulated 
knowledge the hybrid systems influence the 
functioning of the subsymbolic levels, generate 
optimal process parameters and inform the user about 
the actual state of the process.  

In the HYBEXP system (Monostori, 1995), an 
artificial neural network simulator called NEURECA 
constitutes the lower, subsymbolic level (A in Fig. 6). 
The higher, symbolic level is based on the 
commercially available GoldWorks III expert system 
shell (B). 

Both the symbolic and neural subsystems are 
connected to the machine tool (the machine tool 
controller is incorporated). The symbolic part 
forwards (II) process parameter information (feed 
rate, depth of cut, cutting speed) to the machine tool 
(C). The generated indirect signals (e.g. force 
components, vibration) are measured and conveyed 
(III) to the subsymbolic part (A) of the hybrid 
system. 

In the figure the machine tool is substituted by a 
simulator of the manufacturing process (called 
SIMURECA, a version of NEURECA), enlightening 
the test and demonstration of the system. On the base 
of accumulated knowledge and actual process 



parameters (cutting speed, feed rate, depth of cut), 
SIMURECA estimates the selected features of the 
force and vibration signals. These features are 

forwarded to the NEURECA subsystem, which fulfils 
the estimation or classification assignment. 

 

 

Fig. 6. Components of the HYBEXP hierarchically structured hybrid AI system

According to previous investigations (Monostori, 
1993), reliable ANN models for classification of 
cutting tools or for tool wear estimation using 
indirect signals can only be constructed if they 
handle process parameter (e.g. cutting speed, feed 
rate, depth of cut) information. Therefore, the inputs 
of ANN models used in HYBEXP additionally 
incorporate cutting parameters to indirect signal 
features. Models for both classification and 
estimation can be used. 

In both cases the results are conveyed to the hybrid 
part, where using additional stored knowledge (e.g. 
the type and number of cutting tools available, actual 
cutting parameters, the parts to be machined, etc.) 
different decisions can be made. HYBEXP can 
initiate e.g. machine stop, tool change, modification 
of cutting parameters (AC control) or change of parts 
to be machined. HYBEXP can work also as a 
decision support system. 

3.4. Modelling and Management of Process 
Chains 

To realise adaptive control of a production 
chain, models have to be ordered to every stage of 
the production and connected by their input-output 
parameters. In (Monostori and Viharos, 1999) a 
software package ProcessManager is described, 
which supports the modelling and adaptive control of 
processes and process chains as well. It incorporates 
(Fig. 7): 

• definition of the elements of the chain, 
• determination of the process models in a hybrid 

way, by integrating analytical equations, expert 
knowledge and example-based learning, 

• connection of the single models into a process 
chain by coupling input-output model parameters 
not limited to models of successive processes in 
the chain, 

• definition of eligible intervals or limits for the 
process parameters and monitoring indices, 

• definition of a cost function to be optimised, etc.
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Fig. 7. Hybrid modelling and optimisation of process chains by ProcessManager

4. INTELLIGENT TECHNIQUES FOR 
MANAGEMENT OF COMPLEXITY, CHANGES 

AND DISTURBANCES IN SYSTEM LEVEL 

In today's manufacturing systems, difficulties arise 
from unexpected tasks and events, non-linearities, 
and a multitude of interactions while attempting to 
control various activities in dynamic shop floors. 
Complexity and uncertainty seriously limit the 
effectiveness of conventional control and (off-line, 
predictive) scheduling approaches.  

The performance of manufacturing companies 
ultimately hinges on their ability to rapidly adapt 
their production to current internal and external 
circumstances. Two main kinds of approaches to 
dealing with the enumerated problems are: to 
enhance the reactivity of traditionally structured 
(mostly hierarchical) systems by sophisticated new 
control techniques, and to construct decentralised, 
distributed systems. Another - also overlapping - way 
of dealing with changes and disturbances is to 
develop adaptive systems, which are able to learn 
from past history.  

A survey of reactive scheduling approaches can be 
found in a recently published book chapter (Szelke 
and Monostori, 1999). Here we concentrate on 
distributed, agent-based approaches. 

4.1. Holonic Manufacturing Systems (HMSs) 

Holonic systems, as one of the new paradigms of 
manufacturing, consist of autonomous, intelligent, 
flexible, distributed, co-operative agents or holons 
(Valckenaers, et al., 1994). 

Three types of basic holons, namely resource holons, 
product holons and order holons, together with the 
main information flows between them are defined in 
(Van Brussel, et al., 1998). These basic entities are 
structured by using object-oriented concepts such as 
aggregation and specialisation. Staff holons are also 
foreseen to assist the basic holons in performing their 
work. The same paper gives a reference architecture 
for holonic manufacturing systems (Van Brussel, et 
al., 1998). Other authors refer only to two types of 
basic building blocks, e.g. order and machine agents 
in, job and resource agents, or order and machine 
(resource) holons (Monostori, et al., 1998). A 
common feature of these approaches is that the 
functions of the order and product holons are 
somehow integrated in one basic type.  

Hierarchical, heterarchical and holonic control 
structures for an assembly cell are compared in 
(Valckenaers, et al., 1994). Holonic systems were 
found to deliver better performance in a wider range 
of situations than their more conventional 
counterparts. One of the most promising feature of 
the holonic approach is that it represents a transition 
between fully hierarchical and heterarchical systems 
(Valckenaers, et al., 1994; Bongaerts, et al. 2000).  

The industrial acceptance of holonics, however, is 
relatively low among others things by reasons of 

• the relative crudeness of the agent theory and its 
manufacturing applications, 

• the insufficient communication and decision 
making capabilities of present numerical controls, 

• the high investment costs of a production system 
working according to the agent principles, 



• the seemingly insurmountable difficulties in their 
stepwise integration into existing production 
systems (Kádár and Monostori, 1998). 

Several approaches are introduced and treated in 
(Kádár and Monostori, 1998) to overcome the above 
difficulties. Here, approaches are considered where 
simulation is a key issue. 

4.2. Development of Agent-based Architectures by 
Simulation 

There are a number of open questions in holonics 
(Kádár, et al., 1998), which can be answered by 
extensive simulation only. The object-oriented 
simulation framework for the development and 
evaluation of distributed manufacturing architectures 
described in (Kádár, et al., 1998) provides a root 
model that represents a plant and can contain different 
agents. The object library incorporates two main agent 
types: resource agent and order agent (Fig. 8).  
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Fig. 8. Structure of a resource agent 

A plant in the model will contain only one order agent, 
which is responsible for order processing, job 
announcements and job dispatching between different 
resources or groups. A model may incorporate several 
resource agents, which can be initialised during 
construction (giving the name of the resource, process-
capabilities of the resource, etc.). Only one information 
provider, i.e. the registration book, is treated centrally 
in the system. 

The simulation framework is intensively used for 
research purposes. By its aid, a new approach, which 
breaks with the decision myopia, a common drawback 
of distributed approaches, is described in (Monostori, 
et al., 1998),. 

4.3. Holonic Control of Traditional Systems by 
Using Simulation 

In (Kádár and Monostori, 1998), a novel approach to 
holonification of manufacturing systems was 
introduced based on an extension of the Virtual 
Manufacturing (VM) concept (Onosato and Iwata, 
1993) where manufacturing sub-systems can be 
classified into four categories: Real Physical System 
(RPS), Real Informational System (RIS), Virtual 
Physical System (VPS), Virtual Informational 
System (VIS). VM makes it possible to simulate 
manufacturing processes in advance, without using 
real facilities, and by this, to accelerate the design 
and re-design of real manufacturing systems. 

A fundamental feature of the VM concept is that it 
realises a one-to-one mapping between the real and 
virtual systems, i.e. VIS and VPS try to simulate RIS 
and RPS, respectively, as exactly as possible. The 
main novelty of the approach described in (Kádár 
and Monostori, 1998), is the break with the above 
one-to-one mapping, more exactly the use of the VM 
concept to control a traditional (centralised / 
hierarchical) manufacturing system in a holonic way. 

The virtual part of the system (Fig. 9) runs in a 
holonic way and incorporates order management, 
scheduling and control issues. For the realisation of 
the virtual part, simulation systems such as the 
simulation framework described earlier in this 
Section can be advantageously used. Resource agents 
which, from technological point of view, correspond 
to the real resources of the traditional system can be 
easily constructed by using the object library of the 
simulation framework (Kádár, et al., 1998). Order 
management proceeds fully in the virtual system. 

Decisions are made in the virtual, holonic system and 
conveyed to the VIS of the traditional system. The 
real production situation is sensed by the RPS and 
forwarded to the VIS, which initiates appropriate 
measures in a holonic way. As a summary, the 
traditional system shows holonic behaviour.  

The holonic information system tested in a virtual 
environment has the potential of being used in real 
holonic systems. Some requirements for this system-
level holonification are also given in (Kádár and 
Monostori, 1998). 
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Fig. 9. Concept for holonification of traditional 

manufacturing systems by using the VM 
technology 

4.4. Approaches to increase the performance of 
agent-based production system 

To overcome the disadvantages associated with 
hierarchical control several researchers (e.g. 
Hatvany, 1985; Duffie and Piper, 1986), proposed a 
heterarchical approach.  

Heterarchical control is a highly distributed form of 
control, implemented by a system of independent co-
operating processes or agents without centralised or 
explicit direct control. Control decisions are reached 
through mutual agreement and information is 
exchanged freely among the participating agents. The 
concepts for heterarchical control are derived from 
biological metaphors and analogies to the free market 
economy (Vámos, 1983). Therefore, heterarchical 
control architectures offer similar prospects of 
reduced complexity, high flexibility and a high 
robustness against disturbances in manufacturing. As 
such, there is no need for explicit reactive 
scheduling.  

Experiments (Duffie and Prabhu, 1994) and 
theoretical considerations (Luh and Czerwinsky, 
1994) have partially proven these expectations. 
However, it has also turned out that heterarchical 
control, banning all forms of hierarchy, cannot 
guarantee optimum performance. Even more 
essential might be that the behaviour of a system 
under heterarchical control can be unpredictable. 

Concept of hierarchy in a distributed system  

To combine robustness against disturbances with 
performance optimisation and predictability the 
incorporation of hierarchy in a distributed control 
system was proposed in (Bongaerts, et al., 2000). 
The resulting control architecture has a basic 
structure of autonomous co-operating local agents, 
which are capable of negotiation with each other in 

order to achieve production targets. That basic 
structure is extended with central agents (for instance 
a scheduler agent) to co-ordinate the behaviour of the 
local agents. The resulting architecture complies with 
the concepts of holonic manufacturing. Such a 
system then has both distributed and centralised 
control capabilities. The central agents operate 
concurrently with local agents and contribute to the 
same decision making processes as the local agents. 
The local agents maintain their decision making 
autonomously, but may request advice from the 
central agents. In this way, the central agents can co-
ordinate and optimise the overall behaviour of the 
system.  

Learning issues in agent-based manufacturing 

It is extremely difficult or even impossible to 
correctly determine the behavioural repertoire and 
concrete activities of a multi-agent system a priori 
(Shen, et al., 2000). In the referred paper important 
aspects of learning in a multi-agent setting are 
discussed, i.e. why, when, where and what to learn. 
In this domain both "learning from history" and 
"learning from the future" can be advantageously 
used. Concerning the latter, let us refer to the 
simulation framework described in this Section, 
which can be used as a tool for learning from the 
future. 

In agent-based manufacturing systems a number of 
system level and resource level parameters can be the 
subject of a learning process, an important issue is, 
how to fuse these information.  

Having recognised the importance of learning in 
agent-based manufacturing architectures, research 
was initiated at the Computer and Automation 
Research Institute to develop agent-based 
manufacturing control architectures with increased 
and more balanced performance. The first results are 
treated in (Kádár and Monostori, 2001). 

CONCLUSIONS 

Learning process models, cause-effect relations, 
automatically recognising different process changes 
and degradation and intervening in the process in 
order to ensure safe processes and product qualities 
are sophisticated approaches with high potential. 
They are the subjects of intensive research and 
development work world-wide. The complexity of 
the problem and the associated uncertainties 
necessitate the application of learning techniques to 
get closer to working IMSs. In correspondence with a 
recently published larger survey on ML approaches 



to manufacturing (Monostori, et al., 1996), the 
following main trends can be enumerated: 

• attributable mostly to the results of ANN 
research, and in contrast to the situation 8-10 
years ago, when they were considered as fields 
hardly manageable with AI techniques the area of 
process modelling, monitoring and control came 
to the fore; 

• in recent years ANN based learning is the 
dominant ML technique in manufacturing;  

• ANNs are natural tools at lower levels of 
intelligent manufacturing systems where abilities 
of sensor integration, signal processing, 
uncertainty handling, real-time and adaptive 
functioning are required, but 

• ANNs find their applications on nearly every, 
also on non-sensory domains of manufacturing, 
as general information processing blocks with 
learning abilities; 

• development and routine production of 
programmable ANN chips (e.g., cellular neural 
networks (Roska and Rodriguez-Vazquez, 2000) 
will give a new, spectacular impulse to ANN 
applications in manufacturing, especially with the 
rapid spread of smart sensors; 

• neuro-fuzzy approaches manifest themselves as 
prospective tools of numerous problems in 
manufacturing where real-time nature, learning 
ability, handling of uncertainty and both symbolic 
and numeric information are essential 
requirements; 

• as the considerable number of projects with 
multistrategy learning methods shows, the future 
belongs to these integrated approaches (Egresits, 
et al., 1998). 

Distributed, holonic-like systems represent viable 
alternatives to hierarchical and heterarchical 
structures and the corresponding reactive scheduling 
approaches. Both of these - apparently distinct - lines 
can be advantageously used in rapidly changing 
production environments, however, none of them can 
be regarded as a universal tool. Even the application 
of such powerful global optimisation techniques as 
GAs, are not appropriate for very large problems, 
and as centralised approaches, are not totally devoid 
of all the known drawbacks of centralised / 
hierarchical control systems (Monostori, et al., 
1998). The multi-agent approach also becomes 
unrealistic beyond a given problem size, first of all 
due to the rapidly increasing communication burden. 
Consequently, both directions crave for some kind of 
aggregation (Van Brussel, et al., 1998). There is a 
scope for temporal or permanent hierarchies also in 
holonic architectures (Bongaerts, et al., 2000). By 
this way, the amount of necessary communication 
can be decreased, and the holonic concept can be 

expanded to the level of extended or virtual 
enterprises. 

A fundamental issue in distributed systems is how to 
ensure global performance with selfish agents 
pursuing their own goals (Hatvany, 1985). The 
integration of scheduling agents as a kind of staff 
holons (Van Brussel, et al., 1998) into the 
architecture, can contribute to achieving global 
coherence in distributed systems (Monostori, et al., 
1998).  

The object-oriented simulation framework described 
in the paper, is expected to provide the necessary 
framework for further research addressing such 
fundamental issues of distributed manufacturing as 
agent structures, communication protocols, group 
formation, negotiation, global versus local optima, 
scalability, system tuning, agents’ behaviour, 
learning at system and agent levels (Monostori, et al., 
1996).  

The further integration of more traditional AI and 
ML techniques with the agent-based approach in the 
field of intelligent machines can be predicted 
resulting in systems with emergent behaviour (Ueda, 
et al., 2001).  
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