
Entropy 2014, 16, 4199-4245; doi:10.3390/e16084199
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Review

Computer Simulations of Soft Matter: Linking the Scales
Raffaello Potestio 1,*, Christine Peter 2 and Kurt Kremer 1

1 Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany;
E-Mail: kremer@mpip-mainz.mpg.de

2 Department of Chemistry, Universität Konstanz, Universitätsstr.10, 78464 Konstanz, Germany;
E-Mail: christine.peter@uni-konstanz.de

* Author to whom correspondence should be addressed; E-Mail:potestio@mpip-mainz.mpg.de;
Tel.: +49-6131-379-201.

Received: 3 June 2014; in revised form: 10 July 2014 / Accepted: 11 July 2014 /
Published: 28 July 2014

Abstract: In the last few decades, computer simulations have become a fundamental tool
in the field of soft matter science, allowing researchers to investigate the properties of a
large variety of systems. Nonetheless, even the most powerful computational resources
presently available are, in general, sufficient to simulate complex biomolecules only for a
few nanoseconds. This limitation is often circumvented by using coarse-grained models,
in which only a subset of the system’s degrees of freedom is retained; for an effective
and insightful use of these simplified models; however, an appropriate parametrization of
the interactions is of fundamental importance. Additionally, in many cases the removal of
fine-grained details in a specific, small region of the system would destroy relevant features;
such cases can be treated using dual-resolution simulation methods, where a subregion
of the system is described with high resolution, and a coarse-grained representation is
employed in the rest of the simulation domain. In this review we discuss the basic notions
of coarse-graining theory, presenting the most common methodologies employed to build
low-resolution descriptions of a system and putting particular emphasis on their similarities
and differences. The AdResS and H-AdResS adaptive resolution simulation schemes are
reported as examples of dual-resolution approaches, especially focusing in particular on their
theoretical background.
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1. Introduction

Since the pioneering work carried out by Berni Alder [1] in the 1950s, in silico experiments, such as
Molecular Dynamics (MD) or Monte Carlo (MC) simulations, allowed researchers to obtain major
advancements in the understanding of systems with many degrees of freedom. In particular, during
the last few decades, the increasing accuracy of the force-fields, the improvement of the algorithms,
and the steady boost of computer power made it possible to perform insightful simulations of a
broad variety of systems of increasing size and complexity, ranging from simple liquids -composed
of idealized, point-like molecules interacting via simple potentials- to biomolecules. Nonetheless, the
amount of available computational resources can be insufficient to simulate, for a physically meaningful
time, even the simplest nontrivial macromolecule. It is often the case, in fact, that “interesting”
phenomena in these systems occur on very long time-scales: a simple example of this is provided by
the diffusion of a polymer in a melt [2,3]; the same behavior can observed in conformational changes of
proteins [4–9], at least in those cases in which the force field provides a good approximation to the real
atomistic interactions.

At the same time, in many cases the massive amount of data that are produced in a simulation
is composed mostly of non-useful information. A prototypical example is given by the solvent: the
water molecules that solvate a protein or a membrane are typically discarded from the analysis that
follows the simulation, with the possible exception of a few solvation shells around the molecule itself.
In this case a large fraction of the computational power is employed in the integration of the equations
of motion of degrees of freedom which are extremely relevant during the simulations, but are completely
neglected afterwards.

In order to overcome this limitation, coarse-grained models [10–15] have been developed, where
the structure and interactions of the original system are replaced with simpler ones, which are easier
to describe, model, simulate and understand. The assumption underlying the coarse-graining of a
system is that above a given length scale the low-level, chemistry-specific detail of the model affects
some properties of the system only in a simple, functionally trivial way - often through prefactors.
Examples of systems for which this approach proved to be extremely successful are molecular
fluids, polymers [2,3,16,17], elastic network models of proteins [18–23], lipid membranes and other
biomolecular systems, just to mention a few.

In recent years, systematic coarse graining approaches have gained importance, where the interactions
in the coarse-grained (CG) model are derived systematically from atomistic reference simulations in
a bottom-up fashion. These models are often used in a multiscale simulation framework, where the
closeness of higher and lower levels of resolution allows a switching back and forth between them.
Below, we will review several systematic coarse graining approaches and address some of the most
important methodological issues and challenges.

The smaller amount of degrees of freedom that are retained in coarse-grained models and the
simpler force-fields employed allow the characterization of relevant properties of a system at a cheaper
computational cost compared to the high-resolution atomistic models; on the other hand, there are cases
in which the chemical detail in a small region of the system plays a crucial role, such that no simplification
of the description is possible: think, for example, of the active site of a large enzyme, where fine-grained
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chemical processes take place. A high-resolution modeling of each part of the system would not be
necessary, but at the same time a coarse-graining approach would delete important information.

This last observation naturally leads us to identify a particular class of soft matter systems among
those that are studied with the help of computer simulations. Specifically, we can consider those systems
where the focus is on a small, well-defined subregion of the simulation box. To this class belong,
for example, certain solvated (macro)molecules, active sites of enzymes, the interaction of specific
polymer ends at a surface, or simply a small spherical region in a homogeneous fluid whose radius
is of the length scale of the property we are interested in.

For such systems the remaining, “non-interesting” region consists of the volume containing all those
degrees of freedom which will be eventually neglected and/or discarded once the simulation is done,
such as the solvent or large parts of a macromolecule which do not play an active role in the process of
interest (e.g., all atoms sufficiently far from the active site of an enzyme). Usually, detailed knowledge
about structural, energetic and thermodynamical properties of these large sections of the system is
not required; nonetheless these “non-interesting” degrees of freedom have to be explicitly present and
integrated, inasmuch as they “scaffold” the target object of the simulation and represent a reservoir of
energy and molecules.

A method is thus required that allows one to perform a simulation where the largest part of the
computational resources is concentrated on that region of the system that will be subsequently analyzed.
Adaptive resolution simulations methods [24–34] were developed to solve the contradiction between the
necessity of simulating all parts of the system and the fact that, eventually, the detailed information from
a large subgroup of them will be neglected. The underlying idea is to replace these “non-interesting”
degrees of freedom of the system with a simpler, coarse-grained representation, such that a sensibly
smaller number of computations (e.g., force calculations) is required, while the “interesting” region is
treated at a higher resolution.

This approach gives rise to at least two important conceptual problems that have to be solved:

(1) what is the smallest number of properties of the original system that have to be retained in the
coarser model, and which are they;

(2) how to interface the low-resolution, “non-interesting” region and the high-resolution region to
preserve the correct physics at least in the latter.

These two problems are obviously interconnected, since the way the high- and low-resolution regions
interact at the interface naturally depends on the specific properties of the models used in each of them;
a thorough discussion of these aspects will be carried out in the context of the Adaptive Resolution
Simulation (AdResS) [24–32] and Hamiltonian AdResS [33,34] (H-AdResS) methods.

The present review is composed of two principal parts: in Section 2 the basics of coarse-graining
theory are presented together with a few examples of the most commonly used techniques,
e.g., Force Matching, Boltzmann Inversion and Relative Entropy; in Section 3 we discuss two strategies,
the adaptive resolution simulation (AdResS) scheme and the Hamiltonian AdResS (H-AdResS) to
perform simulations in which different regions of the same system are modeled with different resolution.

Large parts of the present review are based on course material that was compiled for two workshops
at the Forschungszentrum Jülich (“Hierarchical Methods for Dynamics in Complex Molecular Systems,
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2012” [35], and “Workshop on Hybrid Particle-Continuum Methods in Computational Materials
Physics”, 2013 [36]), as well as on original publications on the respective methodologies [33,34,37–40].

2. Coarse-Graining

As was mentioned in the Introduction, there are many interesting physical problems for which
a detailed description of the system at the all-atom (AA) level is not necessary to obtain the
relevant information. In these cases a simpler model might be used, where a given high-resolution,
computationally expensive model is replaced with a simpler one.

These Coarse-Grained models possess a number of features that make them particularly appealing.
For example, a smaller amount of computational resources is required to perform a simulation: this is
due to both the reduced number of degrees of freedom and the simpler form of the interactions.
Another important characteristic is that since many interaction centers are replaced with a single one, the
fluctuations of the force experienced by a molecule are generally much smaller; this results in smoother
free energy profiles and, as a consequence, in faster diffusive processes, allowing the system to reach
larger time-scales with less computations. This last aspect implies that one typically has to determine
a rescaling factor between the simulation timescale (usually given in Lennard Jones units) and the
corresponding real world time (or the corresponding timescale in a higher resolution system). A detailed
discussion of these dynamic aspects with further references can be found in Reference [41]. Finally,
coarse-grained models are designed to reproduce large length-scale properties of the system, such as
the global, collective conformational changes of a protein or the diffusive process of a polymer in a
melt, that can be strongly insensitive to the fine-grained, chemistry-specific details; as a consequence,
the parametrization of the coarse-grained interactions is also advantageously simpler.

Many CG models are generic, i.e., they were not developed to model a specific chemical system
but rather with the aim of studying a physical phenomenon such as folding or aggregation in general.
One example is generic CG lipid models, which have been successfully employed to study the self
assembly of micelles, bilayers and other structures [42–46]. Generic CG models have also been
employed to study folding and aggregation of peptides and proteins [47–59]. For polymers, such generic
models were especially successful. Following the so called 1/N theorem of de Gennes [60–62] it was
shown that properties such as the overall chain extension as a function of the polymerisation index follow
the same power law with the same exponent for all polymers, independent of the chemical species.
The results of these scaling theories were instrumental in the development of generic and thus very
efficient models, as well as in the interpretation of experiments. For dynamical properties generic models
simulations provided the first direct evidence of the reptation/tube concept put forward by Edwards and
de Gennes [63,64]. The reptation model is based on the fact that the dynamics of long polymer chains
is dominated by the constraint that polymer chains cannot simply cut through each other.

A wide range of approaches have been developed that aim for consistency between a CG model and
either experimental data or simulations of accurate high resolution models. Typically, these approaches
are divided into thermodynamics-based and so-called structure-based ones. In thermodynamic coarse
graining approaches, individual elements of the CG interaction function are separately parameterized
based on thermodynamic reference data such as solvation free energies and partitioning data, liquid
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densities, surface tension, etc. [65–76]. (These are usually experimental reference data, but in a
multiscale simulation approach the reference data can of course also be obtained from an atomistic
simulation, to keep the CG and atomistic level thermodynamically consistent). In another group
of approaches, one numerically generates CG interaction functions with the aim of reproducing the
configurational phase space sampled in an atomistic reference simulation. These approaches may rely
on different types of reference properties such as structure functions [77–89], mean forces [90–95] or
relative entropies [96–98]. In the following subsection, a few basic notions of coarse-graining theory
will be introduced, together with examples of the strategies that can be employed to perform the
coarse-graining in practice.

2.1. The Mapping Function and the Potential of Mean Force

In a multiscale approach, one first needs to define the relationship between the two levels of resolution.
This is typically done via mapping functions which determine the CG Cartesian coordinates of each site
as a linear combination of coordinates for the atoms that are involved in the site (that could be via a
center-of-mass or a center-of-geometry mapping or some other geometric construction). This means the
CG coordinates R are constructed from the atomistic coordinates r via

R = Mr (1)

where M is an n × N matrix (n and N being the number of particles in the atomistic and CG system,
respectively). In the (canonical) sampling of the atomistic and CG systems with respective interaction
potentials V AA(r) and V CG(R) the corresponding configuration functions PAA(r) and PCG(R) are
given by

PAA(r) = Z−1
AA exp[−βV AA(r)] (2)

and
PCG(R) = Z−1

CG exp[−βV CG(R)] (3)

with ZAA =
∫

exp[−βV AA(r)]dr and ZCG =
∫

exp[−βV CG(R)]dR being the respective partition
functions and β = 1/kBT . If one analyses the atomistically sampled system in CG coordinates one
can determine the probability distribution of sampling atomistic coordinates that map to a given CG
coordinate r)

PAA(R) = 〈δ(Mr−R)〉 (4)

(Here, we follow the notation used by Noid and collaborators, e.g., in References [99,100]). The
angular brackets indicate canonical sampling of the atomistic system (i.e., according to PAA(r)). One
can formulate the aim of many systematic coarse graining approaches in the following way: To sample
the part of phase space which is sampled by the atomistic system with the same probability distribution.
Following this, one possible definition of consistency between atomistic and CG level of resolution is
that the two models are consistent if the canonical configurational distribution sampled by the CG model
PCG(R) is equal to the probability distribution PAA(R) obtained after mapping the atomistic system to
CG coordinates. In a canonical ensemble, independent degrees of freedom q are Boltzmann distributed
and the Boltzmann inverse of P (q)

V (q) = −kBT lnP (q) (5)
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is a many-dimensional potential of mean force (PMF), which, when used for example as an interaction
potential in a CG simulation, reproduces the distribution P (q) . This means that Boltzmann inversion of
PAA(R) defines, uniquely up to an additive constant, a high-dimensional CG potential

V CG
PMF (R) = −kBT lnPAA(R) + const (6)

which will result in a sampling of CG configurations consistent with the atomistic reference simulation.
This high-dimensional, many-body CG potential contains both energetic and entropic contributions from
the configurational sampling in the high-resolution model and the mapping between high-resolution
and CG model (Equation (4)). Therefore, the resulting CG model is state point dependent and not
necessarily readily transferable. While it is conceptually easy to formulate the PMF as a solution of
the systematic coarse graining task, it is practically unfeasible. In most cases the PMF cannot be easily
determined, and even if it were possible, the resulting high-dimensional potentials are computationally
prohibitive. In addition, V CG

PMF (R) is a function of R, i.e., this PMF as is can in principle only be
applied to a system which is identical in size to the atomistic reference system; if this limitation cannot
be overcome, e.g., by breaking it down to short-range interactions, it would defeat the purpose of coarse
graining. Therefore, one has to decompose the PMF into simpler independent terms and approximate
it by simpler interaction functions, ideally ones that resemble interaction functions typically used in
molecular mechanics forcefields, i.e., short range bonded contributions and pair potentials or similar.
Conceptually, one can decompose the PMF into a series of many-body terms up to an N -body term,
where N is the number of particles on the system. However, this itself does not solve the problem since
these multi-body interactions are again computationally unfeasible.

V CG
PMF (R) =

∑
i,j

V2(rij) +
∑
i,j,k

V3(rij, rjk, rik) + · · ·+ const

≈
∑
i,j

Veff(rij) + const (7)

In Equation (7) one approximates the series by an effective pair interaction which also contains
contributions from the higher order terms in Equation (7) (some approaches also include three-body
terms for systems where this is necessary [101]). There are many approaches to this task of determining
effective CG interactions, and all the resulting CG models are (only) approximations to V CG

PMF (R).

2.2. Multi-Scale Coarse-Graining

Probably the most painful limitation in the use of the many-body PMF is the fact that, in general,
it cannot be decomposed into a sum of local contributions depending on the interactions between
two to a few particles. A simple strategy would therefore be to decide a simple functional form of
the potential, e.g., a sum of pairwise, radial interactions, which depend on a set of parameters; the
values of the latter are then chosen so that the CG potential is as close as possible to the true PMF.
This approach was pioneered by Ercolessi and Adams in 1994 [102] and Tschöp and coworkers in
1998 [103]. Later, Izvekov and Voth [104,105] made use of the force-matching concept of Ercolessi and
Adams in the development of the Multi-Scale Coarse-Graining (MS-CG) method. These approaches
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have been successfully applied to a multitude of biomolecular and other soft matter systems, in particular
to biomolecules [90–95].

The central idea of Force Matching is to use a variational (i.e., non-iterative) approach for constructing
the CG potential based on the atomistic reference simulation (the recorded forces from the atomistic
simulation). The numerical implementation of this variational principle works in such a way that the
exact many-body PMF (Equation (6)) is represented by a linear combination of basis functions that
are functions of the CG site coordinates [14,15]. For a given configuration of the CG coordinates, in
fact, the average of the total atomistic force fα acting on a CG site α is equal to the derivative of the
many-body PMF:

〈fα〉R ≡ −
∂U [R]

∂Rα

(8)

where the subscript R on the averages indicates that the sampling is constrained to those configurations
of the AA system having the CG sites in a fixed configuration. The CG force field depends on M

parameters g1, · · · , gM , that can be prefactors of analytical functions, tabulated values of the interaction
potentials, or coefficients of splines used to describe these potentials. These parameters have to be
optimized so that the CG force field reproduces the forces in the atomistic system (after mapping) as
close as possible. To this end, one minimizes the difference between the average AA force 〈fα〉R and the
force Fα due to the CG potential by minimizing the following quadratic function:

χ2[F] =
1

3N

〈
N∑
α=1

|fα − Fα|2
〉

(9)

Equation (9) can be rephrased in terms of generalized scalar products of elements in a
multi-dimensional vector space; these elements are the 3N -dimensional force-fields f and F acting on
the CG sites, with the scalar product and the corresponding norm given by:

Fa · Fb ≡

〈
N∑
α=1

Fa
α · Fb

α

〉
(10)

||F|| ≡
√
F · F

Given the definitions in Equation (10), it can be shown that minimizing the function χ2 in the MS-CG
method is equivalent to minimizing the ‘distance’ between the many-body PMF and the CG potential:

χ2[F] = χ2[FPMF] +
1

3N
||FPMF − F||2 (11)

The force-matching strategy thus projects the true many-body PMF onto the basis of functions that
are used to define the CG force-field; a thorough formal explanation of this interpretation can be found
in Reference [14,15].

It should be noted, however, that the CG force field is still an approximation to the high dimensional
PMF within the limitations of the types of CG forces chosen (for example pair forces that can
be derived either from analytical or from numerical tabulated potentials). This also implies that
a CG model obtained from force matching does not by construction reproduce the pair correlation
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functions in the system, and the reproduction of local structural properties such as pair distributions
may (or may not) be imperfect depending on the importance of cross-correlations between degrees of
freedom. An exact reproduction of the underlying atomistic problem by matching mean forces therefore
potentially requires the introduction of higher order (e.g., three-body) interactions. Noid and coworkers
have extended the force matching method and demonstrated that the CG force field can be directly
determined from structural correlation functions obtained from the atomistic system instead of the
forces [99]. Their theoretical approach also allows an assessment of the correlations between different
interactions that are neglected by straightforward Boltzmann inversion and allows the quantification
of the importance of many-body correlations in CG models. In a recent study, Rudzinski and Noid
explore these aspects in detail [106]. They demonstrate how the balance between accurately reproducing
individual correlation functions (such as pair correlation functions or angle distributions) and also
reproducing cross correlations between the respective degrees of freedom is affected by the mapping
scheme and the coarse graining method (or more accurately its targets, namely the mean forces versus
the individual correlation functions).

2.3. Boltzmann-Inversion Based Methods

In contrast to the Force Matching or Multi-scale coarse graining scheme, other structure-based
methods provide CG interactions that reproduce pre-defined target structure properties—often a set of
radial distribution functions [77–89]. This means that the many-body PMF (Equations (6) and (7)) is
replaced as a target by a set of simpler structural correlation functions. If the interactions in the CG
model are statistically independent or only weakly coupled then direct Boltzmann inversion determines
each term in the potential immediately from the corresponding distribution function [77,107–109];
for non-bonded interactions in dense systems, though, this is typically not the case. This means
that the individual distribution functions and their corresponding potentials of mean force, e.g.,
a radial distribution function of a simple liquid gtarget(r) and its Boltzmann inverse, the pair PMF,
V CG

0 (r) = −kBT ln gtarget(r), cannot be directly used as an interaction function since they correspond
not only to the interaction potential but also to the correlated contributions from the surroundings.
These multi-body effects of the environment need to be removed from the PMF in order to generate
an effective pair potential that reproduces the target structure, for example the pair correlation function
in the liquid. It can be shown that such a pair potential is unique up to an arbitrary constant [110]
and exists [96,111–113]. There are several numerical methods to generate this pair potential (tabulated
interaction function).

Iterative Boltzmann inversion (IBI) [81,114,115] is a natural extension of the Boltzmann inversion
method. Here, a numerical CG potential is iteratively refined until the target structure is reproduced
within a predefined error. Each step in the iteration procedure is a CG simulation with potential V CG

i (r)

which yields an RDF gi(r) that differs from the target gtarget(r). The potential is then modified by a
correction term ∆V (r) according to

V CG
i+1 (r) = V CG

i (r) + ∆Vi(r) = V CG
i (r) + kBT ln

gi(r)

gtarget(r)
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Sometimes the potential correction ∆Vi(r) is multiplied by a prefactor 0 < λ ≤ 1 to avoid overshooting
in the numerical procedure. The iterative procedure is often initiated with the pair potential of mean
force V CG

0 (r) = −kBT ln gtarget(r), but that is not mandatory. Different starting potentials can be
useful, in particular for more complex mixed systems where the iterative procedure may be unstable
because intermediate CG models lead to phase separation. This is for example observed in the case of
hydrophobic molecules in aqueous solution where both above-mentioned precautions have found to be
useful to prevent strong oscillations or even instability of the IBI procedure.

IBI is by no means the only numerical method that solves the above task. Another numerical scheme
is the so called inverse Monte Carlo (or more recently renamed Newton inversion) method [78,79,83,84]
which, according to Henderson’s theorem, should lead to the same numerical solution for the pair
potential corresponding to a given pair correlation function. While in IBI the potential update ∆Vi

is ad hoc, in IMC it is computed using rigorous statistical mechanical arguments (for details see
Reference [78]). In the case of multicomponent systems, where several pair potentials need to be
updated, IMC accounts for correlations between observables, i.e., the updates for the different potentials
are interdependent. In contrast, for IBI each potential is updated independently, which might lead to
oscillations and convergence problems in the iteration procedure. The disadvantage of IMC on the other
hand is a high computational cost and problems with numerical stability; for a detailed comparison
see Reference [116]. Related to IMC, there are several other recent developments, e.g., a molecular
renormalization group approach [85–87] or an approach that relies on relative entropies [96–98] (which
will be discussed in more detail below). While the above structure-based methods by construction
reproduce exactly, within the error of the numerical procedure, the local pair structures and thus are
well-suited to the reinsertion of atomistic coordinates, it can be expected a priori that they will not be
equally well suited to the reproduction of thermodynamic properties (pressure, phase behavior, etc.)
of the reference system; in this respect, water provides a prototypical case and a reference for testing.
Note also that CG models based on pair correlation functions do not necessarily reproduce higher-order
(e.g., three-body) structural correlations [116] since the pair correlation functions as structural targets
are just an approximation to the total conformational distribution function obtained from the atomistic
sampling, PAA(R) (Equation (4)). This means that if higher order correlations are a crucial part of
the many-body PMF, models based on pair structures may fail to represent these, and it may even
be possible that models which are limited to pair potentials may fail to reproduce these correlations
irrespective of the parametrization methodology. One example where this is studied in detail is liquid
water [101,116–119]. Recently Noid and coworkers have analyzed these aspects using concepts from
liquid state theory [100,120].

One more note concerning Henderson’s theorem: even though there is in principle one exact solution
for the effective pair potential that reproduces a given pair correlation function, different potentials might
give a reasonably close representation of the structure, i.e., the above inverse problem is mathematically
ill-posed [116,121].This effect becomes even more pronounced in complex systems where several
interaction functions corresponding to several RDFs need to be numerically determined. This can to
some extent be turned into an advantage since it allows one to impose thermodynamic constraints in
the parametrization procedure. This will result in interaction functions which do not exactly reproduce
the target structure but give a very close representation while at the same time producing the desired
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thermodynamic behavior. One example of this is pressure correction terms [81,117]. Here, an additional
linear pressure correction is applied during the iterative Boltzmann inversion procedure with

∆V CG
i,P (r) = Ai

(
1− r

rcut

)
(12)

where rcut is the radial cutoff distance of the non-bonded interaction and the constant A is determined
via the virial expression for the pressure to

−
[

2πNρ

3rcut

∫ rcut

0

r3gi(r)dr
]
Ai ≈ (Pi − Ptarget)V (13)

V is the volume of the system, Pi the pressure of the CG model in the i-th iteration, and Ptarget the
target pressure. The price to pay for this adjustment, however, is the loss of the perfect compressibility
match. This phenomenon is of course a direct consequence of the state point dependency of coarse
grained interactions. Further details on this topic can be found in Reference [117]. Recently, different
functional forms of pressure correction terms and the influence of the cutoff length have been explored
by Fu et al. [122].

It is to be expected that there will be more development in this direction (using other types of
thermodynamic constraints) since in particular for complex soft matter system the balancing of structural
and thermodynamic behavior in CG models is an ongoing field of research [88,89].

The IBI method is in its original form designed and best suited for systems with uniform density
distributions. Recently, Jochum et al. have shown how it can be generalized for non-bonded potentials
for inhomogeneous systems [123]. For a system with a slab geometry (such as systems of solvent slabs
in vacuum or phase-separated systems consisting of two liquid slabs in contact with each other), the
method is analogous to IBI but the iterative update of the interaction potential consists of two terms,
one based on the radial distribution function calculated in a slab geometry and one that accounts for
the slab and interfacial widths. These latter geometric features are very sensitive to the thermodynamic
properties (surface tension) of the interface. Therefore the two update terms allow for a balance between
the local liquid structure and the thermodynamic properties of the liquid/vapor or liquid/liquid interface.
In addition to water/vapor and methanol/vapor interfaces, the method has also been successfully applied
to a solute-solvent system of a single benzene molecule at the vacuum-water interface, i.e., it is possible
to account to some extent for the partitioning behavior of a solute between bulk and interface, an
aspect that makes this method promising in the context of designing transferable CG models for phase
separation processes (see below).

Last but not least, one should mention the particular case of Boltzmann-inversion based approaches
for mixed systems where (at least) one component is very dilute (from now on termed solute), e.g.,
biomolecules in aqueous solution. In this case, iterative Boltzmann inversion and similar methods
are problematic. While one can easily compute the solvent-solvent and the solute-solvent radial
distribution functions, and therefore determine the corresponding CG potentials with for example IBI,
this is not so straightforward for the interactions between the low concentration component (solute).
(Note that for simplicity only solutes that are represented by a single CG bead will be discussed here.)
In these cases, obtaining the PMF through brute force sampling of a radial distribution function is not
advisable. One should rather compute the solute-solute pair PMF (between two solute particles) with
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an advanced sampling method such as umbrella sampling or thermodynamic integration (using distance
constraints) [124,125].

When solvent degrees of freedom are not explicitly present in the CG system, this solute-solute
PMF can be used directly as an effective solute-solute non-bonded interaction since the environmental
(solvent) effects within the PMF are not explicitly represented through solvent degrees of freedom
in the CG model. For many types of solutes the solute-solute PMF has been used as an interaction
potential in implicit solvent models [126,127]. One prominent example is the use of the solute-solute
pair PMF for implicit solvent models of aqueous electrolyte solutions, i.e., implicit solvent ion
models [37,79,85,128,129].

The case is somewhat different if some sort of explicit solvent representation, for example in the
form of a CG water model, is present in the CG system. In this case, effective solute-solute non-bonded
pair interactions are needed from which the solvent contributions are removed in the same way they are
removed by IBI in other systems. However, due to the sampling problem of the PMF between dilute
components, an iterative procedure is prohibitive for solute-solute interactions. To solve this problem,
an approximate method has been developed by Villa et al. [38,130]. Here, the CG solvent-solvent
and solute-solvent interactions are first determined, for example through normal IBI. Now the pair
PMF between the solutes V AA

PMF (r) is computed (from atomistic umbrella sampling or thermodynamic
integration) and used as a target, in other words the resulting CG model is parameterized to reproduce
the solute-solute association strength observed in the atomistic system. In order to remove the solvent
contribution from V AA

PMF (r), a subtraction procedure is employed. One conducts a separate PMF
calculation (again with umbrella sampling or thermodynamic integration), this time in a CG system,
where the (previously determined) CG solvent-solvent and solute-solvent interactions are present but no
direct interaction between the solute particles is turned on. The resulting PMF V CG

PMF,excl(r) only consists
of the environmental contributions (in the CG environment). By subtracting V CG

PMF,excl(r) from the target
PMF one obtains the missing direct pair interaction

V CG(r) = V AA
PMF (r)− V CG

PMF,excl(r) (14)

which by construction reproduces the target PMF. Note that this subtraction procedure is not necessarily
limited to CG solvent-solvent or solute-solvent interactions determined by IBI. In principle other types
of CG solvent-solvent or solute-solvent interactions could also be used to determine V CG

PMF,excl(r). If one
then applies Equation (14), one obtains an effective solute-solute interaction V CG(r) which reproduces
the atomistically observed solute-solute association strength (i.e., V AA

PMF (r)) in the particular CG solvent
that was chosen.

2.4. Relative Entropy

Aiming at reproducing different properties or objective functions of the reference, atomistic system,
IBI and Force Matching have manifestly different algorithms and produce qualitatively different
results. Recently a different coarse-graining strategy has been developed, namely the Relative Entropy
method [131–133], which relies on a quantitative measure of the loss of information that follows
from the description of a system in terms of different interaction potentials and/or different resolution.
Remarkably, it is possible to demonstrate that the information function employed in this strategy
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connects Relative Entropy, IBI and Force Matching together. The functional form of this measure
function is given by the relative entropy, or Kullback–Leibler distance:

Srel =
∑
ν

PAA(ν) · ln
(
PAA(ν)

PCG(ν)

)
(15)

In Equation (15), ν labels a given microstate or atomistic configuration, PAA(ν) is the probability
of sampling a configuration ν in the fully atomistic system, and PCG(ν) is the probability of sampling
the same (atomistic) configuration in the system with coarse-grained interactions, but still described by
a high-resolution structure. This latter probability is degenerate with respect to the atomistic-potential
configurations, as many of them correspond to the same coarse-grained configuration V . It is therefore
advantageous to write the probability to sample a given atomistic configuration in the CG system in
terms of the function that maps the fine-grained configurations onto the coarse-grained ones:

PCG(ν) ≡ P
′
CG(V)

Ω(V)

V ≡M(ν) (16)

Here, P ′CG(V) is the probability of sampling the CG configuration V in the low-resolution system
and Ω(V) =

∑
ν δ(M(ν) − V) is a measure of the degeneracy of the configuration V in the atomistic

system. It should be noted that this last quantity depends only on the mapping function M and not on
the coarse-grained interactions; this term can therefore be separated out in the definition of the relative
entropy to obtain:

Srel = Smap + 〈φ〉
with:

〈Q〉 ≡
∑
ν

PAA(ν) · Q(ν) (17)

Smap = 〈ln (Ω(M(ν)))〉

φ(ν) = ln

(
PAA(ν)

PCG(M(ν))

)
(18)

The quantity φ(ν) can be interpreted as the amount of information in the configuration ν which
discriminates between the atomistic and the coarse-grained probability. The definition in Equation (17) is
particularly appealing because it shows that the relative entropy can be computed as the sum of operator
averages. In the special, but quite common case of systems in thermal equilibrium, the probability
distributions P are simply given by the Boltzmann weights, and the relative entropy reduces to the form:

Srel = Smap + β [(AAA − ACG)− 〈UAA − UCG〉AA]

with AAA (resp. AAA) being the free energy of the atomistic (resp. CG) system. For a given choice
of the mapping function M, the optimal coarse-grained potential is obtained by minimizing the relative
entropy functional with respect to the parameters in terms of which the aforementioned potential is
defined: common choices for non-bonded, two-body interactions are the coefficients of a Lennard-Jones
potential or the nodes of a spline.
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As anticipated at the beginning of this section, IBI and Force Matching can be connected using the
concept of relative entropy. In fact, a straightforward minimization of Srel making use of two-body
coarse-grained potentials can be shown to be equivalent to the IBI algorithm; on the other hand, the Force
Matching scheme is retrieved if the average of the function |∇φ|2 is minimized instead of the average
of φ [134]: the squared gradient of the φ function with respect to the Cartesian coordinates, in fact,
is proportional to the squared difference of the forces obtained from the AA and the CG descriptions,
so that:

χ2[F] = χ2[FPMF] +
(kBT )2

3N

〈
|∇φ|2

〉
(19)

In conclusion, it therefore appears evident that different coarse-graining schemes are obtained through
the minimization of different functionals of the same information function φ, which represents the
unifying element between various approaches.

2.5. Transferability of Coarse-Grained Models

From the preceding sections we have seen that there are different approaches to the systematical
parameterization of CG models which by construction will not be equally well suited to the reproduction
of thermodynamic and structural properties of the system. It is not a priori clear whether structure-based
potentials reproduce macroscopic thermodynamic properties and, vice versa, if thermodynamics-based
potentials reproduce microscopic structural properties. However, the interplay of structure and
thermodynamics is crucial for the investigation of structure formation processes, in particular for
biomolecular aggregation in aqueous solution where partitioning and phase separation play a decisive
role. All CG models (in fact also all classical atomistic forcefields) are state-point dependent and
cannot necessarily be—without reparametrization—transferred to different thermodynamic conditions
or a different chemical environment compared to the one where they had been derived. This means
“transferability” can refer to a change in temperature, density, concentration, system composition, phase,
etc., but also a change in chemical environment, e.g., the change of length or sequence of an amino acid
chain. Structure-motivated CG models which approximate the high dimensional PMF obtained from an
atomistic reference are by construction heavily state point dependent, and several studies have addressed
questions regarding their ability to reproduce thermodynamic properties. One system that has been of
particular interest in this context is liquid water [112,117,135]. The reason is on the one hand of course
its immense importance in all questions regarding biomolecular systems. In addition, it is of particular
methodological interest because for single bead models of water it is known that three-body correlations
play a decisive role and the potential compromise between reproducing pair- or higher order structural
correlations is particularly relevant for the properties of the model [101,116,117]. Different studies have
been carried out that compare structure-motivated and thermodynamics-based CG models [121,136,137].
While CG models where the parametrization targets had been solvation and partitioning properties
are particularly well suited to reproduce processes where for example hydrophilicity/hydrophobicity
arguments play a decisive role, they do not per se reproduce the structure of the system [121,136].
Related to their ability to reproduce the thermodynamic properties of certain chemical units, these models
exhibit considerable transferability and can often be applied to a variety of molecular systems and a
range of thermodynamic conditions. Motivated by these observations, intensive research is currently
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being carried out to derive CG potentials that are both thermodynamically as well as structurally
consistent with the underlying higher-resolution description, thus ensuring for example a certain state
point transferability [38,88,89,94,138].

One possibility to improve transferability in this context is to exploit—similar to the case of
the pressure correction described above—the fact that the derivation of a CG model based on the
reproduction of structural properties (potentials of mean force) is an ill-posed problem which allows a
reproduction of the original target property within a given error while at the same time including certain
thermodynamic target properties during parametrization. One approach developed by Ganguly et al. for
multicomponent systems that follows this idea combines the IBI method with Kirkwood–Buff integrals
as additional targets which are related to the activity coefficients of the components [139]. With this
approach transferability over a certain concentration range can be achieved.

Yet another non-structure-based method that produces CG pair potentials with remarkable state point
transferability is the conditional reversible work method by Brini et al. [140–142]. Here, several
calculations of pair potentials of mean force on the atomistic level are used to assess and correctly
account for the indirect contribution by the environment to the effective CG pair forces. The observed
transferability of this method can be ascribed to the fact that the method relies on direct pairwise
interactions in the atomistic reference system. In other words, the method does not rely on reproducing
a structural property such as a pair PMF or multi-body PMF, i.e., on properties that are extremely
dependent on the precise thermodynamic state of the reference system.

It has been mentioned before that effective pair potentials account for multi-body effects, for example,
three body interactions. For this reason, they are only to a limited extent additive, which limits the
transferability of the potentials [38,143]. Understanding the physical nature of non-additivity in the
system of interest can help to make a CG model transferable. In principle, there are various possibilities
to approach the question of transferability of effective pair potentials: (i) One applies a model derived
at/optimized for a given state point unaltered to a range of state points nearby; in that case, one has
to carefully investigate the range in which this is permitted [144–146]; (ii) One creates a new set of
potentials for each state point one wants to investigate [144]; (iii) One specifically designs a single CG
model with the aim of transferability (for example specific density dependent potentials [94,147,148],
CG models that are designed to be applicable for a range of mixture compositions [71,138], or CG
models that are capable of capturing a liquid crystalline phase transition [88,89]); (iv) One uses a
model derived at one state point and (analytically) modifies it to be applicable to different conditions
(one example being the rescaling of potentials in order to apply them to a different temperature [149]).

The approach of using a model at a specific state point and then testing its transferability
over a reasonably wide range of different physical conditions has traditionally been applied in the
case of classical polymer melts. In this field, structure-based models have been very successfully
applied, and decent temperature [77,150–152] and pressure transferability [153] have been found.
In fact in the first papers by Tschöp et al. [77,103] the temperature transferability already allowed
the semi-quantitative prediction of shifts in Vogel Fulcher temperature for different polycarbonate
modifications. This observation appears to hold for classical isotropic polymer melt systems where the
behavior is largely dominated by the correct representation of the chain conformations and the excluded
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volume of the chain. As soon as more specific chemical interactions play a role, the case of transferability
becomes more delicate.

In the following, we discuss three examples which illustrate that understanding the physical basis
behind the limitations in transferability can help to design transferable models.

Binary mixtures have in general been widely used as model systems to explore various aspects
of the transferability of CG models [37,38,71,128,129,138,143,147,148]. The transferability to
different concentrations of liquid mixtures or solutions is of vital importance for simulation of
processes such as (bio)molecular aggregation which are characterized by spatially varying structure and
fluctuating concentrations.

Following the above-described method to apply Boltzmann-inversion derived methods in dilute solute
solvent systems, a CG model for mixed systems of benzene in water had been derived [38]. This means
that the CG benzene-benzene potential had been parameterized on the basis of the benzene-benzene
PMF of two benzene molecules in aqueous solution, i.e., at “infinite” dilution. Benzene-water mixtures
of different composition have been studied with this CG model and analyzed using the Kirkwood-Buff
theory of solutions [154]. Kirkwood-Buff theory provides a link between local structural information
and thermodynamic properties of the solution. This CG model, parametrized at infinite dilution
of benzene, reproduces the Kirkwood-Buff integrals of mixtures at various concentrations obtained
with the detailed-atomistic model. It reproduces the changes in the benzene chemical potential and
the activity coefficients of the mixtures over a range of mixture compositions (up to concentrations
where benzene and water demix in the atomistic reference simulation). A possible explanation is that
hydrophobic interactions between benzene solutes are short-ranged, and the multi-body correlations
involved in hydrophobic association can be described by pairwise additive effective potentials (category
(i) of the above list). The observed transferability of the potential supports the idea that hydrophobic
interactions between small molecules are pairwise additive. Villa et al. also found that a different
CG model for benzene-benzene interactions that had been derived for pure benzene (via IBI) is neither
suited to describe benzene-benzene interactions in aqueous solution at different concentrations nor a
phase-separated benzene/water system with a bulk benzene layer [38].

To reproduce the actual phase separation process as well as the behavior of the mixed (or dilute)
systems is much more complicated (yet it is of vital importance in the parameterization of bottom-up
CG models that are able to reproduce biological partitioning and self aggregation phenomena). Here,
a combination of a wise choice of one or possibly several reference state points is promising, in particular
combining the reference of infinite dilution with the phase separated one. For the latter, application of
the IBI extension by Jochum et al. for inhomogeneous systems with an interface/phase boundary can be
utilized [123].

In this context it should also be mentioned that similar transferability problems exist in other areas,
for example in the simulations of solids (e.g., with embedded atom potentials). As soon as one encounters
surfaces or interfaces the local environment of an atom differs substantially from the bulk (crystalline)
phase, which was used to parameterize the interaction potentials. Consequently the transferability of the
potentials will affect the ability to model processes such as crack formation or the relocation of grain
boundaries [155,156].
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In the second example, the situation is different. Here, the transferability of CG (in this case
implicit-solvent) ion models in aqueous solution had been investigated. Due to long-range electrostatic
interactions, the ions affect the behavior of water increasingly strongly with increasing ion concentration.
More specifically, the presence of many ions reduces the orientational fluctuations of the water molecules
and thus the dielectric permittivity of the solvent. Therefore, effective ion-ion potentials parametrized
at infinite dilution are not directly transferable to higher salt concentrations. Hess et al. developed a
reduced-resolution (in this case implicit-solvent) potential for aqueous electrolyte solutions where an
ion-concentration-dependent Coulomb term was added to the (ion-specific) pair interaction. Thus, by
using a concentration-dependent dielectric permittivity for water, part of the multi-body effects in the
system were accounted for in the ion-ion pairwise interaction in the implicit solvent model [128,129].
This approach reproduced the NaCl solution osmotic properties and the ion coordination up to a
concentration of 2.8 M (mol/L). While in the case of the CG model of benzene/water mixtures [38]
the short-range hydrophobic interactions parameterized at infinite dilution were directly transferable
to higher benzene concentrations, the ion-ion interactions determined at infinite dilution had to be
split into a short-range ion-specific and a long-range electrostatic part. The interactions were then
made transferable by keeping the short-ranged part constant and analytically modifying the long-ranged
electrostatic part (category (iv) of the above list). Shen et al. have further investigated the structure
and osmotic properties of electrolyte solutions over a wide range of concentrations [37]. Using a
concentration-dependent dielectric constant one also obtains very good structural properties of the
electrolyte solution at low and intermediate salt concentrations while for larger salt concentrations
multi-body ion-ion correlations limit straightforward transferability. Guided by this structural analysis,
the transferability of the implicit-solvent model could also be improved for high ion concentrations.
One obtains transferable implicit-solvent effective pair potentials which are both structurally and
thermodynamically consistent with an explicit solvent reference model.

The third example again stresses the immense importance of a good reference state point. It also
shows how the reference choice can be guided by understanding the underlying physics.

One highly relevant case of a transferability problem is the ability of a CG model to correctly describe
a phase transition while being (reasonably) faithful at both phases below and above, a prominent example
being liquid crystalline systems. For such systems, coarse graining can gain access to large system sizes
with local disorder, domains etc., and a bottom-up, non-generic CG model has the power to include
molecular flexibility and other chemistry specific details. This means that the model should on the
one hand faithfully represent the structure in the LC ordered state and on the other hand reproduce the
LC/isotropic phase transition.

For an azobenzene-based liquid crystalline compound (8AB8) it was found that state point
transferability could be achieved by choosing as an appropriate state point for the reference simulation
the supercooled liquid just below the smectic-isotropic phase transition. This reference state is
characterized by a high degree of local nematic order while being overall isotropic. The primary idea
behind this choice of reference state is the observation that—in the spirit of arguments from classical
density functional theories of liquids [157]—the short ranged correlations in the ordered phase are
not very different from the local correlations present in a disordered phase at suitable thermodynamic
state (density, temperature, etc.) (as one approaches the transition from the high-temperature side).
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If one captures these local correlations and builds them into the (structure-based) potentials, then these
potentials should be able to describe phases on both sides of the transition. For 8AB8, indeed an
excellent structural correspondence with the atomistic reference in the smectic state has been found.
With the resulting CG model it is possible to switch between the atomistic and the CG levels (and vice
versa) in a seamless manner maintaining values of all the relevant order parameters which describe
the LC ordered state (see Figure 1). At the same time, this CG model shows remarkable state point
transferability and reproduces the LC-isotropic phase transition upon heating and cooling [39]. Such a
CG LC model—since it is on the one hand sufficiently coarse grained to study a variety of processes in
the LC phase while being at the same time still very closely related to an underlying chemically realistic
atomistic description, e.g., allowing for realistic molecular flexibility—is able to give new insights into
for example microscopic dynamics in LC phases [40]

Figure 1. A transferable coarse-grained (CG) model for a liquid crystalline molecule that
reproduces the ordered/disordered phase transition while at the same time being highly
consistent with an atomistic level of resolution. This is achieved by the choice of reference
state point, namely the supercooled liquid just below the smectic-isotropic phase transition
which is characterized by a high degree of local nematic order while being overall isotropic,
for details see Reference [39]. Left panel: snapshot of a CG simulation in the LC state
with a backmapped atomistic structure superimposed; Right panel: This model allows
mechanistic studies of dynamic processes in smectic systems, where the influence of the
intrinsic flexibility of the molecules on the free energy of different permeation pathways can
be elucidated (reprinted from [40]).

3. Adaptive Resolution Simulations

In the introduction we defined a class of systems for which the focus of the researcher’s interest is on
a (possibly small) subregion of the simulated system: this is the case, for example, of the hydrogen bond
network at the surface of a solvated molecule in water. The bulk of water molecules has to be simulated in
order to sustain the thermodynamical properties of the subsystem of interest—the interfacial water—and
to provide the correct exchange of molecules. Nonetheless, the fine-grained detail of molecules far
from the interface is not relevant; it would be therefore desirable to replace the atomistic, expensive
interactions of hydrogen and oxygen atoms with a coarser model.
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We can then introduce a geometrical separation between an “inside” and an “outside”, i.e., an
all-atom and a coarse-grained region, and assign different types of representations and interactions to
the molecules according to their position in the simulation domain.

This idea has a long and successful history: to investigate crack propagation in hard matter,
for example, several authors [158–162] made use of a hybrid description of the system, where a
“high resolution” description is employed only for the area in the proximity of the crack, and the material
far from the crack is treated with a simpler model. Another important example of hybrid resolution
simulation is provided by Quantum Mechanics/Molecular Mechanics (QM/MM) methods [163–167].
In this case the structure of the system is described at the same (atomistic) level everywhere; however,
the interactions are obtained from a classical force-field in the bulk of the system, but in a small region
ab initio methods -such as Density Functional Theory, DFT- are employed to calculate the forces.
Many different “flavors” of this approach have been developed; in all of them, though, one of the
crucial aspects is how to interface the two domains where interactions are different, and in most of
the established methods the identity or resolution of the particle is not allowed to change. In general,
one has to answer the two following questions:

(1) how should two atoms/molecules in different domains interact?
(2) how should the properties of an atom/molecule change in crossing the interface?

The last question is of particular importance for all systems whose components can diffuse on large
length scales (at last of the order of the molecules’ size) in the simulation time. It appears natural to
introduce a transition region (often called hybrid region, or healing region) that allows for a smooth
interpolation from a given representation of the molecule’s structure/interaction to another; a schematic
representation of this setup is provided in Figure 2. The choice of the specific way this interpolation
is implemented depends, as we mentioned earlier, on the properties that have to be preserved in the
CG region.

Figure 2. Typical scheme of an adaptive resolution simulation: a high-resolution region,
where molecules are described at the atomistic level, is coupled to a low-resolution region
where a simpler, coarse-grained model is employed. These two sub-parts of the system
are interfaced via a hybrid region, in which the molecule’s representation smoothly changes
from one to the other, depending on their positions. It is on this last region and its properties
(i.e., the way molecules change resolution) that the complexity of adaptive resolution
schemes concentrates.
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Irrespective of the chosen method to interface the two regions of the system, however, it is natural
to expect that the equilibrium state that will be reached in the absence of external driving forces
will not be the desired one. A further crucial point is then to find the simplest way to impose the
desired thermodynamics.

The central, strong requirement that has to be satisfied is that molecules should be free to diffuse
from any region of the simulation box to any other. Additionally, in a hybrid resolution model thermal
equilibrium should be preserved, i.e., the temperature of the system has to be constant during the
simulation. Another possible constraint is to impose a uniform density across the box, irrespective of
the specific resolution; nonetheless, we’ll see that there are cases where this is neither strictly necessary
nor desirable.

These are the fundamental constraints that can be imposed on the system as a whole. Other,
more specific ones can be introduced on the properties of the CG region as well as the transition region,
which will “drive” us towards a specific formulation of a double-resolution simulation method.

3.1. The Adaptive Resolution Simulation Scheme

The Adaptive Resolution Scheme (AdResS) represents the first effective and computationally efficient
method to simulate a system where two different models, e.g., an all-atom one and a coarse-grained one,
are simultaneously employed in different subregions of the simulation domain, interfaced in such a way
to allow molecules to freely diffuse from one region to the other.

The basic constraint that was enforced in the original version of this scheme is that Newton’s 3rd law
has to be exactly satisfied everywhere in the simulation domain. This requirement rules out any form
of potential energy interpolation: it can in fact be formally demonstrated [168] that no method exists to
smoothly “blend” the interaction between two molecules from a given potential energy to another without
generating forces that cannot be recast in a form that satisfies Newton’s Third Law. In order to preserve
the latter, then, a force-interpolation scheme is required, such that the force that a given molecule receives
due to the interaction with a second one is antisymmetric under exchange of the molecules’ labels:

Fα|β = −Fβ|α (20)

A second, less strict requirement is that CG molecules possess CG degrees of freedom only; this
determines the specific way the force mixing is performed: a molecule in the CG region loses completely
its atomistic detail (thus retaining, for example, the center of mass coordinates only), and interacts with
a molecule in the AA or even the transition region only via its CG degrees of freedom. Formally,
this constraint imposes that the atomistic forces vanish when at least one of the two interacting molecules
is in the CG domain.

These two constraints are sufficient to define the force-field interpolation; the force acting between
molecules α and β is given by:

Fαβ = λ(Rα)λ(Rβ)FAAαβ + (1− λ(Rα)λ(Rβ)) FCGαβ (21)

In Equation (21) λ(x) is any smooth function that goes from 1 in the AA region to 0 in the CG
region. Rα (resp. Rβ) is the CoM coordinate of molecule α (resp. β). FAAαβ and FCGαβ are, respectively,
the atomistic and the coarse-grained forces acting on molecule α due to the interaction with molecule β.
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The CG force is computed between the coarse grained centers of the molecules and then redistributed
to the atoms weighted by the ratio of the atom’s mass to the mass of molecule [169]; in the transition
region this operation is required by the fact that molecules interact at both the AA and the CG level.
AA degrees of freedom thus have to be explicitly integrated, at least into the hybrid region. In the
CG region, on the other hand, it is in principle not necessary to conserve the atomistic detail of the
molecules, so that the CG force could be applied directly to the CoM coordinate; a molecule’s internal
structure can thus be removed when it enters the CG region, and reintroduced (e.g., taking it from a
reservoir/repertoire of equilibrated atomistic molecules) as soon as it approaches the hybrid region.
In all AdResS versions implemented so far, though, the atomistic DoFs are retained for simplicity of
implementation [24]; the CoM of the molecule is nonetheless decoupled from the internal atomistic
structure, and it evolves only subject to the CG force.

It was previously mentioned that no energy interpolation is possible, that is compatible with the
requirement of having Newton’s 3rd law preserved everywhere in the system [168]; as a consequence,
a force interpolation had to be chosen. It is evident, then, that the AdResS scheme cannot be formulated
in terms of a Hamiltonian, thus making it impossible to perform microcanonical, i.e., energy-conserving
simulations. The force-field used in this adaptive resolution simulation framework is not conservative
in the transition region, and when crossing it a molecule receives a surplus of energy that has to be
removed in order to prevent the system from artificially heating up. This excess energy can be removed
with a local thermostat, such as Langevin thermostat: in this way, the temperature of the system is kept
constant everywhere. The equilibrium state of the system is then dynamical: the thermostat takes care
of absorbing the extra heat produced in the transition region by non-conservative forces, and the system
samples equilibrium configurations according to Boltzmann’s distribution [24–32].

The pressure difference between an AA system and a low-resolution model typically resulting
from coarse graining procedures determines the onset of a non-uniform density profile. For example,
a one-site CG model of water obtained with IBI can have a pressure ∼6000 times the atomistic
reference value [117]. Therefore, the densities in the two subregions will change in order to equate
the pressures. A possible solution to this density imbalance is to parametrize the CG potential to the
target pressure. In the IBI framework this can be achieved by introducing a “pressure correction” [81].
This approach can provide a CG potential that has the target pressure, but this would also result in a
modified compressibility [117].

Another option to preserve a uniform density across the simulation domain without modifying the CG
potential is to introduce an external force which counterbalances the high pressure of the CG model. This
thermodynamic force can be obtained with an iterative procedure via the following expression [169–171]:

f i+1
th = f ith −

1

ρ?κT
∇ρi(r) (22)

where ρ? is the reference molecular density, κT is the system’s isothermal compressibility and ρi(r) is
the molecular density profile as a function of the position in the direction perpendicular to the CG-AA
interface. The thermodynamic force is initialized to zero, f0

th = 0, while the initial density profile is the
one calculated from an AdResS simulation with fth = 0. As can be easily seen, the iterative procedure
converges once the density profile is flat (∇ρ(r) = 0).
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This approach guarantees a flat density profile without having to modify the CG potential: because of
its very definition, the thermodynamic force only acts on those molecules that cross the hybrid region,
leaving the others unaffected. It can also be shown [24,169] that the integral of the thermodynamic
force across the interface, i.e., the work due to this force performed by a molecule while crossing the
hybrid region, is proportional to the local pressure profile, the proportionality factor being the reference
density ρ?.

In summary, the thermodynamic force allows us to couple a system at atomistic resolution to a
coarse-grained counterpart whose pressure, for given values of density and temperature, is significantly
different. The global properties of the force, whose direct effect is restricted to the hybrid region, only
depend on the pressure difference between the two coupled subsystems; the detailed profile of the force,
on the other hand, can be obtained via a system-specific iterative procedure. This method not only
allows one to preserve the desired structure of the system in the CG region; in principle, in fact, an
arbitrary CG force-field, with pressure and structure completely different from the target atomistic
ones, can be used. Consequently, the AA region behaves as an open system [169] that exchanges
energy and molecules with a reservoir: the molecule number fluctuations, the pressure and all other
thermodynamically relevant quantities are the same as if the AA region were simply ‘cut’ from a large
all-atom simulations. It is relevant to stress here that because of the thermodynamic force this condition
can be established irrespective of the specific model used in the CG region.

3.2. Applications

The possibility of treating a system with a reduced number of degrees of freedom except where it is
strictly necessary was explored, making use of the AdResS method, in several applications [24–30,172].
From the numerical/computational point of view it clearly represents an advantage, since a much smaller
number of force calculations are required in the coarse-grained region: this is particularly true for parallel
MD codes such as GROMACS [173], where a dynamical decomposition of the simulation box allows
one to subdivide the box with a finer grid in the AA and hybrid region, while a smaller number of
processors is assigned to the CG region. For example, for a water system with an AA region covering
1/6 of the total simulation box, simulated with GROMACS on a 16-cores processor, the speed-up is
about a factor three. This factor is nonetheless small compared to what can be achieved with other
simulation packages, such as ESPRESSO++ [174]: in fact, water simulation in GROMACS is extremely
optimized, and any hacking of the standard code can introduce a bottleneck.

A major strength of the AdResS method is the fact that it introduces a decoupling between a given
region of the system and the rest while keeping the thermodynamic properties of both regions under
control: as a consequence, it is possible to conceive numerical experiments in which the spatial extension
of correlations in the system is investigated. More specifically, one can study the structural properties
of the high-resolution region as a function of its size, in order to determine their dependency on the
interaction with molecules in the bulk region. This kind of experiments is different from the study
of finite-size effects: in the latter, in fact, the system has the same resolution and interaction type
everywhere, and the change of a property with the box size depends on the asymptotic approach to
the thermodynamic limit. In the AdResS setup, on the other hand, finite-size effect can be neglected



Entropy 2014, 16 4220

for sufficiently large boxes, thus allowing one to characterize the response of the system’s properties in
a small subregion when atomistic interactions with the bulk are switched off, but the thermodynamics
is the same as in a fully-atomistic simulation. An example of this applications is provided by the work
in Reference [175]: here a molecule with both hydrophilic and hydrophobic interactions was solvated in
water and put at the center of the high-resolution region, while the water molecules far from the surface
were treated at the coarse-grained level. The ordering degree of the hydrogen bond network on the
molecule’s surface was measured as a function of the size of the all-atom region: the results showed a
dependency of the ordering for water molecules close to the surface of the repulsive solute, while no
relevant effect was observed for the attractive case.

The same strategy has been applied to investigate the extent of spatial correlations in a quantum
fluid, namely low-temperature para-hydrogen [30,176]. The latter is the spin-zero singlet state of
molecular hydrogen. Because of the spherical symmetry of the global wave function, para-hydrogen
in the solid and gas phase can be modeled as a classical, point-like particle interacting via a simple
radial potential, such as Lennard-Jones or the more accurate Silvera-Goldman potential [177,178].
The same classical potential has been shown to correctly reproduce the experimental results both in
the solid and the gas phase [178]. In the fluid phase, however, nuclear delocalization effects become
important, and a quantum mechanical treatment of the problem is necessary. This can be achieved
through the path integral formalism [179,180], which allows for the explicit inclusion of nuclear
quantum effects in a “classical” description; unfortunately, this also implies a significant increase
in the number of degrees of freedom that have to be simulated, since each molecule becomes a
collection of P beads connected by springs. The possibility to simulate a quantum system in a classical
framework such as classical MD makes it possible to couple quantum a classical descriptions with the
AdResS scheme. In particular, a low-temperature para-hydrogen system was simulated making use
of the explicit path integral representation only in a small spherical subregion of the domain, while
the molecules in the outer region were treated at the purely classical level, i.e., point-like particles
interacting through a coarse-grained potential [30]; in Figure 3 a snapshot of the simulated system is
provided. This study showed that a few molecules in a small (∼0.6 nm radius) region of the system
are sufficient to reproduce the quantum pair correlation function obtained from a full path integral
simulation, but treating the molecules in the outer region at the CG level; this result opens the way
to simulate large systems of low-temperature para-hydrogen taking advantage of a double resolution
without disrupting the thermodynamical and structural properties of the small, purely quantum region,
thus saving computational time in the CG region.

More recently the AdResS scheme has been successfully employed to perform simulations of
biologically relevant systems such as methanol-water mixtures [181] and triglycine in aqueous
urea [171], and to study the coil-globule transition of a PNIPAm molecule in aqueous methanol [182].
In all these cases a crucial necessity is to correctly reproduce the solvation free energies of the system, a
condition that is verified only when the particle number fluctuations are compatible with those observed
in the Grand Canonical ensemble. The large system sizes necessary to fulfill this requirement in
a standard, all atom simulation often make the latter unfeasible; the employment of dual-resolution
simulation methods, possibly coupled to a Monte Carlo scheme [182] to enforce fluctuations in the total
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number of molecules, see Figure 4, allows one to keep the computational cost low and obtain results that
would otherwise require a significantly longer time.

Figure 3. Set-up of the Adaptive Resolution Simulation (AdResS) para-hydrogen
simulation performed in Reference [30] (figure adapted from therein). A small sphere in
the center of the box, having radius as small as 0.6 nm, is treated at the path integral level
(red rings), while the rest is described by point-like molecules (the white spheres); the
hybrid region (blue) interfaces these two representations.

Figure 4. Schematic representation of the schemes used for the simulations of a PNIPAm
molecule solvated in aqueous methanol: (a) Conventional AdResS scheme, where a small
all-atom (AA) region is coupled to a large “closed boundary” coarse-grained reservoir;
(b) Particle exchange adaptive resolution scheme (PE-AdResS), where an AA region is
coupled to a much smaller open boundary coarse-grained reservoir, where particle exchange
is performed at the eight corners of the simulation domain to avoid depletion effects;
(c) Mapping scheme representing the smooth coupling between AA and CG particle
representations. Figure from [182].
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3.3. The Limitations of the Force-Based Approach

The AdResS method discussed so far represents a simple, effective way to perform double-resolution
simulations, i.e., simulations where the model used to represent a molecule and its interactions with the
others changes according to the molecule position. Assigning the lowest-resolution model to the largest
region allows one to save computational resources and characterize the bulk dependence of structural
properties of the high-resolution subsystem. A majorly important point is given by the possibility to
keep the thermodynamics of the system under control: this can be achieved by direct intervention on
the CG model’s properties, or by introducing an external field -the thermodynamic force- in the hybrid
region to compensate for density imbalances. This second streategy is crucial, since it allows one to
couple arbitrarily different systems while keeping locally well-defined temperature, pressure and energy.

The AdResS method was conceived based on the requirement that Newton’s Third Law has to be
exactly satisfied everywhere. This constraint poses a strict limitation to the possible ways to interface
the two representations of the system: specifically, no potential energy interpolation is possible, via a
position-dependent switching function, that preserves Newton’s Third Law [168]; as a consequence, the
only acceptable interpolation can be performed on the forces.

A posteriori, the lack of a global energy function proves not to be a major problem: equilibrium and
canonical sampling can be enforced making use of a local Langevin thermostat. A theoretical analysis of
the AdResS dual resolution scheme has been recently carried out in Reference [183], where the presence
of a local thermostat and the thermodynamic force have been shown to be necessary and sufficient
conditions to guarantee the equivalence of the atomistic region to an open region of a fully atomistic
simulation up to second order correlation functions (density profile and radial distribution function).
These results have been obtained from a completely general model of a dual resolution setup under
the assumption of the thermodynamic limit; the generality of this approach makes it thus applicable to
different types of adaptive resolution schemes, independently of the detailed form of the method chosen
to interpolate the resolutions.

Nonetheless, the lack of a Hamiltonian has negative consequences on the usage of the AdResS
method; the four major ones are: microcanonical, i.e., energy-conserving simulation are not possible; no
partition function can be written for the system as a whole; no Monte Carlo scheme can be implemented.
Finally, due to the non-conservative nature of the forces in the hybrid region the system necessarily has
to be locally thermostatted to compensate for the heat that is produced in the hybrid region, so that an
AdResS simulation is found to be in a state of dynamical equilibrium [32], with a constant flux of heat
between the system and the thermostat.

In the next section a method is discussed, named H-AdResS [33] (for Hamiltonian Adaptive
Resolution Simulation scheme), that provides a solution to the aforementioned problems; clearly, as no
free lunch is usually available, there is a price to pay: the Hamiltonian formulation requires a local
breakdown of Newton’s Third Law.

3.4. The Hamiltonian Adaptive Resolution Scheme

As was discussed in the previous section, the force-based AdResS method was developed on
the basis of a central requirement, namely that Newton’s 3rd law has to be exactly satisfied
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everywhere. A consequence of this constraint is that no Hamiltonian formulation is possible [168]:
if a position-dependent interpolation of the potential energies is done, in fact, the resulting forces
include a term proportional to the derivatives of the switching function λ that cannot be recast in
a form that satisfies Newton’s Third Law. The only method developed in the past that allows one
to explicitly conserve the energy in an adaptive resolution simulation is that proposed by Heyden
and Truhlar, [184,185], where a sum of the Lagrangians of all possible groupings of atomistic and
coarse-grained molecules is done. Due to its combinatoric nature, this approach is extremely difficult to
implement efficiently; moreover, the resulting Lagrangian includes a position-dependent kinetic energy
term for which a specific, non-symplectic integrator is required.

In the H-AdResS method [33], which we now describe, the aforementioned constraints are relaxed in
order to develop an energy-based, Hamiltonian adaptive resolution simulation scheme. As will be clear
in a few lines, the particular choice of energy “mixing” gives rise to forces that do not comply with the
first constraint; nevertheless, the physical interpretation of these terms is immediate and naturally points
towards the solution -though approximate- of the Newton’s Third Law breakdown.

The core idea of the energy-based approach is to weight the total energy of each molecule with a
position-dependent function:

H = K + V int +
∑
α

{
λαV

AA
α + (1− λα)V CG

α

}
(23)

whereK is the (all-atom) kinetic energy of the molecules, V int is the interaction internal to the molecules,
and: 

V AA
α ≡ 1

2

N∑
β,β 6=α

∑
ij

V AA(|rαi − rβj|)

V CG
α ≡ 1

2

N∑
β,β 6=α

V CG(|Rα − Rβ|)

λα = λ(Rα)

The switching function λ goes from 0 (purely CG) to 1 (purely AA). The force acting on atom i in
molecule α is obtained through differentiation of the Hamiltonian in Equation (23):

Fαi = Fintαi +
∑
β,β 6=α

{
λα + λβ

2
FAAαi|β +

(
1− λα + λβ

2

)
FCGαi|β

}
−
[
V AA
α − V CG

α

]
∇αiλα (24)

The forces FAAαi|β and FCGαi|β are defined as:

FAAαi|β ≡
nβ∑
j=1

− ∂

∂rαi
V (|rαi − rβj|)

FCGαi|β ≡ −
mαi

Mα

∂

∂Rα

V CG(|Rα −Rβ|) (25)

The redistribution of the CG force on the atomistic degrees of freedom follows the same rules as
applied in the case of the force-based AdResS method. It’s worth noting that in this energy-based scheme
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the atomistic degrees of freedom are retained and integrated everywhere in the system, a necessary
requirement in order to perform a microcanonical simulation making use of a Hamiltonian.

We now detail the various components of the force, Equation (24). The first term, Fintαi , is due to the
interactions internal to the molecule; as such, it automatically satisfies Newton’s Third Law. The second
term is a sum of pairwise forces obtained from all-atom and coarse-grained Hamiltonians, weighted by
a function that is symmetric under molecule label exchange, that is α↔ β; this force also complies with
Newton’s Law. Up to this point we modified only one aspect of the original AdResS scheme, that is,
the force weights are not given by the product of the two molecules’ switching function, rather by the
average; consequently, the molecules in the coarse-grained region are also allowed to interact through
their atomistic degrees of freedom.

The third term of the forces in Equation (24) is the part that breaks down Newton’s Third Law: in
fact, it cannot be written as a sum of terms antisymmetric under molecule label exchange. This force,
which is nonzero only in the hybrid region, is proportional to the difference between the potential
energies of a given molecule in the AA and the CG representation; if a systematic difference exists
between the AA and the CG potentials, the effect of this term is to push molecules into one of
the two bulk regions. The hybrid region thus behaves as an active membrane, inducing a density
imbalance and a non-flat pressure profile. One is then naturally led to ask how strong is the drift term
Fdr
α = −

[
V AA
α − V CG

α

]
∇αiλα; if it is negligible in some cases; which these cases are; and if there is a

general way at least to minimize its effect without giving up the Hamiltonian character of these forces.
We shall now address these questions.

The optimal case in which this term is minimized is when the CG potential perfectly reproduces the
many-body PMF. If this is true, in fact, the drift term vanishes on average:

V CG
αβ ≡

〈
V AA
αβ

〉
⇒ 〈Fdr

α 〉 ∝
〈[
V AA
α − V CG

α

]〉
→ 0

This can be numerically verified with a simple toy model, for which a pairwise CG potential represents
an excellent approximation to the PMF. Such a model is provided by a low-density fluid of purely
repulsive tetrahedral molecules [24], whose CG potential has been obtained from IBI. This model
was used in an energy-conserving H-AdResS simulation, and the resulting density profile is plotted
in Figure 5. The molecular density attains the same value in both the AA and CG regions; in the hybrid
region a small depletion is present, because the free energy of the mixed potential is different from
the free energy of the “pure” (i.e., purely AA or purely CG) potentials. The same behavior has been
systematically observed in AdResS simulations [24].

Needless to say, this particular case is very fortunate: as we discussed in the previous sections, the
CG potentials almost never reproduce the many-body potential of mean force [117,186]. The difference
between an atomistic model and its coarse-grained representation therefore results in a thermodynamic
imbalance, that is, both pressure and density of the two bulk (AA and CG) regions are different [13].
The solution to this problem is again to introduce a compensation term in the Hamiltonian, as was done
in the AdResS scheme with the thermodynamic force. More specifically, we modify the Hamiltonian
as follows:

H∆ = H −
N∑
α=1

∆H(λ(Rα)) (26)
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where ∆H(λ) is a function to be defined. It’s worth noting that this term preserves the conservative
nature of the Hamiltonian.

Figure 5. H-AdResS simulation of a system of tetrahedral molecules coupled to point-like
molecules interacting through an Iterative Boltzmann inversion (IBI)-CG potential (reprinted
from the Supporting Information of Reference [33]). Top: density profile; bottom: radial
distribution functions of the atomistic (red lines) and coarse-grained (blue lines) degrees
of freedom in the all-atom region; the solid lines are the reference RDFs calculated in the
all-atom system, while the dashed lines are obtained from a H-AdResS simulation.

In order to determine the specific form of ∆H we impose that the drift force cancels on average:

d∆H(λ)

dλ

∣∣∣∣
λα

∇αλα + 〈Fdr
α 〉 ≡ 0 (27)

or equivalently:

d∆H(λ)

dλ

∣∣∣∣
λ=λα

=
〈[
V AA
α − V CG

α

]〉
Rα

(28)

where the subscript in the average indicates that the latter has to be performed constraining the CG site
of molecule α in the position Rα.

In principle, Equation (28) provides us with the way to compute the compensating function—or, more
precisely, its derivative; nonetheless, an approximation to ∆H might be sufficient. A way to do this is
the following: 〈[

V AA
α − V CG

α

]〉
Rα
' 1

N

〈[
V AA − V CG

]〉
λ′

(29)

where λ′ ≡ λ(Rα) is the same for all molecules. The approximate function ∆H is obtained
by integration:

∆H(λ) =

∫ λ

0

dλ′
d∆H(λ′)

dλ′
' 1

N

∫ λ

0

dλ′
〈[
V AA − V CG

]〉
λ′

=
∆F (λ)

N
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Most interestingly, we see from Equation (30) that the compensation needed to cancel 〈Fdr
α 〉 is related

to the Helmholtz free energy difference between AA and CG system [187]. Therefore, it is possible to
calculate the compensating function needed to restore, on average, Newton’s Third Law by performing
a Kirkwood thermodynamic integration.

The “Helmholtz free energy compensation” thus cancels the active effect of the hybrid region,
restoring a flat pressure profile. Nonetheless, coarse-grained models have, in general, a substantially
different pressure with respect to their atomistic reference [117], thus inducing a further density
imbalance (usually larger than the one due to the different Helmholtz free energy). In order to restore a
flat density profile a second term has then to be added to the compensating function, that counterbalances
the pressure difference.

The right way to introduce the pressure into the compensating function is to balance, rather than
Helmholtz free energy, the Gibbs free energy difference per particle, that is, the chemical potential
∆µ = ∆G/N :

∆H(λ) ≡ ∆µ(λ) =
∆F (λ)

N
+

∆p(λ)

ρ?
(30)

Figure 6 shows the density and pressure profiles for the three possible cases we discussed: the
previously mentioned system of tetrahedral molecules was coupled to a coarse-grained fluid of purely
repulsive point-like molecules; the pressure of this fluid has a larger pressure then the reference all-atom
one for the same temperature and density. In the plot, the red lines correspond to the case in which no free
energy compensation is introduced: the density is higher in the AA region, due to the molecules in the CG
region that “push” with a higher pressure. The profile of the pressure is also not flat: the Helmholtz free
energy of two systems differs, therefore an active force exists in the hybrid region. When the Helmholtz
free energy compensation is applied we have the situation shown by the green lines: the density is still
higher in the AA region, but the pressure profile is now flat: the forces that break Newton’s Third Law
in the hybrid region are cancelled on average, and the density imbalance decreases. Finally, when the
Gibbs free energy compensation is applied the densities of the AA and CG regions attain the same value,
but for a small deviation due to the fluctuations present in the hybrid region (that the compensation
function ∆H , computed in a homogeneous system, cannot remove). The pressure, on the other hand,
is different: in fact, in each region it reaches the value that corresponds to the reference state of density
and temperature. Analogous results are obtained in a thermostatted simulation of a water box, as shown
in Figure 7: here the system is composed of a slab of water molecules described at atomistic resolution,
coupled to a CG bulk where particles interact via a purely repulsive WCA potential. As in the previous
case, the CG interaction was parametrized to induce an increase of the density in the atomistic region, as
can be seen in Figure 8 (upper panel). The Free Energy Compensation restores the correct density profile,
and guarantees that in the AA region the pairwise correlations, i.e., the radial distribution functions, are
the same that one would measure in a fully atomistic simulation, as shown in Figure 8 (bottom panel).
We notice that Gibbs free energy compensation, even though it equates the densities in the bulk regions,
is not sufficient to remove small fluctuations (of the order of∼3%) in the hybrid region: these deviations
from the reference value are due to the fact that the compensation ∆H is computed in a homogeneous
system, where all molecules have the same value of λ—that is, a regular Kirkwood thermodynamic
integration Hamiltonian. The molecules in the hybrid region, on the other hand, interact with other
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molecules having different λ values. The resulting fluctuations are expected to decrease with increasing
size of the hybrid region, in which case the environment of a given molecule approaches the condition
of homogeneous λ. Another strategy to flatten the density profile is clearly provided by the iterative
approach of the thermodynamic force (Equation (22)), a few iterations of which would be sufficient to
modify the ∆H function by the small amount necessary to remove the fluctuations.

Figure 6. Plots showing the effect of the free energy compensations on the density profile
(upper panel) and pressure profile (lower panel) in a H-AdResS simulation with CG potential
having larger pressure, for identical temperature and density values, than the all-atom one
(reprinted from Reference [33]). The red line corresponds to the case where no compensating
function was employed; the green line to the Helmholtz free energy compensation; and the
blue line to the Gibbs free energy compensation. All densities are normalized to the value of
the fully atomistic simulation (dotted line at ρ = 1). All pressures are normalized to the value
of the fully atomistic simulation (dash-dot line); the dotted line indicates the normalized
pressure of the fully coarse-grained simulation.
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Figure 7. Schematic view of a dual-resolution simulation of water: the central slab of the box
is described at atomistic resolution, while in the bulk the molecules are point-like particles
interacting via a purely repulsive WCA potential.
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Figure 8. Top panel: density profile of the water system along the x coordinate. The red
dotted line corresponds to the H-AdResS simulation without FEC, while the solid back line
has been obtained using the FEC. Bottom panel: radial distribution functions of the water
atoms in the central (AT) slab of the box, as obtained from a fully atomistic simulation
(solid lines) and a H-AdResS simulation with FEC (dots).

 0

 500

 1000

 1500

 2000

 0  1  2  3  4  5  6  7  8

ρ
 (

g
/l
)

r (nm)

w/o FEC
with FEC

CG H AT H CG

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

g
(r

)

r (angstroms)

H-H AT
H-O AT
O-O AT

H-H HYB
H-O HYB
O-O HYB

The Free Energy Compensation (FEC) strategy, defined by Equation (26), can be extended to
multi-component systems. To illustrate this idea we consider a molecular liquid composed by two types
of molecules, A and B, indexed with a and b, respectively. The corresponding H-AdResS Hamiltonian
for this system reads:

HMIX = K + V int +
∑
a∈A

[
λaV

AA
a + (1− λa)V CG

a

]
+
∑
b∈B

[
λbV

AA
b + (1− λb)V CG

b

]
(31)

with λa = λ(Ra) and λb = λ(Rb). The intermolecular potential energy terms are given by the
following expressions:
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V AA
a =

1

2

∑
a′∈A
a′ 6=a

∑
ij

V [AA]AAai;a′j +
∑
b∈B

∑
ij

V [AB]AAai;bj



V CG
a =

1

2

∑
a′∈A
a′ 6=a

V [AA]CGaa′ +
∑
b∈B

V [AB]CGab



V AA
b =

1

2

∑
b′∈B
b′ 6=b

∑
ij

V [BB]AAbi;b′j +
∑
a∈A

∑
ij

V [AB]AAbi;aj



V CG
b =

1

2

∑
b′∈B
b′ 6=b

V [BB]CGbb′ +
∑
a∈A

V [AB]CGba



(32)

where V [XY ] is the non-bonded interaction between a molecule of type X and a molecule of type Y ,
with X, Y = A,B, and the indices i, j labeling the atoms.

In analogy with one-component systems we introduce a FEC term for each species to compensate for
the free energy difference between the AA and the CG regions:

HMIX
∆ = HMIX −

∑
a∈A

∆HA(λa)−
∑
b∈B

∆HB(λb) (33)

An Ansatz for the compensation term of a given species k = a, b can be obtained from TI as follows:

∆Hk(λ) =
∆Fk(λ)

Nk

+
∆pk(λ)

ρ?k

∆Fk(λ) =

∫ λ

0

dλ′
〈[
V AA
k − V CG

k

]〉
λ′

∆pk(λ) = pk(λ)− pk(0) (34)

where the Nk, ρ?k ≡ Nk/V and pk are, respectively, the number of molecules, the reference partial
density and the partial virial pressure of species k. We stress that all the quantities in Equation (34) can
be computed in a single TI of the mixture from AA to CG at the concentration of interest, irrespective of
the number of species. All the cross-interactions between different types of molecules are automatically
included in the free energy contribution of each species. Additionally, the Free Energy Compensation
∆Hk(λ) is an intensive quantity and does not depend on the specific geometry of the H-AdResS setup.
It is therefore possible to perform the TI in a relatively small system, provided that it is statistically
representative, i.e., finite size effects are negligible.

The effectiveness of this strategy has been proven by the Monte Carlo simulations of binary mixtures
performed in Reference [34]. Here we report one of these simulations, specifically the mixture of 70%

A-type molecules and 30% B-type molecules, both made of four identical atoms; the A–A and B–B
interactions are identical WCA potentials, while the A–B interaction is a Lennard-Jones potential. In the
CG region both molecules are represented as spherical particles with identical, purely repulsive WCA
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A–A, B–B and A–B interactions, resulting in a particularly large thermodynamic mismatch between
AA and CG domains. This can be directly observed in the snapshot of the simulation reported in
Figure 9 (top) as well as in the density profiles (dotted lines in Figure 10): the chemical potential
imbalance between the two resolutions leads to a large accumulation of B-molecules in the AA zone.
As a consequence, neither the total density nor the relative concentrations in the AA zone obtained
using the uncompensated adaptive resolution Hamiltonian in Equation (31) correspond to the reference
atomistic system.

Figure 9. Snapshots of a H-AdResS Monte Carlo simulation (reprinted from [34]).
Top panel: Equilibrated configuration, without FEC. Bottom panel: Equilibrated
configuration, with FEC. The A-type atoms are represented in gray, the B-type atoms
in orange. Molecules in the coarse-grained (CG) region are represented as large spheres.
White vertical lines mark the boundaries of the CG-hybrid and hybrid-atomistic regions.

Figure 10. Density profiles along the direction of resolution change (reprinted from [34]).
Dotted lines: H-AdResS simulations without FEC; solid lines: With FEC. Vertical dashed
lines indicate the boundaries between the AT, hybrid and CG regions; horizontal dashed lines
mark the reference value of the density (normalized to the total density) as expected in a fully
atomistic simulation of the system.
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According to Equation (34), a thermodynamic integration was performed to determine the
thermodynamic mismatch between the AA and the CG zone. The Helmholtz and Gibbs free energy
differences per molecule between the CG and AA models as a function of the coupling parameter λ,
computed for both species simultaneously in a single TI, are shown in Figure 11. In spite of the same
interaction between molecules of the same type (V [AA] ≡ V [BB]), the uneven relative concentration of
the two species determines a much larger free energy difference between the AA and CG models for the
B-type. In fact, the latter shows a Gibbs free energy difference per particle |∆GB/NB| > 2 |∆GA/NA|.
This is mainly due to the fact that the interaction between A and B types is attractive only in the AA
representation, thus determining a lower chemical potential for the minority type (B) in the AA region.
In addition, in both cases the sign of ∆G favors the densification of particles in the AA region, as can be
seen in Figure 10. To counterbalance the mismatch in chemical potentials a FEC was introduced in the
H-AdResS Hamiltonian according to Equation (33), using the free energy functions shown in Figure 11.
The resulting density profiles (solid lines in Figure 10) demonstrate the success of the procedure.

Figure 11. Free energy differences per molecule between the AA and CG models as a
function of the mixing parameter λ (reprinted from [34]). The Helmholtz free energy is
represented by the dotted lines, the Gibbs free energy by the solid lines. Molecular species
A corresponds to the black curves, species B to the orange curves.
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In this section we discussed the H-AdResS method, which allows for a seamless coupling of two
models of the same system with different resolution within a Hamiltonian framework. In order to
define an energy-based mixing rule for the two models, the requirement to preserve Newton’s Third
Law everywhere in the system had to be relaxed. Nonetheless, the “undesired” term that appears in the
forces due to the differentiation of the switching function λ is non-zero only in the hybrid region, and
its particular form naturally indicates how to introduce, in a physically sound manner, a compensation
function that cancels the average effect of the drift force without disrupting the Hamiltonian character
of the model. The computational cost of the H-AdResS simulations is comparable to that of the
AdResS method, the only difference being the need to calculate the drift force Fdr

α in the hybrid
region: nonetheless, the number of molecules that are affected by this force is typically small (both the
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AA and the CG regions are expected to be much larger than the hybrid region), and the quantities
involved, namely interaction energies and molecules’ CoM coordinates, are normally computed in a
MD simulation.

In spite of its simple formulation and relatively small difference with respect to the force-based
method, H-AdResS represents a major step forward in terms of understanding and practical advantages.
In fact, the existence of a Hamiltonian allows one to precisely formulate a statistical physics theory of
double-resolution systems, providing a deep insight into the properties of a given all-atom model, its
coarse-grained counterpart and the relation between them. In particular, the free energy compensations
provide a simple and effective way to modulate the thermodynamic balance of AA and CG regions,
thus leaving to the user the choice of the environment for the AA region most appropriate for the
specific problem under examination. Last but not least, this scheme broadens the spectrum of physical
ensembles that can be simulated to the microcanonical ensemble, and allows the use use of simulations
techniques—e.g., Monte Carlo—that were not accessible in the force-based AdResS framework, with
the a priori guarantee that real equilibrium configurations are sampled.

4. Conclusions

The characterization of the properties of new materials, as well as the investigation of biological
macromolecular machineries, have largely benefited from in silico experiments. In spite of a steady
increase in available computational power for very large systems and long timescales of the processes
involved these resources turn out to be insufficient, due to the extraordinarily large amount of data that
has to be stored and force/energy calculations that have to be performed. To overcome these limitations,
the field of multiscale simulations has vastly expanded over recent years, and in the present review we
have covered two aspects that are central to many multiscale approaches.

In the first part of the review we have addressed methodological questions associated with the
development of coarse grained models, where atoms are grouped into super-atoms to reduce the number
of degrees of freedom in the system. We have summarized the current approaches to bottom-up coarse
graining and addressed some of the ongoing coarse graining issues such as the choice of parametrization
targets and the choice of interaction functions used for the coarse grained model. These choices
lead to several possibilities (i.e., coarse graining methodologies) for solving the inverse problem of
finding parameters for the coarse grained interaction functions given the selected target properties.
We have briefly discussed these (statistical-mechanically interrelated) methods in context with each
other. An inevitable question that arises from having to choose coarse graining target properties and
approximations to solve the parametrization problem is the question of representability of different
thermodynamic and structural properties. These representability challenges go hand in hand with
the question of transferability, i.e., to which extent a reduced-resolution model is applicable to a
state-point that is different from the one where it was parametrized. In general it can be said that
transferability problems increase with decreasing level of resolution, i.e., the coarser a model the
more limited is its applicability range, which then needs to be very carefully assessed. However, as
a positive aspect one should mention that the investigation of transferability issues can help to gain
insight into physical-chemical principles that drive the behavior of the system. We have illustrated
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transferability-related questions with the help of a few examples. In conclusion, one should mention
that transferability problems are not specific to coarse grained models. Such problems are well known
for classical atomistic forcefield models as well. A good example is simulations of mineral systems in
contact with electrolyte or polyelectrolyte solutions. Here, forcefields for ions in solution and in the
mineral solid have to be combined. This combination leads to transferability issues since electronic
polarizability is not represented in a classical atomistic forcefield, and the compromises that are made to
approximately account for its effects in a classical parametrization are different in the different phases.
As a consequence, the typical "recipes" to combine parameters for different components cannot be
straightforwardly applied, resulting in a significant parametrization effort for such problems [188–190].
The increasing awareness of transferability as a modeling challenge and the solution strategies developed
in the context of coarse grained models may therefore very well benefit other areas of model development
such as classical atomistic force-fieds for multicomponent materials systems.

In the second part of the review we have discussed the recent advances in the field of adaptive
resolution approaches. The above mentioned limitation in system size comes together with the
disappointing fact that a considerable fraction of the simulated data is often discarded afterwards:
the solvent, for example, is usually not involved in the analysis of the system, but it is nonetheless
required by the simulation. Adaptive resolution methods try to reduce the amount of resources dedicated
to the simulation of large, non-interesting regions of the system by replacing them with a simpler,
coarse-grained representation of their content. Such “dual-resolution” schemes are built with the
constraint that the thermodynamical properties of the region of interest (i.e., the one with the higher
resolution) do not differ from those that an equivalent subdomain of the system would have in a fully
high-resolution simulation.

In the present work we discussed two methods to achieve this goal: the Adaptive Resolution
Simulation (AdResS) scheme, based on the interpolation of two different force-fields, and its
Hamiltonian formulation, H-AdResS, where the all-atom and coarse-grained potential energies are
interpolated. These methods have been successfully used to interface different molecular fluids, treated
at the atomistic level, with their coarse-grained models; the different properties of the AA and the CG
potentials naturally induce thermodynamical imbalances in the corresponding sub-regions, but simple
and effective ways to overcome this problem have been described.

The possibility of replacing vast regions of the simulated system with a crude, cheap-to-compute
representation and concentrating the computational resources on smaller parts while keeping the relative
thermodynamics under control makes it possible to sensibly reduce the amount of calculations required
to perform a simulation, and opens the way to a broad spectrum of applications, such as large-scale
simulations of complex biomolecules in solution and efficient open-boundary simulations with varying
number of particles.
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