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Abstract: In this talk, we assess the potentials of the approximate dynamic programming
(ADP) approach for process control, especially as a method to complement the model predictive
control (MPC) approach. In the Artificial Intelligence (AI) and Operations Research (OR)
research communities, ADP has recently seen significant activities as an effective method
for solving Markov Decision Process (MDP), which represents a type of multi-stage decision
problems under uncertainty. Process control problems are similar to MDPs with the key
difference being the continuous state and action spaces as opposed to discrete ones. In
addition, unlike in other popular ADP application areas like robotics or games, in process
control applications first and foremost concern should be on the safety and economics of
the on-going operation rather than on efficient learning. We explore different options within
ADP design, such as the pre-decision state vs. post-decision state value function, parametric
vs. nonparametric value function approximator, batch-mode vs. continuous-mode learning,
exploration vs. robustness, etc. We argue that ADP possesses great potentials, especially for
obtaining effective control policies for stochastic constrained nonlinear or linear systems and
continually improving them towards optimality.

Keywords: Stochastic optimal control, constraints

1. INTRODUCTION

Model predictive control (MPC) is a technique in which
the current control action is obtained by minimizing on-
line, a cost criterion defined on a finite time interval.
Nominal deterministic trajectories of future disturbance
signals and uncertainties are necessarily assumed in order
to obtain an optimization problem amenable to on-line
solution via math programming. The solution generates a
control sequence from which the first element is extracted
and implemented. The procedure is repeated at the next
time instant. Owing to its ability to handle constrained,
multi-variable control problems in an optimal manner,
MPC has become the de-facto advanced process control
solution for the process industries today.

MPC is by now considered to be a mature technology ow-
ing to the plethora of research and industrial experiences
during the past three decades. Despite this, it has some
fundamental limitations, which prevents it from being a
panacea for all process control problems. One well-known
limitation is the potentially exorbitant on-line computa-
tion required for solving a large-scale, and potentially non-
convex math program that scales with the dimension of
the state as well as the length of prediction horizon. Re-
cent developments (Laird and Biegler (2008)) have made
some headway in tackling this problem although nontrivial
computational challenges still exist.
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The second limitation arises from the fact that the deter-
ministic formulation adopted by MPC is inherently inca-
pable of addressing uncertainty in a closed-loop optimal
fashion. Its open-loop optimal control formulation used to
find the control moves at each sample time means the fact
that information about future uncertainty will be revealed,
this being generally beneficial for control performance, is
not considered. Most of the past attempts at ameliorating
the impact of uncertainty has been reflected in robust
MPCs formulations based on the objective of minimizing
the worst-case scenarios (Scokaert and Mayne (1998)) at
the expense of overly conservative policies. Multi-scenario
formulations (Laird and Biegler (2008)) have also been
developed but the number of scenarios is limited and
they do not give closed-loop optimal policies in general.
Stochastic programming based methodologies (Pena et al.
(2005)) allow for recourse actions at the computational
expense of enumerating an exponentially growing number
of scenarios.

In this paper, we examine the possibility of lessening or
removing the above-mentioned limitations by combining
MPC with an approach called “approximate dynamic pro-
gramming (ADP).” ADP is a technique that surfaced from
the research on reinforcement learning in the Artificial
Intelligence (AI) community (Sutton and Barto (1998);
Bertsekas and Tsitsiklis (1996)). It has its theoretical
foundations in the traditional dynamic programming by
Richard Bellman (Bellman (1957)) but its computational
bottlenecks, termed as “the curse of dimensionality” by
Bellman himself, are relieved through ideas such as intelli-



gent sampling of the state space through simulations and
function approximation. ADP, due to its root in AI, has
mainly been studied in the context of Markov Decision
Processes (MDPs), which involve discrete finite state/ ac-
tion spaces and probabilistic transitions. Hence, its appli-
cation to process control problems, which typically involve
continuous state/ action spaces, is not straightforward. In
addition, the characteristics of process control problems
are somewhat different from those of robotics, games, and
resource allocation problems. For example, in process con-
trol applications, the idea of “learning by mistakes” for the
sake of efficient learning, may not be tolerated as mistakes
often bring unacceptable consequences in terms of safety
and economics. Hence, extension of ADP to process control
may require significant care and possibly some new tools.

Design of an ADP algorithm involves a variety of choices,
including type of function approximator, pre-decision vs.
post-decision formulation, batch vs. continuous updating
of the value table, and exploration vs. robustness tradeoff.
We will visit these issues, carefully examining the implica-
tions of these choices in the context of designing a learning
algorithm for process control applications. In addition, we
will also consider the complementary nature or synergies
between ADP and MPC.

The rest of the paper is organized as follows. In Section
2, we will briefly review the basics of MDP, ADP and
also present a mathematical representation of the system
we consider for control. In Section 3, we will examine
the various options and choices and their implications for
process control applications. In Section 4, we will present
a few examples, including those involving both linear and
nonlinear stochastic systems. In Section 5, we conclude the
paper and discuss other control-related areas where ADP
can potentially be useful in the process industries.

2. BACKGROUND

2.1 Markov Decision Processes and Approximate Dynamic
Programming

Markov Decision Processes (MDPs) provide a framework
for modeling real world processes that have a stage-wise
structure. The stage can denote a time epoch or other
quantities like location, processing step, etc. At any stage,
the system is recognized as being in a state (designated
as s), which is a set of attributes that aid decision-
making. The set of all possible states is called state space
(designated as S). Starting in state s belonging to S,
there is a set of actions from which the decision-maker
must choose. The set of all possible actions is called action
space (A) and an element of the action space is denoted
by a. When action a is taken in state s, and the system
transitions to the next stage, it ends up in a unique next
state s′ ∈ S in the absence of any uncertainty. However, for
stochastic problems, there is a set of possible next states
for each state-action pair. The probability of transition to
a particular next state in this case is governed by a state
transition probability function, P . In the process, reward
r(s, a, s′) is received, which is determined by the reward
function r. The dependence of r on s′ is often suppressed
by taking a weighted average over all possible states at the
next stage. At each stage, actions are taken so that the

sum of stage-wise rewards is maximized. In the presence
of uncertainty, the expected sum of rewards is maximized.
When infinite stages are present, i.e., extremely large time
horizon, the future rewards are often discounted using a
discount factor γ. When the number of stages is infinite,
the problem is called an infinite horizon MDP as opposed
to a finite horizon MDP for finite number of stages.
In most applications, a stage symbolizes a time epoch.
Therefore, the term time epoch or time step is often used
synonymously with ‘stage’.

More formally, MDP is defined by a tuple (S,A, P,R, γ)
where S is a set of states, A is a set of actions, P : S×A×
S → [0, 1] is a set of transition probabilities that describe
the dynamic behavior of the modeled environment, R : S×
A × S → R denotes a reward model that determines the
stage-wise reward when action a is taken in state s leading
to next state s′ and γ ∈ [0, 1) is the discount factor used
to discount future rewards. A γ value close to 0, places
very little weightage on future rewards, while γ close to 1
results in very little discounting.

One of the fundamental properties of the MDPs is that the
transition and reward functions associated with the stage-
wise transition of state are independent of the past states
and actions. Referred to as Markov property, this memory-
less feature enables the decomposition of the overall opti-
mization problem into separate stage-wise problems. This
is accomplished by using a recursive relationship between
the value of being in a state at any stage.

An important notion in this regard is the so called value
function denoted by V (s), which is defined as the (often
discounted) sum of rewards over a time horizon which can
be either finite or infinite (shown below) and discussed
hereafter:

V π(s) = E

[

∞
∑

t=0

γtr(st, µ(st))|s0 = s

]

(1)

where t denotes the time epoch, st is the state at time t
and π : S → A, is the policy that dictates the choice of
action for a given state at time t.

The goal is to find an optimal policy that maximizes the
value function for all s ∈ S. This is achieved by solving
the Bellman equation (Bellman (1957)) for finite or infinite
horizon problems. The optimal policy can be derived via
dynamic programming. Let a∗(s) be the optimal action
to be taken when the system is in state s, independent
of time t. V ∗(s) is called the optimal value function and
is obtained as the solution to the (Bellman equation) (2),
which must be solved for all s ∈ S:

V ∗(s) = max
a∈A

{

r(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′)

}

∀s (2)

a∗(s) = π∗(s)
∆
= arg max

a∈A

{

r(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′)

}

(3)
where symbol p(.) denotes the probability of a quantity. It
is well-known (Putterman (1994)) that for infinite horizon
problems, a stationary optimal policy of the form in (3) ex-
ists, where V ∗(s) is the average discounted infinite horizon
reward obtained when the optimal policy is followed start-
ing from s until infinity (Putterman (1994)). This implies



that the state to action mapping in the form of optimal
policy is independent of the time epoch. The existence of
stationary optimal policy is conditioned on the properties
of model elements. One of the sufficient conditions is that
there be a finite action space As corresponding to each
state s ∈ S, maximum attainable stage-wise reward is
finite and discount factor γ ∈ [0, 1). The alternative sets of
sufficient conditions for existence of a stationary optimal
policy for discounted infinite horizon MDPs can be found
in (Putterman (1994)).

It must be noted that the set of Bellman equations also
called optimality equations are difficult to solve analyti-
cally because of the presence of the max operator. One
of the popular solution methods is called value iteration
(Putterman (1994)): Starting with an arbitrary value func-
tion V0(s) for each state s ∈ S, the value function is
iteratively improved by successive substitution into (2)
until ε-convergence is reached. The operator for one it-
eration, that is the maximization in (2), can be denoted
as H such that Vn+1 = HVn. The sequence of estimates
of value function V (s), ∀s ∈ S, converges to a fixed point
solution. This is a consequence of Banach’s theorem for
contraction mappings (Putterman (1994)). Since H is a
proven contraction map, the convergence properties hold.

Due to ease of implementation, value iteration is perhaps
the most widely used algorithm in dynamic programming.
Certain other methods like policy iteration (Bertsekas
(2005)), a hybrid between value iteration and policy it-
eration (Powell (2007)) and linear programming method
for dynamic programs (Farias and Roy (2003)) are also
used depending on the problem structure. The complexity
of the value-iteration algorithm grows as a function of
o(|S|2 × |A|). This is attributed to the following three
aspects of the value iteration:

(1) Equation (2) needs to be solved for all s belong to S,
so the solution time is directly proportional to |S|.

(2) The complexity of max operation depends on the size
of the action space |A|.

(3) The calculation of expectation within the max oper-
ator depends on the number of possible next states,
i.e., |S|.

In the presence of very large state and (or) action spaces,
the value iteration algorithm cannot be implemented in
its exact form. Several approximation methods have been
developed to circumvent this difficulty, including: approx-
imate dynamic programming methods using value func-
tion approximations (Powell (2007)), Q-learning, temporal
difference learning (Sutton and Barto (1998)) functions
(Farias and Roy (2003)) and dynamic programming meth-
ods using post decisions state (Powell (2007)).

All the above methods assume that the system state is
completely known or observed at all times. When this as-
sumption does not hold, the equivalent framework is called
a Partially Observed Markov Decision Process (POMDP)
(Cassandra et al. (1994)), for which a significant but less
body of literature exists.

2.2 System Definition: Process Control Problems

Consider the optimal control of the following discrete-time
stochastic system:

xt+1 = f(xt, ut, ωt) (4)

where xt ∈ X ⊆ R
nx refers to the system state at discrete

time index t, ut ∈ U ⊆ R
nu a control or action vector, and

ωt an exogenous, unmeasured, stochastic signal. x may
contain physically meaningful states as well as measured
disturbances, and parameters subject to uncertainty. f
refers to the single-stage transition function. For problems
where the system’s dynamics are represented by ordinary
differential equations, f is then the result of numerical
integration across a single sample-time, with vectors u and
ω held constant. Throughout this paper, it is assumed
that full state feedback is available. In the event that
only output feedback is available, x is interpreted as an
information vector that contains the sufficient statistics
of the state estimate’s probability density function. Such
lifting is possible as the information vector is governed by
another related set of differential equations. (i.e., the filter
dynamics).

Let µ ∈ Γ be a ‘state-feedback policy’ that maps the state
vector to the action vector, where Γ represents the set
of all admissible (stationary) such policies. To distinguish
from the earlier value function V (s), Jµ(x) will be used
to denote the ‘cost-to-go’ function, which is defined as the
infinite horizon, discounted sum of the stage-wise costs
under the policy µ starting from an arbitrary state x:

Jµ(x) = E

[

∞
∑

k=0

γkφ(xk, uk = µ(xk))|x0 = x

]

(5)

where φ represents a pre-specified stage-wise cost (e.g.
φ(x, u) := ||x||2Q + ||x||2R) and γ ∈ [0, 1) is a discount

factor. The goal then is to find the optimal (stationary)
policy µ∗ : X → U , that yields the minimum cost-to-go
function as below:

Jµ∗

(x) = min
µ∈Γ

E

[

∞
∑

k=0

γkφ(xt+k, ut+k = µ(xt+k))|xt = x

]

(6)

Jµ∗

: X → R
0+ is the optimal ‘cost-to-go’ function and is

an indication of the attractiveness of a given state in terms
of future rewards. By definition, Jµ∗

(x) ≤ Jµ(x),∀x and
∀µ ∈ Γ.

The main difference between the above and the previously
introduced MDPs is that the state and action spaces are
continuous. However, the fundamental concepts of DP still
apply here. Based on the principle of optimality (Bellman
(1957)), one is able to re-write (6), thereby obtaining
Bellman’s optimality equations:

Jµ∗

(x) = min
u∈U

{

φ(x, u) + γE(ω|x)[J
µ∗

(f(x, u, ω))]
}

=
(

TJµ∗

)

(x) (7)

T above represents the single-pass DP operator repre-
sented by the minimization operation. The optimal policy
is implicitly obtained through the solution of the associ-
ated single-stage optimization:

µ∗(x) = arg min
u∈U

{

φ(x, u) + γE(ω|x)[J
µ∗

(f(x, u, ω))]
}

(8)



In principle, the optimal control problem is solved once
Jµ∗

is known. It is noted that for deterministic problems
(where the expectation operator is dropped), the DP
formalism provides a convenient way of solving multi-stage
problems through an equivalent single-stage optimization.

Unfortunately, analytical solutions to Bellman’s optimal-
ity equations are available for only a small class of prob-
lems, of which the celebrated Linear Quadratic Gaussian
(LQG) problem is one. For situations of practical interest,
numerical techniques are required. Similar to the case of
discrete state and action space, the repeated application
of T on an arbitrarily initialized cost-to-go leads to con-
vergence and underpins the idea behind Value Iteration
(VI).

Jµ∗

(x) = TJµ∗

(x) = lim
i→∞

(T )iJµ(x), ∀µ, x (9)

In process control problems, due to the continuous nature
of the state and action spaces which must be discretized,
numerical solutions become quickly bottle-necked as the
problem dimensions grow. In fact, the growth would be
exponential as the number of discretized points grows with
the dimension as such. Hence, a naive application of VI in
this case is computationally prohibitive and the ‘curse-
of-dimensionality’ is even more apparent in continuous
problems. For problems with continuous state and action
space, one needs to resort to approximations that involve
an intelligent state-sampling/ discretization scheme and/
or an efficient representation of the cost-to-go (Lee and
Lee (2006); Powell (2007)).

2.3 Approximate dynamic programming for problems with
continuous state and action space

Value iteration or policy iteration in general can work with
only finite state space. For systems with continuous state
and action space, one must then work with discretized
state state, either through gridding, or more preferably,
sampling. It is often the case that only a small portion of
X and U will ever be visited under optimal and/ or high-
quality sub-optimal policies. This is especially true when
the dimension of the state space is large compared to that
of the input. Let us denote the subset of the state space
that is ‘relevant’, i.e., visited with non-trivial probability
under the optimal control, as X ∗

REL. Such a set would
be continuous but much smaller-sized than X in general.
The key notion is that if one could identify X ∗

REL or a
parsimonious superset of it, one can sample the set with
sufficient density to perform the dynamic programming at
significantly reduced computation. Of course, the difficulty
is that it is not easy to obtain such a set ahead of time
without knowing the optimal controller itself.

The ADP approach proposed by the authors of (Lee and
Lee (2004, 2006); Tosukhowong and Lee (2009)) for process
control applications, the skeleton of which is described
in this subsection, employs carefully designed simulation
schemes for the sampling of the state space and function
approximation (for the purpose of cost-to-go interpolation)
to this end. For the VI-variant, we have the following off-
line computations:

(1) Identify a finite-sized, ‘relevant’ state-space, Xsam ⊂
X , |Xsam| = N . This is achieved, for instance, by

simulating all possible combinations of sub-optimal
policies (potentially with dithering) and operating
conditions. The latter are defined as all starting states
of interest (for servo problems) as well as potential
values of measured disturbance values. Dithering may
also be introduced for the purpose of exploration.

(2) Assign a cost-to-go for all elements of Xsam, us-
ing the simulation data according to (5). The ini-

tial, finite-sized ‘cost-to-go’ table, denoted by T[0] ,
{

x, Ĵ
µ∗

[0] (x)
∣

∣x ∈ Xsam}, is obtained. The symbol (̂·) is

used to emphasize the approximate nature of the cost-
to-go sequence, even at its limit. Exact initialization
is not critical per se since the fixed point derived from
the following step is unique.

(3) Obtain converged cost-to-go values for Xsam through
VI, yielding the sequence of value tables {T[0], T[1], . . .}.
Since the VI requires the evaluation of the cost-
to-go function for states (f(x, u, ω)) not necessarily
in Xsam, a well-designed function approximator is
needed to interpolate among the stored values (see
discussion in Section 3.1). A certain choice of function
approximator ensures that each pass of the iteration
is a contraction-map with a unique fixed point (see
Section 3.1). In other words, each step of the modified
VI involves:

Ĵ
µ∗

[i+1](x) =
(

TF (Ĵµ∗

[i] )
)

(x), ∀x ∈ Xsam (10)

Here F (Ĵµ∗

) denotes the cost-to-go function approxi-

mator based on the stored values {Ĵµ∗

[i] (x), x ∈ Xsam}.

Termination occurs when ‖Ĵµ∗

[i+1]− Ĵ
µ∗

[i] ‖∞ is less than

a pre-defined tolerance.
(4) Return to step 1, since the relevant domain of the

state-space may not be properly ascertained a-priori.
Otherwise, use the converged values for online con-
trol.

The authors of Ma and Powell (2009) used an approximate
policy iteration scheme where Jµ(x),∀x ∈ X is assumed
to be linear in a set of basis functions (known or otherwise
assumed to be orthogonal polynomials of sufficiently large
degree). The coefficients are learnt through a least-squares
procedure once the system of interest is allowed to evolve
according to the current policy, which is similar to step
(1) where relevant states are collected. The limitation is
that suitable basis functions are difficult to ascertain in
general.

3. ISSUES AND CHOICES

3.1 Function approximation and stable learning

The need for function approximation for the purpose of
generalization has been discussed. Given a training set
T , {xi, Ĵ(xi)}N

i=1, a value table composed of a finite

number (N) of input (xi ∈ X ) and target values (Ĵ(xi) ∈
R), a function approximator, F , whose domain is X , maps
a query point xq ∈ X to a subset of the real line.

The dominant and natural choice for function approxima-
tors has typically involved parametric global approxima-
tors such as neural networks or the use of basis functions



such as high order orthogonal polynomials or Fourier se-
ries (Tsitsiklis and Roy (1996); Konidaris and Osentoski
(2008)). While this approach has met with some success
in certain applications (e.g. in Backgammon (Tesauro
(1992)), it is not immune from divergent behavior (Lee and
Lee (2004, 2006)) when employed in the context of ADP. In
certain cases, the off-line iteration would fail to converge,
with the cost-to-go approximation showing non-monotonic
behavior or instability with respect to iterations. Thrun
and Schwartz (1993) were the first to attribute the failure
with function approximation to an ‘over-estimation’ effect.
Sabes (1993) demonstrated that sub-optimality can be
severe when a global approximator with a linear combi-
nation of basis functions is employed. Boyan and Moore
(1995) provide insightful illustrations showing the failure
of popular function approximators during off-line learning.

There are considerably fewer papers that address func-
tion approximation schemes for problems with continuous
state and action spaces (Ma and Powell (2009), Lee et al.
(2006)). The problem of linear quadratic regulation, for
which the value function is known to be quadratic in struc-
ture, is a noted exception Bradtke (1993). Ormoneit and
Sen (2002) proposed a kernel-based approach for problems
with continuous states but finite actions and demonstrate
convergence to the optimal cost-to-go value function with
an increasing number of samples and decreasing kernel
bandwidth under a model-free scheme. Ma and Powell
(2009) proposed a provably convergent approximate policy
iteration under the assumption of known basis functions
and other technical conditions.

Stable learning during the off-linear value iteration step of
the proposed ADP strategy is highly desirable as it can
be frustrating to run a large number of iterations only
to have the result “blow up” all of sudden due to some
complicated coupling between the function approximation
error and value iteration. To have provable convergence
of the approximate value iteration (not necessarily to
the optimal value function, however), one needs to use
a function approximator with a certain property called
“non-expansion” . Gordon (1995) discussed the viability
of using such a class of function approximators. With such
a choice, the overall operator composed of value-iteration
and then function approximation results can be shown to
be a contraction map therefore ensuring convergence.

Definition 1. A γ-contraction mapping m defined on a
normed vector space (mapping elements from this space,
V, to itself) is defined as such:

∀v1, v2 ∈ V, ||m(v1) − m(v2)|| ≤ γ||v1 − v2||, γ ∈ [0, 1)

where v1, v2 are arbitrarily chosen elements of V.

Definition 2. When γ = 1, m : V → V is termed a non-
expansion (Gordon (1995)).

From Banach’s fixed-point theorem, it can be easily shown
that every the iterated sequence {v,m(v),m2(v), . . .} con-
verges to a unique fixed point. As explained earlier,
the proposed ADP method starts with initial estimates

Ĵ
µ∗

[0] (x), ∀x ∈ Xsam. This is followed by function approxi-

mation (recall that this mapping is denoted by F ), and an

application of the DP operator, T to yield Ĵ
µ∗

[1] . The process

is repeated again. Our experience with the ADP approach

(Lee and Lee (2004, 2005)) has been that stability of learn-
ing and the quality of a learned control policy are critically
dependent on the structure of the function approximator.
A sufficient condition for convergence is to demonstrate
that the overall operator T with function approximator F
is a contraction map. This, in turn, holds true if F is a
non-expansion map.

Proposition 1. T is a γ-contraction map if F is non-
expansive.

Proof. Given arbitrary vectors Ĵ1, Ĵ2 ∈ R
N ,

||TF (Ĵ1) − Tµ∗

F (Ĵ2)||∞ ≤ γ||F (Ĵ1) − F (Ĵ2)||∞ (11)

≤ γ||Ĵ1 − Ĵ2||∞ (12)

The first line is true since T is a γ-contraction map defined
on the space of value functions. The second inequality
follows if one employs a function approximator with a non-
expansion property.

Function approximators that employ averaging, as defined
below, can be shown to possesses a non-expansion prop-
erty.

Definition 3. F is an averager if every fitted valued is the
weighted average of of target values, potentially with the
addition of a bias term. Specifically,

F (Ĵ)(xq) = β0(xq) +
N
∑

i=1

βi(xq)Ĵ(xi) (13)

Here, {βi}
N
i=0 ≥ 0, and

N
∑

i=1

βi ≤ 1. Note that the weights

β are allowed to depend on the query point (xq) and input
values ({xi}

N
i=1) but not the target values.

That such an averager is a non-expansion (i.e. (12) is true)
is easily demonstrated.

One such type of approximator we have experimented
with extensively is instance-based (Lee et al. (2006))
local averagers, such as k-Nearest Neighbors-based (kNN)
predictors. Instance-based algorithms are non-parametric
representations using stored points ‘close’ to a query
point for making predictions. Closeness is usually defined
according to some distance metric (such as Euclidean
distance). Predictions of the weighted kNN are given by:

F (Ĵ)(xq) = β0(xq) +
∑

xi∈Nk(xq)

βi(xq)Ĵ(xi) (14)

where Nk(xq) refers to the set containing the k points
closest to xq. The weights (normalized by constant c) are
defined as: βi = c((xq−xi)

T W (xq−xi))
−0.5, i ≥ 1. W is a

feature weighting matrix use to scale and also to emphasize
dimensions that are more important.

3.2 Cautious learning for robustness

It has been demonstrated (Smart and Kaelbling (2000);
Lee et al. (2006)) that simply using a local averager (with
β0 = 0), though guaranteeing convergence, does not neces-
sarily give a converged function leading to a stable closed-
loop behavior. This is because function approximation



error can be significant, particularly when the training
data is insufficient. Safeguards against ‘over-extrapolation’
during value iteration is often needed for the successful
implementation of the proposed ADP method. For a query
point located in regions with little data present, distance-
weighted averaging may fail to provide meaningful gen-
eralizations of the cost-to-go. Prevention of taking such
a query point may be achieved by including in the cost-
to-go term β0, a penalty that is imposed whenever the
minimization step encounters a query point (xq) far away
from Xsam:

β0(xq) = A.U

(

1

fΩ(xq)
− ρ

)

·

(

1
fΩ(xq) − ρ

ρ

)2

(15)

Here, ρ is a data-density threshold value, A a scaling
parameter, and U , the Heaviside step function that returns
a zero value whenever its argument is non-positive and
unity, otherwise. fΩ(xq) is a measure of data density as
ascertained by fitting a Kernel density estimator over
training set Ω:

fΩ(xq) =
1

NΩ

NΩ
∑

i

K

(

xq − xi

σ

)

(16)

where kernel K(·) refers to a zero-mean Gaussian with
variance σ2Inx

. For generality, Ω is allowed to differ from
Xsam. Furthermore, a bound is imposed on β0 whenever it
exceeds a threshold value. Tuning rules for ρ,A, σ can be
found in (Lee et al. (2006)) and are not reproduced here
in the interest of brevity.

3.3 Pre-decision vs. post-decision state formulation

For stochastic control problems, the single-stage optimiza-
tion required during off-line value-iteration (see (7)) and
on-line implementation of the optimal policy (see (8))
requires the generally cumbersome evaluation of an ex-
pectation.

The use of an intermediate post-decision (xp) state, first
introduced by Roy et al. (1997) and employed extensively
by Powell (2007) in solving operations research prob-
lems, oftentimes allows for more computationally effective
strategies. xp refers to the the system state immediately
after the control vector is introduced but before the un-
certainty is realized. As a result, f is decomposed into the
following sub-transitions:

x
p
t = f1(xt, ut)

xt+1 = f2(x
p
t , ωt)

where the composition of f1 and f2 is equivalent, in
effect, to f , in (4). Note that f1 describes a deterministic
transition between the pre-decision state variable (x) and
xp. f2 involves the transition due to uncertainty after the
control action is implemented. Consequently, the value
function of xp, Jµ,p(xp), may be expressed in terms of
the value function of x, as such:

Jµ,p(xp
t ) = E(ω|xp

t ) [Jµ(xt+1)] , ∀µ (17)

By considering the optimal policy µ∗, and substituting
(7) into (17), the min and E operators are interchanged,
yielding:

Jµ∗,p(xp
t ) = E(ω|xp

t )

[

min
ut+1∈U

{

φ(xt+1, ut+1) + γJµ∗,p(xp
t+1)

}

]

(18)

The single-stage on-line optimization is also streamlined:

µ∗(x) = arg min
u∈U

{

φ(x, u) + γJµ∗,p(f1(x, u))
}

(19)

The introduction of the post-decision state allows the
generally non-commutative min and E operators to be
interchanged. (18), used off-line during value iteration,
consists of an independent collection of deterministic op-
timization problems, which may be run in parallel using
off-the-shelf solvers. It is noted that the latter have been
cornerstone of MPC technology. In this case, differentiable
local averagers such as Kernel regression (Hastie et al.
(2008)) may be employed. In this case, given the training

set {xi, Ĵ(xi)}N
i=1, we have:

F Ĵ(xq) = β0(xq) + 1
∑

j=1
K

(

xq−xj

σ

) .

N
∑

i=1

K
(

xq−xi

σ

)

Ĵ(xi)

(20)

β0(xq) is defined as in (15), where the Heaviside step
function is replaced by a smooth approximator.

In addition to the off-line iteration step, the on-line cal-
culation of the optimal input (in (19)) based on a pre-
computed post-decision state cost-to-go function, is a de-
terministic optimization that does not involve an expecta-
tion operator, much like the one solved for MPC. Again,
an off-the-shelf NLP solver may be employed. Another
benefit, this time, compared to MPC, is that it involves
only a single stage optimization as the cost-to-go function
contains the precomputed optimal cost information for the
rest of the horizon.

As with the pre-decision case, we can define a γ-
contraction Hp so as to simplify (18). The aforementioned
discussion on value-function approximation still holds for
this case.

3.4 Adding new state samples: batch mode vs. continuous
mode learning

In the standard ADP algorithm presented (that is, without
Step (4)), we fix the set of sampled states, Xsam, in the
beginning and do not introduce any more samples as the
learning proceeds. One potential problem with this is that
it may not contain sufficient samples in all the important
regions of the state space.

Additional samples can be introduced as the learning
proceeds in two different ways. First is to perform the
simulation and the value iteration simultaneously, result-
ing in an Xsam that varies with simulation time. This
approach is seen in the methods known as real-time dy-
namic programming (RTDP) (Barto et al. (1995)) and
RTADP (Pratikakis et al. (2009)). In these approaches, one
typically starts with an empty value table and introduces
entries one by one as simulations proceed. Whenever a
“new” state, a state that is not already recorded and does



not have a “sufficiently close” neighbor recorded in the
value table, is visited during the simulation, it is entered
into the value table and its cost-to-go value is assigned
by evaluating the Bellman equation. The optimal action
suggested by the current value table is implemented and
next state is sampled according to the transition equation.
If a state is revisited or there are sufficient neighbors
close by, the value update for that particular state (or the
sufficiently close neighbor) is performed without adding a
new entry. This goes on until “new” entries are no longer
added to the value table. Just how fast the convergence
happens depends on the level of exploration, which will be
discussed later.

The second way is to alternate between the modes of
simulation and value iteration. A value iteration gives a
converged cost-to-go function, which corresponds to a new
policy. This new policy can be simulated to find a set of
new state samples to be added to the current X i

sam to
yield Xi+1

sam. This continues until the simulation no longer
yields different state samples.

In the case that an accurate simulation model is not
available, one may have to replace the simulation with
an actual on-line implementation. The continuous mode
learning behaves much like adaptive control as the value
table, and therefore the control policy, gets updated at
every sample time. In addition, the performance during
the initial phase of learning, when the value table has very
few entries, may be highly unpredictable and poor. Hence,
it may not be suitable in an industrial setting, whereas
the other option in which the control policy remains fixed
until the next off-line value iteration. Of course, given the
typical constraints of industrial processes, one still has to
exercise caution in implementing only a half-learned cost-
to-go function on-line. The trade-off between exploration
and robustness in this context is discussed next.

3.5 Exploration vs. robustness

The trade-off between exploration and robustness becomes
one of the central issues when one chooses to expand
Xsam as a part of the learning. In general, exploration
gives new information to improve the eventual closed-loop
performance (by expanding Xsam) but at the expense of
slower convergence and decreased robustness. Exploration
can be performed in two ways. First, one can add dither
signals to the input to encourage more randomness in the
state trajectories. Second, one can use an optimistic initial-
ization of the cost-to-go value for previously unseen states,
which will encourage the optimizer to choose actions lead-
ing the state trajectory to those states. If the learning
is to be done directly in closed loop, the latter practice
may be unacceptable for industrial practices as excursion
to previously unseen states could jeopardize the safety
and economics of the on-going operation. In other words,
unlike in applications like robotics, “learning by mistake”
is not a permissible practice for most industrial process
control applications. One can in fact actively prevent such
potentially harmful excursions through “pessimistic” val-
uation of unseen states. The previously discussed penalty
approach in Section 3.2 is one way to achieve this. On the
other hand, carefully chosen dither signals may be able
to generate sufficiently new trajectories without imposing

unacceptable risks or unduely slowing down the conver-
gence.

3.6 Model-based vs. Model-less approach

For many industrial processes, sufficiently accurate models
may not be available. In such a case, one can resort to
empirical models derived from input-output data. In such
as case, the state vector may simply be composed of
the past input and output samples. The model can be
learned separately from the ADP or it can be done as a
part of it. In the latter, one learns instead of the cost-to-
go function a function called Q function, which has the
argument of state-input pair and assigns the cost-to-go to
the pair. In other words, Q function already has the model
embedded in it, which is learned together with the cost-to-
go function. The two approaches are tried and compared
in a recent paper by Lee and Lee (2005).

3.7 Integration with MPC

ADP can be integrated with model predictive control at
several fronts. Some obvious ways include: (1)using MPC
in the initial simulation to sample relevant states, (2)using
the learned cost-to-go function in order to reduce the hori-
zon size, and (3)use of the nonlinear programming solver of
MPC in the post-decision-state formulation. Other meth-
ods may include the dual mode implementation, where
MPC replaces the ADP controller whenever one encoun-
ters a state that is sufficiently new and the information in
the learned value function cannot be trusted. Such states
can be collected separately and added to Xsam in the next
phase of value iteration.

4. EXAMPLES

Here, we demonstrate the proposed ADP algorithm on a
variety of stochastic optimal control problems.

4.1 Example 1: Constrained linear stochastic system-
double integrator problem

We consider the following constrained double integrator
problem studied by (Batina (2004)) in the context of MPC
for stochastic systems:

xt+1 = Axt + But + Υwt

where matrix A = [1 0; 1 1] 1 , B = [1; 0], Υ = [1; 0] and
ωt is zero-mean, white Gaussian noise with its second
moment, E[ωtω

′
t] = 0.2, ∀t. The nominal stage-wise cost

is φ̃(xt, ut) , 0.7||xt||
2
2 +0.33||ut||

2
2. The second dimension

of the state vector is constrained, as is the input vector:
ut ∈ [−0.5, 0.5], x2 ≥ 0.

The goal is to bring the system optimally from an arbi-
trary initial state ([0; 14] in the following simulations) to
the origin, whilst respecting the imposed constraints. We
compare the performance of a Linear Model Predictive
Controller (LMPC) (with prediction and control (p) hori-
zon set to 15) against the proposed ADP approach based
on the post-decision state variable. The post-decision state

1 in Matlab notation



is defined as the quantity obtained after an action is taken
but before the uncertainty is realized. That is, x

p
t , Axt +

But. Since ω is an unbounded signal, we employ a soft-
constraint approach for both LMPC (to avoid running into
infeasibility issues) and the proposed ADP strategy. As is
typically done, LMPC is implemented assuming ω remains
at its nominal value of 0 over the prediction horizon.
Namely, for LMPC, we solve at each time step, t:

min

p
∑

k=0

φ̃(xt+k, ut+k) + 100||εt+k||
2
2 (21)

where εt+k ≥ 0 are non-negative auxiliary decision vari-
ables representing the least amount of slack required to
make the LMPC problem feasible. That is, [0 1] xt+k +
εt+k ≥ 0. These inequalities are easily incorporated into
the math program defined by (21). Also, the input vector is
constrained to satisfy the aforementioned bounds of ±0.5.

For the proposed ADP approach, we set the discount
factor to a value close to unity, that is, γ = 0.98 and
modify the stage wise cost to penalize deviations from
the state constraints. Namely, φ(xt, ut) , φ̃(xt, ut) +
100max(0,−[0, 1]xt)

2. Hard constraints on u are imposed
during the off-line value iteration process and on-line
implementation of the ADP-based controller.

To construct Xsam, we used an LMPC controller (with
horizon length 5) and conducted closed-loop experiments
bringing the system from 40 different initial post-decision
states to the origin. Note that the initial state used for
on-line testing is excluded from these 40 initial states.
Namely, we consider various combinations of the sets
{−2, 0,−1, 1, 2} and {−4,−2, 0, 2, 4, 6, 8, 10} to create var-
ious values for the first and second dimension of the initial
state respectively. Consequently, a total of 3587 training
points, whose initial cost-to-go values were initialized by
computing the cost for LMPC over a sufficiently long
horizon, was obtained as a result of the initialization
scheme. For the purpose of function approximation, we
employed kernel regression with the bandwidth, σ, set to
0.16. To avoid over-extrapolation, we selected A = 1220,
and ρ = 0.2652. Value-iteration converged within 50 itera-
tions, where the relative error termination criterion is set

to
∣
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∣
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Ĵ
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∣
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∣
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∣

∞
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Results from 500 stochastic realizations presented as fol-
lows. As can be seen from Table 1, the proposed ADP
controller has an average 2 finite horizon score an order
of magnitude lower than a deterministic approach typified
by LMPC. In particular, LMPC suffers from excessively
high variance in terms of closed-loop performance. A look
at the time series plots of the second dimension of x for
both methods (see Fig. 1) reveals that LMPC results in
significant constraint violation. On the other hand, the
majority of the realizations based on the ADP approach
do not violate the lower bound constraint.

2 based on sample averaging
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(a) ADP algorithm.
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Fig. 1. Double integrator example: x2 vs. t for 500 realiza-
tions. Lower bound for x2 is 0.

4.2 Example 2: Constrained nonlinear stochastic system -
chemostat problem

Consider the governing equations of an archetypal chemo-
stat.

ẋ1 = x1
µmaxx2

κ+x2
− x1u

ẋ2 = u[x2,f − x2] −
µmax

Y
x1x2

κ+x2

where x = [x1;x2] ∈ R
2 is the state vector composed of

the instantaneous concentration of the product (x1) and
substrate (x2) respectively. 0 ≤ u ∈ R, the dilution rate,
is the non-negative manipulated variable. x2,f refers to
the instantaneous concentration of the substrate feed. The
maximum specific growth rate µmax is set to 1, the yield
coefficient to 1 and κ to 0.02. For the following simulations,
the sampling rate is set to 0.5.

For the purpose of simulation, we assume that the feed
concentration (x2,f ) fluctuates around a mean value of 1,
and is perturbed by zero-mean, white Gaussian noise (ω):

x2,f,t = 1 + ωt, E[ωtω
′
t] = 10−3 (22)

It is desirable to maximize the productivity of the product,
Pt , x1,tut, whilst ensuring that the conversion of the

substrate, fx2
, 1 − x2

x2,f
, does not go lower than a rela-

tively high value of 95%. Such an economically motivated
constraint is common in several key process industries,
such as bioethanol production. There is a tradeoff between
productivity and conversion. Productivity increases with
dilution rate and then decreases as the system approaches
washout. Conversion, on the other hand, is a decreasing
function of space-velocity or equivalently the dilution rate.
Maximum productivity (P∗ = 0.7543) occurs at a dilution
rate that corresponds to conversion levels significantly
below the required 95% threshold.

We compare the performance of Non-linear MPC (NMPC)
against the proposed ADP strategy. Instead of full-fledged
NMPC, we employ successive-linearization based MPC
(slMPC), a computationally efficient alternative proposed
by Lee and Ricker (1994). For this example, we have found
the closed-loop performance of slMPC to be similar to
that of NMPC. For slMPC, we employed a prediction and

Table 1. Example 1: comparing performance

Score ADP LMPC

E

[

30
∑

t=0

φ(xt, ut)

]

1600 10000



control horizon, p, of 10 sample units. The following math
program is solved at each time instant:

min

p
∑

k=0

(

||Pt+k − P∗||22 + 100||εt+k||
2
2

)

(23)

where as in the previous example, ε ≥ 0, is a non-negative
variable representing the least amount of slack required
for conversion to be greater than 95%. That is, εt+k +
fx2,t+k ≥ 0.95. The idea is to regulate the system at an
equilibrium point that corresponds to the largest possible
value of the dilution rate without exceeding the conversion
bound so that productivity is maximized. The dynamics
of the system are assumed to be governed by matrices
obtained through linearization of the governing ordinary
differential equations about the current state and past
input vector. This results in a convex quadratic program.

For the proposed ADP approach, γ is set to 0.98 and
the stage-wise cost defined as such: φ(xt, ut) , ||Pt −
P∗||22 + 100max(0, 0.95 − fx2,t)

2. To determine Xsam, we
used an slMPC controller (with horizon length of 10 time
units) and conducted closed-loop experiments regulating
the system at an initial state corresponding to a conversion
of 0.95. A total of 300 training points was obtained
from the initialization scheme. We used kernel regression
for function approximation with the bandwidth, σ, set
to 0.15, A to 1.93 and ρ to 0.087 in order to prevent
over-extrapolation. Value iteration terminated within 50
iterations with a relative error tolerance of 0.1.

Results from a typical realization are depicted in Fig. 2.
It is apparent that the ADP-based approach, compared
to slMPC, results in minimal constraint violation at the
expense of slightly lower productivity. It is noted that the
steady-state productivity corresponding to 95% conversion
is 0.68.

0 10 20 30 40 50 60 70

0.58

0.6

0.62

0.64

0.66

0.68

0.7

time

Pr
od

uc
tiv

ity

(a) Productivity vs time.

0 5 10 15 20 25 30 350.935
0.94

0.945
0.95

0.955
0.96

0.965
0.97

0.975
0.98

time

Co
nv

er
sio

n

(b) Conversion vs time.

Fig. 2. Example 2. Closed-loop performance of a typical
realization. ADP: solid line (-); slMPC: dotted line(..);
lower bound on conversion: dash-dot (-.)

4.3 Other examples in the literature

There are a number of other applications to process
process control problems in the published literature. In-
terested readers may look at the following references for
applications to more complex examples. These include:
integrated reactor-separator system control (Tosukhowong
and Lee (2009)), dual adaptive control (Lee and Lee
(2009)), fed-batch reactor control (Peroni et al. (2005)),
and microbial reactor (Kaisare et al. (2003)).

5. CONCLUSIONS

We have examined the potentials of ADP for process
control and found that it can complement MPC to reduce
the on-line computational load and also address stochas-
tic system uncertainties. ADP offers a number of design
options and one must think carefully through them to
choose the right options for a given application. We have
argued that, for process control problems, post-decision-
state formulation offers the ability to use deterministic
math programming solvers to be utilized, both off-line and
on-line and therefore may be more convenient than the
more conventional pre-decision-state formulation. In addi-
tion, the use of function approximators with nonexpansion
properties offer stable learning. Robustness against over-
extrapolation can be achieved through the use of a tailor-
made penalty function. Finally, to achieve performance
close to optimal ones, we recommend alternation between
the value function update and simulation (or on-line im-
plementation) to increase the sample set as the learning
proceeds.

Though not discussed in this paper, there are a number
of other application areas within process industries where
ADP can prove to be a valuable tool, including resource
allocation and inventory management (Pratikakis et al.
(2008, 2009); Choi et al. (2004, 2006)), design and planning
under uncertainty (Cheng et al. (2003)), scheduling of
multiple controllers (Lee and Lee (2008)), and equipment
/ product inspection (Agrawal (2009)). Raised awareness
of the ADP technique within the process systems engi-
neering research community will undoubtedly bring forth
additional applications that can benefit from it.
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