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ABSTRACT 

 
The recent development of large FPGAs along with the 
availability of a variety of floating point cores have made it 
possible to implement high-performance  matrix and vector 
kernel operations on FPGAs.  In this paper we seek to 
evaluate the performance of FPGAs for real scientific 
computations by implementing Lattice QCD, one of the 
classic scientific computing problems. Lattice QCD is the 
focus of considerable research work worldwide, including 
two custom ASIC-based solutions. Our results give 
significant insights into the usefulness of FPGAs for 
scientific computing. We also seek to evaluate two 
different number systems available for running scientific 
computations on FPGAs. To do this we implement FPGA 
based lattice QCD processors using both double precision 
IEEE floating point and single precision equivalent 
Logarithmic Number System (LNS) cores and compare 
their performance with that of two lattice QCD targeted 
ASIC based solutions and with PC cluster based solutions.* 

1. INTRODUCTION 

Recent multi-million gate equivalent FPGAs make it 
possible to implement complex, high-performance designs 
incorporating non-integer arithmetic. A significant branch 
of reconfigurable computing research now addresses 
problems of efficiently implementing the array and matrix 
operations that form the kernels of many scientific 
computations [1]. In this paper we investigate the 
performance of FPGAs as a platform for implementing full 
floating point based scientific applications.  

In order to do this we implement a significant sub-
atomic physics simulation called lattice QCD. Improving 
the performance of lattice QCD is the focus of 
considerable research work worldwide [2], including two 
competing ASIC based solutions targeted solely at lattice 
QCD simulations, [3] [4]. Several groups are also 
investigating optimizing PC clusters for lattice QCD, [5] 
[6] [7]. This considerable body of research allows us to 
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compare the performance of our FPGA based solution with 
the state of the art for scientific computing. 

The core of Lattice QCD is the Dirac operator, a large 
complex floating-point intensive matrix computation. 
Although the performance of the Dirac operator is central, 
Lattice QCD involves other operations which can have a 
significant impact on performance. We investigate this by 
implementing an example application, a lattice QCD 
conjugate gradient solver. The conjugate gradient solver 
uses the Dirac operator, a vector add-scale operator and a 
dot product operator, which are both normally memory 
bandwidth bound.  

We also aim to compare the suitability of different non-
integer arithmetic systems for performing high 
performance computing applications on FPGAs. We 
present a comparison of LNS arithmetic and IEEE double 
precision floating point and identify the strengths and 
weaknesses of both systems when used for real high 
performance scientific computing applications. 

We present performance results for both LNS and IEEE 
double precision versions of the full conjugate gradient 
solver along with results for its component parts, including 
the performance critical Dirac operation. We also present 
quantitative comparisons for two categories of alternative 
lattice QCD systems: ASIC-based processors designed 
exclusively for lattice QCD and highly optimised PC 
cluster systems. 

2. BACKGROUND 

2.1. Quantum Chromodynamics 

Quantum Chromodynamics (QCD) theory describes how 
quarks and gluons interact. QCD is believed to explain 
confinement, which is the observation that these 
constituents are inextricably bound inside hadrons like the 
proton and nucleon. This property of QCD explains how 
the proton and neutron are heavy, in spite of the fact the 
quarks are very light particles and the gluon is massless. 
However no free quarks or gluons have ever been observed 
experimentally. As a result numerical simulations of QCD 
performed on high-performance computers have been used 
for over thirty years in an attempt to make ab initio 
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predictions about experimental results using QCD theory. 
This is done because the mathematical complexity of QCD 
makes it impossible to solve using traditional methods. 
These simulations provide vital inputs into the 
experimental searches for new physics at ever-increasing 
energy scales in the world's largest particle collider 
experiments. The simulations also attempt to explain the 
mechanism for confinement in QCD and so bring us to a 
better understanding of the fundamental nature of matter. 

2.2. Lattice QCD 

Lattice QCD is the term used to describe the application of 
computer simulations to QCD theory. Lattice QCD uses a 
set of matrices, usually known as the lattice, to simulate 
space and time at a sub-atomic level. Lattice QCD belongs 
to a general class of high performance computing 
algorithms called sparse matrix solvers. Other examples of 
sparse matrix solvers include Computational Fluid 
Dynamics and Finite Element Solvers. However lattice 
QCD is crucially different to these applications because in 
lattice QCD the matrix is constant whereas it must be re-
formulated for every calculation in other applications. This 
allows the matrix representation to be built into the 
algorithm itself and so it is not explicitly represented. This 
means lattice QCD calculations sustain much higher 
performance compared to other sparse matrix solvers.  
The lattice for a lattice QCD calculation takes the form of a 
set of large matrices. These matrices are hyper-cubes of 
four dimensions. The number of elements in these matrices 
is determined by the following formula. 

NTNZNYNXNS ×××=  
The four values dictate the number of points to be 

simulated in each of the three dimensions of space and also 
the dimension of time. NS tells us the size of the lattice. 
Current values of NS for large simulations are in the region 
of 2 million. Consequently obtaining a single scientific 
result for such a lattice needs approximately 6.6 Peta 
floating-point operations [6]. As such the computational 
requirements for lattice QCD are massive. 

3. RELATED WORK 

Lattice QCD is an important scientific application and 
is the focus considerable research work worldwide. Much 
of this work aims to improve the algorithm itself and make 
it more useful to the scientists and mathematicians who use 
it. Considerable effort is also expended on improving the 
performance of lattice QCD machines. This effort is in one 
of two broad fields. The first is the construction of 
massively parallel machines dedicated to lattice QCD 
calculations consisting of thousands of ASIC processors 
connected with a high bandwidth low latency interconnect. 
The other field uses commodity PC clusters for lattice 
QCD calculations focussing on using the vector processing 

extensions of PC processors along with interconnects such 
as Infiniband to build large clusters. 

QCDOC [3] and apeNEXT [2] are both ASIC based 
machines specifically designed for lattice QCD. Both aim 
to deliver machines that can use tens of thousands of nodes 
on a single lattice QCD simulation. Both machines provide 
double precision IEEE floating point arithmetic. QCDOC 
prototypes can sustain over 5 Teraflops on a single 
problem by using 12,288 processing nodes on a single 
problem. ApeNEXT machines will have similar 
performance to the QCDOC machine. QCDOC nodes 
deliver about 396 MFLOPS each and apeNEXT nodes will 
deliver about 896 MFLOPS. 

Clusters of commodity PCs are the focus of much 
research activity [4] [5] [7]. A cluster of dual Intel Xeon 
based PCs using Infiniband for interconnect and single 
precision arithmetic is described in [7]. This system returns 
around 1.1 GFLOPS per CPU for a realistic problem size 
on a sixteen CPU cluster.  

Minimising communications overhead is vital for PC 
cluster performance. PC clusters have very good per node 
performance but have high communications overheads 
compared to the ASIC based machines. This restricts the 
number of nodes that can be applied to a single problem; 
QCDOC for example can use over 100 times more nodes 
on a given problem size compared to the cluster in [7]. The 
challenge for PC clusters is improving interconnect 
performance and not per node floating point performance. 

In earlier work we presented an LNS implementation of 
the Dirac operator [8]. This operator has been substantially 
improved for the current paper and performance has been 
increased by 23% with a further 15% improvement by 
using a faster speed grade device. 

4. NUMBER REPRESENTATIONS 

IEEE floating point is the standard approach for 
performing non-integer calculations and is implemented on 
most commodity processors. The Logarithmic Number 
System (LNS) is an alternative approach to these 
calculations that uses fixed point logarithms to represent 
non-integer numbers. LNS requires vastly fewer resources 
for multiplication and division compared to IEEE floating 
point however addition and subtraction become 
significantly more complicated. 

Lattice QCD calculations require at least single 
precision arithmetic and the end users prefer double 
precision as it gives more accurate results. However 
accuracy can also be increased with a larger problem size, 
which increases the demand for FLOPs. Single precision is 
used on PC clusters since they usually return double the 
performance this way. Double precision is used on other 
systems where the gap is not so large. 



 

4.1. Single precision log and floating point 

We use commercial LNS cores from the High-Speed 
Logarithmic Arithmetic system (HSLA) by Matousek et al 
[9]. These are 32-bit logarithmic cores and support the full 
range of exceptions from the IEEE floating point standard. 
The cores are highly-optimized for both performance and 
space. A comparison of logarithmic arithmetic and IEEE 
floating point was presented in [10] The LNS cores we use 
are significantly different from those presented in [10] so 
we make our own comparison here. 

Table 1 shows the resource requirements of the LNS 
arithmetic units compared to the requirements for 
comparable IEEE arithmetic units published in [11]. The 
Underwood cores’ latencies are variable; shorter latencies 
are possible but with lower clock rates. 

LNS has a clear advantage for multiplication and 
division. The LNS multiplier is substantially smaller than 
the Underwood multiplier and has a lower latency. Also 
the fully pipelined LNS divider returns similar 
performance to the Underwood divider but uses less than 
5% of the resources and has a much lower latency. 

The penalty for the small and low latency LNS 
multiplier and divider is that the LNS adder requires 66% 
more slices than the IEEE adder, and a significant quantity 
of block RAM and hardware multipliers. This block RAM 
requirement limits the number of LNS adder units to 10 
per FPGA but requires only 25% of slices on our Xilinx 
Virtex-II-6000 FPGA, leaving plenty of space for control 
logic and other arithmetic units. 

The resource requirements for the LNS cores favour 
applications that have a high proportion of multiplications 
compared to additions. Also the very small size of the 
divider is a particular advantage for applications which use 
division only rarely. A large IEEE divider is a waste of 
resources in such designs.  

5. IMPLEMENTATION 

We implement our designs using Handel-C, Celoxica DK 
4.0 for synthesis, and Xilinx ISE8.1i for place and route. 
Our designs are tested in hardware using prototype boards 
from by Alpha Data (Model: ADM-XRCII) which include 
a Virtex-II XC2V6000 (speed grade 6) along with 6 banks 
of 32- bit wide SRAM.  

5.1. Algorithm Analysis 

Understanding an algorithm is essential to getting good 
performance for a hardware implementation. Table 2 
shows the most relevant information about the lattice QCD 
codes. The first column shows the ratio of floating point 
operations to memory operations for each part of the 
algorithm. The second column shows the proportion of 
floating point operations that are adds or subtracts (almost 
all remaining operations are multiplies). The final column 
shows the proportion of each application part as a 
percentage of the whole application. 

The Dirac operator is the largest consumer of non-
integer calculations in the conjugate gradient application 
and is where most time is spent. It has low memory 
bandwidth requirements compared to calculation and has a 
balanced requirement for adds and multiplies. By 
comparison the dot product and vector add scale operations 
have much higher memory bandwidth requirements, so 
their performance is restricted by memory bandwidth, not 
non-integer calculation performance.  

The Dirac operator is the most compute intensive and  
is where we concentrate our efforts. It is constructed from 
4 operations, which operate on the gl3 (3×3) and wfv (4×3) 
matrices. They are: 

1. Gamma functions 
2. Matrix-multiply; wfv × gl3= wfv 
3. Matrix addition/subtraction; wfv + wfv = wfv 
4. Matrix scale; wfv × value = wfv 
The gamma functions multiply a wfv matrix by an 

identity matrix to produce a wfv matrix. The Dirac operator 
uses 8 slightly different versions of this function. The 
identity matrix is constant so this is done using a small 
number of additions; this is the standard practice for the 
Dirac operator. The wfv × gl3 complex number matrix 
multiply is the most compute intensive part of the 
calculation needing 264 floating point calculations per 
operation. The matrix addition is a straightforward matrix 
addition. The matrix scale scales every element in a wfv 
matrix by a particular value. 

Internally each of these blocks has exploitable 
parallelism. The real and imaginary components of the 
numbers can be calculated in parallel. Also many of the 
blocks are independent and thus can be parallelized. 

 LNS 
Multiplier [1] 

Underwood 
Multiplier [9] 

LNS Divider
[1] 

Underwood 
Divider [9] 

LNS Adder  
(2 pipes) [1] 

Underwood 
Adder [9] 

Slices 83 598 82 1929 1648 496 
Multipliers 0 4 0 0 8 0 
Block RAM 0 0 0 0 28 0 
Latency 1 16 1 37 8 13 
MHz 250 124 250 100 90 165 
Pipes per FPGA 407 36 412 17 10 68 

Table 1. Resource Requirements for LNS and Comparable IEEE Units 



 

The gamma and matrix multiply blocks are paired and 
we call them gamma-mul pairs. The eight pairs are 
independent and can be performed in parallel given 
sufficient resources. The wfv add blocks accumulate the 
eight results of the gamma-mul blocks into one wfv matrix. 
We can parallelise by performing an accumulate in three 
stages; add the 8 gamma-mul results into 4 matrices, these 
4 into 2 and finally these 2 into one. Finally the scale block 
is dependant on the results from the set of add blocks. 

5.2. Improved LNS Dirac operator 

Our initial implementation of the Dirac kernel for LNS is 
outlined in detail in [8]. Performance for the LNS Dirac 
operator is restricted by the availability of a maximum of 
10 on-chip adders (details in section 0). Due to this 
constraint we designed our architecture to make maximum 
use of each adder pipe. Significant improvements to the 
design presented in [8] raised performance for the LNS 
Dirac operator by 23%. Improvements to the architecture 
reduced the number of cycles required to calculate the 
result for each site from 190 to 168. Improvements to the 
application logic reduced logic delays enabling a higher 
clock rate for the design. Also moving to a faster speed 
grade device has boosted performance by a further 15% 

5.3. LNS Conjugate Gradient Solver 

The conjugate gradient application uses the Dirac operator 
from section 5.2. It also uses a vector dot product operator 
and scale-add operators which operate on vectors of 4×3 
wfv matrices. Both operations are memory bandwidth 
bound for our implementation, as they are on most 
platforms. Memory bandwidth is dictated by the memory 
system used and by the data layout in that system. For our 
implementation the vector inputs to both of these functions 
are stored in paired banks of 32-bit on-board SRAM 
memory; the real components in one bank and the 
imaginary components in the other.  

iii yxky +×= )(  (1) 
The scale-add operation is shown (1). Y is both read 

from and written to which restricts us to one multiply-
accumulate operation per cycle. Vector y is stored linearly 
in a pair of memory banks to which we can either read or 
write once per cycle but not both. Data is streamed from 
memory to arrive at the adder or multiplier on precisely the 
cycle it is required. This ensures maximum throughput for 
the arithmetic units. 

The dot-product is a global sum of the square of all the 
real and imaginary values in a vector. This is used to find 
how close the solver is to a solution by finding a global 
sum on every iteration and comparing it to the sum from 
the last iteration. If the difference is less than a certain 
threshold then the run is complete.  

Fig 1 shows our implementation of the dot-product 
operation. We stream data in from memory and issue it 
directly to the multiplier to square it. Then we issue the 
multiply result directly to the adder along with the current 
add result eliminating any need for intermediate storage of 
the accumulate result. Zeroes are issued for the first n 
additions (n is the adder’s latency); then the current output 
of the adder is returned to the adder as an operand. Thus 
the results of the multiplications are added to n running 
totals. Once the vector has been processed the n running 
totals summed. The real and imaginary components of the 
vector are stored in separate on-board RAM banks so we 
run two instances of the architecture shown in Fig 1 in 
parallel adding the result from each to give the final result. 

5.4. Double precision Dirac operator kernel 

Our implementation of the Dirac operator for IEEE double 
precision uses the Moloney cores [12]. The Dirac operator 
consumes 9 additions for every 8 multiplications (see 
Table 1) so ideally we want a balance of arithmetic units in 
about this ratio. Using 8 multipliers and 10 adders for the 
design gives a balance of units broadly in line with this, 
using 51% of the available slices. This leaves sufficient 
chip resources for application control logic and so is the 
balance we chose for our design. 

Fig 2 shows the structure of the double precision Dirac 
operator and inset is the structure of the gamma-mul block 
implementation. Each gamma-mul block uses 1 adder and 
1 multiplier to perform its operation which multiplies a 3x3 
gl3 matrix by a 4x3 wfv matrix to produce a wfv result 
matrix. Our implementation uses the multiplier to produce 
6 partial products for each component (real and imaginary) 
of each point in the result wfv matrix. The partial products 
must then be summed, giving the result for each point. The 
first two multiply results are partial products of site [0,0], 

 Calc : Mem Add % CG %
Dirac 6.81 55% 95.6% 
Dot Product 1 50% 1.8% 
Add-Scale 0.66 50% 2.6% 
Total 5.07 54.8% 100% 

Table 2. Lattice QCD algorithm information. 

Fig 1. Architecture of the dot-product operator. 
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the next two are of site [0,1] and so on to site [3,2]. This 
sequence is repeated three times. The first multiply result 
is held in a register and issued in the next cycle, with the 
current multiply result, to the adder pipe. This is the first 
stage of summing the partial products. 

These adds can only be issued on every second cycle, 
leaving spare slots in the adder pipeline. These are filled by 
accumulating the results of the first stage of partial product 
summation into 24 running totals (one for the r and i 
components of each point in the result wfv matrix). These 
totals are stored in a pair of LUT RAMs. Once all the 
partial products are summed these RAMs hold the result. 
Once all the first stage sums are complete second stage 
sums are issued on every cycle making best use of the 
adder. 

The add/subtract wfv blocks are implemented by 
streaming data from the result RAMs of the gamma-mul 
blocks into two adder pipes, one pipe handling the real and 
the other the imaginary components. 
The Dirac operator is then split into 4 pipeline stages, 
parallelizing operand retrieval, gamma-mul calculations,  
add/subtract wfv calculations and result write. In order to 
prevent Read After Write data dependencies between the 
gamma-mul stage and the add/subtract wfv stage it is 

necessary to copy some of the results from the gamma-mul 
stage into temporary storage. 

5.5. Double precision conjugate gradient solver 

The double precision conjugate gradient solver requires 
double precision versions of the dot-product and vector 
scale-add operations. Data layout in memory determines 
how the operations are implemented. Double precision 
variables are 64 bits wide, so the ratio of memory 
bandwidth to calculation is doubled compared to single 
precision, making data layout very important. The wfv 
vectors are stored across 4 memory banks, using all six 
would increase bandwidth but would make the memory 
access hardware unfeasibly complex.  

Our vector add-scale implementation streams data for 
one vector from memory into a multiplier where it is 
scaled by a fixed value. The result is then added to the 
appropriate value for the other vector. Both vectors are 
stored in the same memory banks so retrievals must be 
alternated between the two input vectors. The results are 
buffered in block RAMs before being written out to 
memory when the block RAM is full.  

For the dot product implementation we use a similar 
architecture to the one employed successfully for the LNS 
version. Data is streamed directly from external RAMs into 
the multiplier to scale it. The results are then accumulated 
using the architecture shown in Fig 1. The adder’s shorter 
latency means there are fewer partial products to be 
accumulated so performance is improved slightly 
compared to the LNS implementation. 

6. RESULTS 

In Table 3 we present performance results for our IEEE 
double precision implementations of the Dirac operator 
and the conjugate gradient solver. We also present results 
for our LNS implementation of the conjugate solver along 
with results for a substantially improved version of the 
LNS Dirac operator presented in [8]. All designs have been 
placed and routed for a Xilinx Virtex II XC2V6000 speed 
grade 6 device. 

We obtain excellent performance for our double 
precision implementation of the Dirac operator with over 
1200 MFLOPS sustained and for the double precision 
conjugate gradient solver with over 940 MFLOPs  

Improvements to the LNS Dirac operator have boosted 
performance to 1320 MFLOPS. We also use this improved  

Clock Rate 
(MHZ) 

MFLOPS FP Ops 
per cycle 

IEEE Dirac 85 1200 14.1 
IEEE CG 85 918 11.1 
LNS Dirac 85 1320 15.5 
LNS CG 85 1050 12.35 

Table 3. Performance of FPGA based solutions. 
Matrix Storage Vector Storage (Striped across all banks) 

Bank 0 

Gl3 
Operand 

Wfv 
Operand 

Multiply 

Add 

Operand 
Control 

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 

Add Add Add Add

Add Add 

Add 

Scl 

Sub 

Result 

Gamma-Mul Opera Block 
8 of these are run in parallel

The results are stored 
in 8 LUT RAMs and 
accumulated into one 
RAM (below) 

Result is stored back 
to off-chip memory 
banks 2 to 5 

Fig 2. Structure of IEEE Dirac operator. 



 

Table 4. Performance of double precision implementations 
and comparable systems 

 Dirac CG 
FPGA 1200 940 
apeNEXT 894 - 
QCDOC 396 351 
PC 550 - 
operator to implement an LNS conjugate gradient solver 
with performance of over 1050 MFLOPS. 

We also present data for the average number of floating 
point operations performed per cycle for each design. The 
double precision Dirac operator achieves over 14 
operations per cycle, whilst the LNS Dirac operator 
performs over 15 per cycle. This clearly demonstrates the 
level of parallelism that is exploited in our designs.  

7. CONCLUSIONS 

In recent years large FPGAs and the availability of 
arithmetic cores have made high-performance scientific 
computing increasingly practical on FPGAs. Lattice QCD 
is an important scientific application and is the focus 
considerable research work worldwide, with a variety of 
PC based and custom ASIC implementations. Thus it is 
ideal for evaluating a computing platforms’ suitability for 
scientific computing. We have presented the design and 
implementation for FPGAs of the Dirac operator and a full 
Lattice QCD application using LNS and IEEE double 
precision floating point. 

As discussed in Section 4, either single or double 
precision can be used for lattice QCD, however double 
precision is preferred since it is more accurate for a given 
problem size. PC clusters have significantly higher 
performance for single precision compared to double, so 
for these machines single precision is normally used with a 
larger problem size to compensate for the lower precision.  

Table 5 shows the performance of our single precision 
equivalent LNS designs compared to an Intel Xeon PC 
Cluster node from [7]. We achieve 1320 MFLOPS for the 
Dirac operator and 1050 MFLOPS for the full application. 
This compares well with the single precision performance 
of a PC cluster node of 1100 MFLOPS for the Dirac 
operator. Nonetheless, Lattice QCD, like most scientific 
applications that operate on matrices, has roughly the same 
numbers of adds and multiplies, and few divides. The large 
block RAM tables required by LNS adders were always 
the limiting factor in the LNS design. 

Floating point units have no such limitations, so it was 
possible to build IEEE double precision floating point 
implementations that achieve 1200 MFLOPS for the Dirac 
operator and 940 MFLOPS for the full application using 
ten double precision adders and eight multipliers. Our 
double precision implementations are far more complex, 
however, because the pipelines are deeper and memory 
bandwidth, available block RAMs and slices are all critical 
constraints on the design. 

Table 5. Performance of LNS FPGA implementation and 
comparable system 

 Dirac CG 
FPGA 1320 1050 
Intel Xeon  1100 - 

Table 4 shows the performance of our implementation 
with comparable systems. This result compares extremely 
well with the QCDOC nodes which return 396 MFLOPS, 
with the apeNEXT nodes which return 894 MFLOPS per 
node and also with the PC cluster nodes which return about 
550 MFLOPS at double precision [7].  

Our results show that FPGAs can be competitive with 
general purpose processors and even custom ASIC 
processors for scientific computing applications such as 
Lattice QCD. To our knowledge this is the first FPGA 
implementation of Lattice QCD and one of the first full 
implementations of a large scientific application using 
IEEE double precision arithmetic. 
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