
HIGH PERFORMANCE SCIENTIFIC COMPUTING USING FPGAS WITH IEEE
FLOATING POINT AND LOGARITHMIC ARITHMETIC FOR LATTICE QCD

Owen Callanan, David Gregg*
Dept. of Computer Science,

Trinity College Dublin,
Ireland.

email: {Owen.Callanan,
David.Gregg} @cs.tcd.ie

Andy Nisbet
Dept. of Computing and

Mathematics,
Manchester Metropolitan

University, UK.
email: A.Nisbet@mmu.ac.uk

Mike Peardon
Dept. of Mathematics,
Trinity College Dublin

email: mjp@maths.tcd.ie

ABSTRACT

The recent development of large FPGAs along with the
availability of a variety of floating point cores have made it
possible to implement high-performance matrix and vector
kernel operations on FPGAs. In this paper we seek to
evaluate the performance of FPGAs for real scientific
computations by implementing Lattice QCD, one of the
classic scientific computing problems. Lattice QCD is the
focus of considerable research work worldwide, including
two custom ASIC-based solutions. Our results give
significant insights into the usefulness of FPGAs for
scientific computing. We also seek to evaluate two
different number systems available for running scientific
computations on FPGAs. To do this we implement FPGA
based lattice QCD processors using both double precision
IEEE floating point and single precision equivalent
Logarithmic Number System (LNS) cores and compare
their performance with that of two lattice QCD targeted
ASIC based solutions and with PC cluster based solutions.*

1. INTRODUCTION

Recent multi-million gate equivalent FPGAs make it
possible to implement complex, high-performance designs
incorporating non-integer arithmetic. A significant branch
of reconfigurable computing research now addresses
problems of efficiently implementing the array and matrix
operations that form the kernels of many scientific
computations [1]. In this paper we investigate the
performance of FPGAs as a platform for implementing full
floating point based scientific applications.

In order to do this we implement a significant sub-
atomic physics simulation called lattice QCD. Improving
the performance of lattice QCD is the focus of
considerable research work worldwide [2], including two
competing ASIC based solutions targeted solely at lattice
QCD simulations, [3] [4]. Several groups are also
investigating optimizing PC clusters for lattice QCD, [5]
[6] [7]. This considerable body of research allows us to

* Sponsored by the Irish Research Council for Science Engineering &
Technology under grant SC/02/288

compare the performance of our FPGA based solution with
the state of the art for scientific computing.

The core of Lattice QCD is the Dirac operator, a large
complex floating-point intensive matrix computation.
Although the performance of the Dirac operator is central,
Lattice QCD involves other operations which can have a
significant impact on performance. We investigate this by
implementing an example application, a lattice QCD
conjugate gradient solver. The conjugate gradient solver
uses the Dirac operator, a vector add-scale operator and a
dot product operator, which are both normally memory
bandwidth bound.

We also aim to compare the suitability of different non-
integer arithmetic systems for performing high
performance computing applications on FPGAs. We
present a comparison of LNS arithmetic and IEEE double
precision floating point and identify the strengths and
weaknesses of both systems when used for real high
performance scientific computing applications.

We present performance results for both LNS and IEEE
double precision versions of the full conjugate gradient
solver along with results for its component parts, including
the performance critical Dirac operation. We also present
quantitative comparisons for two categories of alternative
lattice QCD systems: ASIC-based processors designed
exclusively for lattice QCD and highly optimised PC
cluster systems.

2. BACKGROUND

2.1. Quantum Chromodynamics

Quantum Chromodynamics (QCD) theory describes how
quarks and gluons interact. QCD is believed to explain
confinement, which is the observation that these
constituents are inextricably bound inside hadrons like the
proton and nucleon. This property of QCD explains how
the proton and neutron are heavy, in spite of the fact the
quarks are very light particles and the gluon is massless.
However no free quarks or gluons have ever been observed
experimentally. As a result numerical simulations of QCD
performed on high-performance computers have been used
for over thirty years in an attempt to make ab initio

1-4244-0 312-X/06/$20.00 c©2006 IEEE.

predictions about experimental results using QCD theory.
This is done because the mathematical complexity of QCD
makes it impossible to solve using traditional methods.
These simulations provide vital inputs into the
experimental searches for new physics at ever-increasing
energy scales in the world's largest particle collider
experiments. The simulations also attempt to explain the
mechanism for confinement in QCD and so bring us to a
better understanding of the fundamental nature of matter.

2.2. Lattice QCD

Lattice QCD is the term used to describe the application of
computer simulations to QCD theory. Lattice QCD uses a
set of matrices, usually known as the lattice, to simulate
space and time at a sub-atomic level. Lattice QCD belongs
to a general class of high performance computing
algorithms called sparse matrix solvers. Other examples of
sparse matrix solvers include Computational Fluid
Dynamics and Finite Element Solvers. However lattice
QCD is crucially different to these applications because in
lattice QCD the matrix is constant whereas it must be re-
formulated for every calculation in other applications. This
allows the matrix representation to be built into the
algorithm itself and so it is not explicitly represented. This
means lattice QCD calculations sustain much higher
performance compared to other sparse matrix solvers.
The lattice for a lattice QCD calculation takes the form of a
set of large matrices. These matrices are hyper-cubes of
four dimensions. The number of elements in these matrices
is determined by the following formula.

NTNZNYNXNS ×××=
The four values dictate the number of points to be

simulated in each of the three dimensions of space and also
the dimension of time. NS tells us the size of the lattice.
Current values of NS for large simulations are in the region
of 2 million. Consequently obtaining a single scientific
result for such a lattice needs approximately 6.6 Peta
floating-point operations [6]. As such the computational
requirements for lattice QCD are massive.

3. RELATED WORK

Lattice QCD is an important scientific application and
is the focus considerable research work worldwide. Much
of this work aims to improve the algorithm itself and make
it more useful to the scientists and mathematicians who use
it. Considerable effort is also expended on improving the
performance of lattice QCD machines. This effort is in one
of two broad fields. The first is the construction of
massively parallel machines dedicated to lattice QCD
calculations consisting of thousands of ASIC processors
connected with a high bandwidth low latency interconnect.
The other field uses commodity PC clusters for lattice
QCD calculations focussing on using the vector processing

extensions of PC processors along with interconnects such
as Infiniband to build large clusters.

QCDOC [3] and apeNEXT [2] are both ASIC based
machines specifically designed for lattice QCD. Both aim
to deliver machines that can use tens of thousands of nodes
on a single lattice QCD simulation. Both machines provide
double precision IEEE floating point arithmetic. QCDOC
prototypes can sustain over 5 Teraflops on a single
problem by using 12,288 processing nodes on a single
problem. ApeNEXT machines will have similar
performance to the QCDOC machine. QCDOC nodes
deliver about 396 MFLOPS each and apeNEXT nodes will
deliver about 896 MFLOPS.

Clusters of commodity PCs are the focus of much
research activity [4] [5] [7]. A cluster of dual Intel Xeon
based PCs using Infiniband for interconnect and single
precision arithmetic is described in [7]. This system returns
around 1.1 GFLOPS per CPU for a realistic problem size
on a sixteen CPU cluster.

Minimising communications overhead is vital for PC
cluster performance. PC clusters have very good per node
performance but have high communications overheads
compared to the ASIC based machines. This restricts the
number of nodes that can be applied to a single problem;
QCDOC for example can use over 100 times more nodes
on a given problem size compared to the cluster in [7]. The
challenge for PC clusters is improving interconnect
performance and not per node floating point performance.

In earlier work we presented an LNS implementation of
the Dirac operator [8]. This operator has been substantially
improved for the current paper and performance has been
increased by 23% with a further 15% improvement by
using a faster speed grade device.

4. NUMBER REPRESENTATIONS

IEEE floating point is the standard approach for
performing non-integer calculations and is implemented on
most commodity processors. The Logarithmic Number
System (LNS) is an alternative approach to these
calculations that uses fixed point logarithms to represent
non-integer numbers. LNS requires vastly fewer resources
for multiplication and division compared to IEEE floating
point however addition and subtraction become
significantly more complicated.

Lattice QCD calculations require at least single
precision arithmetic and the end users prefer double
precision as it gives more accurate results. However
accuracy can also be increased with a larger problem size,
which increases the demand for FLOPs. Single precision is
used on PC clusters since they usually return double the
performance this way. Double precision is used on other
systems where the gap is not so large.

4.1. Single precision log and floating point

We use commercial LNS cores from the High-Speed
Logarithmic Arithmetic system (HSLA) by Matousek et al
[9]. These are 32-bit logarithmic cores and support the full
range of exceptions from the IEEE floating point standard.
The cores are highly-optimized for both performance and
space. A comparison of logarithmic arithmetic and IEEE
floating point was presented in [10] The LNS cores we use
are significantly different from those presented in [10] so
we make our own comparison here.

Table 1 shows the resource requirements of the LNS
arithmetic units compared to the requirements for
comparable IEEE arithmetic units published in [11]. The
Underwood cores’ latencies are variable; shorter latencies
are possible but with lower clock rates.

LNS has a clear advantage for multiplication and
division. The LNS multiplier is substantially smaller than
the Underwood multiplier and has a lower latency. Also
the fully pipelined LNS divider returns similar
performance to the Underwood divider but uses less than
5% of the resources and has a much lower latency.

The penalty for the small and low latency LNS
multiplier and divider is that the LNS adder requires 66%
more slices than the IEEE adder, and a significant quantity
of block RAM and hardware multipliers. This block RAM
requirement limits the number of LNS adder units to 10
per FPGA but requires only 25% of slices on our Xilinx
Virtex-II-6000 FPGA, leaving plenty of space for control
logic and other arithmetic units.

The resource requirements for the LNS cores favour
applications that have a high proportion of multiplications
compared to additions. Also the very small size of the
divider is a particular advantage for applications which use
division only rarely. A large IEEE divider is a waste of
resources in such designs.

5. IMPLEMENTATION

We implement our designs using Handel-C, Celoxica DK
4.0 for synthesis, and Xilinx ISE8.1i for place and route.
Our designs are tested in hardware using prototype boards
from by Alpha Data (Model: ADM-XRCII) which include
a Virtex-II XC2V6000 (speed grade 6) along with 6 banks
of 32- bit wide SRAM.

5.1. Algorithm Analysis

Understanding an algorithm is essential to getting good
performance for a hardware implementation. Table 2
shows the most relevant information about the lattice QCD
codes. The first column shows the ratio of floating point
operations to memory operations for each part of the
algorithm. The second column shows the proportion of
floating point operations that are adds or subtracts (almost
all remaining operations are multiplies). The final column
shows the proportion of each application part as a
percentage of the whole application.

The Dirac operator is the largest consumer of non-
integer calculations in the conjugate gradient application
and is where most time is spent. It has low memory
bandwidth requirements compared to calculation and has a
balanced requirement for adds and multiplies. By
comparison the dot product and vector add scale operations
have much higher memory bandwidth requirements, so
their performance is restricted by memory bandwidth, not
non-integer calculation performance.

The Dirac operator is the most compute intensive and
is where we concentrate our efforts. It is constructed from
4 operations, which operate on the gl3 (3×3) and wfv (4×3)
matrices. They are:

1. Gamma functions
2. Matrix-multiply; wfv × gl3= wfv
3. Matrix addition/subtraction; wfv + wfv = wfv
4. Matrix scale; wfv × value = wfv
The gamma functions multiply a wfv matrix by an

identity matrix to produce a wfv matrix. The Dirac operator
uses 8 slightly different versions of this function. The
identity matrix is constant so this is done using a small
number of additions; this is the standard practice for the
Dirac operator. The wfv × gl3 complex number matrix
multiply is the most compute intensive part of the
calculation needing 264 floating point calculations per
operation. The matrix addition is a straightforward matrix
addition. The matrix scale scales every element in a wfv
matrix by a particular value.

Internally each of these blocks has exploitable
parallelism. The real and imaginary components of the
numbers can be calculated in parallel. Also many of the
blocks are independent and thus can be parallelized.

 LNS
Multiplier [1]

Underwood
Multiplier [9]

LNS Divider
[1]

Underwood
Divider [9]

LNS Adder
(2 pipes) [1]

Underwood
Adder [9]

Slices 83 598 82 1929 1648 496
Multipliers 0 4 0 0 8 0
Block RAM 0 0 0 0 28 0
Latency 1 16 1 37 8 13
MHz 250 124 250 100 90 165
Pipes per FPGA 407 36 412 17 10 68

Table 1. Resource Requirements for LNS and Comparable IEEE Units

The gamma and matrix multiply blocks are paired and
we call them gamma-mul pairs. The eight pairs are
independent and can be performed in parallel given
sufficient resources. The wfv add blocks accumulate the
eight results of the gamma-mul blocks into one wfv matrix.
We can parallelise by performing an accumulate in three
stages; add the 8 gamma-mul results into 4 matrices, these
4 into 2 and finally these 2 into one. Finally the scale block
is dependant on the results from the set of add blocks.

5.2. Improved LNS Dirac operator

Our initial implementation of the Dirac kernel for LNS is
outlined in detail in [8]. Performance for the LNS Dirac
operator is restricted by the availability of a maximum of
10 on-chip adders (details in section 0). Due to this
constraint we designed our architecture to make maximum
use of each adder pipe. Significant improvements to the
design presented in [8] raised performance for the LNS
Dirac operator by 23%. Improvements to the architecture
reduced the number of cycles required to calculate the
result for each site from 190 to 168. Improvements to the
application logic reduced logic delays enabling a higher
clock rate for the design. Also moving to a faster speed
grade device has boosted performance by a further 15%

5.3. LNS Conjugate Gradient Solver

The conjugate gradient application uses the Dirac operator
from section 5.2. It also uses a vector dot product operator
and scale-add operators which operate on vectors of 4×3
wfv matrices. Both operations are memory bandwidth
bound for our implementation, as they are on most
platforms. Memory bandwidth is dictated by the memory
system used and by the data layout in that system. For our
implementation the vector inputs to both of these functions
are stored in paired banks of 32-bit on-board SRAM
memory; the real components in one bank and the
imaginary components in the other.

iii yxky +×=)((1)
The scale-add operation is shown (1). Y is both read

from and written to which restricts us to one multiply-
accumulate operation per cycle. Vector y is stored linearly
in a pair of memory banks to which we can either read or
write once per cycle but not both. Data is streamed from
memory to arrive at the adder or multiplier on precisely the
cycle it is required. This ensures maximum throughput for
the arithmetic units.

The dot-product is a global sum of the square of all the
real and imaginary values in a vector. This is used to find
how close the solver is to a solution by finding a global
sum on every iteration and comparing it to the sum from
the last iteration. If the difference is less than a certain
threshold then the run is complete.

Fig 1 shows our implementation of the dot-product
operation. We stream data in from memory and issue it
directly to the multiplier to square it. Then we issue the
multiply result directly to the adder along with the current
add result eliminating any need for intermediate storage of
the accumulate result. Zeroes are issued for the first n
additions (n is the adder’s latency); then the current output
of the adder is returned to the adder as an operand. Thus
the results of the multiplications are added to n running
totals. Once the vector has been processed the n running
totals summed. The real and imaginary components of the
vector are stored in separate on-board RAM banks so we
run two instances of the architecture shown in Fig 1 in
parallel adding the result from each to give the final result.

5.4. Double precision Dirac operator kernel

Our implementation of the Dirac operator for IEEE double
precision uses the Moloney cores [12]. The Dirac operator
consumes 9 additions for every 8 multiplications (see
Table 1) so ideally we want a balance of arithmetic units in
about this ratio. Using 8 multipliers and 10 adders for the
design gives a balance of units broadly in line with this,
using 51% of the available slices. This leaves sufficient
chip resources for application control logic and so is the
balance we chose for our design.

Fig 2 shows the structure of the double precision Dirac
operator and inset is the structure of the gamma-mul block
implementation. Each gamma-mul block uses 1 adder and
1 multiplier to perform its operation which multiplies a 3x3
gl3 matrix by a 4x3 wfv matrix to produce a wfv result
matrix. Our implementation uses the multiplier to produce
6 partial products for each component (real and imaginary)
of each point in the result wfv matrix. The partial products
must then be summed, giving the result for each point. The
first two multiply results are partial products of site [0,0],

 Calc : Mem Add % CG %
Dirac 6.81 55% 95.6%
Dot Product 1 50% 1.8%
Add-Scale 0.66 50% 2.6%
Total 5.07 54.8% 100%

Table 2. Lattice QCD algorithm information.

Fig 1. Architecture of the dot-product operator.

Memory Bank

Multiply

I < N

Add

Zero

Result

the next two are of site [0,1] and so on to site [3,2]. This
sequence is repeated three times. The first multiply result
is held in a register and issued in the next cycle, with the
current multiply result, to the adder pipe. This is the first
stage of summing the partial products.

These adds can only be issued on every second cycle,
leaving spare slots in the adder pipeline. These are filled by
accumulating the results of the first stage of partial product
summation into 24 running totals (one for the r and i
components of each point in the result wfv matrix). These
totals are stored in a pair of LUT RAMs. Once all the
partial products are summed these RAMs hold the result.
Once all the first stage sums are complete second stage
sums are issued on every cycle making best use of the
adder.

The add/subtract wfv blocks are implemented by
streaming data from the result RAMs of the gamma-mul
blocks into two adder pipes, one pipe handling the real and
the other the imaginary components.
The Dirac operator is then split into 4 pipeline stages,
parallelizing operand retrieval, gamma-mul calculations,
add/subtract wfv calculations and result write. In order to
prevent Read After Write data dependencies between the
gamma-mul stage and the add/subtract wfv stage it is

necessary to copy some of the results from the gamma-mul
stage into temporary storage.

5.5. Double precision conjugate gradient solver

The double precision conjugate gradient solver requires
double precision versions of the dot-product and vector
scale-add operations. Data layout in memory determines
how the operations are implemented. Double precision
variables are 64 bits wide, so the ratio of memory
bandwidth to calculation is doubled compared to single
precision, making data layout very important. The wfv
vectors are stored across 4 memory banks, using all six
would increase bandwidth but would make the memory
access hardware unfeasibly complex.

Our vector add-scale implementation streams data for
one vector from memory into a multiplier where it is
scaled by a fixed value. The result is then added to the
appropriate value for the other vector. Both vectors are
stored in the same memory banks so retrievals must be
alternated between the two input vectors. The results are
buffered in block RAMs before being written out to
memory when the block RAM is full.

For the dot product implementation we use a similar
architecture to the one employed successfully for the LNS
version. Data is streamed directly from external RAMs into
the multiplier to scale it. The results are then accumulated
using the architecture shown in Fig 1. The adder’s shorter
latency means there are fewer partial products to be
accumulated so performance is improved slightly
compared to the LNS implementation.

6. RESULTS

In Table 3 we present performance results for our IEEE
double precision implementations of the Dirac operator
and the conjugate gradient solver. We also present results
for our LNS implementation of the conjugate solver along
with results for a substantially improved version of the
LNS Dirac operator presented in [8]. All designs have been
placed and routed for a Xilinx Virtex II XC2V6000 speed
grade 6 device.

We obtain excellent performance for our double
precision implementation of the Dirac operator with over
1200 MFLOPS sustained and for the double precision
conjugate gradient solver with over 940 MFLOPs

Improvements to the LNS Dirac operator have boosted
performance to 1320 MFLOPS. We also use this improved

Clock Rate
(MHZ)

MFLOPS FP Ops
per cycle

IEEE Dirac 85 1200 14.1
IEEE CG 85 918 11.1
LNS Dirac 85 1320 15.5
LNS CG 85 1050 12.35

Table 3. Performance of FPGA based solutions.
Matrix Storage Vector Storage (Striped across all banks)

Bank 0

Gl3
Operand

Wfv
Operand

Multiply

Add

Operand
Control

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

Add Add Add Add

Add Add

Add

Scl

Sub

Result

Gamma-Mul Opera Block
8 of these are run in parallel

The results are stored
in 8 LUT RAMs and
accumulated into one
RAM (below)

Result is stored back
to off-chip memory
banks 2 to 5

Fig 2. Structure of IEEE Dirac operator.

Table 4. Performance of double precision implementations
and comparable systems

 Dirac CG
FPGA 1200 940
apeNEXT 894 -
QCDOC 396 351
PC 550 -
operator to implement an LNS conjugate gradient solver
with performance of over 1050 MFLOPS.

We also present data for the average number of floating
point operations performed per cycle for each design. The
double precision Dirac operator achieves over 14
operations per cycle, whilst the LNS Dirac operator
performs over 15 per cycle. This clearly demonstrates the
level of parallelism that is exploited in our designs.

7. CONCLUSIONS

In recent years large FPGAs and the availability of
arithmetic cores have made high-performance scientific
computing increasingly practical on FPGAs. Lattice QCD
is an important scientific application and is the focus
considerable research work worldwide, with a variety of
PC based and custom ASIC implementations. Thus it is
ideal for evaluating a computing platforms’ suitability for
scientific computing. We have presented the design and
implementation for FPGAs of the Dirac operator and a full
Lattice QCD application using LNS and IEEE double
precision floating point.

As discussed in Section 4, either single or double
precision can be used for lattice QCD, however double
precision is preferred since it is more accurate for a given
problem size. PC clusters have significantly higher
performance for single precision compared to double, so
for these machines single precision is normally used with a
larger problem size to compensate for the lower precision.

Table 5 shows the performance of our single precision
equivalent LNS designs compared to an Intel Xeon PC
Cluster node from [7]. We achieve 1320 MFLOPS for the
Dirac operator and 1050 MFLOPS for the full application.
This compares well with the single precision performance
of a PC cluster node of 1100 MFLOPS for the Dirac
operator. Nonetheless, Lattice QCD, like most scientific
applications that operate on matrices, has roughly the same
numbers of adds and multiplies, and few divides. The large
block RAM tables required by LNS adders were always
the limiting factor in the LNS design.

Floating point units have no such limitations, so it was
possible to build IEEE double precision floating point
implementations that achieve 1200 MFLOPS for the Dirac
operator and 940 MFLOPS for the full application using
ten double precision adders and eight multipliers. Our
double precision implementations are far more complex,
however, because the pipelines are deeper and memory
bandwidth, available block RAMs and slices are all critical
constraints on the design.

Table 5. Performance of LNS FPGA implementation and
comparable system

 Dirac CG
FPGA 1320 1050
Intel Xeon 1100 -

Table 4 shows the performance of our implementation
with comparable systems. This result compares extremely
well with the QCDOC nodes which return 396 MFLOPS,
with the apeNEXT nodes which return 894 MFLOPS per
node and also with the PC cluster nodes which return about
550 MFLOPS at double precision [7].

Our results show that FPGAs can be competitive with
general purpose processors and even custom ASIC
processors for scientific computing applications such as
Lattice QCD. To our knowledge this is the first FPGA
implementation of Lattice QCD and one of the first full
implementations of a large scientific application using
IEEE double precision arithmetic.

References
[1] L Zhuo, V Prasanna, “Sparse Matrix-Vector Multiplication

on FPGAs”, Proc. 2005 ACM/SIGDA 13th Int Symposium on
Field-Programmable Gate Arrays, pp.63.

[2] T Wettig; “Performance of machines for lattice QCD
simulations”, Lattice 2005, Proceedings of Science, ref.
PoS(LAT2005)019.

[3] F Belletti et al, "Computing for LQCD: apeNEXT"
Computing in Science & Engineering, vol.8, no.1 pp. 18- 29.

[4] P A Boyle et al., “Overview of the QCDSP and QCDOC
Computers,” IBM J. Research and Development, vol. 49, nos.
2–3, 2005, pp. 351–365.

[5] Dom Holmgren; “PC Clusters for Lattice QCD”, Published
in Nuclear Physics Proceedings Suppl.140:183-189,2005.

[6] A Gellrich, D Pop, P Wenger, H Wittig, M Hasenbusch, K
Jansen, “Lattice QCD Calculations on Commodity Clusters
at DESY”, in Proc. Computing in High Energy Physics
2003, Published by eConf, ref C0303241.

[7] Don Holmgren; “Cluster Development at Fermilab”, All
Hands Meeting, Jefferson Lab, Virginia, USA, June 2005,
available at http://lqcd.fnal.gov/allhands_holmgren.pdf

[8] O Callanan, A Nisbet, E Ozer, J Sexton, D Gregg, "FPGA
Implementation of a Lattice Quantum Chromodynamics
Algorithm Using Logarithmic Arithmetic," in Proc Parallel
and Distributed Processing Symposium 2005, pp. 146b.

[9] R Matousek, M Tichý, Z Pohl, J Kadlec, C Softley, N
Coleman, “Logarithmic Number System and Floating-Point
Arithmetics on FPGA”, in Proc. FPL 2002, LNCS, Volume
2438, Jan 2002, p.627

[10] M Haselman, M Beauchamp, A Wood, S Hauck, K
Underwood, K S Hemmert, "A comparison of floating point
and logarithmic number systems for FPGAs," in Proc. IEEE
FCCM 2005, pp. 181- 190.

[11] K Underwood, “FPGAs vs. CPUs: trends in peak floating-
point performance” in Proc. 2004 ACM/SIGDA 12th Int.
Symposium on Field Programmable Gate Arrays, pp.171.

[12] D Moloney, D Geraghty, and F Connor, “The performance
of IEEE floating-point operators on FPGAs”, IEE ISSC 2004
IEE Conf. Pub. 2004, Vol. CP506 p.601.

