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a b s t r a c t

For scheduling flexible manufacturing systems efficiently, we propose new heuristic functions for A� algo-
rithm that is based on the T-timed Petri net. In minimizing makespan, the proposed heuristic functions
are usually more efficient than the previous functions in the required number of states and computation
time. We prove that these heuristic functions are all admissible and one of them is more informed than
that using resource cost reachability matrix. We also propose improved versions of these heuristic func-
tions that find a first near-optimal solution faster. In addition, we modify the heuristic function of Yu,
Reyes, Cang, and Lloyd (2003b) and propose an admissible version in all states. The experimental results
using a random problem generator show that the proposed heuristic functions perform better as we
expected.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible manufacturing system (FMS) is a system that can pro-
duce multiple types of products using shared resources such as
robots, multipurpose machines, and etc. Its characteristics are
described as discrete events, resource sharing, concurrency,
routing flexibility, and lot size variety. As the complexity of manu-
facturing systems increase, the development of efficient scheduling
and planning techniques for FMS became an important issue.

Solving a scheduling problem is to determine a sequence of
operations in every job so that the makespan is minimized or the
utilization of critical machines is maximized while satisfying the
manufacturing objectives. But the problem belongs to the class of
NP-hard problems for which optimal polynomial algorithms are
hard to develop.

To solve the scheduling problem, a number of methods have
been proposed in the literature. As a scheduling conflict solution
method, the beam search that constructs partial schedules within
the beam-depth and evaluates them to choose the best one was
proposed by Shih and Sekiguchi (1991). The search is based on
simple heuristic rules but does not guarantee global optimization.
A linear programming approach was presented for periodic sched-
uling of systems modeled using Petri nets (PNs) (Onaga, Silva, &

Watanebe, 1991). The dispatching rules or conflict resolution rules
were used whenever a conflict arised in the systems (Camurri,
Franchi, Gandolfo, & Zaccaria, 1993; Huang & Chang, 1992; Takam-
ura & Hatono, 1991). Also, the search problem using a branch and
bound (B & B) approach was studied by Chen, Yu, and Zhang (1993)
and Lloyd, Yu, and Konstas (1995). Although these studies use
heuristic search for PN model, their performances were not good
enough to apply to FMS applications.

To find the optimal or a near-optimal solution for FMS schedul-
ing problems, Lee and Dicesare (1994) have used A� algorithm with
several heuristic functions. A modified heuristic function used in
the A� search algorithm was proposed by Jeng, Chen, and Lin
(1996) and Jeng and Chen (1998) by using the solution of PN state
equation. In their algorithm, the search space was limited by the
pruning techniques. As a result, the ability to find a first near-opti-
mal solution was enhanced. A hybrid heuristic search using Best
First search and Backtracking search was proposed by Xiong and
Zhou (1998) to improve the search efficiency.

Although these studies represent efforts to combine PN with
systematic heuristic search based on artificial intelligence (AI),
they could not always find the optimal solution. To solve this prob-
lem, Yu et al. (2003b) proposed an admissible heuristic function
that can find the global optimal solution by using resource cost
reachability (RCR) matrix and proved that it is admissible. But
when they developed their function, they did not consider the
remaining time during the transition in their algorithm and hence
their function is not truly admissible. In this paper, we propose
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new heuristic functions of A� algorithm that are admissible but also
more efficient in terms of the search space and computation time
than that of using RCR matrix.

This paper is organized as follows. Description of FMS and its PN
model is presented in Section 2. Two admissible heuristic functions
are proposed and their improved versions that find a first near-opti-
mal solution faster are presented in Section 3. In Section 4, several
experimental results are presented by using the proposed heuristic
functions and these results are compared with the previous ones.
Finally conclusions and future works are discussed in Section 5.

2. FMS description and its PN model

In this section, we first describe in detail the FMS we deal with
in this paper and derive its T-timed PN model for FMS scheduling.
Based on this PN model, we use A� algorithm and solve FMS sched-
uling problem in the next section.

A general FMS scheduling problem may be represented as:

� m resources are available {R1,R2, � � � ,Rm}.
� n jobs are to be processed {J1, J2, � � � , Jn}.
� Each job Ji has si sequences with lot size li. The lot size means the

number of product to be processed in the job.
� Each sequence Sij has tij tasks ordered by the product processing

procedures.
� Each task Tijk is processed in oijk number of ways. Each way

means an operation that completes the task.
� Each operation Oijkl is composed of a resource set Rijkl which is

required to execute the operation and has a processing time
of pijkl.
� The resource set Rijkl is composed of rijkl number of different

resources.

Several reasonable assumptions are made in the above FMS
descriptions, the details of which are presented by Yu, Reyes, Cang,
and Lloyd (2003a).

In prior works, P-timed PN model was widely used mainly
because its markings or states are well defined in each firing. As a
result, scheduling algorithm can be easily developed in the P-timed
PN model. But, its main drawback is the large number of involved
transitions and places which can exponentially increase the compu-
tation time. On the other hand, T-timed PN model was not actively
used because the markings are not well defined particularly from
the beginning of the transition firing to the end. In spite of its draw-
back, the number of transitions and places required in T-timed PN is
much smaller than those with P-timed PN.

Since it is proved by Murata (1989) that P-timed PN and
T-timed PN are equivalent, we adopt T-timed PN in this paper
mainly to increase the efficiency in the number of states and com-
putation time. To remedy the uncertainty issue during the firing
period, we use the so called unavailable token state. Since the con-
cept of time delay can be associated with the transition, tokens can
have two possible states: available and unavailable. If a token is
available in a place P, then it can be considered as an input token
for any transition having P as an input place. When an output tran-
sition T of P fires, this token becomes unavailable. The unavailable
token in P will be transferred to the output places of T and become
available again after a fixed time delay associated with T. Hence,
for each token marked unavailable, there exists a remaining time
of tl in order for the token to be available. As time passes by, tl is
decreased until it reaches zero. When tl reaches zero, the token be-
comes available.

The definition of the general T-timed PN is represented as
below.

Definition 1. A general T-timed PN is a six-tuple
TPN = {P,T, I,O,M,d} where:

� P = {P1,P2, � � � ,Pm} is a finite set of places.
� T = {T1,T2, � � � ,Tn} is a finite set of transitions with P [ T – Ø and

P \ T = Ø.
� I: P � T) N+ [ {0} is an input incidence function that defines a

weight of directed arcs from places to transitions. Note that N+

is a set of positive integers.
� O: T � P) N+ [ {0} is an output incidence function that

defines a weight of directed arcs from transitions to places.
� M: P) N+ [ {0} is a marking that indicates the number of

tokens in each places. Note that M0 is the initial marking and
MG is the goal marking.
� d: T) R+ [ {0} is a delaying function that associates the time

delay with each transition. Note that R+ is a set of positive real
numbers.

Given an FMS, we generate a T-timed PN model using the B-net
modelling method proposed by Yu et al. (2003a). An illustrative
example based on this model is shown below. The example FMS
consists of three jobs and is given in Table 1. All jobs have only
one sequence and each sequence has three to five tasks. Each task
has less than two operations and each operation uses one resource
at a time. The lot size in all jobs is preassigned to one and we define
this case as a single lot size problem. When one or more lot sizes of
each job are greater than one, we call this as a multiple lot size
problem. Note that the numbers in parentheses are processing
times required to execute operations with the corresponding
resources.

Now, we generate a T-timed PN model as shown in Fig. 1, where
a place for resource with a same name represents the same re-
source place. The generated T-timed PN is composed of 18 places
and 21 transitions. If we construct the P-timed PN for the given
FMS, the generated PN will have 39 places and 42 transitions
which are almost twice as many as those of the T-timed PN. The
lot size is represented by the number of tokens in the initial buffer
places, J0, J1, J2. In single lot size problem, the number of tokens in
the initial buffer places is all assigned to one as shown in Fig. 1.
And, at least one of the initial buffer places will have two or more
tokens in multiple lot size problem.

In scheduling such an FMS, we adopt the widely used L1 algo-
rithm (Lee & Dicesare, 1994) which is an application of traditional
AI formulation of well-known A� algorithm (Pearl, 1984) to the FMS
scheduling problem based on PN. The algorithm is as follows:

1. Put the initial marking M0 in OPEN.
2. If OPEN is empty, exit with failure.
3. Remove the marking from OPEN and put the marking in

CLOSED where the heuristic function f(M) = g(M) + h(M) is
the minimum. Note that the function g(M) is the actual cost
generated while transferring from the initial marking M0 to
the current marking M and the heuristic function h(M) is

Table 1
A simple FMS example.

FMS Job0 Job1 Job2
Sequence0 Sequence0 Sequence0

Task0 M1(7) or M2(8) M1(6) or M2(5) M1(8) or M3(5)
Task1 M2(4) M2(4) or M3(2) M2(2)
Task2 M1(7) or M3(4) M1(6) M2(6) or M3(4)
Task3 N/A M1(3) or M2(2) M1(4) or M2(2)
Task4 N/A N/A M1(2) or M3(3)
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