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SHAPE RECTIFICATION OF 3D DATA OBTAINED
BY A MOVING RANGE SENSOR BY USING
IMAGE SEQUENCES

Atsuhiko Banno and Katsushi Ikeuchi

Abstract For a large object, scanning from the air is one of the most efficient methods of
obtaining 3D data. We have been developing a novel 3D measurement system,
the Flying Laser Range Sensor (FLRS), in which a range sensor is suspended
beneath a balloon. The obtained data, however, have some distortion due to
movement during the scanning process. Then we propose a novel method to
rectify the shape data obtained by a moving range sensor. The method rectifies
them by using image sequences. We are conducting the Digital Bayon Project, in
which our algorithm is actually applied for range data processing and the results
show the effectiveness of our methods. Our proposed method is applicable not
only to our FLRS, but also to a general moving range sensor.

1. Introduction

We have been conducting some projects to model large scale cultural her-
itage objects such as great Buddhas, historical buildings and suburban land-
scapes [21, 16]. Basically, to scan these large objects, a laser range finder is
usually used with a tripod positioned on stable locations. In the case of scan-
ning a large scale object, however, it often occurs that some part of the object
is not visible from the laser range finder on the ground. In spite of such a dif-
ficulty, we have scanned large objects from scaffolds temporally constructed
nearby the object. However, this scaffold method requires costly, tedious con-
struction time. In addition, it may be impossible to scan some parts of the
object due to the limitation of available space for scaffold-building.

We are now conducting a project [15] to model the Bayon Temple [33] in
Cambodia; the temple’s size is about 150 × 150 square meters with over 40
meters in height. Scanning such a huge scale object from several scaffolds is
unrealistic. To overcome this problem, several methods have been proposed.



14 DIGITALLY ARCHIVING CULTURAL OBJECTS

For example, aerial 3D measurements can be obtained by using a laser range
sensor installed on a helicopter platform[31]. High frequency vibration of the
platform, however, should be considered to ensure that we obtain highly accu-
rate results. To avoid irrevocable destruction, the use of heavy equipment such
as a crane should be eschewed when scanning a cultural heritage object.

Figure 2.1. The FLRS and the Bayon Temple

Based upon the above considerations, we proposed a novel 3D measurement
system, a Flying Laser Range Sensor (FLRS)[14]. This system digitizes large
scale objects from the air while suspended from the underside of a balloon
platform (Fig.2.1). Our balloon platform is certainly free from high frequency
vibration such as that of a helicopter engine. The obtained range data are,
however, distorted because the laser range sensor itself is moving during the
scanning processes (Fig.2.2).

In this study, we propose a method to rectify 3D range data obtained by a
moving laser range sensor. Not only can this method be used in the case of our
FLRS, it is also applicable to a general moving range sensor.

In this method based on "Structure from Motion", we use distorted range
data obtained by a moving range sensor and image sequences obtained by a
video camera mounted on the FLRS. The motion of the FLRS is roughly es-
timated only by the obtained images. And then the more refined parameters
are estimated based on an optimization imposing some constraints, which in-
clude information derived from the distorted range data itself. Finally, using
the refined camera motion parameters, the distorted range data are rectified.
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Figure 2.2. An sample snap shot and the distorted range data obtained by the FLRS.

This method is not limited to the case of our FLRS but also applicable to
a general moving range sensor that has smooth motion. In this study, we do
not utilize physical sensor such as gyros, INS and GPS for estimation of self
position and pose.

2. Full Perspective Factorization

Estimations of the shape of an object or of camera motion by using images
are called "Shape from Motion " or "Structure from Motion ", and are main
research fields in computer vision.

The factorization method proposed in [32] is one of the most effective al-
gorithms for simultaneously recovering the shape of an object and the motion
of the camera from an image sequence. Then the factorization was extended to
several perspective approximations and applications [8, 23, 7, 25, 12, 11].

[25] also presented perspective refinement by using the solution under the
para-perspective factorization as the initial value. In [12] a factorization method
with a perspective camera model was proposed. Using the weak-perspective
projection model, they iteratively estimated the shape and the camera motion
under the perspective model.

2.1 Weak-Perspective Factorization

Given a sequence of F images, in which we have tracked P interest points
over all frames, each interest point p corresponds to a single point �Sp on the
object. In image coordinates, the trajectories of each interest point are denoted
as {(ufp, vfp)|f = 1, ..., F, p= 1, ..., P, 2F ≥ P}.

Using the horizontal coordinates ufp, we can define an F × P matrix U .
Each column of the matrix contains the horizontal coordinates of a single point
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in the frame order, while each row contains the horizontal coordinates for a
single frame. Similarly, we can define an F × P matrix V from the vertical
coordinates vfp.

The combined matrix of 2F×P becomes the measurement matrix as follow.

W =

(
U

V

)
(2.1)

Each frame f is taken at camera position �Tf in the world coordinates. The
camera pose is described by the orthonormal unit vectors �if , �jf and �kf . The
vectors �if and �jf correspond to the x and y axes of the camera coordinates,
while the vector �kf corresponds to the z axis along the direction perpendicular
to the image plane (Fig.2.3).

Figure 2.3. The Coordinate System: �Tf denotes the position of the camera at time of frame f.
The camera pose is determined by three unit basis vectors.

Under the weak-perspective camera model, a single point in the world coor-
dinates �Sp is projected onto the image plane f as (ufp, vfp).

ufp =
f

zf

�if
t · ( �Sp − �Tf ) (2.2)

vfp =
f

zf

�jf
t · ( �Sp − �Tf ) (2.3)

where zf = �kf
t · ( �C − �Tf ) (2.4)

The vector �C is the center of mass of all interesting points. Without loss of
generality, the origin of the world coordinates can be placed at the centroid,
that is �C = 0. Then this means that zf = − �kf · �Tf to simplify the expansion
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of the following formulation. To summarize,{
ufp = �mf

t · �Sp + xf

vfp = �nf
t · �Sp + yf

(2.5)

where �mf =
f

zf

�if , xf = − f

zf

�if
t · �tf

�nf =
f

zf

�jf , yf = − f

zf

�jf
t · �tf

Using that the center of all interest points is the origin,

P∑
p=1

ufp =

P∑
p=1

�mf
t · �sp +

P∑
p=1

xf = Pxf (2.6)

similarly,
P∑

p=1

vfp = Pyf (2.7)

We obtain the registered measurement matrix W̃ , after translation W̃ =
W − (x1 x2 . . . xF y1 . . . yF)t
(1, . . .1) as a product of two matrices M and S.

W̃ = M · S (2.8)

where M : 2F × 3Matrix S : 3× PMatrix

The rows of the matrix M represent the orientation of the camera coordi-
nates axes throughout the sequence, while the columns of the matrix S repre-
sent the coordinates of the interest points in the world coordinates. Both matri-
ces are at most rank 3. Therefore, by using the Singular Value Decomposition
(SVD), we can find the best approximation to W̃ .

2.2 Extension to Full-Perspective Factorization

The above formulation is under the weak perspective projection model,
which is a linear approximation of the perspective model. Next, using an iter-
ative framework, we obtain approximate solutions under the non-linear, full-
perspective projection model.

Under the perspective projection model, the projective equations between
the object point �Sp in 3D world and the image coordinate (ufp, vfp) are written
as

ufp = f
�if

t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

(2.9)

vfp = f
�jf

t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

(2.10)
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Replacing zf = − �kf t · �Tf , we obtain the following equations.

(λfp + 1)ufp =
f

zf

�if
t · ( �Sp − �Tf ) (2.11)

(λfp + 1)vfp =
f

zf

�jf
t · ( �Sp − �Tf ) (2.12)

λfp =
�kf

t · �Sp

zf
(2.13)

Note that the right hand sides of Eq.2.11 and Eq.2.12 are the same form
under the weak-perspective model (see Eq.2 and 3). This means, multiplying
a image coordinate (ufp, vfp) by a real number λfp maps the coordinate in the
full-perspective model space into the coordinate in the weak-perspective model
space. Solving for the value of λfp iteratively, we can obtain motion param-
eters and coordinates of interest points under the full perspective projection
model in the framework of weak-perspective factorization.

The entire algorithm of the perspective factorization is as follows:

Input: An image sequence of F frames tracking P interest points.

Output: The 3D positions of P interest points �Sp. The camera position �Tf and
poses �if , �jf , �kf at each frame f.

1 Given λfp = 0

2 Supposing the Equations 2.11 and 2.12, solve for �Sp, �Tf , �if , �jf , �kf and
zf through the weak-perspective factorization .

3 Calculate λfp by Equation 2.13.

4 Substitute λfp into step (2) and repeat the above procedure.

Until: λfp’s are close to ones at the previous iteration.

2.3 Tracking

As input, we need P interest points at each frame of a sequence, which are
tracked identified points in the 3D world. There are several methods to derive
interest points from images [22, 29]. Among them, we adopt Harris operator
[13] and SIFT key [18] for derivation of interest points. SIFT key is robust

against scale, rotation and affine transformation changes. The main reason why
we adopt the method is its stability of points derivation and usefulness of the
key, which has 128 dimensional elements and can be used for the identification
for each point.
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3. Refinement

Without noise in the input, the factorization method leads to the excellent
solution. As a result, the rectified 3D shape through the estimated camera pa-
rameters is valid. Real images, however, contain a bit of noise. Therefore, it is
not sufficient to rectify range data obtained by the FLRS only through the fac-
torization. For the sake of a more refined estimation of motion parameters, we
impose three constraints: for tracking, movement, and range data. The refined
camera motion can be found through the minimization of a global functional.
To minimize the function, the solution by the full-perspective factorization is
utilized as the initial value to avoid local minimums.

3.1 Tracking Constraint

As the most fundamental constraint, any interest point �Sp must be pro-
jected at the coordinates (ufp, vfp) on each image plane. This constraint is
well known as Bundle Adjustment [5]. When the structure, motion and shape
have been roughly obtained, this technique is utilized to refine them through
the image sequence. In our case, the constraint conducts the following func-
tion:

FA =

F∑
f=1

P∑
p=1

((
ufp − f

�if
t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

)2

+
(

vfp − f
�jf

t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

)2

)
(2.14)

The minimization of FA leads to the correct tracking of fixed interest points
by a moving camera. However, we can see that the presence of parameters
we are trying to estimate in the denominator makes this equation a difficult
one. We have to seek the optimal solution via some non-linear minimization
techniques. Then, suppose that instead, we consider the following function:

F ′
A =

F∑
f=1

P∑
p=1

((
�kf

t · ( �Sp − �Tf )ufp − f · �if t · ( �Sp − �Tf )
)2

+
(

�kf
t · ( �Sp − �Tf )vfp − f · �jf

t · ( �Sp − �Tf )
)2
)

(2.15)

The term �kf
t · ( �Sp− �Tf) is the depth, the distance between the optical center

of camera f and a plane, which is parallel to the image plane and include the
point �Sp. The cost function FA is the summation of squared distances on the
image plane while the cost function F ′

A is estimated on the plane of the point
�Sp.
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3.2 Smoothness Constraint
One of the most significant reasons for adopting a balloon platform is to be

free from the high frequency that occurs with a helicopter platform [14]. A
balloon platform is only under the influence of low frequency: the balloon of
our FLRS is held with some wires swayed only by wind. This means that the
movement of the balloon is expected to be smooth. Certainly, the movement of
the balloon is free from rapid acceleration, rapid deceleration, or acute change
in course. Taking this fact into account, we consider the following function:

FB =

∫ (
w1

(
∂2 �Tf

∂t2

)2

+ w2

(
∂2qf

∂t2

)2
)

dt (2.16)

Here, �Tf denotes the position of the camera, t is time, w1, w2 are weighted
coefficients, and qf is a unit quaternion that represents the camera pose. The
first term of the above integrand represents smoothness with respect to the
camera’s translation while the second represents smoothness with respect to
the camera’s rotation. When the motion of the camera is smooth, the function
FB becomes a small value.

We implement in practice the following discrete form:

F ′
B =

F∑
f=1

(
w1

(
∂2 �Tf

∂t2

)2

+ w2

(
∂2qf

∂t2

)2

)
(2.17)

3.3 Range Data Constraint

Taking a broad view of range data obtained by the FLRS, the data are dis-
torted by the swing of the sensor. We can find, however, that these data contain
instantaneous precise information locally; that information is utilized for re-
finement of the camera motion.

The FLRS re-radiates laser beams in raster scan order. This means that we
can instantly obtain the time when each pixel in the range image is scanned
because the camera and the range sensor are calibrated. If the video camera is
synchronized with the range sensor, we can find the frame among the sequence
when the pixel is scanned. With the video camera calibrated with the range
sensor, we can also obtain the image coordinate of each interest point in the
3D world with respect to the instantaneous local coordinate.

Considering this constraint, we can compensate the camera motion.
When the range sensor scans interest point �Sp, we can conduct the third

constraint to be minimized as follows:

FC =

P∑
p=1

∥∥ xfp −Rt( �Sp − �Tfp)
∥∥2 (2.18)

Here, the index fp denotes the frame number when the range sensor scans in-
terest point �Sp. It is very significant to note that xfp is the 3D coordinate val-
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ues not described in the sensor-oriented coordinate system but in the camera-
oriented one, which is rewritten based on the range data and camera-sensor
calibration. In practice, we find sub-frame fp by using a linear interpolating
technique for the motion of interest points between frames. The main purpose
of the above constraint is to adjust the absolute scale.

As xfp = (xfp, yfp, zfp), the above function can be rewritten as the stronger
constraint:

F ′
C =

P∑
p=1

((
xfp − �ifp

t · ( �Sp − �Tfp)
)2

+
(
yfp − �jfp

t · ( �Sp − �Tfp)
)2

+
(
zfp − �kfp

t · ( �Sp − �Tfp)
)2
)

(2.19)

3.4 The Global Cost Function
Based on the above considerations, we can understand that the next cost

function should be minimized. Consequently, the weighted sum

F = wAF ′
A + wBF ′

B + wCF ′
C (2.20)

leads to a global function. The coefficients wA, wB and wC are determined
experimentally, and we will discuss them later.

To minimize this function, we employ Fletcher-Reeves method or Polak-
Ribiere method [26, 17, 30], which are types of the conjugate gradient method
(in the next section, we explain the conjugate gradient method briefly). Then,
we use the golden section search to determine the magnitude of gradient di-
rections. For optimization, Levenberg-Marquardt method [19] is generally
employed to minimize a functional value. Levenberg-Marquardt method is
very effective in estimating function’s parameters, especially in fitting a cer-
tain function. However in our function, minimizing the value of F ′

B is not a
parameter fitting problem. All we have to do is to simply decrease F ′

B . There-
fore we adopt the conjugate gradient method.

4. FLRS

FLRS(Flying Laser Range Sensor) has been developed to measure large
objects from the air by using a balloon without constructing any scaffolds (Fig.
2.4).

We have two types of FLRSs. Each FLRS is composed of a scanner unit,
a controller and a personal computer (PC). These three units are suspended
beneath a balloon.

The scanner unit includes a laser range finder, especially designed to be sus-
pended from a balloon. Figure 2.5 shows the interior of the scanner unit. It
consists of a spot laser radar unit and two mirrors. We chose the LARA25200
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Figure 2.4. The FLRS (25m sensor)

and LARA53500 supplied by Zoller+Fröhlich GmbH[2] as laser radar units
because of their high sampling rate. Each laser radar unit is mounted on each
FLRS scanner unit. Two systems equipped with Lara25200 and LARA53500
are respectively referred to as "25m sensor" and "50m sensor". The specifica-
tions of two units are shown in Table 2.1.

Table 2.1. The specifications of the 25m (LARA25200) and 50m (LARA53500) Sensors
25m Sensor 50m Sensor

Ambiguity interval 25.2 m 53.5 m
Minimum range 1.0 m 1.0 m

Resolution 1.0 mm 1.0 mm
Sampling rate ≤ 625,000 pix/s ≤ 500,000 pix/s

Linearity error ≤ 3 mm ≤ 5mm
Range noise at 10m ≥ 1.0 mm ≥ 1.5mm
Range noise at 25m ≥ 1.8 mm ≥ 2.7mm
Laser output power 23 mW 32mW

Laser wavelength 780nm 780nm

Both sensors have the similar mirror configurations. There are two mirrors
inside each unit to give a direction to the laser beam. One is a polygon mir-
ror with 4 reflection surfaces, which determines the azimuth of the beam. In
normal use, the polygon mirror, which rotates rapidly, controls the horizontal
direction of the laser beam. Another is a plane mirror (swing mirror) which de-
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termines the elevation of the beam. The plane mirror swings slowly to controls
the vertical direction of the laser beam.

Figure 2.5. The interior of scanner unit (25m sensor)

The lase beam emitted from the LARA is hit on a surface of the poly-
gon mirror at first. Then the polygon mirror reflects the laser beam onto the
plane mirror. The plane mirror also reflects the beam outside the unit(lower of
Fig.2.5).

The combination of two mirror demonstrate the specifications as in Table 2.

5. Experiments

We have been conducting the "Digital Bayon Project", in which the geo-
metric and photometric information of the Bayon Temple is preserved in dig-
ital form. With respect to the acquisition of the geometric data, large parts of
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Table 2.2. The specifications of the 25m sensor and 50m sensor

25m Sensor 50m Sensor

Angle Resolution
Horizontal 0.05 deg 0.05 deg

Vertical 0.02 deg 0.02 deg
Horizontal field ≤ 90 deg ≤ 90 deg

Vertical field ≤ 30 deg ≤ 30 deg
Scanning period/image ≤ 15 sec ≤ 1 sec

the temple visible from the ground are scanned by range sensors placed on the
ground. On the other hand, some parts invisible from the ground, for example,
roofs and tops of towers, are scanned by our FLRS system.

The left side of Fig.2.6 shows a photo of the scanned area. On the right side
of Fig.2.6, the dense fine model is the correct shape obtained by the Cyrax-
2500 [1] fixed on the ground.

Figure 2.6. A scene for this experiment. Left - a photo of an object; Right - 3D model obtained
by the Cyrax-2500 fixed on the ground.

There are data missing in the model. To fill in the missing pieces of the
model obtained by the sensor on the ground, we utilize our FLRS effectively.
Figure 2.7 shows a sample image of the sequence obtained by the video cam-
era. In this experimental data set, it takes one second for a range image: thirty
pictures are saved in the meantime.

The result is shown in Fig.2.8. The upper shape in Fig.2.8 is the original
one obtained from the FLRS. We can see that the shape is widely deformed.
In the middle of Fig.2.8, the rectified shape by full-perspective factorization is
shown. With respect to motion parameters, the ambiguity in scale is removed
manually. At a glance, the factorization seems to rectify the shape properly. In
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Figure 2.7. A sample shot of the image sequence

detail, however, the distortion in S shape is still left. Especially, the shape of the
entrance is skewed. On the other hand, the lower shape is rectified correctly by
our method. It is clear that the distortion in S shape is removed and the shape
of the entrance is correctly recovered into a rectangle.

To evaluate the accuracy of our shape rectification algorithm, we compare
the rectified shape with other data, which are obtained by a range finder, the
Cyrax-2500, positioned on the ground. Aligning two data sets by using the
conventional ICP algorithm [3] [6], we analyze the overlapping area.

Figure 2.9 indicates the point-to-point distances in the ICP algorithm. The
region where the distances between them are less than 6.0 cm is colored light
gray. The area where the distances are farther than 6.0 cm is displayed in dark
gray. The upper figure shows the comparison between the correct shape and
the original distorted one obtained by the FLRS. The middle one shows the
rectified shape by the full-perspective factorization without ambiguity in scale.
The lower shows the rectified shape by our method.

At a glance, the light gray region is clearly expanded by our rectification al-
gorithm. Some parts of the rectified shape are colored dark gray because of the
lack of corresponding points. Taking account of the fact that the correct shape
of the parts invisible from the ground could not be measured, the proposed
method could rectify the 3D shape correctly.

Table 2.3 shows a quantitative evaluation for our method. This table indi-
cates the ratios of match region and the average distances between the Cyrax’s
model and the above three models. These numbers show that our method in-
creases the match region and bring the distorted model by the FLRS to the
correct one. We can see that our method was able to rectify the FLRS data
properly.
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Table 2.3. The evaluation of the rectified models. (a)The original distorted model. (b)The
rectified model by the full-perspective factorization removing the scale ambiguity manually.
(c)The rectified model by our method.

(a) (b) (c)
match region (%) 37.2 49.8 62.7

error (average) [cm] 20.46 10.55 2.11

Figure 2.10 shows several samples of the method.

6. Conclusions

In this chapter, we have described FLRS system and a proposed method to
rectify 3D range data obtained by a moving laser range sensor.

We described how an outstanding measurement system FLRS was built to
scan large objects from the air. This system allowed us to measure the large
cultural heritage objects by using a balloon. To rectify the distorted shapes
obtained from the FLRS, we proposed a rectification method based on the
"Structure from Motion" techniques by using image sequences.

We utilized distorted range data obtained by a moving range sensor and
image sequences obtained by a video camera mounted on the FLRS. First,
the motion of the FLRS was estimated through full perspective factorization
only by the obtained image sequences. Then the more refined parameters were
estimated based on an optimization imposing three constraints: the tracking,
smoothness and range data constraints. Finally, refined camera motion param-
eters rectified the distorted range data.

This method has shown proper performance and practical utilities.
Our method can be generally applied to a framework in which a range sensor

moves during the scanning process, and is not limited to our FLRS because
we impose only the smooth movement constraint.
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Figure 2.8. The upper figure shows the original distorted shape obtained by the FLRS. The
middle one shows the rectified shape by the full-perspective factorization without ambiguity in
scale. The lower shows the rectified shape by our method.
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Figure 2.9. The upper figure shows the comparison between the correct shape and the original
distorted one obtained by the FLRS. The light gray region indicates where the distance of two
shapes is less than 6.0 cm. The middle one shows the rectified shape by the full-perspective
factorization without ambiguity in scale. The lower shows the rectified shape by our method.
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Figure 2.10. Some sample photos by FLRS (left), the original distorted data sets (center) and
the rectified sets (right)
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