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Abstract. Information on metabolic processes for hundreds of organ-
isms is available in public databases. However, this information is often
incomplete or affected by uncertainty. Systems capable to perform auto-
matic curation of these databases and capable to suggest pathway-holes
fillings are therefore needed. To this end such systems should exploit data
available from related organisms and cope with heterogeneous sources of
information (e.g. phylogenetic relations). Here we start to investigate two
fundamental problems concerning automatic metabolic networks cura-
tion, namely link prediction and node prediction using ProbLog, a simple
yet powerful extension of the logic programming language Prolog with
independent random variables.

1 Introduction

Living organisms rely on a large interconnected set of biochemical reactions to
provide the requirements of mass and energy for the cellular processes to take
place. This complex set of reactions constitute the organism’s metabolic net-
work [1]. Highly specialized proteins, called enzymes, are used to regulate the
time and place for the various processes as most of the reactions taking place in
organisms would be too slow without them. Enzymes control in practice which
parts of the overall metabolic network is active in a given cell region in a given
cellular phase. A large quantity of information about these networks accumulated
through years of research, and is nowadays stored and organized in databases
allowing researchers to develop network based approaches to study organisms
metabolism. There exist collections of metabolic networks for several hundreds
of organisms (e.g., the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2]
or the BioCyc database [3]) where relations between genes, enzymes, reactions
and chemical compounds are available and organized in collections called “path-
ways”. The knowledge that we have of these relations is however incomplete
(most annotation efforts fail to assign functions to 40-60% of the protein se-
quences [4]) and is affected by uncertainty (wrong catalytic function assignment,
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incomplete annotation (e.g., only one function of a multi-domain protein) or
non-specific assignment (e.g., to a protein family)). Systems capable to perform
automatic curation of these databases and capable to suggest pathway-holes fill-
ings are therefore in dear need. However, in order to overcome the limitations
of homology searches, it is paramount to make use of information from het-
erogeneous sources and to therefore encode all the available data into complex
relational data bases (i.e., BisoNets [5]). Finally, to leverage the different amount
of coverage for different organisms (i.e., there is more information regarding hu-
mans than for other vertebrates), a case-based approach that uses information
on related organisms should also be employed. All these requirements raise the
problem of how to integrate heterogeneous and uncertain sources of information
in a principled way.

Although systems for reconstructing pathways from relevant gene sets [6]
and filling pathway-holes [7] are known in literature, they do not offer sufficient
flexibility when new additional sources of information become available or, more
importantly, in case one needs to change the set of queries involved in the solution
of a specific task.

We study an approach that satisfies these flexibility requirements by repre-
senting metabolic networks in the probabilistic logical framework ProbLog [8],
a simple yet powerful extension of the logic programming language Prolog with
independent random variables in the form of probabilistic facts. This allows us
to easily include background knowledge affected by uncertainty, and to obtain
an answer to several key questions by performing probabilistic inference in a
principled manner.

In this work, we start to investigate some fundamental problems concerning
automatic metabolic networks curation, namely: 1) link prediction, i.e., estima-
tion of the degree of belief in a link between a gene and an enzyme, and 2) node
prediction, that is, whether the existence of a certain enzyme (and its link to
an unknown gene) has to be hypothesized in order to maintain the contiguity
of a pathway. For both tasks, the key components of our probabilistic model
are (1) a preliminary estimate of the degree of belief for an association between
a gene G and an enzyme FE in an organism O, (2) background knowledge BK
on organisms related to O obtained from the KEGG database, and (3) a linear
model that predicts the probability of the gene-enzyme relation G — E for the
organism O given the dataset BK. The features employed in the linear model are
complex queries and the associated values correspond to the probability of the
query in BK including the preliminary estimate. The parameters of the model
encode the relevance of the query for the specific pair gene-enzyme. The core idea
is to leverage the flexibility of ProbLog to define meaningful queries at a con-
veniently abstract level. We finally compute the probability of the gene-enzyme
relation G — E based on the queries that are satisfied with high probability and
that are predicted to be relevant for G — E.

The chapter is organized as follows: in Section 2 we introduce the probabilistic
logic framework ProbLog; in Section 3 we describe how we model the knowledge
associated with the metabolic reconstruction tasks and how we query this model



for prediction; finally in Section 4 we present some initial empirical results on a
specific pathway in yeast.

2 The Probabilistic Logic Environment: ProbLog

Our work uses ProbLog to model data and queries. ProbLog is a probabilis-
tic extension of the logic programming language Prolog. It thus combines the
expressivity of a first order modeling language with the ability to reason un-
der uncertainty. In contrast to propositional graphical models (such as Bayesian
Networks), connections between random variables in ProbLog can be specified
on the first order level, thus avoiding the need of explicitly grounding all infor-
mation a priori. This results in a higher level of abstraction and more flexibility
in the specification of queries. In this section, we briefly illustrate the basic ideas
of ProbLog by means of an example; for more details, we refer to [8].

The following ProbLog program?® models a tiny fraction of the type of network
considered in this chapter:

0.8 :: ortholog(gl,g2). 0.7 :: ortholog(gl,g3).
0.6 :: function(gl,el). 0.9 : function(g2,el). 0.5: function(g3,el).

With probability 0.8, genes g1 and g2 are orthologs, with probability 0.6, the
enzymatic function of gi is el, and so forth. One can now add background
knowledge to the program to define more complex relations. For instance,

edge(X,Y) : — ortholog(X,Y).
edge(X,Y) : — function(X,Y).
connected(X,Y) : — edge(X,Y).
connected(X,Y) : — edge(X,Z), connected(Z,Y).

defines a simple general path relation in terms of the edges present in the net-
work, whereas

connected_via ortholog(X,Y) : — ortholog(X,Z),function(Z,Y).

defines a specific type of connection from a gene via an ortholog gene to an
enzymatic function.

More formally, a ProbLog program T consists of a set of labeled facts p; :: f;
together with a set of definite clauses encoding background knowledge (BK).*
Each ground instance of such a fact f; is true with probability p;, that is, cor-
responds to a random variable with probability p;. All random variables are

3 We use standard Prolog notation, that is, arguments starting with lower case letters
are constants, those starting with upper case letters are variables, and a definite
clause h: —by,...,b, is read as ”if the b; are all true, h is true as well”.

4 Uncertain clauses can be modeled by adding a probabilistic fact to the clause body.



assumed to be mutually independent. The program thus naturally defines a
probability distribution

T — ) _m
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over logic programs L C LT = {f1,---, fu}. The success probability of query ¢
is then defined as

Pl(q) = >, PO (1)

LCLT:LUBK=q

It thus corresponds to the probability that ¢ is provable in a randomly sampled
logic program.

Given the example program above, one could now ask for the probability of
a connection between gl and el, that is, for the success probability of query
connected(gl, el). As enumerating all possible programs (subgraphs in the ex-
ample) is infeasible in most cases, ProbLog instead calculates success probabil-
ities using all proofs of a query. The query connected(gl,el) has three proofs
in our example: one direct connection, and two connections involving an addi-
tional gene each, with probabilities 0.6, 0.8 - 0.9 = 0.72 and 0.7 - 0.5 = 0.35,
respectively. As there are several subgraphs that contain more than one of these
connections, we cannot simply sum the probabilities of proofs. This problem is
also known as the disjoint-sum-problem or the two-terminal network reliability
problem, which is #P-complete [9]. When calculating success probabilities from
proofs, one has to take care to address this problem and to remove the overlap
between proofs. In the example, this could be done by explicitly stating that
proofs only add information if none of the previous ones are true. That is, the
second proof via g2 only adds to the probability if the direct connection is not
present, and its contribution therefore needs to be reduced to 0.8-0.9 - (1 —0.6).
Similarly, the third proof only adds information if neither the first nor the second
are true, resulting in an overall probability of

PT(connected(gl,e1)) = 0.6 +0.8-0.9 - (1 — 0.6) (2)
F0.7-0.5-(1—0.6)- (1 — 0.8) (3)
40.7-05-(1-06)-08-(1-09) (4

= 0.9272

Here, (2) lists the contributions of the first and second proof as explained
above, (3) and (4) that of the third proof, split into the two possible causes
for the second proof being invalidated, that is, ortholog(gl, g2) being false, or
ortholog(gl, g2) being true, but function(g2, el) being false.

While this disjoining approach is sound for any order of the proofs, it does
not scale very well. In practice, ProbLog therefore represents all proofs of the
query as a propositional formula, and then uses advanced data structures to
calculate the probability of this formula; we refer to [8] for the technical details.
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Fig. 1. Part of KEGG metabolic network used. The number in the node shape is the
cardinality of the element set. The number on the edge is the average + standard
deviation number of relations between the element at the starting endpoint and the
elements at the final endpoint of the edge. Dashed elements represent information
present in KEGG but not currently used.

3 Method

We first discuss the information modeled in the background knowledge and then
introduce the structural queries used in the prediction models.

3.1 Metabolic Network Representation

We represent the knowledge about metabolic networks in a probabilistic logical
framework. To this end, we identify the main entities involved in the problem and
encode all relations between them quantifying the uncertainty of each relation
with an associated probability value. The entities that we consider (and that are
represented as vertices in the global network) are: organisms, genes, enzymes,
reactions, compounds (also called metabolites) and pathways (see Fig. 1).

Informally, a metabolic network contains information on the set of genes that
belong to specific organisms and how these code for proteins, called enzymes,
that are responsible for specific reactions involving the transformation of one
compound into another. An organism is thus capable to perform certain related
sets of reactions (semantically grouped under a single pathway concept) in order
to produce and transform sets of metabolites, only if the organism can express
the enzymes needed to catalyze those reactions.

We derive all data from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [2].



Organisms are organized in a taxonomy with 5 levels and comprise eukary-
otes (256) and prokaryotes (1332). As an example, in the KEGG taxonomy
human would receive the following classification: Eukaryotes/ Animals/ Verte-
brates/ Mammals/ Homo sapiens. We represent each level of the hierarchy as
a node so to be able to express relationships between organisms that involve
different degrees of relatedness. In this work we present results related only to
the bacteria domain in prokaryotes.

The KEGG Release 58.0 (May 2011) lists 6,405,661 gene entries although in
this work we limit the study to a subset of 400,000 genes relevant to the bac-
teria domain. Entry names of the KEGG GENES database are usually locus-
tags given by the International Nucleotide Sequence Database Collaboration
(INSDC) although a conversion into other gene/protein identifiers for main se-
quence databases such as NCBI and UniProt/Swiss-Prot, is possible. In this way
additional information from external sources could be easily incorporated.

Enzymes are identified by the Enzyme Commission number (EC number) [10],
which is a hierarchical classification scheme based on the chemical reactions they
catalyze. Different enzymes in different organisms receive the same EC number
if they catalyze the same reaction. Every enzyme code consists of the letters
"EC” followed by four numbers separated by periods. Those numbers represent
a progressively finer classification of the enzyme and induce a functional hierar-
chy. For example, the tripeptide aminopeptidases have the code "EC 3.4.11.4”,
whose components indicate the following groups of enzymes: EC 3 enzymes are
hydrolases (enzymes that use water to break up some other molecule); EC 3.4
are hydrolases that act on peptide bonds; EC 3.4.11 are those hydrolases that
cleave off the amino-terminal amino acid from a polypeptide; EC 3.4.11.4 are
those that cleave off the amino-terminal end from a tripeptide.

The compounds involved in the metabolic transformations are a collection of
small molecules, biopolymers, and other chemical substances that are relevant
to biological systems. We consider 6000 unique compounds.

Enzyme mediated reactions between specific compounds are uniquely iden-
tified. The compounds involved in the reaction are distinguished into substrates
and products. Note however that the reaction is considered to be bidirectional as
we do not make use of more complex (and less reliable) reaction rate information.

Finally, the concept of pathways is used to express and organize our know-
ledge on metabolic processes occurring in a cell. A pathway is a set of related
chemical reactions where a principal substance is modified by a series of chemical
processes. Given the many compounds ("metabolites”) and co-factors that are
involved, single metabolic pathways can be quite complex. Moreover the separa-
tion in pathways is induced by human knowledge rather than being defined in a
natural and uncontroversial way. Finally, the metabolic output of one pathway
is the input for another, which implies that all the pathways are interconnected
into the global complex metabolic network (see Fig. 2°).

All the aforementioned entities constitute vertices in our relational represen-
tation and are connected by several types of relations: at the highest level, the

® Image source: http:\\commons.wikimedia.org\wiki\File:Metabolism_790px.svg
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Fig. 2. Graphical representation of the major known pathways.

various organisms are phylogenetically related to each other; genes are related
to the organisms they are part of and they are related to each other via the
ortholog relationship (see further in the text); enzymes are organized in a hier-
archy following the Enzyme Commission number system; reactions are related
to the compounds they require as substrate and to those they produce; genes
are related to the enzymatic function of the protein that they code for; enzymes
are related to the reactions they catalyze; and finally pathways are collections of
related reactions. Our current model only treats the gene-enzyme relation prob-
abilistically while all the other relations are assumed to be known with certainty.
Note that in principle all relations are of the type many-to-many although in
practice a gene is almost always associated to a single enzyme, which in turn
catalyzes almost always a single reaction (see Fig. 1).

While the majority of these relations are intuitive, the ortholog relationship
deserves some further detail. Orthologs, or orthologous genes, are genes in differ-
ent species that are similar to each other because they descended from a single
gene of the last common ancestor. Information about ortholog genes is available
in KEGG and is obtained via a heuristic method that determines an ortholog
cluster identifier in a bottom-up approach [11]. In this method, each gene sub-
group is considered as a representative gene and the correspondence is computed
using bi-directional best hit (BBH) relations obtained from the KEGG SSDB
database which stores all-vs-all Smith-Waterman similarity scores. For efficiency
reasons, the similarity score is thresholded and binarized: two genes are linked via



the ortholog relation only if each one is ranked in the top most similar genes of
the other and if the similarity between the two exceeds a pre-specified threshold.

3.2 Models for Automatic Network Curation

Given the metabolic information about a set of organisms we identify two main
problems of interest relevant for the concept of automatic network curation:
1) link prediction, where we estimate the probability associated to a given set
of relations on the basis of an initial guess, in order to increase the consistency
with respect to the information on related organisms; and 2) node prediction,
where we introduce specific nodes in order to best fill gaps in the pathway of
interest.

More in detail, we work in the following setting. We are given information
about a new organism consisting of a set of genes and their associated functions
(i.e., the enzyme they code for). This information is understood as being affected
by uncertainty, and a probability serves as a preliminary approximation. Qur
goal is to derive more reliable estimates by integrating structural information
from a broader context based on this first set of probabilities. The available
background knowledge contains information on the metabolic network for a large
set of organisms. In order to transfer knowledge from related organisms and/or
genes we make use of two similarity notions: the first one is between the test
organism and other organisms (obtained from the phylogenetic tree), the second
between the genes in the test organism and genes in other organisms (via the
ortholog relationship).

In principle we prefer evidence that is consistent across multiple sources as
noise is likely to affect each source in an uncorrelated way. In practice, it is
at times hard to propagate information from multiple sources because of the
partial knowledge that we have of the metabolic network. In particular: a) not
all genes of a test organism have an initial associated function; b) not all genes
have known orthologs; ¢) not all reactions are known in a given pathway.

Another source of troubles in propagating evidence is to be found in the
topological properties of the reaction network itself, known as the “small world”
property [12]. A network is said to exhibit a small world property if there exist
paths (reaction chains) of short length that can be followed to connect any two
vertices (metabolites). This apparently surprising property of real metabolic net-
works can be explained by the presence of so called “currency” or “commodities”
compounds [13], i.e., substances that occur commonly in any chemical process
and that are assumed to be present in any needed quantity at any time in the
cell environment. Common examples of such substances are water and ADP.
Saying that two unrelated metabolites are connected because water is present
in different reactions that involve them is therefore just an artifact of the data
representation that has to be dealt with in an ad-hoc way. The problem is made
non-trivial by the fact that there is no consensus on how to identify these sub-
stances. In this work we make use of the flexibility offered by the ProbLog
language and specify a list of “accepted” (and “forbidden”) compounds that can
(cannot) be part of the path definition used to propagate information. Here we
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Fig. 3. Graphical representation of the portion of metabolic network used to obtain
evidence for the link prediction task. The single gene-enzyme edge marked in bold cor-
responds to the substructures of type (1) used to obtain evidence for the link prediction
task.

create such lists based on the frequency of the compounds in different reactions
but expert knowledge can be as easily incorporated.

To summarize, the key idea of our prediction models is to use structural
queries of increasing complexity to combine different forms of evidence. In the
following, we discuss the queries we use for link prediction, their adaptation for
node prediction, and the linear model that combines the success probabilities
of the individual queries. Prediction then corresponds to a call to the ProbLog
inference engine to compute the associated probability value.

Link prediction task Figure 3 shows the part of the background knowledge
queried to obtain support in link prediction. We use three types of queries of
increasing complexity, illustrated in Figures 3, 4 and 5:

1. an estimate of the degree of belief for a gene-enzyme relation, either given
a-priori or estimated by an external predictive system:;

2. support coming from paths that contain the probabilistic gene-enzyme link
under consideration; and
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3. support coming from more complex subgraphs, that is, network portions
that involve both the probabilistic gene-enzyme link and links to ortholog
genes in related organisms.

For all queries, we only consider enzymes linked to a reaction in the pathway of
interest. In particular, we require (2) to be a path that traverses in order the
following selected types of entities: gene, enzyme, reaction, compound, (reaction-
compound)*, reaction, enzyme, gene. The intended meaning of the star notation
here is that the path is only allowed to follow further reaction-compound links if
the current reaction does not have an enzyme associated in the database. This
latter condition is motivated by both computational efficiency issues (i.e., we
do not consider all possible paths but only the shortest ones) and the desire
to favor paths that make use of information relevant to the test organism. In
words: we consider linear chains that originate in one gene of the test organism
and end up in another gene of the same organism traversing the enzyme-reaction
network relevant to a specific pathway. The subgraph for case (3) is obtained
considering paths of type (2) with the addition of two extra paths at both ends.
These provide additional links between the genes and enzymes at the end of the
path via ortholog genes. The ratio here is to prefer evidence that is consistent
with the information on similar genes in different organisms.
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ProbLog allows us to specify the characteristics of these substructures at an
intensional level. The network links are encoded using a set of (possibly proba-
bilistic) predicates. Facts of the form reaction_compound_reaction(rl,c,r2)
represent connections between reactions r1 and r2 via compound c. The list
of compounds that may be traversed in queries is given as facts of the form
accept_compound(c). ortholog(gl,g2) facts list pairs of ortholog genes gi
and g2, whereas function(g,e) facts link genes g to their enzymatic functions e.
Finally, reaction_enzyme (r,e) facts connect reactions r in the background net-
work to enzymes e. The background knowledge then defines additional relations
and subgraph structures.

reaction reaction(R1,R2) : — reaction_compound reaction(R1,C,R2),

accept_compound(C).

restricts the reaction network to those links connected via accepted compounds
as defined by the user.



enzyme reaction path(Gl,E1,E2,G2) : — function(G1,E1),
reaction_enzyme(R1,E1),
reaction_reaction(R1,R2),
reaction_enzyme(R2,E2),
function(G2,E2).

corresponds to the second query (modulo the star part), but making the gene
and enzyme at the other end explicit, which is used in the third query to extend
the query towards ortholog genes using

ortholog support(G,E) : — ortholog(G,G2),function(G2,E).

The queries of Fig. 3-5 are then encoded as follows (where we omit some com-
putational details for better readability):

query1(G,E) : — function(G,E),reaction enzyme(R,E).
query2(G,E) : — enzyme_reaction path(G,E,E2,G2).
query3(G,E) : — enzyme reaction path(G,E,E2,G2),

ortholog support(G,E), ortholog _support(G2, E2).

Note that if the database does not contain enough information to match
a complex query, the query will simply fail. The failure does not provide any
information and hence contributes a probability of 0. In these cases we resort
to increasingly simpler queries in a fashion similar in spirit to the interpolation
techniques employed in computational linguistics.5

Node prediction task In node prediction, the goal is to identify enzymes that
do not have an associated gene in the test organism, but would fill a hole in that
organism’s pathway if they did. As we cannot directly query the genes and en-
zymes of the organism of interest here, we resort to links between a hypothetical
gene and the enzymes effectively present in the pathway of related organisms,
cf. Fig. 6. We adapt the queries in Figures 3-5 as follows. Instead of the a-priori
estimate of query type (1), which is not available here, we consider the average
degree of belief in a link between the given enzyme and any known gene present
in related organisms. For queries of types (2) and (3), we replace the test organ-
ism’s gene at the top by a gene in some other related organism, but still require
the path to end in a gene that is known to belong to the test organism.

5 When employing n-gram models, a common practice is to assess the probability of
complex n-grams using the frequency counts of smaller n-grams that are more likely
to occur in (small) datasets.



Gene
MISSING

Pathway

\“

:

\

)
\
\

\
Reaction '
.-‘
/
,
”
/
B
K

‘II

Enzyme
MISSING

Gene
in bk organism

Related
Organisms

Gene
in bk organism

Gene
in test organism

~| Gene
Orth in bk organism

Gene
in bk organism

Fig. 6. Graphical representation of the portion of metabolic network used to obtain
evidence for the node prediction task.

Model In both the link and node prediction setting, we estimate degrees of belief
for our target relation by calculating the success probability (cf. Equation (1))
for each of the three types of supporting queries in the given model. We combine
those results to answer the two main questions: 1) what is the probability of
a specific gene of a test organism to be associated to a specific enzyme in the
pathway? and 2) what is the probability of some unknown gene of a test organism
to be associated to a specific enzyme in the pathway?

The combination is done via a linear model whose weights encode the reliabil-
ity for each type of query.” Let Q;(G, E) be the success probability of the query
of type i that relates the gene G with the enzyme E. The probability p(G, E) that
the gene effectively encodes the function F is computed as a convex combination
of the success probability of each type of query, that is:

p(G,E)= > wi(E)Q:i(G,E)

i=1,2,3

where for each enzyme FE, Zi:l,Q,B w;(F) = 1. We consider two variants of this
model: one with enzyme-specific weights w;(E), and a global model that uses
identical w;(E) for all enzymes.

7 Technically, the linear model is itself encoded as a ProbLog query and inference thus
done in a single step without obtaining the individual success probabilities.



The idea behind the linear model is to adapt to the level of missing infor-
mation in the network: when assessing the degree of belief for an enzyme that
is embedded in a network region where few reactions are known, it is better to
trust the prior estimate with respect to more complex queries since they will
mainly fail over the poorly connected reaction network; analogously when or-
tholog genes are known for a given enzyme, the evidence from the more complex
queries becomes compelling. In summary, we adapt to the unknown local quality
of the network by estimating the relative reliability of each query for the final
answer on related organisms known in a background knowledge base.

In this work we explore two ways to induce the weights:

Frequency estimation: for each query type and enzyme, we count the num-
ber of proofs obtained for both positive and negative examples and obtain first
estimates as p/(p—+n); these are then normalized over the three query types. Pa-
rameters for the global model, which does not model the dependency on enzymes,
are obtained by summing counts over all enzymes before calculating frequencies.

Machine learning estimation: the weights are learned with ProbLog’s gradient-
descent approach to parameter learning [14]. Given a set of queries with associ-
ated target probabilities, this method uses standard gradient descent to minimize
the mean squared error (MSE) on the training data.

4 Experimental Setup

Common sources of noise in available metabolic databases range from wrong
catalytic function assignment to incomplete annotation (e.g., only one function of
a multi-domain protein) or nonspecific assignment (e.g., to a protein family). In
the empirical part of this study we analyze the curation/reconstruction capacity
of the proposed system. To this end, we consider the KEGG data as ground
truth and perturb the knowledge of the true function of a gene in such a way as
to simulate these types of uncertainty in a controlled fashion.

4.1 Agnostic Noise Model

Since the enzymatic functions can be arranged in a hierarchical ontology [10], we
can control the noise level by introducing extra links to enzymes that are in the
neighborhood of the true enzymes. Two elements parametrize the noise model:

1. s: fraction of affected gene-enzyme pairs;
2. d: depth of lowest common parent in hierarchy.

We then proceed as follows: given an organism we select a fraction s of its
known gene-enzyme links; for each link, we select all enzymes that have the
lowest common parent with the link’s enzyme at depth d in the hierarchy and
that appear in the background knowledge network of the pathway of interest. We
then introduce a uniform distribution over the set of gene-enzyme links resulting
from the original gene and the selected enzymes.
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Fig. 7. Pyruvate metabolism pathway.

General Setting In the experiments reported here, we focus on the Pyru-
vate metabolism pathway (cf. Fig. 7) and organisms from subfamilies of pro-
teobacteria, cf. Fig. 8. Pyruvate is an important intermediate in the fermentative
metabolism of sugars by yeasts and is located at a major junction of assimilatory
and dissimilatory reactions as well as at the branch-point between respiratory
dissimilation of sugars and alcoholic fermentation.

A total of 40 organisms are picked uniformly at random, ensuring that all
organisms of the smallest three subfamilies are included. For each such organism,
we construct the background knowledge network by superimposing the networks
of all organisms of the other five subfamilies, thus leaving out the most closely
related organisms.

We create six different noise settings by perturbing the true relationships for
s = 1/5/10% of gene-enzyme links, using d = 2 and d = 3, and use the linear
model to rank candidate instances of the target relationship in each setting. For
efficiency reasons, the linear model parameters are computed using the simple
frequency estimate.

Experimental Results: Link Prediction In the link prediction setting, pos-
itive examples are the test organism’s real gene-enzyme links, while negative
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Fig. 8. Overview of organisms and subfamilies used in the background knowledge,
including total number of organisms and number of organisms used as test cases (in
brackets).

ones are the ones added by the noise model. The linear model uses the three
queries depicted in Fig. 3-5. As the data is unbalanced, we report the area under
the precision-recall curve as a performance measure. Results are summarized in
Table 1 for the enzyme-specific linear model, the global mixture model, and the
baseline using the most simple query type only. With increasing noise levels, the
enzyme-based mixture model clearly improves over the baseline that does not
take into account background information, and also over the less flexible global
mixture model.

d=3
global

s| enzyme baseline

1%
5%
10%

0.987 £ 0.019
0.935 £ 0.039
0.863 £ 0.065

0.980 £ 0.026
0.921 £ 0.045
0.828 £ 0.068

0.975 £ 0.025
0.911 £ 0.049
0.831 £ 0.062

d=2

S

enzyme

global

baseline

1%
5%
10%

0.981 £+ 0.022
0.889 + 0.040
0.775 £ 0.059

0.973 £ 0.027
0.867 = 0.045
0.721 £ 0.064

0.966 £+ 0.027
0.853 £ 0.047
0.743 £ 0.052

Table 1. Link prediction with varying noise level s and d: average and standard de-
viation of area under the precision-recall curve over 40 test organisms for the enzyme-
specific linear model, the global mixture model, and the baseline using the most simple

query type only.

Experimental Results: Node Prediction In the node prediction setting,
examples are pairs of organisms and enzymes from the background knowledge.
If the enzyme occurs in the organism’s network, such an example is considered
positive, and negative otherwise. We adopt an enzyme level leave-one-out design
among those enzymes in the background knowledge that are not associated to
any gene in the test organism. We remove these enzymes in turn and we measure



the precision at one, that is, the fraction of times that the missing enzyme is
ranked in first position as the most probable among all the missing enzymes.

The linear model uses the queries described in Section 3. Results are sum-
marized in Table 2. While both mixture models significantly improve over the
random ranking of all background enzymes, there is no significant difference
between the global model (which doesn’t take into account enzyme-specific in-
formation) and the enzyme-specific model. We conjecture that averaging the
performance over “easy” and “hard” to predict enzymes yields a too coarse re-
sult and that a more detailed analysis is needed to identify the conditions that
favour the enzyme-specific vs. the global model.

d=3
global

enzyme baseline

1%
5%
10%

0.218 £0.111
0.217 £0.091
0.198 £+ 0.082

0.271 £0.143
0.340 £0.124
0.325 £0.144

0.020 £ 0.000
0.020 £ 0.000
0.020 £ 0.000

d=2

S

enzyme

global

baseline

1%
5%

10%

0.223 £ 0.107
0.224 £0.045
0.152 £ 0.035

0.290 £ 0.165
0.386 £ 0.081
0.262 £ 0.080

0.020 £ 0.000
0.019 £ 0.005
0.011 £ 0.010

Table 2. Node prediction with varying noise level s and d: average and standard
deviation of precision at one over 40 test organisms for the enzyme-specific linear
model, the global mixture model, and the baseline using a random ranking.

4.2 Noise Model for Unreliable Predictions

In this scenario, we assume that a predictor (i.e., a machine learning algorithm)
is available and that it can compute the enzymatic function of a gene with a
certain reliability. Instead of working with a specific predictor here we perturb
the knowledge of the true function of a gene in order to simulate different degrees
of reliability. Once again we make use of the fact that the enzymatic functions can
be arranged in a hierarchical ontology [10]. Under this assumption we relate the
topological distance in the ontology tree to the functional distance, i.e., the closer
two enzyme nodes are in the hierarchy the more similar their functions. Under
this assumption we build a noise model described by the following parameters:

1. s: fraction of affected genes;

2. k: number of noisy gene-enzyme links added per gene;

3. opc: parameter controlling the size of the neighborhood where to randomly
sample the additional noisy gene-enzyme links;

. on: parameter controlling the quantity of noise added to the gene-enzyme
relationship probability estimate.
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Fig. 9. Noise model: the E.C. hierarchy induced metric notion (i.e., topological distance
between nodes) is used for the perturbed enzymatic function. The hypothetical true
enzyme is marked with a double line. In the example a gene is associated to an incorrect
enzymatic activity with probability 0.52 and to the correct one with probability 0.4.

We then proceed as follows (see Fig. 9). Given an organism, we select a frac-
tion s of its genes. For each selected gene, we add k extra links to randomly
sampled nearby enzymes. Sampling selects enzymes using a normal distribution
N(0, 0gc) over their topological distance induced by the ontology, i.e., the length
of the shortest path between the leafs containing the actual and the sampled en-
zyme in the tree structured ontology. Finally, we obtain the degree of belief for
the link between the gene and the randomly selected enzyme as the probability
of selecting the enzyme plus additional N (0, o) noise. In this way enzymes that
are less related to (i.e., more distant from) the true enzymatic function of the
original gene receive on average a smaller probability.

Experimental Results In the experiments reported here, we focus on the
Pyruvate metabolism pathway for the Escherichia coli UTI89 test organism. We
perturb the true relationships with k=5 extra links for s = 50% of genes. The
probability estimate of the gene-enzyme relationship receives additional noise
from N (0, §).

The linear model parameters are computed using ProbLog’s gradient-descent
approach to parameter learning [14]. We use default settings in our experiments
and run learning for at most 50 iterations, stopping earlier if the MSE on the
training data does not change between two successive iterations. Training data
is generated from the other organisms with the same parent in the organism
hierarchy as the test organism, and target probabilities are set to 1.0 for positive
and 0.0 for negative examples, respectively.



In the link prediction setting, positive examples are real gene-enzyme links,
while negative ones are the ones added by the noise model where no real one is
known between these entities. We use the three queries depicted in Fig. 3-5. We
measure the area under the precision-recall curve.

When using the initial (perturbed) estimate for the gene-enzyme link we
achieve an AUCPR of 0.69. If we use only the most complex query (type (3))
we increase to 0.74, but when we learn the linear model over all queries we
achieve 0.80. Note that simply learning a fixed mixture of experts for the whole
organism (i.e., not modeling the dependency on the enzyme) we do not improve
over the initial 0.69 result, as for this particular test organism, it is better to
resort on average to the most simple query.

In the node prediction experiment, we follow the same scheme as above. That
is, we adopt an enzyme level leave-one-out design among those enzymes in the
background knowledge that are not associated to any gene in the test organism,
remove these enzymes in turn and measure the precision at one.

The set of training examples is the set of all pairs of training organisms (as
before) and enzymes appearing in the pathway for organisms different from the
test organism. Such a pair is considered positive if the enzyme appears in the
organism’s pathway, and negative else.

We use the query described in Section 3 both with and without ortholog
information, as well as a basic query that predicts each enzyme with the average
probability of a gene-enzyme link involving this enzyme in one of the training or-
ganisms. In this experiment we achieve a precision at one of 0.66 over 35 possible
enzymes (i.e., the baseline random guessing precision at one would be 0.03).

5 Conclusions

We have started tackling the problem of automatic network curation by employ-
ing the ProbLog probabilistic logic framework. To overcome the limitations of
homology searches, we have made use of information from heterogeneous sources,
encoding all available data into a large BisoNet. To leverage the different quan-
tity and quality of information available for different organisms, we have used a
case-based approach linking information on related organisms. The use of a prob-
abilistic logic framework has allowed us to: a) represent the knowledge about the
metabolic network even when affected by uncertainty, and b) express complex
queries to extract support for the presence of missing links or missing nodes in an
abstract and flexible way. Initial experimental evidence shows that we can par-
tially recover missing information and correct inconsistent information. Future
work includes the integration of gene function predictor and the development
of novel queries that make use of additional sources of information such as the
gene position in the genome or the co-expression of genes in the same pathway
from medical literature abstract analysis.
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