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Abstract: By the proposed methodology for robust controller design, we quantify the schedulability of a 

series of process plans (or jobs) to be produced at a robotic work cell with several machines and limited 

transport and processing capabilities. The uncertainties of the plant model as there are statistically 

distributed and event driven variations of transport and processing times as well as of job release intervals, 

are captured by a stochastic timed Petri net. Robustness of the schedules is measured in terms of a plan 

achievement function which plays the role of a fitness landscape in the multi dimensional search space of 

feasible and non feasible schedules. The definition of the plan achievement function goes back to a 

collision avoidance mechanism. The approach is exemplified for periodic schedules of cyclic flow shops. 

1. PROBLEM STATEMENT 

Consider the following production planning and control 

problem: In a robotic work cell, one robot serves several 

assembly stations which are arranged in a semi circle, in a 

fixed sequence of moves, repeatedly (Fig.1). 

 

 

              Fig.1. Physical layout of robotic work cell 

All jobs (or parts, or processes, or products) entering the cell 

obey the same sequence of operations on the machines, with 

fixed processing times, and no buffering is allowed between 

operations. Such an environment is a cyclic flow shop 

(Timkovsky, 2004).  The term cyclic refers to the common 

machine, the robot, which performs a handling or transport 

operation between each consecutive process operation in each 

job. Fig. 2 shows the process plan as a Gantt chart for this 

rank-1, multiplicity-6 problem (rank: number of cycle 

machines; multiplicity: number of loops). Three identical 

processes P1=P2=P3 are released to the cell from the input 

buffer, the first one at time zero (v1=0), the following ones 

after release intervals v2  and  v3 . 

The vector v = (0, v2, v3, …) is the schedule to be optimized 

for maximum plant productivity. For equal release intervals 

and identical jobs as in Fig.2, we obtain periodic schedules v 

= (0, v, v, …) both for machine and robot operations and 

arrive at stationary behaviour of the dynamic production 

system which means a fixed sequence of robot operations  

 

 

Fig.2.  Resource Gantt chart for three identical processesP1,  

P2, P3. M machines, R robot. dm, dr durations of processing 

and transport operations 

Tr(t) inside the time window w in Fig.2. Then, the optimum 

solution for the cyclic flow shop scheduling problem 

(CFSP)is the periodic sequence of robot operations (as there 

are: empty moves, loaded travel, and handling in general) 

with the smallest possible vector length v which fulfils the 

time requirements of the process plan. The minimum vector 

length (or shortest schedule v for a set of processes Pi) is 

limited by overlaps of machine and robot operations in the 

Gantt chart of Fig.2. Such overlap of bars is called a 

collision: of  parallel requests by robot and machine 

operations for their transport and processing resources. A 

feasible schedule must be free of collisions, at least within a 

certain range of probability. In this paper, we try to quantify 

the feasibility (or schedulability) of a production plan 

endangered to transport collisions because of plant resource 

limitations and environmental distortions. We develop two 

measures of  plan robustness. The first, discrete one  

measures the sensitivity of plan performance against 

variations of the transport routing (or the transport sequence 

Tr(t) in Fig.2). The second, continuous one captures the 

operational uncertainties of the plant by probabilistic 

measures for time parameters like transport and processing 

time intervals. By a combined robustness analysis, we 

determine whether the planned operations of the perturbed 

plant can still be maintained in case of parameter variations 
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and up to which extent the original plan can still be achieved. 

Plan achievement here is measured in terms of time 

deviations of the implemented process plan as compared to 

the original one. The theory of robust scheduling is illustrated 

and evaluated by a stochastic Petri net model. For clarity of 

explanation, we focus on periodic schedules in this paper. 

However, the approach also covers non periodic schedules 

with varying jobs and sequence dependent set up or transport 

times. 

2. ROBUST SCHEDULING: STATE OF THE ART 

Robust scheduling methods aim to face uncertainties that 

usually arise during schedule execution, as there are: machine 

failures, urgent job arrivals and cancellations, due date 

changes etc. (Leung, 2004). These events may generate 

considerable differences between the predetermined schedule 

and its actual realization on the shop floor and sometimes 

may afford rescheduling. A great amount of work related to 

robust scheduling, therefore, has been devoted to 

rescheduling policies and methodologies; for a recent review 

and a rescheduling framework see (Vieira et al., 2003). The 

frame work classifies rescheduling environments as static 

(deterministic and stochastic) or dynamic ones (cyclic, flow 

shop and job shop production); rescheduling strategies as 

there are  dynamic (dispatching rules and control-theoretic 

approach) or predictive-reactive ones (periodic, event-driven 

and hybrid policies); and rescheduling methods like schedule 

generation or schedule repair (right-shift, partial and 

complete regeneration). Our application refers to the dynamic 

case under periodic or hybrid control policies.  

In almost all applications, the robustness approaches fall into 

two broad categories: worst case scenarios which strictly 

keep to (hard) constraints but are conservative and time 

consuming, and robust optimization which treats some 

variables as (soft) constraints represented as fuzzy or 

stochastic variables and, therefore, may provide a 

probabilistic value for feasibility and schedulability of a 

process plan. Our approach mainly builds on the ideas of 

robust optimization and adaptive scheduling put forward in 

(Jensen, 2003) and (Mattfeld, 1996). We extend our previous 

investigations into deterministic timed Petri net schedulers 

(Fiedler et al., 2005)  (Fiedler, 2006) by stochastic elements 

and develop a methodology for robustness analysis on top of 

that representation.  

3. PLANT MODEL AND COLLISION FUNCTIONS 

The plant and the process plan of Figs. 1 and 2 are 

represented as p-timed Petri net (David et al., 2005) and 

implemented as t-timed Petri net with the help of the PACE-

tool (www.ibepace.com, 2007). The (p-timed) A-path (Zhou, 

1993) of Fig.3 captures the sequence of processing operations 

m1, m2, … and their processing times dm1, dm2, … as well 

as the (loaded) transport and (unloaded) move operations of 

the robot, tr and mo, according to the process plan of Fig. 2.  

The availability of machine and robot resources (see Fig.1) is 

modelled by additional controller places M1, M2, … and R. 

Finally, tokens (black dots) represent processes (or jobs, or 

parts) being sent through the system. These principles can be 

extended to job shops with sequential and parallel machines, 

different process plans (or A-paths), and sequence dependent 

set up or move times, which is described elsewhere (Fiedler 

et al., 2005)  (Fiedler, 2006). In this paper, we restrict 

ourselves to the robotic cycle shop of Fig.3 without multi 

purpose machines or loops in the production line. The figure 

displays one part of the complete plant which consists of 5 

such modules arranged in a sequence. 

  

Fig.3.  Petri net plant module 

In Fig.3, two transport operations tr01 and tr12 are interlaced 

with one machine operation m1. Each operation (circles or 

places) begins and finishes with start/stop conditions (bars or 

transitions). The transport times dtri and processing times dmi 

can either be deterministic (constant) or statistically 

distributed. Further, availability nodes for robot and machine 

resources monitor and control the flow of tokens (dots) 

through the net. This is done by synchronization of events: 

A-path transitions can only fire and thereby start an operation 

if control places contain tokens. The main idea here is that 

operations can only be performed if resources are available, 

otherwise they are delayed according to a simple FIFO rule. 

Tokens in resource places thus model the control flow and 

represent the actual scheduling algorithm. In case of more  

complex selection rules, the availability nodes are replaced 

by scheduling networks, see (Meyer et al., 2006).  

The source tokens (or processes) are released to the Petri net 

with varying rates. Depending on the release intervals vi 

between succeeding tokens, queues may build up in front of 

machines if these are still busy with the preceding process or 

if the transport robot is not available. These delays or 

aberrations ∆P from pre specified processing times dP (see 

Table 1) are measured by additional places  ∆m1,  ∆m2, … 

for each operation and machine, see Fig.3. These additional 

places act as buffers for tokens which cannot be served 

immediately by the busy transport robot.  
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The best schedule, then, is a sequence of release intervals 0, 

v2 , v3 , … for processes P1, P2, P3, … which leads to stable 

operation, has maximum throughput and sticks to the process 

plan, i.e. minimizes the sum of plan deviations ∆P = Σ∆mi . 

Fig.4 shows an example for the periodic though unfeasible  

schedule S480 with dynamic aberrations per machine ∆mi as 

elucidated by dashed framings. The Gantt chart was obtained 

from the deterministic plant model of Fig.3 where each place 

implements a constant processing time dmi , dtr according to 

Table 1. Ten succeeding tokens were released to the Petri net 

at identical release intervals v2= v3 =  … vi = … v10 = 480. 

Fig.4. Deterministic Gantt chart for 10 deterministic 

processes from Table 1 and process release intervals v = 480 

Finally, Fig.5a summarizes the outcome of about 2100 of 

such simulations for different release times v. This diagram 

of ∆P(v) quantifies the feasibility and quality of (periodic) 

schedules in terms of plan deviations ∆P for a series of 

overlapping processes from Table 1. ∆P(v) is termed 

collision function. For schedules v = (0, v, v, v, …) with 

∆P(v) = 0, no collisions occur. We call them feasible periodic 

schedules.. The set of feasible release times v which make up 

a feasible schedule v, is V = {v∆P(v)=0} and indicated by 

thick lined intervals in Fig.5a. All remaining schedules are 

possible as well but lead to plan aberrations ∆P(v) ≠ 0. 

 

Fig.5. Accumulated plan aberrations ∆P = Σ ∆mi  as 

dependent on release intervals v, for ten processes and 

periodic schedules. (a)  Deterministic processes from Table 1. 

V = {v | PA(v)=0} set of  collision-free schedules. (b) 

Statistical variations of transport times added to (b): dtr ± ∆tr 

= 20 ± 5.  

Fig.5b is the respective stochastic collision function ∆P(v). It 

was obtained from simulation runs of the stochastic plant 

model where the timed Petri net of Fig.3 has been changed to 

a stochastic one by altering the 60 robot transport times (for 

10 processes of Table 1) statistically in the course of the 

simulations (for details see Section 6). By comparison with 

Fig.5a we recognize that the stochastic set of feasible 

schedules V is considerably smaller than for the deterministic 

case. This finding supports the common sense expectation 

that the possibility space (here: the set of feasible schedules) 

gets smaller for more detailed models like the probabilistic 

ones (which capture modelling uncertainties of the transport 

system in addition, in this example). 

4. ROBUST SCHEDULING APPROACH 

We adopt here the idea of robust optimization for continuous 

problems and extend it to the discrete domain (Jensen, 2003) 

(Mattfeld, 1996). Central to problem solving by optimized 

search is the notation of the search space or fitness landscape. 

Fig.6a presents a one dimensional example. Per definition, 

robust optima are located on broad plateaus of the fitness 

curve whereas sensible optima are located on narrow peaks. 

A trade-off analysis then compromises between goal 

achievement and robustness of the solution. One example is 

the delicate balance between quality and robustness of a  

production plan, plan quality being measured in terms of 

plant productivity to be achieved by this plan (Briand et al. 

2007). 

 

Fig.6.  Search space configuration and fitness function. (a) 

General objective function f(x) and robustness measure ∆x. 

(b) Plan achievement function PA(v) according to Eqn.1. 

Straight line: deterministic process from Fig.6a. Dashed line: 

stochastic process from Fig.6b. The cut out refers to the first 

two minima of Fig.5 

In production planning, goal achievement is equivalent to 

zero deviation ∆P of the implemented plan as compared to 

the original one, e.g. the one of Table 1. For a convenient 

search space definition, we turn Fig.5 upside down by 

defining a plan achievement function PA(v) by  

      PA(v) = 1 - ∆P(v)/∆Pmax  (1). 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14860



 

 

     

 

We arrive at Fig.6b where PA(v) is interpreted as the 

objective function in the search space of  possible schedules v 

= (0 , v2 , v3 … vi ). Every solution is positioned through its 

vector coordinates vi and its plan achievement value PA(vi) in 

the landscape of (1). For the deterministic case in Fig. 6b 

(solid line), the objective function is non-differentiable 

because of the mutual exclusion constraints posed by the 

limited resources of the plant. Therefore, the usual 

mathematical techniques for sensitivity analysis are not 

applicable here, as they are based on derivatives ∂PA(v)/∂v. 

The stochastic data of Fig.5b, however, smoothens the plan 

achievement function and allows for a gradual trade-off 

between feasible and non feasible schedules (dashed curve in 

Fig.6b).   

The schedule optimisation problem involves at least two 

objectives: (a) Keep to the process plan by minimizing ∆P(v), 

and (b) Find the best schedule v without collisions for 

maximising productivity or minimising makespan. Both 

postulates (a) and (b) are formalized as follows:  

Minimize  
n

i

i 2

v
=
∑    (2) 

subject to   PA(v) = 1  (3) 

for periodic schedules:       v = (0, v, v, …) 

for general schedules:         v = (0, v2, v3, …, vn) 

 

From Fig.6 it is clear that the optimum schedule is 

determined by the smallest feasible value vopt , at the very left 

end of the search space. However, the question is not 

answered yet if this schedule is still valid in case of variations 

∆v of the release times ∆v or of transport time variations ∆tr 

or of processing time variations ∆m. ∆v on one hand, and ∆tr 

and ∆m on the other, are representatives for the two different 

kinds of uncertainties which may deteriorate the calculated 

schedules: input signal variations and model uncertainties. 

 

 

Fig.7. Signal flow diagram of scheduling algorithm including  

distortions. Input: chain of processes Pi released to the plant 

at schedule v ; output: transport schedule Tr ; distortions: of 

release intervals ∆v, of processing times ∆m, and of transport 

times ∆tr 

 

In Fig.7, both types of distortions have been separated. The 

block diagram  summarises the robust scheduling problem as 

dealt with in this paper: For a given sequence of processes 

Pi(t) and a schedule v of  process release intervals vi , find a 

schedule Tr(t) for the robot transport operations tri which is 

robust against variations in ∆v, ∆tri or ∆mi (Fig. 2 sketches 

such an example for Tr(t)). In extension of (1), the evaluation 

functions PA for these three (deterministic or random) 

variables read as 

PA(∆v) = 1 -  ∆P(∆v)/∆Pmax  , ∆m and ∆tr are parameters (4) 

PA(∆m) = 1 - ∆P(∆m)/∆Pmax  , ∆tr and ∆v  are parameters (5) 

PA(∆tr) = 1 - ∆P(∆tr)/∆Pmax  , ∆m and ∆v  are parameters (6). 

Eqns.(4) to (6) are vector equations. For instance, the vector 

∆∆∆∆m = (∆m1, ∆m2, ∆m3, ∆m4, ∆m5) stands for the processing 

time variation ∆mi which adds to dmi at machine Mi . 

However, for easy explanation, we will demonstrate the 

principles of our robustness approach by scalar examples 

only, in the following. 

5.  DETERMINISTIC ROBUSTNESS MEASURES 

The question now is: For a given sequence of transport 

operations Tr(t) and a given process schedule v, how 

sensitive (or robust) is v against variations of machine 

processing times dmi? With other words, how much does ∆mi 

degrade the plan performance PA as defined in (1)? The 

answer is formulated in terms of a robustness measure called 

plan validity: A transport schedule belongs to the set of valid 

schedules if the sequence of  transport operations tri within 

the time window of width w = v  is not altered (compare 

Fig.2). However, the actual location of tri along the time axis 

may change in order to cope with alterations of  process times 

dmi  ± ∆mi. As an example, Fig.8 shows the plan achievement 

function PA(∆m2) from (5) for ∆m2 ranging from about -40 

to +30, and for three schedules of v = 453, 455 and 457. For 

v = 455 and process durations of about 150 < dm2 < 190, the 

transport schedule Tr(t) remains unchanged. For dm2 > 190, 

first collisions occur. For dm2 > 220, a new transport routing 

is generated. In this example, the range of schedule validity is 

-25 ≤ ∆m2 ≤ +8 for schedule feasibility ranging from 453 ≤ v 

≤ 457. 

 
Fig.8.  Robustness of plan achievement PA(∆m2) against 

deterministic variations of the machine processing time ∆m2, 

for three schedules v = 453, v = 455 and v = 457, and ∆tr = 0. 

Process plan from Table 1 

 

6. PROBABILISTIC ROBUSTNESS MEASURES 

In the above section, the variables of the robustness analysis, 

∆mi , have been treated as deterministic numbers. As an 

example for an investigation based on probabilistic 

robustness measures, we now regard the train of transport 

operations tri as a discrete-time stochastic process tr(t) in the 
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following sense which matches a lot of realistic situations at 

the factory floor:  

(a) tr(t) is predictable (Papoulis, 1984). It consists of a family 

of deterministic pulse trains tr(t) and is completely specified 

in terms of  the random variable ∆tr as specified in Fig.10: 

tr(t) = tr(t) ±  ∆tr. 

(b) tr(t) is stationary in the strict sense (SSS (Papoulis, 

1984)). That means its first order probability density f(t, ∆tr) 

= f(∆tr) is independent from time. 

(c) f(∆tr) is equally distributed in the range ±∆max . As an 

example, for discrete values within ∆max = ±5, tr(t) and the 

probability density distribution f(∆tr) are sketched in Fig.11. 

 

Fig.9. Statistics of stochastic transport process tr(t). (a) 

Chain of deterministic transport operations tr(t). Only two 

operations shown out of six. (b) One sample process of 

stochastic transport process tr(t). Variations ∆tr = ±5 added 

to the deterministic process. (c) First order probability density  

f(∆tr) of stochastic variable ∆tr.  

The stochastic transport process tr(t) as defined above has 

been implemented into the Petri net model of Section 3. The 

outcome of 2100 simulation runs of the random model for 

∆max = ±5 had been shown in Fig.5b already. These and 

further experiments with a wide range of ∆max-values are 

summarised in Fig.10. The figure presents the experimental 

data in accordance with Eqns.(1) and (6): for PA(v) with ∆tr 

as parameter, and for PA(∆tr) with v as parameter. Especially 

the latter type of diagram is well suited to separate robust 

schedules (e.g. S460) from less robust ones (e.g. S456) and 

even from unfeasible ones (e.g. S452, with PA(∆tr) < 1 for all 

∆tr). In fact, this diagram has the same meaning and 

importance as in regular continuous sensitivity analysis. 

Similar figures have been obtained for PA(∆∆∆∆m) and statistical 

variations of ∆∆∆∆m which are omitted here. We show a different 

process instead in Fig. 11, with doubled move times dmo as 

compared to Fig.10. Now, the range of feasible schedules is 

much smaller, leading to less robust schedules. In this 

example, only schedule S460 with v = 460 fulfils the 

requirement PA(∆tr) = 1: however, for zero distortions ∆tr = 

0 only. 

 
Fig.10.  Plan achievement function PA for the running 

process from Table 1 (mo = 10). Stochastic variations of 

transport operations added. Periodic schedules only. (a) 

PA(v) with ∆tr as parameter, ∆m = 0. (b) PA(∆tr) with v as 

parameter, ∆m = 0  

 

 
Fig.11. Plan achievement function PA for the process from 

Table 1 and extended move times dmo = 20. Stochastic 

variations of transport operations added. Periodic schedules 

only.  (a) PA(v) with ∆tr as parameter, ∆m = 0. (b) PA(∆tr) 

with v as parameter, ∆m = 0  

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14862



 

 

     

 

7. WORST AND BEST CASE ANALYSIS 

In Section 2, we mentioned worst case scenarios and robust 

optimisation as the two competing approaches for plan 

robustness. Fig.12 compares two deterministic fitness 

landscapes for the extreme transport aberrations of  ∆tr = -5 

and ∆tr = +5, with the stochastic case as treated in the 

preceding section. The stochastic search space (straight 

curve) is nicely located in between the deterministic 

boundaries (dashed and dotted curves) as expected. The 

figure clearly demonstrates the drawbacks of worst- and best-

case scenarios as compared to a full probabilistic treatment. 

The two dashed curves do not support the human planner 

with useful decision aids whereas the maximum of the 

probabilistic one does.  

 

Fig.12  Plan achievement function PA(v) for the running 

process from Table 1 and periodic schedules. Comparison of 

deterministic transport processes ∆tr = -5 and ∆tr = +5 

(dotted and dashed curves) and stochastic transport processes 

∆tr = ±5 

8. CONCLUSIONS 

In this paper, we tried to quantify the schedulability of a 

series of process plans (or jobs) to be produced at robotic 

work cells with limited transport and processing capabilities. 

Feasibility, validity and finally robustness of the schedules 

are measured in terms of a plan achievement function PA 

which plays the role of a fitness landscape in the multi 

dimensional space of schedules. The constraints and 

limitations of the plant are captured by a timed Petri net 

model and a collision avoidance algorithm which acts as a 

filter on possible solutions. The uncertainties of the plant 

model as there are statistically distributed or just event driven 

variations of transport and processing times as well as of 

order intake, are captured by stochastic places and event 

driven control elements of the Petri net. By variation of the 

model parameters, PA is calculated for the complete range of 

schedules and a wide range of model and signal uncertainties. 

Based on this set of plan achievement functions, quantitative 

measures for schedule robustness are derived. They help to 

solve the fundamental flexibility –productivity conflict which 

is inherent to all planning decisions at the factory floor. The 

methodology is exemplified for periodic schedules of cyclic 

flow shops with constant move times but can be extended to 

job shops with varying jobs and sequence dependent set up or 

move times. Different classes of probability distributions can 

be investigated as well. 
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