
Web Security

14 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/06/$20.00 © 2006 IEEE ■ IEEE SECURITY & PRIVACY

We’ve always known that the arms
race between the hackers and the se-
curity industry is filled with twists
and turns; now it’s time for Web ap-
plications to be under the spotlight.
The watershed for Web security was
the first half of 2005 when for the
first time the number of Web-based
vulnerabilities reported outpaced
those of all other platforms (www.
symantec.com/enterprise/threat
report/). This change is clearly evi-
denced when we look at the number
and types of security vulnerabilities
disclosed in an average month. Fig-
ure 1 shows the vulnerabilities in
May 2006.

Actually, this isn’t too surprising.
More and more applications—
everything from email to banking
and its associated data—are going on
the Web, and hackers and criminals
are following the game. Perhaps the
most startling aspect of Web secu-
rity’s current state is that it’s so easy to
attack a system. Most of the time,
special tools and deep technical
knowledge aren’t even required; in
fact, in one case, a 14-year-old acci-
dentally discovered a potential
vulnerability in Google’s Gmail pro-
gram (www.vnunet.com/vnunet/
news/2151299/google-scrambles

-plug-gmail), causing the company
to create a patch in mere hours.

So, what’s being done to secure
the Web? Certainly awareness ini-
tiatives like the Open Web Applica-
tion Security Project (www.owasp.
org) and the Web Application Secu-
rity Consortium (www.webappsec.
org) are doing their part coordinating
community projects from statistics,
classification schemes, and guidelines
through to open-source tools and
development frameworks. However,
we still have a long way to go.

The articles in this special issue of
IEEE Security & Privacy cover some
of the major issues of putting secure
applications on the Internet.

Best practices
In the first article, “Web Application
Security Engineering,” J.D. Meier
looks at Web application security
engineering from an empirical per-
spective, asking if improving Web
security can be repeated in a simple
manner. Using a direct “do’s and
don’ts” approach, he identifies
security-specific activities that de-
velopers can integrate throughout
the software development life cycle.
Although several of the activities
Meier identifies are equally as useful

and appropriate for building security
into any software, regardless of its
platform, this article focuses on is-
sues specific to Web software. This is
a great introduction to the rest of the
articles in this special issue, and ex-
plains basic concepts to focus on
when developing for the Web, where
rapid development is the norm.

Security standards
John Viega and Jeremy Epstein’s arti-
cle, “Why Applying Standards to
Web Services Is Not Enough,” looks
at Web development from a different
angle—that of standards. No other
platform has so many standards that
abstract away from the nitty-gritty of
writing applications for the Web.
Once predominant techniques
(HTML+forms+CGI) are being re-
placed by other programmer- (or
user-) friendly approaches such as
AJAX and Web services. However,

The State of Web Security

T oday’s Internet is a rapidly evolving place. What were once the

hot technologies (gopher, FTP, telnet) are quickly being re-

placed by others (RSS, AJAX, SOAP). Such is the same with

security; whereas in the ’90s most attacks targeted networks,

today most target the applications that run on top of them.

MIKE

ANDREWS

Foundstone

Guest Editor’s Introduction

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 15

with all these standards, especially the
new security standards being built on
XML, we have to ask: if developers
were to just blindly implement sys-
tems using these standards in a “plug-
and-play” approach (as they are
intended), would their code be
more secure? This article is a sober-
ing look at how Web application de-
velopment’s nature can easily be
made insecure if technologies (and
code) are just “picked off the shelf.”

Testing tools
If there’s one thing we’ve learned
throughout the history of software
development, it’s that no matter
how good your process or design,
bugs will slip into the code—it’s up
to QA and testing to weed them
out. Based on experience gained
from hundreds of security assess-
ments, Mark Curphey and Rudolph
Araujo examine the available list of
tools for evaluating Web application
security in their article, “Web
Application Security Assessment
Tools.” Developers aren’t the only
ones using these tools, though—
hackers use them to their advantage
as well so testers should be aware of
what could be turned against them
and the pros and cons of each. As
noted earlier, the Web is different, in
both environment and develop-
ment approach, than previous plat-
forms and the pace at which
applications are being designed,
coded, and released is somewhat
frightening. There’s no substitute
for human testing, but automated
tools are a necessity to stay ahead of
the game—awareness of what they
can provide along with their limita-
tions should be a given.

Protecting yourself
Finally, Denis Verdon’s “Security
Policies for the Software Developer”
takes a lighthearted, if somewhat dis-
concerting look at the legal fallout of
“when Web apps go bad.” Instead of
focusing on technical considera-
tions, Verdon looks at how even the
best intended technical security pre-

cautions can fall short of protecting a
company from legal or regulatory
problems; he considers several real-
world security incidents, how the
law and regulations view such inci-
dents, and how the right kind of
policies and best practices can pro-
vide legal coverage for a company if
(or when?) someone breaches its
Web application. This article is a
complete departure from the way
developers typically think about ap-
plication security problems, but very
complementary. By paying attention
to policies, your company can avoid
being charged by the US Federal
Trade Commission or sued by cus-
tomers if a breach does occur.

T he Web is becoming (if it isn’t al-
ready) the dominant develop-

ment platform for software, and
although we’re beginning to pay at-
tention, there’s a lot of education,
knowledge, and engineering princi-
pals that must be disseminated before
we consistently develop secure Web
applications. Whereas traditional

development has had the benefit of
years of software engineering the-
ory, standards, and tools to fall back
on, the relative immaturity of devel-
oping Web-based software means
many of these cornerstones are still
evolving. That’s not to say that it’s
impossible, though: buffer over-
flows, for example, have been used as
a method of exploit as far back as the
1970s. Only recently has the com-
munity taken them seriously or even
taken efforts to eradicate them.
Slowly, we’ll do the same with such
vulnerabilities as SQL injection and
cross-site scripting. Readers of this
special issue will get to see some of
the current best practices—with the
Web’s fast-paced nature, within a
year or two we should see an entirely
different environment.

Mike Andrews is a senior consultant at
Foundstone, specializing in software secu-
rity with a main focus on Web-based sys-
tems. He has a PhD in computer science
from the University of Kent at Canterbury,
UK. He is the coauthor of How to Break
Web Software (Addison-Wesley, 2006).
Contact him at mike.andrews@found
stone.com.

Figure 1. (a) Breakdown of disclosed vulnerabilities by software type in May 2006, and (b)
current vulnerability types disclosed in Web-based applications. (SOURCE: SECURITYFOCUS.COM)

Application
30%

Web
61% Operating

system
9%

Authorization
8%

File/code
includes

23%

(a) (b)

Information
disclosure

8%SQL
injection

23%

Cross-site
scripting

38%

