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Abstract: Robust state estimation for a subclass of nonlinear systems is considered in this paper through a 

comparison of two methodologies. The comparison is based on modus operandi complexity, calculation 

time and interval observation quality. The first approach is based on a fundamental property of flat 

systems which states that the state of the system can be written as a function of the so-called flat outputs 

and their derivatives up to some order. Moreover, it is only assumed that the measurement noise and the 

disturbances are bounded without any additional information such as stationarity, uncorrelation or type of 

probabilistic distribution. Therefore, the interval state estimation is expressed as a set inversion problem 

which is solved using interval analysis. The second approach is based on coordinate transformation in 

order to obtain a partially linear cooperative presentation of the nonlinear system for which a closed-loop 

interval observer is designed. Both methods ensure to enclose the set of system states that is consistent 

with the model and the measurement noise bounds. The performance of each technique is discussed. 

Numerical examples are given throughout the paper to illustrate the performances of the proposed 

techniques.  

Keywords: Set-membership, state estimation, Set Inversion, Constraint Satisfaction Problem (CSP)  

        Interval Observer, Cooperativity, Exact Linearization.       

 

1. INTRODUCTION 

Since the precursor work reported in (Schweppe [1973]), 

many set-membership techniques for state estimation have 

been widely investigated to deal with approximate model 

structures and limited precision of computers; see (Alamo et 

al. [2008]) for a survey. Most of the literature is related to 

linear systems, and very few results are available to deal with 

nonlinear and changing dynamics ones. Usually, the 

admissible set of the state vector is approximated by several 

types of geometrical forms such as ellipsoids (Chernousko 

[2005]), zonotopes (Alamo et al. [2005]) or intervals (Jaulin 

[2009], Raïssi [2004]), whether the model is linear or not. 

This approach is basically different from the technique based 

on classical observers theory since the interval observers 

provide guaranteed lower and upper bounds for the estimate 

at any instant. 

In is paper, set-membership state estimation is investigated 

for an important subclass of nonlinear systems, the so-called 

flat systems; see (Fliess et al [1992]). Flatness property offers 

an easy way to parameterize the dynamical behavior of a 

system using “flat outputs”. Consider a nonlinear system 

described by: ��� � ���� � 	���. �� � 
���                   �            �1� 
where � � �� is the state vector and the initial state belongs to 

a compact set ���� � ���, ���. � � � and � � � are 

respectively the measurement and the input. Without any loss 

of generality only Single Input Single Output (SISO) systems 

are considered here. Finally, �: � � �� � �� and 

	:� x � � �! are two smooth vector fields and 
:�! � �  

is a smooth map. 

This paper presents two different approaches for robust state 

estimation of flat systems: Constraint Satisfaction based 

approach and Closed Loop Interval Observer. The first 

approach consists in formulating the state estimation into a 

Constraint Satisfaction Problem (CSP) where the state vector 

constitutes the variables set and a mapping, relating the state 

to the flat outputs and their derivatives is taken as the 

constraints. Branch and prune algorithms (Goldsztejn [2006], 

Benhamou and Granvilliers [2006], Neumaier [2004]), based 

on consistency, are used to compute an outer approximation 

of the solution set of the CSP.  The second approach has been 

introduced initially in (Gouzé et al. [2000], Bernard and 

Gouzé [2004], Moisan et al. [2009]) for a subclass of 

nonlinear systems described by  �� � "� � #�. �                                                                    �2� 
where the nonlinearity is captured in the function #�. � which 

depends on the output and/or the state vectors. The observer 

gain is chosen such that the observation error is cooperative 

(Smith [1995]). In this case, two suitable point observers are 

designed to compute a lower and an upper bound for the 

domain of the state vector. This approach has been extended 

in (Raïssi et al. [2010]) to a large class of nonlinear systems 

based on a LPV (Linear Parameter-Varying) transformation 

of the original nonlinear model. The main limitation of the 

interval observers proposed in (Gouzé et al. [2000]) is that 

most of nonlinear systems cannot be described by �2�. In this 

paper, we will show that such a drawback could be avoided 

for flat systems through a nonlinear change of coordinates 
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based on the Exact Linearization (Isidori [1985]). 

Nevertheless, the methods proposed in (Gouzé et al. [2000]) 

cannot be applied for the obtained linear form. Thereby, a 

second change of coordinates is necessary in order to obtain 

an interval observer. Note that the convergence of both 

bounds can be tuned such that the estimated interval width 

tends to zero in the ideal case or, at least, tends to a small 

value for practical cases. This approach is fundamentally 

different from the first one since the convergence of CSP-

based estimators depends only on the tolerance chosen for the 

branch and prune algorithm. In addition, the evaluation of the 

derivatives of the flat outputs up to a given order is needed 

for CSP observers. 

The paper is structured as follows. Section 2 recalls the basic 

definitions for nonlinear observability, flatness notions and 

interval analysis. In section 3, the CSP observer technique is 

detailed and illustrated through an example that will also be 

used in section 4 to support the closed-loop interval observer 

approach. The performance of both methods is discussed and 

finally some concluding remarks are given.  

2. PRELIMINARIES 

Flatness and observability 

Definition 2.1 (Rouchon [2008]): System �1� is said to be 

flat with a flat output �  if and only if one can describe the 

system states and input  ��, �� only from the flat output and a 

finite number of its derivatives, i.e.: � � %&�, �� , … , �� �( )*+  � � ,��, �� , … , �� -.��        �3� 
where % and , are respectively a smooth vector field and a 

map. A system is also said to be flat if its relative degree 0 � *, (Waldherr et al. [2007]). 

Definition 2.2 (Hedrick and Girard [2005]): Nonlinear 

observability is intimately tied to the Lie derivative. The Lie 

derivative is the derivative of a scalar function along a vector 

field. 

Let �: �!  � �! be a vector field in �! and 
: �!  � � a 

smooth scalar function. Then the Lie derivative of 
 with 

respect to � is: 1�
 � 2
. � � 3435 . � � ∑ 34378 . �9!:;.            �4� 
With 1�=
 �  
, and  1�>
 � 1�1�>?.
�. 
System �1� is said to be locally observable if and only if the 

following rank condition is fulfilled: +@A B,C)* D
���, +1�
���, … , +1��!?.�
���EF � *         �5� 
where * is the system dimension. 

From its definition, a flat system is obviously observable. 

 
Interval tools 

A real interval �)�  �  �), )� is a connected and closed subset 

of �. The set of all real intervals of � is denoted by H�. Real 

arithmetic operations are extended to intervals (see Moore 

[1966], Hansen [2004]). Consider an operation  o J  K�;M; N; /P and �)�, �Q� two intervals, then: �)�R�Q�  �  KS R � | S J �)�, � J  �Q�P. 
The width of an interval �)� is defined by U�)�  �  ) M ) and 

its midpoint by A@+�)�  �  �)  � )�/2. 

 

Inclusion functions 

Let �: �!  � �V; the range of the function � over an interval 

vector [x] is given by: � �����  �  K� ��� | � J  ���P  
An interval function ���: �!  � �V is an inclusion function 

for �  if: W��� J  H�! , � ����� �  �� ������. 
An inclusion function of � could be obtained by replacing 

each occurrence of a real variable by its corresponding 

interval and by replacing each standard function by its 

interval evaluation. Such a function is called the natural 

inclusion function. In practice, the inclusion function is not 

unique and depends on the formal expression of  . When the 

manipulated intervals are not large, the centered form could 

give better results than the natural one. 

We can now present the first state estimation technique based 

on Constraint Satisfaction applied to flat systems.  Since the 

derivatives of the flat output are required, a High Order 

Sliding Mode differentiator is used in the sequel because of 

its robustness properties (Levant [1998]). 

3. CONSTRAINT SATISFACTION BASED OBSERVER 

The numerical observer presented in this section is based on 

the form �3� which can be rewritten as (Jaulin et al. [2009]): 

 X � &�, ��.�, … , �� �(Y � Z�[� � \��S, ��Y�         �6� 
The function Z can be obtained by successive derivatives of 

the flat output with respect to time. The goal is to estimate the 

state vector � based on the expression �6� at the sampling 

times _̂. Denote respectively by `a , ba , the domains of � and X at _̂. Note that if no prior information about the domain of � is available, we can select `a �� M ∞,�∞�. Thus, the state 

estimation method consists in computing all the values of � 

satisfying:  

dXa � Z�&�a, �_(e�Xa f ba                            �a f `a                   �              �7�  
The system �7� is called a Constraint Satisfaction Problem 

(CSP). The idea is to remove parts of the search domain `a 
for the model states that are inconsistent with the measured 

data � and their derivatives up to order C. 

The ideal case is to keep only the values that are consistent 

with the data. However, this task is harder and we look only 

for an enclosure of the solution set. Denote by ha the searched 

solution set at _̂. An outer enclosure of ha could be computed 

by interval analysis. The idea is to use an interval narrowing 

operator (or a contractor) i that reduces the size of the search 

domain `a. This operator removes some parts from `a that do 

not contain a solution for �7�. It satisfies the soundness and 

completeness properties (Neumaier [2004]): i�`a�  �  `a and 

C�`a� j ha  �  `a  j ha. 
Most narrowing operators use interval propagation 

techniques that are based on an interval extension of the local 

Waltz filtering (Waltz [1972, 1975], Chun [1999]). Usually, 

the narrowing process is not optimal and the contracted set `ak l i�`a� still contains inconsistent values. In such a case, 

the domain `ak is split along its widest side. Both halves are 

then subjected to the same narrowing process. This procedure 

ends when the generated domains have reached a smallest 

tolerable size m fixed by the user. Finally, a list hna containing 

consistent state boxes is obtained; it satisfies: ha � hna. Since 
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the map Z is assumed to be smooth, the enclosure hna converges towards the exact solution set ha when the 

tolerance m tends to 0 which means that the convergence of 

the observer is governed by m. Furthermore, the estimator 

requires the evaluation of the derivatives up to an order C of 

the noisy measurements. This task is achieved in this paper 

using a High Order Sliding Mode (HOSM) differentiator. 

Besides the control context, sliding mode techniques are also 

used for observation, fault detection (Rolink et al. [2006]) 

and differentiation (Levant [1998, 2001]). Let ��^� be the 

signal to be differentiated and o=, o. … o! some estimates for 

the signal ��^� and its derivatives. ��^� � �=�^� � p�^� and p�^� is a bounded Lebesgue-measurable noise with unknown 

features and an unknown base signal �=�^� with the nth 

derivative having a known Lipschitz constant C > 0. The n
th
-

order HOSM differentiator is given by: 

qrr
rrs
rrr
rto�= � u=, u= � Mv=|o= M ��^�| !!-. ,@w*&o= M ��^�( � o.                 o�. � u.,  u. � Mv.|o. M u=|!?.!  ,@w*�o. M u=� � ox                         …o�: � u: ,  u: � Mv:|o: M  u:?.| !?:!8-. ,@w*�o: M  u:?.�       �8�           �o:-.                                       …o�!?. � u!?.,                                                                                                 u!?. � Mv!?.|o!?. M  u!?x|.x,@w*�o!?. M  u!?x� � o!                  o�! � Mv!,@w*�o! M u!?.�                                                                     

� 

Coming back to the problem at hand, the main assumption in 

this paper is that the measurement error p is bounded with a 

prior known bound  p. Thus, �  domain is given by: � z ��V M p, �V � p� 
where �V  is the measurement. The derivatives are estimated 

via the n
th

-order HOSM differentiator �8�.  It has been proved 

in (Levant [2001]) that the i
th

 derivative best estimate 

accuracy is proportional to ){{ � |: . i 8}~�. p �}~��8}~� � , @ �0, … , *  when the Lipschitz constant of the n
th

 derivative of 

the clear-off-noise signal is bounded by a certain constant i 

and |: � 1. Hence, the derivative domain is: ��:�z ������:� M){{, �����:� � ){{� where �����:�  is the derivative estimate. For 

easy reference, the main steps of the state estimation are 

summarized in the following algorithm. 

 AlgorithmAlgorithmAlgorithmAlgorithm CSP Estimator �Inputs: ��^:�, i�1..N, I.D*I.D*I.D*I.D*: �����     1. Flatness modeling �eq. 6� 2. For i�1 to N do,  Estimate the derivatives �� �, q�1,2..p �eq. 8�  Estimate the bound acc and construct the   domains of ��^:� and ��:��^:�  Solve CSP to obtain ���^:�� �eq. 7� * I.D: Initial search Domain 
 Example 

The CSP observer methodology is illustrated through a 

numerical example. Consider the following system: 

 d S�. � p7¤�         S�x � S. � p7¤�S�¥ � S. M Sx     � � S¥                 
�              �9� 

The goal is to estimate  S. and Sx. 
Step 1. It is easy to prove that: 

qrs
rtS. � MS§¥ � M�§                                   Sx � M�S§¥ � S�¥� � M��§ � ���          S¥ � �                                                   � � 7���¨¤ � M 7©ª��� §̈ ª~ �̈ ª� � M «©���¬§ ~¬� �

�        �10� 
which means that the system �9� is flat. 

Step 2. A third order HOSM differentiator is used to estimate 

the first and second derivatives of the output �. The second 

derivative Lipschitz constant i is taken as i=1 (the 

measurable output function is a cosine function) and |: �| � 1.1 � 1 . 
qs
t o�= � u=, u= � M3i.¥|o= M ��^�|x¥,@w*&o= M ��^�( � o.    o�. � u.,  u. � M1.5i.x|o. M u=|.x,@w*�o. M u=� � ox         o�x � M1.1i,@w*�ox M u.�                                                          

� 
Since  S¥ is the measured flat output, we do not need to 

estimate it and its estimate enclosure is given by  �o= Mp, o= � p�, where p � 0.001  and o= is the measurement 

estimate. The expression of S. is simple and derives from the 

flat output second derivative: S. � M�§ . 
Based on the accuracy ){{ expression, @ � 2 here, we have: ){{x � 1.1 N �0.001�¤~��¤¤~� �  0.11  and   S­. � �M�§®� z �Mox M ){{x, Mox � ){{x�. 
The first derivative of � � S¥  is also necessary to estimate Sx  

using the expression Sx � M��§ � ���, thus: 

){{. � 1.1 N �0.001�¤~���¤~� � 0.011  

which means that: ��® z �o. M ){{., o. � ){{.�. 
Finally, the system �10� can be rewritten as: ��,  �� ,  �§ �Y � � S¥, S. M Sx, MS.�Y         �11�             
The prior search domain for  S. and Sx is: 

 ��S.=�, �Sx=��Y � ��M2, 2�, �M2, 2��Y  
and assume that the tolerance is chosen as: m � 0.2. 

 

Figure 1.a: The bounds of  S. estimated by the CSP observer 
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Figure 1.b: The bounds of Sx estimated by the CSP observer 

The bounds of the state variables are plotted in figures 1.a 

and 1.b. The set-membership approach ensures that the actual 

trajectory belongs to the estimated bounds. In addition, the 

signal domain thickness is an indicator of the estimation 

quality. The convergence of this observer is ensured by the 

tolerance m, that increases the computation time. What can be 

an alternative to this problem is the design of an interval 

observer. 

4. CLOSED-LOOP INTERVAL OBSERVER 

4.1 Partial linear formulation 

 

The idea here is to linearize the system (1) in order to design 

an observer with a linear observation error. Several 

linearization approaches exist among which Exact 

Linearization Via Feeback (Isidori [1985]).  

Suppose that (1) has a relative degree 0 � * at the 

neighborhood of a point � � �¯. Then, as shown in (Isidori 

[1985]), the change of coordinates � � %��� defined by: 

%��� � °±.���±x���…±!���² � ³́́
µ 
���1�
���…1�!?.
���¶··̧ � X         �12� 

transforms the nonlinear system �1� into a partially linear one 

described by: 

 
qrs
rt o�. � oxo�x � o¥…o�!?. � o!o�! � Q�X� � )�X��� � o.

� � ¹X� � "X � º =»¼�X�½ � D =»¾�X�E �� � iX �     �13� 

where " �
¿
ÀÁ
0 1 0 … 0»»»0

0»»0
10»0

…ÂÂ…
0»10Ã
ÄÅ and i � �1 0 …0�.  Moreover, 

X¯ � ±��¯� and at all X in the neighborhood of ÆÇ, the function )�X� is nonzero. Note that the linearization �13� is ensured 

by the following lemma.  

Lemma 4.1 (Isidori [1985]): The State Space Exact 

Linearization problem is solvable if and only if there exists a 

neighborhood È of �¯ and a real-valued function É���, 
defined on È such that the system 

��� � ���� � 	���. �� � É���                   �           �14� 
has a relative degree * at �¯. 
This lemma ensures that flat systems could be transformed 

into a partial linear form that simplifies the design of 

nonlinear observers. Once the system is transformed into �13�, the second issue is about designing an interval observer 

with two bounds described by two similar dynamical 

systems. Basically, the proposed observer will be a 

Luenberger-like one with the gain Ê as a tunning parameter 

for the convergence.  

4.2 Interval observer design 

In the following, two Luenberger-based observers are 

designed based on the partial linear form �13� to estimate 

reliable lower and upper bounds for the actual state trajectory 

of �1�. Firstly, let us recall some results which will be useful 

to introduce the main result summarized in the proposition 

4.4. 

Definition 4.2.1 Given a system described by �1� where the 

initial state ��  belongs to ���, ���, @. p. �� Ë �� Ë ��Ì, for 

which the system has bounded solutions. 

A dynamical system described by: 

¹&�, �(Y � ÍÎ&�, �, ^(              Ï��^=�, ��^=�ÐY � ���, ���Y �                         �15� 
where ÍÎ is a smooth vector field, is called an interval 

observer for (1) if: 

1.   there exists a solution for �15� for all ^ �  0; 

2. for any initial condition satisfying�� Ë �� Ë ��, the 

solution of �15� verifies: M∞ Ñ ��^� Ë ��^� Ë ��^� Ñ �∞. 

Usually, the design of �15� is based on the theory of 

cooperative systems which are recalled in the following 

definition. 

Definition 4.2.2 (Smith [1995]): A dynamical nonlinear 

system described by �� � ���� is said to be cooperative over a 

domain ��� if all off-diagonal terms of f Jacobian matrix are 

non-negative over ���, ie: 3378 �_��� � 0        W  @ Ò Ó, ^ � 0  ��Ô� J ���        �16� 
For linear systems, �16� leads to the following proposition: 

Proposition 4.3 (Gouzé et al [2000])  

Given a linear system of the form: �� � "� � É�^�;    ���� � ��           �17� 
where " is cooperative �):_ � 0, @ Ò Ó� and É�^� � 0.If �� � � then ��Ô� � �, W ^ � 0. 
In the following, assume that the maps )�. � and Q�. � are 

Lipschitz continuous which constitutes a standard assumption 

in classical observers design (Aboky et al. [2002]). Moreover, 

by the definition of flat systems the system �13� is 

observable. Then, there exists a gain L such that: X­�  �  �" M  Êi�X­  �  )�X­�� �  Q�X­�  �  Ê�        �18� 
is a classical (point) observer for �13�. Furthermore, by 

assumption, the functions ) and Q are assumed bounded, then 

the equation �18� could be rewritten as: X­�  �  "Õ X­  �  U                                                                 �19� 
where "Õ � " M Êi )*+ U �  )�X­�� �  Q�X­� �  Ê�. 
Satisfying simultaneously both stability and cooperativity for 

the matrix "Õ is quite unfeasible with the same gain L in the z 
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basis. Therefore, the interval observer proposed in (Mazenc 

and Bernard [2010]) for Linear-Time Invariant systems could 

be extended to flat systems using �19�. A new change of 

coordinates is then performed in order to work in a basis Ö 
offering  stability and the cooperativity property to the system 

(19). This is done via the jordanization of the matrix "Õ . 
Finally, the proposed interval observer is given in the 

following proposition: 

Proposition 4.4: 

Consider the linear time-invariant change of coordinates 

defined by: Ö � ×X  and Ø � ×"Õ×?., where × is the 

transition matrix. It then transforms the system (19) into the 

cooperative system:  

qrs
rtÖ�- � ØÖ- � �×[�-     Ö�? � ØÖ? � �×[�?     ÖÙ- � max�×�XÙ?, XÙ-��ÖÙ? � min�×�XÙ?, XÙ-��

�                        �20� 
where Ö-and Ö? are respectively the lower and the upper 

bounds of the state vector in the Ö basis.  

The bounds of X and � would then be derived from an 

interval evaluation of the maps ×?.Ö and %?Ì�X� using 

interval analysis. 

 

Proof: It takes two steps to prove that �20� is an interval 

observer for �1�. We must first prove the error positivity and 

then establish the convergence.  

Step 1. Since )�. � and Q�. � are assumed bounded, we can 

write: )&X, X( Ë )�X� Ë )&X, X( and Q&X, X( Ë Q�X� ËQ&X, X( and consequently w is also bounded and Lipschitz 

continuous. Thus, one can write in the Ö basis: 

 �×[�? Ë �×[� Ë �×[�-.         �21� 
Denote by ÖÚ- � Ö- M Ö and ÖÚ? � Ö? M Ö respectively the 

upper and the lower error. The aim is to prove that ÖÚ- � � 

and  ÖÚ? Ë � at any time t. The dynamics of Ö- is described 

by: ÖÚ-� � Ø. ÖÚ- � �×[�- M �×[�         �22� 
From �21� one can easily deduce that ��×[�- M �×[�� is 

always positive and the matrix Ø cooperativity ensures the 

positivity of  ÖÚ-.  A similar methodology leads to the 

negativity of the lower bound. 

Step 2. Since a(.) and b(.) are assumed to be Lipschitz 

continuous and bounded functions, there exists Û z �-!  such 

that �×U�- M �×U� Ë Û W^ � 0. Furthermore, the gain L is 

chosen such that the matrix J  is cooperative and stable. Thus, 

based on the lemma 1 in (Moisan and Bernard [2006]), the 

observation error (18) admits an upper bound MØ?.Û. 
 

Example 

Consider again the system �9� and assume that � � M xÜÝ� ����¨¤ .  

For simulation purposes, the initial conditions have been 

chosen as:  �S.=, Sx=, S¥=   �Y � �1, 1, 1�Y. 

Flatness has already been proved and this property implies a 

relative degree 0 � * � 3. Subsequently, we can proceed to 

the linearization step with the following change of 

coordinates: 

¹ o. � 
��� � S¥               ox � 1�
��� � S. M Sx  o¥ � 1�x
��� � MS.        �         �27� 

This implies that the state space representation �13� is 

defined by the matrices: " � º0 1 000 00 10½ , i � �1  0  0� 
and a “conventional observer” could be built as: � X­� � �" M Êi�X­ � ¼�X­� � ¾�X­�. � �  Ê�                                  �­ � iX­                                                                                              � 
where the gain Ê � �Þ., Þx, Þ¥�Ô is computed via the following 

pole assignment: ß � �M1,M2,M4�Y . 
The interval observer is designed based on �20� where the 

initial conditions can be deduced from the last two lines of �20� with: X� � ��0.8, 1.2�, �M0.2, 0.2�, �M1.2, M0.8��Y  
The main assumption on the bounds is: p � 0.001. 
Moreover, gaussian noise (CRUp0 � 1p M 4) is added to the 

measurement. 

 
Figure 2.a: The actual value of  S. and estimated bounds 

 

Figure 2.b: The actual value of  Sx and estimated bounds 

 

From figures 2.a and 2.b, it can be seen the pessimism 

induced by this method. Actually, it is more important than in 

figures 1.a and 1.b because of the two extra steps (reciprocal 

function to get X from Ö and reciprocal function to get � from X) between the interval observer in the second basis (Ö� and 

the estimates in the original basis (�). 

5.  CONCLUDING REMARKS 

Robust state estimation for flat systems has been studied in 

this paper through two set-membership methods: Constraint 

Satisfaction based Observer and Interval Observer. It is 

shown that as far as we restrict the study to flat systems, the 

first method gives better estimation performance; the price to 

pay is higher computational time. Actually this computing 

time increases exponentially with the state dimension, in 

addition the number of bisections also increases with the 

tolerated precision, i.e when m  becomes small. The Interval 

Observer method also offers interesting results and requires 
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less computation time however the major problem remains 

the choice of the observer gain L. In this paper, this choice 

was made after several trials without any analytic analysis. 

Finally, this study only deals with systems having a relative 

degree 0 �  *. To avoid this restriction, for the Interval 

Observer method, the linearization could be performed using 

techniques such as System Immersion (SI) or Dynamic 

Observer Error Linearization (DOEL) (Back et al. [2006.a, 

2006.b]). Note that the Constraint Satisfaction based observer 

technique can also be used but it becomes harder to 

implement since the flatness property is no longer preserved. 

 

References: 
Aboky C., Sallet G., Vivalda, J.C. (2002). Observers for  Lipschitz 

 nonlinear systems. International Journal of Control 75, 

 204-212. 

Alamo T., Bravo J. M. Redondo, M. J. and Camacho E. F. (2005). 

 Guaranteed state  estimation by zonotopes. Automatica 

 41, 1035-1043. 

Alamo T., Bravo J. M. and Camacho E. F. (2008). A set-

 membership state estimation based on DC programming.  

 Automatica 44(1), 2216-224. 

Back, J., Seo, J. H. (2006.a). An algorithm for system immersion 

 into a nonlinear observer form: SISO case. Automatica 42, 

 321-328. 

Back, J., Yub, K. T., Seo, J. H. (2006.b). Dynamic observer error 

 linearization. Automatica 42 (2006) 2195 – 2200 

Benhamou, F. and Granvilliers, L. (2006). Continuous and 

 interval  constraints. In P. van Beek F. Rossi and 

 T.Walsh.  Handbook of constraint programming, 571-604. 

 Elsevier. 

Bernard, O., Gouzé J. L. (2004). Closed loop observers for uncertain 

 biotechnological models. Journal of Process Control, 

 14(7), 765-774. 

Chernousko, F. L. (2005). Ellipsoidal state estimation for dynamic 

 systems. Nonlinear Analysis 63(5-7), 872-879. 

Chun, A. H. W. (1999). Waltz filtering in java with JSolver. 

 Proceedings of PA Java99, The Practical Application of 

 Java, London, UK. 

Fliess, M., Lévine, J., Martin P., Rouchon P. (1992). Sur les 

 systèmes non linéaires différentiellement plats. Elsevier, 

 Paris, FR. 

Fogel, E. and Huang, Y. H. (1982). On the value of information in 

 system identification–bounded noise case. Automatica 

 18(2), 229 - 238. 

Goldsztejn, A. (2006). A branch and prune algorithm for the 

 approximation of non-linear AE-solution sets. 

 Proceedings of the 2006 ACM Symposium on Applied 

 Computing. Dijon, FRANCE. 

Gouzé, J. L, Rapaport, A., Hadj-Sadok, M. Z.  (2000). Interval 

 observers for uncertain biological systems. Elsevier 

 Ecological Modelling 133, 45-56. 

Hansen, R. E. (2004). Global optimization using interval analysis, 

 second edition. CRC. 

Hedrick, J. K and Girard, A. (2005). Control of nonlinear dynamic 

 systems: Theory and applications. Controllability and 

 observability of Nonlinear Systems. 

Isidori, A. (1985, 1989). Nonlinear control systems. 156- 172. 

 Pringer-Verlag, Berlin, DE. 

Jaulin, L. (2009). Interval contractors and their  applications. Ecole 

 JN-MACS. 

Jaulin, L., Sliwka, J., Le Bars F., Xiao, K. (2009). Combining 

 flatness  with of interval analysis for state estimation. 

 Journée  MEA Paris. 

Levant, A. (1998). Robust exact differentiation via sliding mode 

 technique. Automatica 34(3), 379-384. 

Levant, A. (2001). Higher order sliding modes and arbitrary-order 

 exact robust differentiation. Proceedings of the European 

 Control Conference. 

Mazenc, F., Bernard, O.(2010). Time-varying interval observers for 

 linear systems with additive disturbances. 8th IFAC 

 Symposium on Nonlinear Control Systems. Bologna, 

 Italy. 

Milanese, M., Norton, J., Piet-Lahanier, H., and Walter E. (1996). 

 Bounding approaches to system identification. Plenum, 

 New York. 

Moisan, M., Bernard O. (2006). Robust interval observers  for 

 uncertain chaotic systems. In 45th IEEE Conference on 

 Decision and Control, San Diego, USA. 

Moisan, M., Bernard, O., Gouzé, J. L. (2009). Near optimal interval 

 observers bundle for uncertain bioreactors. Automatica 

 45(01), 291-295. 

Moore, R. E. (1966). Interval analysis. Prentice Hall, Englewood 

 Cliffs, NJ, USA. 

Neumaier, A. (2004). Complete Search in Continuous Global 

 Optimization and Constraint Satisfaction. Acta Numerica. 

 Cambridge: University Press. 

Raïssi, T., Ramdani, N, Candeau, Y. (2004).Set membership state 

 and parameter estimation for systems described by non-

 linear differential equations. Automatica,40(10),1771 -

 1777. 

Raïssi, T. (2004). Méthodes ensemblistes pour l’estimation d’état et 

 de paramètres. PhD thesis. 

Raïssi, T., Videau, G. and Zolghadri, A. (2010).Interval observer 

 design for consistency checks of nonlinear continuous-

 time systems. Automatica 46(3), 518-524. 

Rolink, M., Boukhobza, T., Sauter, D. (2006). High order  sliding 

 mode observer for fault actuator estimation and its 

 application to the three tanks benchmark. 

Rouchon, P. (2008). Systèmes différentiellement plats. JNCF,   

    CIRM. 

Schweppe, F. (1973). Uncertain dynamic systems: modelling, 

 estimation, hypothesis testing, identification and control. 

 Prentice Hall, Englewood  Cliffs, NJ, USA. 

Smith, H. L. (1995). Monotone dynamical systems: an introduction 

 to the theory of competitive and cooperative systems. 

 Mathematical surveys and monographs 41. Providence, 

 RI. 

Vasiljevic, L. K., Khalil, H. K. (2008). Error bounds in 

 differentiation of noisy signals by high-gain 

 observers. Elsevier, Systems & Control Letters 57, 

 856–862. 

Waldherr S., Zeitz M., (2007). Conditions for the existence of 

 a flat input. Unpublished version, International  Journal 

 of Control. 

Waltz, D. L. (1972). Generating semantic descriptions from 

 drawings  of scenes with shadows. Technical Report, AI-

 TR-271, MIT Artificial Intelligence Laboratory, 

 Cambridge, MA. 

Waltz, D. L. (1975). Understanding line drawings of scenes with 

 shadows. In The Psychology of Computer Vision, 

 McGraw-Hill, 19-91. 

 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7455


