
Formal Methods for Broadband and MultimediaSystemsStefan Fischer aa University of Montr�eal, DIRO, C.P. 6128, succ. Centre-Ville, Montr�eal, (PQ)H3C 3J7, CANADA, Email: �scher@iro.umontreal.caStefan Leue bb Electrical and Computer Engineering, University of Waterloo, Waterloo,Ontario N2L 3G1, CANADA, Email: sleue@swen.uwaterloo.caThe proper capture of desired system properties is a pivotal step in pro-viding high quality systems. The formal speci�cation of these properties isnecessary to provide unambiguous documentation as well as automatedtransformation of system requirements during all stages of the life cy-cle. The standardized Formal Description Techniques (FDTs) Estelle andSDL have proved useful for the speci�cation of traditional protocols anddistributed systems. With the availability of high-speed networks new ap-plications with additional requirements and characteristics are becomingreality. These requirements are often referred to as Quality of Service(QoS) requirements. We show that the above mentioned FDTs do notpossess the expressiveness to capture important classes of QoS require-ments, namely quantitative deterministic real-time-related properties. Itis the purpose of this paper to exemplify steps that need to be taken inorder to overcome this de�cit.We �rst discuss choices that need to be made when designing a suitablereal-time execution model for SDL and Estelle and proceed to present tworemedies to the inexpressiveness problem: First, we introduce the con-cept of complementary real-time speci�cation by reconciling the semanticmodels of Metric Temporal Logic and SDL and showing how both lan-guages can be used in a complementary fashion. Second, we suggest a lan-guage extension and the corresponding semantic interpretation for Estelle.While we present examples from the domain of multimedia and broad-band systems, the applicability of our speci�cation methods extends tohard real-time systems. Finally, we discuss extensions of our techniques tocapture QoS stochastic properties, and we allude to formal requirementsveri�cation and automatic implementation based on our techniques.

http://www.sciencedirect.com/science/journal/01697552
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65121
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6512/

1 IntroductionThe speci�cation of requirements on the observable behavior of distributed,communicating real-time system is an important step in the engineering ofthese systems. Requirements speci�cations help avoiding inconsistencies inthe requirements, they are the basis for deriving correct system designs, theyare essential in establishing the system's correctness by serving as a basis fortesting and formal veri�cation, and they are important in the documentationof system requirements. [20] suggests that proper requirements engineering, ofwhich requirements speci�cation is an important step, is pivotal in avoidingpitfalls of what is called the `software crisis'. Facets of the software crisisinclude systems that have low reliability or even unusability at time of deliveryto the customer, and software projects that exceed budget limits and projectdeadlines. [20] argues that the cost of repairing a bug due to a falsely statedrequirement at the maintenance stage of the system's life cycle is about 200times higher than the cost of repair at the requirements speci�cation stage.The complexity of software projects in the area of embedded real-time andtelecommunications systems calls for automated tool support. This can onlybe provided if the underlying engineering methods have a formal foundation.Formal Description Techniques (FDTs) like Estelle [38] and SDL [40] havebeen successfully applied to the speci�cation of `traditional' communicationprotocols, services and network applications. With the deployment of high-speed networks such as ATM [27] new distributed applications with a newset of characteristics have emerged. This leads to new requirements on thecommunication subsystems: while in traditional systems the notion of systemcorrectness is de�ned in terms of the functional correct ordering of externallyobservable events, the new type of systems is deemed correct in case it abidesto the functional correctness as well as a set of quantitative characteristics,frequently called quantitative Quality of Service (QoS) characteristics. We con-jecture that the high-speed and multimedia systems that are currently beingdeveloped are largely software driven, which is why our methods are relevantto the engineering of these systems.Distributed multimedia systems are an important example for the emergingclass of applications. For these systems requirements on a single media stream(e.g. throughput, delay and delay jitter) and on multiple streams (e.g. streamsynchronization) have to be taken into account. These requirements are largelyrelated to timing aspects in the system, which is why we limit the discussionof QoS characteristics to real-time related properties. The relevance of QoSrequirements is not restricted to services and protocols in individual layersof the communication subsystem. QoS requirements also apply to end-to-endconnections and to application-user interfaces, and our speci�cation methodshall be general enough to accommodate all of these application areas.1

In this paper we will focus on the standardized FDTs Estelle and SDL thatenjoy a high degree of acceptance within the telecommunications engineer-ing community. Both are based on the paradigm of extended, communicating�nite state machines. Both have textual syntaxes and semi-formally de�nedstandardized semantics. In addition, SDL has a graphical syntax and it enjoyssupport by a wide range of industrial-strength CASE tools. It is therefore ofgreat importance that the various QoS requirements can be adequately ex-pressed in the chosen formalism, and hence that these formalisms have anadequate expressiveness to account for real-time phenomena.The standardized versions of both techniques provide asynchronous timer-based real-time concepts. As we will show these concepts are not suitable toexpress the real-time related QoS characteristics that we alluded to. We shalltherefore develop extended notations and their formal semantics that allowfor expressing the required characteristics. For Estelle we de�ne a real-timelanguage extension (called Real-Time Estelle), while we show for SDL howSDL speci�cations can be complemented by real-time temporal logic formulas(we call this approach SDL/MTL).Paper organization: In Section 2 we survey related work, especially ap-proaches towards extending formal speci�cation techniques by real-time ex-pressiveness. In Section 3 we introduce the QoS-related terminology, in par-ticular as far as the relevant ISO standard is concerned, and identify `typical'real-time related QoS parameters for various components of broadband andmultimedia systems. In Section 4 we argue for the inexpressiveness of stan-dard Estelle and SDL with respect to real-time properties. We next present ourapproaches to adding real-time expressiveness to both languages. We �rst in-troduce a general state-transition based model for timed systems in Section 5.SDL/MTL will then be presented in Section 6, followed by Real-Time Estellein Section 7. To show the applicability of both approaches to QoS require-ment speci�cation we give examples in Section 8. Finally, Section 9 concludesthe paper with a comparison of the approaches, perspectives for veri�cation,automatic implementation and the incorporation of stochastic expressiveness.Precursors of this work have appeared in [26], which introduces Real-TimeEstelle, and in [52,53] in which the SDL based approach was �rst presented.2 Related WorkBasic models. Many of the existing models used to specify functional sys-tem behavior operational techniques such as automata, Petri nets, process2

algebra, and descriptive techniques like logics have been enriched by meansto express non-functional real-time properties. The work of [3], [35], [64] and[57] is based on variants of timed automata. Time restrictions are introducedby labeling transitions or states of extended �nite state machines with timelimits, clocks and time variables. An upper bound u and a lower bound l isassigned to each transition of the timed automaton. Once enabled, the tran-sition may be executed not sooner than l and not later than u time unitsafter the enabling. Similar conditions for the enabling of transitions can beformulated referring to the values of time variables. These are model-theoretictechniques in that they distinguish all execution sequences of a system intothose that satisfy the timing constraints (the \good" ones), and those thatdo not satisfy them (the \bad" ones). Only those systems that can only re-veal \good" execution sequences implement the speci�cation. Similar timedextensions have been de�ned for Petri Nets, see Time Petri Nets [59], ObjectComposition Petri Nets [54] and Time Stream Petri Nets [67]. There have alsobeen numerous real-time extensions to process algebras, see for example [61]and [63,51,19]. A process algebra-based QoS speci�cation language based onthe FDT LOTOS has been proposed in [9 11]. We note that as of the timeof writing state-transition based speci�cation methods dominate in the areaof practical telecommunications systems engineering, which is why we adhereto these techniques and do not pursue Petri net and process algebra basedapproaches.Temporal logics are the descriptive counterpart to specifying state transitionsystems by automata [58,47,28]. Temporal logics specify qualitative temporalrelationships between states. A program satis�es a temporal logic speci�ca-tions if all of its execution state sequences satisfy these temporal relations. Ascan be expected, extensions have been introduced to augment temporal logicswith constructs that specify quantitative real-time relations between states.Examples are Metric Temporal Logic (MTL) [44] and Quality of Service Tem-poral Logic QTL [9 11] that use real-time interval annotations to the temporaloperators, and techniques introducing explicit timer variables as in Real-TimeTemporal Logic (RTTL) [62] or Temporal Logic of Actions (TLA) [1].Suitability for QoS speci�cation. The speci�cation of many QoS char-acteristics requires reference to events and states that belong to di�erent tran-sitions in an automaton model, and sometimes even to di�erent automata ifthe model is composed of concurrently executing state machines like in SDLor Estelle (see discussion in [26]). Due to their syntactic independence fromparticular automata constructs logic formulas are much better suited to ex-press QoS requirements than real-time annotations on automata transitions.Both Real-Time Estelle and SDL/MTL therefore encompass real-time tempo-ral logic formulas. 3

3 QoS Terminology and Typical RequirementsTo lay a foundation for the remainder of the paper we �rst discuss standardQoS terminology as de�ned by ISO. Next, we introduce aspects of QoS archi-tecture and discuss a number of quantitative QoS requirements that typicallyappear in broadband and multimedia systems. The examples are presented innatural language here, but we will revisit some of them in Section 8 to illus-trate the use of Real-Time Estelle and SDL/MTL in formally specifying them.Finally we motivate the importance of real-time aspects in the speci�cationof QoS properties.3.1 QoS Terminology and StandardsAs it can be expected for a relatively young and immature area like `QoS-engineering', there is an abundance of terminology with ambiguous interpre-tations in the literature. In a joint e�ort, the International Standards Organi-zation (ISO) and the International Telecommunications Union - Telecommu-nications Standardization Sector (ITU-T) have devised a standards documentfor Quality of Service in an Open Systems Interconnection context [39]. Wewill brie
y review some of the terminology used in this standard and relatethe meaning to our usage of these terms.Quality of Service. The standard does not provide a clear de�nition ofwhat Quality of Service denotes. However, it derives a de�nition from therelated Open Systems Interconnection (OSI) standards document:\Quality of Service: A set of qualities related to the provision of an (N)-service, as perceived by an (N)-service user."We will assume that the underlying ontology of our discussion will be that ofcharacteristic aspects of communications services, where the presence, absenceor gradual presence of these aspects de�nes qualities of a communicationsservice to be provided.QoS Characteristic. In line with the above de�nition the standard usesthe term QoS characteristic as a fundamental term from which many otherterms and concepts are derived:\: : : some aspect of QoS that can be quanti�ed : : : It is de�ned independentlyof the means by which it is represented or controlled."4

The important aspect here is that the QoS characteristic is independent ofparticular mechanism for its implementation, a concept helpful in maintainingabstraction in speci�cations. This term de�nes the physical aspect of Qualityof Service, in the terminology of the standard \the true underlying state ofa�airs".QoS Requirement. The standard phrases:\QoS information that expresses part or all of a requirement to manage oneor more QoS characteristics, : : :; when conveyed between entities, a QoSrequirement is expressed in terms of QoS parameters."In standard software and systems engineering terminology, requirements com-monly express design-time desiderata - properties that are required to holdof some artifact, independently of its implementation [20]. We note problemsrelating the standard terminology to the more common usages of the term\requirement", in particular because a \requirement" in the standard seemsto relate to a run-time function of the implementation rather than de�ningan implementation independent abstract design-time requirement. We preferto use the more common connotation and say that the \QoS requirement"de�nes a constraint on one or more of the system's QoS characteristics thatmay at run-time not be violated without invalidating the system's purpose. Inother words, QoS requirements de�ne the software engineering aspect of QoS- they are the basis for the documentation of QoS related system constraints,and they are used to perform QoS-related testing and system validation.QoS Parameter. The standard describes this as\: : : a vector or scalar value relating to QoS that is conveyed between enti-ties."In other words, this covers the syntactic aspect of QoS related mechanismsat run-time of the system. As an example, QoS parameters can be found ina protocol data unit when two protocol entities negotiate a QoS value for aparticular connection.QoS Guarantees and Mechanisms. While we understand QoS require-ments to represent design-time constraints, we say that at run-time a systemis to provide a service guaranteeing 1 a certain level of QoS. Open DistributedSystems frequently change their appearance and characteristics: bandwidth1 Note that the standard does not know the concept of a QoS guarantee, while itis a term that is frequently used in the literature (see for example [46]).5

requirements change largely over time, users sign on and sign o�, and networkcomponents are being added or removed from the system. Therefore, in orderto implement QoS guarantees, the service will need to employ certain QoSmechanisms:\Meeting a QoS requirement may require the use of mechanisms for QoSestablishment, QoS monitoring, QoS alert, QoS maintenance, QoS controlor QoS enquiry : : :"In a somewhat broader sense we will say that QoS mechanisms are algorithmsor functions implementing a QoS guarantee at run-time 2 .QoS Management Function. The boundary between QoS managementfunctions and QoS mechanisms is not really crisp. Both relate to the algorith-mic aspect of QoS. The standard says:\: : : is the general term for a function designed to meet a QoS requirement."We will use this term to denote particular protocol or service provision mech-anisms that help in implementing QoS requirements at run-time. Examplesare QoS negotiation, monitoring and adaptation.3.2 QoS ArchitectureA few years ago QoS was only de�ned at the boundary between applicationsand the communication network transport service. It was then realized thatthe identi�cation of quantitative measures of service quality are also necessaryat other interfaces, for instance between user and application or between thecommunication system and the operating system, and between end users. Todeal with end-to-end QoS, several so-called QoS architectures have been devel-oped [6]. One of the most important tasks of a QoS architecture is to providespeci�cations for QoS requirements on di�erent layers of a given system. Sincedi�erent layers provide di�erent services the QoS requirements need to be de-�ned in terms of the terminology used at the respective layer interface. Forexample, it makes no sense to o�er a parameter like maximum allowed ATMcell transfer delay at the user interface since to a user at the application levelATM cell transfer delay is a meaningless QoS characteristic. We now give anoverview of typical QoS requirements encountered at di�erent system levels.2 As an example the \playout bu�er" mechanism in ATM implements a delay jitterbound [50]. 6

User/Application QoS. At the user level, QoS requirements on multime-dia data are formulated in a way human users can easily understand. A typicalexample in a video-on-demand environment would be to o�er a movie in dif-ferent qualities: high resolution color or low-resolution black&white. The audiobelonging to this movie could either be mono or stereo, it could be telephoneor CD quality. A user does not care if the movie needs a throughput of 2 or 4MBit/s since this is meaningless to him. Furthermore, the user will not spec-ify that video and audio parts of a movie are lip-synchronized he expectsthat implicitly. Therefore, the mapping of user-de�ned QoS requirements tothe respective transport parameters has to be done by the application. It alsohas to split a movie in its di�erent streams (video and audio) and derive therespective QoS requirements for each of them as well as necessary inter-streamsynchronizations. For this purpose, intermediate application-oriented QoS re-quirements may be used, e.g. the frame rate of a video stream (25 frames persecond) or the sampling rate of an audio stream.Transport System QoS. On the transport level, well-known parametersare throughput, transfer delay and jitter on an end-to-end basis, i.e. process toprocess communication. Requirements on these parameters have to be derivedfrom the user requirements. To be able to transfer the huge amount of dataa movie usually consists of, a certain throughput is required. By specifyinga certain delay, the time between sending a given packet at one side andreceiving it at another may be limited. This is especially important for videoor voice conferences with direct human-to-human interaction. Jitter, �nally,is a measure for the variation in delay. If the jitter becomes too high, whichmeans that data packets arrive on a very irregular basis, the quality of audiotransmission may be highly a�ected.Medium Access QoS. The QoS characteristics for medium access maydi�er widely, depending on the kind of medium or network to be accessed. ForATM, there are several QoS parameters de�ned on the cell level, e.g. cell lossrate, cell transfer delay or cell insertion ratio.3.3 The Role of Real-time in QoS Speci�cationThe QoS characteristics that we discussed above can be classi�ed as quanti-tative QoS characteristics, as far as they refer to layers below the end userapplication. Note that they all refer to quanti�able properties as for examplein \a rate of 15 frames per second" or a \delay of 200 milliseconds". Note alsothat all the examples we introduced refer to real-time. A desired throughput,7

as an example, is typically expressed by a a certain number of data pack-ets or bits to be sent per second. Inter-stream synchronization requires twodata units of two independent streams to be received within a time intervalof several milliseconds.In other words, the correctness of these systems does not solely depend onthe functionally correct sequence of observable events but also on a correcttiming of the event sequences. We conclude that in order to use an FDT forthe speci�cation of quantitative QoS requirements this FDT has to possesssuitable real-time expressiveness, including a formal semantics accounting forreal-time. In the following Section we analyze whether standard Estelle andSDL meet these requirements.4 Real-time concepts in Estelle and SDLBoth standard Estelle and SDL already have a built-in real-time mechanism.Estelle uses a delay clause to express timing constraints whereas SDL usesa timer mechanism. We analyze the suitability of these constructs to expresshard real-time constraints.4.1 Real-time in EstelleInformally, the semantics of a clause delay(E1,E2) associated with a transi-tion t can be described as follows (see also [38]):(i) Once newly enabled 3 , t cannot be executed until it remains enabled forat least E1 time units.(ii) If t remains enabled but is not executed for E time units, E1 � E � E2,then even if t is the only enabled transition within a module instance atthe moment, t still may or may not be executed.(iii) If t has been enabled for E time units, E � E2, then if t is the onlyenabled transition, t will execute. Otherwise, any other enabled transitionmay also be executed, possibly disabling t.It is possible to omit the second parameter: the form delay(E1) is equivalentto delay(E1,E1).3 An Estelle transition is enabled if all its enabling conditions are true. Theseconditions comprise the when and provided clauses. Note that satisfaction of thedelay clause is not required. 8

The result of the above is that a transition t with delay clause delay(E1)will, if at all, execute at a point in time Tx. Let T0 denote the time instant atwhich t becomes enabled, then Tx = T0+E1+ �. The value of � is unboundedsince it largely depends on the execution times of other Estelle modules inthe same system module subtree. The Estelle standard explicitly states thatno assumptions can be made about the execution speed of transitions. Weconclude that Tx is also unbounded and that no real-time guarantee can begiven for the point in time at which t executes. This makes it impossible tospecify hard real-time constraints using the delay clause. As we argue above,however, hard real-time requirements are an essential ingredient in specify-ing deterministic QoS requirements, and we conclude that standard Estelle istherefore not suitably expressive to specify this sort of QoS requirements.Suitability of transition-based real-time constraints. The delay clausedoes only refer to single transitions. Many quantitative QoS requirements,however, refer to more than one state transition of a process, or even to morethan one process. Consider a process doing MPEG decoding. This process canbe further structured into a dispatcher module and some decoding modulesrunning in parallel. Every time a group of frames arrives at the process, thedispatcher assigns it to one of the decoders where the frames are decoded andpassed back to the dispatcher. The latter then passes them on to the presen-tation device. A typical QoS requirement on such a process would be that nomore than a certain delay may be added to the overall delay by the execu-tion of this process. Inside the process, this maximum additional delay hasto be further distributed among the dispatcher and decoder modules, but weare not interested in specifying which module gets which share of the alloweddelay. This illustrates the need for a more global real-time construct that isindependent of the reference to individual transitions.4.2 Real-time in SDLIn SDL, real time is introduced by an asynchronous timer mechanism. Figure1 speci�es an SDL \design pattern" found in many speci�cations: the require-ment is that if for a request Q (that is sent either to another process or theenvironment) a response A is not received within t time units, a signal alarmwill be sent. An SDL speci�cation can access the value of a global clock byreference to a variable called NOW which always refers to the current momentin time. The SDL command set(NOW+t,T) sets the value of a timer calledT to a time value t time units greater than the current moment of time. Aprocess which sets a timer is called a timed process. The set timer is controlledby an independent timer process. Each time a timed process in the speci�-cation sets a timer, an instance of the timer process is generated (compare9

alertreset(T)

A

Q

thanks

T T

Timer process, T

I.

III.

II. (NOW = T)

set NOW+t, T

WAIT

T

PROCESS Q&Aintime

IV.

Fig. 1. Partial SDL speci�cation with timerI. in Figure 1). The timer process continuously compares the value to whichthe timer is set with the current global time. When the value that has beenset is reached or exceeded (II.), the timer process communicates the expiryto the timed process by placing a timer signal at the end of the input queueof the timed process. Like any other signal, the timed process may consumethe timer signal from its input queue whenever it has reached the head of thequeue (III.), and react accordingly (IV.). Timers may be reset by the timedprocess in which case the timer process deactivates the respective timer. Thereset also removes the timer signal from the timed processes' input queue incase the timer expired before the reset but hasn't yet been consumed by thetime the reset occurs.Similar to Estelle, the delay � between the point in time when the timerexpires and the moment at which the SDL speci�cation reacts to the expiryis unbounded. The value of � can be estimated as 0 � � � T1 + T2 + T3. T1is the time between the generation of the timer signal and its placement inthe timed processes' input queue. T2 is the time it takes for the time signal toreach the head of the input queue. Finally, T3 is the time it takes for the timedprocess to consume the signal once it has reached the head of its input queue.All of these delays are unbounded and consequently � is unbounded. As is thecase with Estelle, no hard real-time properties and therefore no deterministicQoS requirements can be speci�ed using the SDL timer mechanism.4.3 ConclusionOur analysis of the built-in real-time mechanisms in Estelle and SDL reveals amajor di�erence between these techniques and the model theoretic techniques10

we alluded to earlier in the paper. This di�erence lies in the fact that systemssatisfy the Estelle and SDL speci�cations even if they exceed the time limitsspeci�ed by the delay clause of the timer mechanism by an unspeci�ed andeven potentially unbounded amount of time. In other words, they do not allowto tell the \good" execution sequences from the \bad" ones, as far as hardreal-time constraints are concerned. The most they can express is that there isa minimum amount of time that passes between the setting of the timer andthe recognition of its expiry by the timed process. In subsequent Sections wewill show how Estelle and SDL can be extended to model theoretic techniques.In the following Section we de�ne a general timed execution model that willlater serve for interpreting Real-Time Estelle and SDL/MTL speci�cations.5 A Real-Time Execution ModelWe discuss the design of a timed execution model that will allow us to interpretthe executions of systems speci�ed in Real-Time Estelle and SDL/MTL. Thereare three major questions that need to be answered when de�ning a timedexecution model: (1) is it adequate to assume the existence of global time, (2)how does one augment untimed state sequence execution models to account fortime, and (3) what impact does the inherent concurrency of the speci�cationmodel have on the choice of the time representation?Global time model. We �rst address the question of �nding a suitabletime model that adequately re
ects the distributed nature of the systems weare interested in. Essentially, for any `reasonably' behaving system the globaltime assumption is valid 4 , which is why we conjecture that we can always usea global time model in our speci�cations.Timed observation sequences. We model system executions by in�nitediscrete state sequences s = s0; s1; : : : 5 . We restrict ourselves to the externallyobservable state component of any system and assume the existence of globalsystem states. For an arbitrary state sequence s described by an Estelle or SDLspeci�cation the semantics of Estelle or SDL determines which transitions froman si to an si+1 are legal. Alternatively, we may obtain s by observation of4 Lamport's axiomatization of temporal relationships between events in [48] makesminimal assumptions about the system. In particular, it assumes no atomicity ofevents and it is space-time relativistic. [8] and [5] show independently that for anysystem satisfying Lamport's axioms, and we call any such system `reasonable', thereis a global time model.5 Our presentation here follows [4]. 11

the sequences of global states of an executing system at run-time. Followingthe global time assumption we associate a global time interval Ii 2 R withany system state si and assume that state changes only occur at the left andright interval boundaries li and ri, respectively. For a sequence of intervalsI0; I1 : : : we assume that any two neighboring intervals are adjacent and thatfor any t 2 R there is an Ii so that t 2 Ii. As we assume that state changesonly occur at the interval boundaries and that events triggering state changesare instantaneous, we may use either the left or the right interval boundaryto describe the sequence of global time intervals associated with the sequenceof states. For instance, we represent the interval sequence[1; 3); [3; 3:1); [3:1; 5); : : :by the sequence 1; 3; 3:1; 5; : : :of left interval boundaries. In any �nite interval Ii there can be only �nitelymany observable state changes or events (the �nite variability assumption).Furthermore, we assume that all events in the system coincide with the clicksof a global clock. As a consequence, there can only be countably many statechanges in any execution sequence and it su�ces to use the nonnegative inte-gers as time domain 6 . For example, we may represent the above sequence ofrational left interval bounds by the integer sequence10; 30; 31; 50; : : :We de�ne a timed observation sequence o = o1; : : : as a tuple (s; l) wheres = s0; s1; : : : is a discrete state sequence and l = l0; l1; : : : is the sequenceof corresponding left interval bounds. An example of a timed observation se-quence is (s0; 10); (s1; 30); (s2; 31); (s3; 50); : : :Interleaving semantics and real-time. Both SDL and Estelle describeconcurrent systems, and it is most useful and common to give them an inter-leaving trace semantics. Assume that s1; s2 and s3 are global system states ofan SDL or an Estelle speci�cation, and that s2 and s3 are concurrent states.Following an interleaving semantics, both s1; s2; s3; : : : and s1; s3; s2; : : : are ad-missible sequences in the untimed model. In order to express that both s2 and6 However, discrete time domains can hinder re�nement steps. Hence, if re�nementis crucial dense time domains like the positive reals are necessary (c.f. [1] and [57]).12

s3 may occur concurrently in the timed model (which means that they havethe same time stamp) we have to allow that both timed observation sequence(s1; l1)! (s2; l2)! (s3; l3)! : : :and (s1; l1)! (s3; l2)! (s2; l3)! : : :are admissible and that l2 = l3. Therefore, we generally assume the sequence liof a left interval bound time stamps to be a weakly-monotonic integer sequence.6 Complementary SDL and Metric Temporal Logic Speci�cationsIn this Section we de�ne a rudimentary computational model for SDL speci-�cations, a so-called Global State Transition System (GSTS), which will serveas a common formal model for the interpretation of SDL speci�cations andtemporal logic formulas. We de�ne the global state in the GSTS model tobe determined by the local state of the processes plus the state of the com-munications in between processes. The main components of the GSTS modelare:Process control and data manipulation. This component represents the localbehavior of an SDL process which executes transitions between symbolicstates.Communication. SDL processes communicate asynchronously via poten-tially unbounded queues. Each SDL process has exactly one input queuehandling all incoming communication from any other process 7 . The localstate of an SDL process hence consists of the combination of current valuesfor the data variables, the point of local process control, and the state ofthe input queue.Global System States and State Transitions. The global system state (GSS)is the product of all local states of all processes of an SDL speci�cation.SDL processes run concurrently. In accordance with the standard documents[40,41] we choose an interleaving approach to represent this concurrency.We assume a nondeterministic choice when more than one process has anenabled transition in a given GSS.7 For reasons of conciseness we do not address inter-process communication mecha-nisms like viewing or remote procedure call, but a treatment of these communicationmechanisms within our framework is straightforward. Furthermore, we only considerso-called non-delay channels in the SDL speci�cations.13

Note that the resulting GSTS model for SDL speci�cations is not �nite. Fora given SDL speci�cation, the unwinding of the corresponding GSTS modelwill describe all admissible sequences of states of an SDL speci�cation, calledits computations. In describing sequences of states, the model also describessequences of state transitions, which are in turn triggered by events (e.g. inputand output) in the system. The computations will later serve as models forwhat we call complementary temporal logic speci�cations, only those speci�-cations which satisfy both the properties expressed by the SDL speci�cationand the properties expressed by the temporal logic speci�cations are consid-ered to satisfy the complementary speci�cation. It should be emphasized thatthe goal here is not to de�ne yet another formal semantics for SDL in additionto the ones already de�ned (e.g. [40] or [14]). The motivation for de�ning ourown SDL semantics is two-fold: First, we found none of the published seman-tics suitable for our purposes, which are to interpret SDL speci�cations andTemporal Logic formulae on common model-theoretic grounds. Second, oursemantics is exemplary in nature and intended to cover only a small subset ofthe SDL language.Overview. In Section 6.1 we de�ne the notion of a Process State Transi-tion System (pSTS). A pSTS has components similar to an extended �nitestate machine, plus a process-unique input queue. We also de�ne a transitionrelation and the notion of an admissible state sequence for pSTS here. Theinterpretation of pSTS as SDL processes is presented in Section 6.2. In Section6.3 we demonstrate how to augment INPUT and OUTPUT statements to state-propositions. In Section 6.4 we de�ne global state transition systems (GSTS)which correspond to SDL speci�cations. They consist of concurrently operat-ing pSTS. We show in this Section how to formally handle OUTPUT statementsand we de�ne global system state sequences which yields the computationalmodel over which we will later interpret temporal logic formulas.Related work. Our de�nitions here are close to the Basic Transition Sys-tems of [58]. Our pSTS models can be seen as a logic-based formulation ofExtended Finite State Machines (EFSM) [55]. The modeling of SDL processesas EFSMs has been suggested in [7] and [66]. However, as we will see later,the mapping of SDL process transitions as informally described in these ap-proaches is too coarse in order to adequately represent the structure of anSDL transition. [56] contains a formalization of SDL based on FSM, hencewithout treating data variables over in�nite domains. Formalizations of EF-SMs can be found in [36] (where the state space is �nite by limitation of therange of data variables and variables representing the state of communicationchannels to �nite domains), and in [17] and [45] (from where we take part ofour formalization). [12] describes and formalizes the use of queues to modelthe collective behavior of concurrent FSM which communicate asynchronously14

via queues (there called protocols) and we use part of their formalization forour work. Similar to our approach [13] presents a temporal logic-based seman-tics for Estelle using Dijkstra's predicate transformers. Our interest here isnot primarily in veri�cation, therefore we use the more intuitive Hoare-styletriples consisting of a pre-condition, a code fragment, and a post-condition.[60] agrees with our analysis of the shortcomings of the SDL real-time mech-anism, and proposes reconciling SDL with the Duration Calculus.6.1 Process State Transition SystemsThe pSTS that we introduce in this Section de�ne an SDL process as a setof symbolic states, a set of program variables (consisting of control and datavariables), and a set of communication events (input and output of signals).The `logic' of an SDL process is encoded in its state transition relation.Formal De�nition Process State Transition System (pSTS). A Pro-cess State Transition System P is de�ned as a tuple (S;D; V;O; I; Q; T; C)whereS is a �nite set of symbolic states,D is an n-dimensional linear space where eachDn is an interpretation domain,V is a �nite set of program variables, V = f�; v1; : : : ; vng where � is a controlvariable ranging over elements of S and v1; : : : ; vn are data variables so thatv = (v1; : : : ; vn) 2 D,O is a �nite set of output signal types,I is a �nite set of input signal types,Q is a linear sequence q1; : : : ; qm (in the standard mathematical sense) ofelements from I �D which we call input queue,T is a transition relation, with T : S � 2D �Q! S � 2D �Q, andC is an initial condition on S � 2D �Q.A state s, is a function s : V �Q! 2S�2D assigning a value to every variablein V and to Q. s can evidently have a potentially in�nite range. By s[x] wedenote the value of variable x in state s.Transition Relation, Admissible Sequences, and Reachable States.We associate a set TT = f�1; : : : ; �mg of transitions with the transition relationT of an pSTS. With each transition �j we associate a pair of state propositionsPj and Qj and we call Pj a precondition and Qj a postcondition of transition �j.We assume the existence of a satisfaction relation j=P which relates assertions15

about the system state to system states for a given pSTS P 8 . In particular,we write s j= p i� state s satis�es state-proposition p 9 . Now, in order to relatestates s and s0 we say that (s; s0) 2 T i�(9�j 2 TT)(s j= Pj ^ s0 j= Qj):Let � = s0; : : : ; sk denote a �nite sequence of states. We call this sequenceadmissible i� (80 � j < k)((sj; sj+1) 2 T):This de�nition extends to in�nite sequences in the obvious way. A state skis a reachable state i� the sequence � = s0; : : : ; sk is admissible and s0 j= C,i.e. s0 is the initial state. In state formulas, when referring to states s and s0with (s; s0) 2 T we sometimes denote s[v] by v and s0[v] by v0. In order toexpress that a transitions �k is enabled in a state s we write s j= en(�k) i�s j= Pk. For a pair of states (s; s0) we say the transition �l has been taken i�s j= en(�l) and s0 j= Ql. We denote this by ta(s; s0; �l). Let the variables X andY range over the queues of a pSTS, i.e. over sequences of signal types, andA over signal types. The concatenation of a sequence and a singleton elementis expressed by juxtaposition. For a signal queue X and a signal type A theterm XA describes a sequence where A is the last element. Conversely, AYdescribes a sequence where A is the �rst element.6.2 Interpreting SDL-Processes as pSTSWe now explain the mapping of an SDL process to the components of a pSTS.In SDL terminology, a transition describes the change of processes control fromone symbolic state to a symbolic successor state. In the example in Table 1the two symbolic states are S1 and S2, hence for the corresponding pSTS S =fS1; S2g. The body of a transition consists of di�erent sorts of statements, likeassignments, decisions, communication statements, etc. In order to describethe state of the system before and after the execution of a transition we assignpre- and postconditions to every transition. In a few cases, when the transitionbody has a trivial structure, the determination of pre- and post-conditions isstraightforward. However, as we shall see later, we also need to treat morecomplex transition structures di�erently.8 We omit the reference to P when this is clear from the context.9 We will not de�ne all details of the relation j= formally and refer the reader to[58]. 16

STATE S1;INPUT(A);TASK x := y + 1;NEXTSTATE S2;Table 1SDL Transition I�j Pj Qj�1 � = S1 ^Q = AX �0 = S2 ^Q0 = X ^ x0 = y + 1�2 � = S1 ^Q = CX ^ C 6= A �0 = S1 ^Q0 = XTable 2pSTS predicates for Transition IFormal Treatment of INPUT Statements, Control Flow, and VariableAssignments. For the time being we only consider single SDL processesand we do not yet interpret e�ects of communication. INPUT statements havea semantics purely local to one process, i.e. to remove the signal at the headof the input queue and assign its value to a local variable. Table 2 shows themapping of an SDL transition to transitions �j of a corresponding pSTS. Moreprecisely, when executing a transition associated with an INPUT(X) statement,the process �rst checks whether the signal at the head of its input queue is oftype X 10 . If this is true the process consumes the signal by removing it from thehead of the queue and assigning its value to a local variable with the name X.However, if the signal at the head of the queue does not have the expected type,then the message is removed from the head of the queue, discarded, and thesame INPUT statement is re-enabled. We therefore need to split the treatmentof INPUT statements into two logical cases, the �rst being the one where theexpected signal type is not at the head of the queue, and the second wherethe expected signal is at the head. Hence, we treat transitions with INPUTstatements as two transitions which are mutually exclusive (see transitions �1and �2 in Table 2). The logical exclusion is encoded by the test Q = AX whichis true in case the head of the input queue contains the message of expectedtype A, and the test Q = CX ^ C 6= A which evaluates to true i� this is notthe case. Attention has also to be paid to the control
ow in a transition. Ifwe consider a transition which brings a process from symbolic state S1 intosymbolic state S2, then this can be interpreted as though control lies in codelocation S1 before execution of the transition, and in location S2 afterwards.We de�ned a distinguished variable � to range over code locations, calledsymbolic states, and we use this variable to formulate pre- and postconditionscharacterizing the control
ow inside an SDL process (see the use of variable� in Table 2). Variable assignments are treated in a very standard way, as for10 For reasons of conciseness we do not treat the handling of SAVE statements here,for their modeling in the context of an FSM interpretation we refer the reader to[56]. 17

STATE S1;INPUT(A);DECISION D(A);(true):NEXTSTATE S2;(false):NEXTSTATE S3;ENDDECISION;Table 3SDL Transition II�j Pj Qj�1 � = S1 ^Q = AX ^D(A) �0 = S2 ^Q0 = X�2 � = S1 ^Q = AX ^ :D(A) �0 = S3 ^Q0 = X�3 � = S1 ^Q = CX ^ C 6= A �0 = S1 ^Q0 = XTable 4pSTS predicates for Transition IIexample, described in [58]. Let x and y denote variables in a state s, let x0 andy0 denote these variables in the successor state s0, and let the system transitfrom s to s0 through the execution of a statement y:= x + 1. We describethis transition by the postcondition y0 = x + 1 which is required to hold instate s0 (see Table 2 for the postcondition describing the update of variable xin the example of Table 1).Formal Treatment of DECISION Statements. We decompose a DECISIONP(x) statement into two mutually exclusive transition alternatives. The �rstis that the decision predicate holds, i.e. P (x) is true, the second is that P (x) isnot true. As an example see the treatment of the decision in Table 3 in Table4.Handling Iterative Transitions. So far we assumed that the symbolicstates in the set S are identical to the symbolic states used in the SDL spec-i�cation. However, SDL transitions may have iterative structure, achieved bya goto and labeling mechanism (the goto statement is called JOIN in SDL, seeTable 6). Therefore we need to abandon the idea that a transition in an SDLprocess leads from one symbolic state to a symbolic successor state, as forexample suggested in [7]. We need to allow cyclic control
ow structures andsuggest introducing auxiliary symbolic states which correspond to the targetlocations in the control
ow to which a process jumps back or forth whenexecuting JOIN statements. In the example in Table 6 we introduced an ad-ditional symbolic state S1-1, corresponding to the point of control which isreached when jumping to label l1 (we introduced a comment /* S1-1 */ in18

the SDL code at the location corresponding to auxiliary state S1-1). The tran-sitions �4 and �5 represent cases in which control lies in the auxiliary symbolicstate S1-1. STATE S1;INPUT(A);/* S1-1 */l1:DECISION D(A);(true):NEXTSTATE S2;(false):OUTPUT(B);TASK A:=A-1;JOIN l1;ENDDECISION;Table 5SDL Transition III.Atomicity of transitions. The SDL standard semantics [41] is not explicitabout the question which constructs in SDL are to be executed atomically. Itcan only be inferred from [41] that atomicity is at the primitive statementlevel (according to the standard the interpretation of complex statements isbased on a decomposition into primitive statements). The above resolution ofthe join statement in Table 6 assumes a \maximum progress" semantics inwhich the atomic parts are assumed to be as large as possible. This reducesthe state space when using validation tools like Spin [36].pSTS and Extended Finite State Machines. The derivation of an EFSMfrom a pSTS is straightforward. For the example in Tables 5 and 6 the resultingEFSM would have 3 states (S1, S1� 1 and S2), and 5 transitions.�j Pj Qj�1 � = S1 ^Q = CX ^C 6= A �0 = S1 ^Q0 = X�2 � = S1 ^Q = AX ^D(A) �0 = S2 ^Q0 = X�3 � = S1 ^Q = AX ^ :D(A) �0 = S1� 1 ^Q0 = X ^A0 = A� 1�4 � = S1� 1 ^D(A) �0 = S2�5 � = S1� 1 ^ :D(A) �0 = S1� 1 ^A0 = A� 1Table 6pSTS for Transition III 19

6.3 State Propositions INPUT and OUTPUTThe state predicates we de�ned so far allow us to specify formulas referringto the current point of control (e.g. � = S1) or on the state of data variables(e.g., Q = AX ^ A = DR where DR stands for a message type). However,sometimes one would much rather specify properties of communication eventsto happen, i.e. input or output of signals that are about to take place orthat have just been executed. We therefore introduce state predicates whichindicate which transition has been taken as a last step in a computation,and whether this transition entailed any communication events. Technically,we introduce two relations, inlabel and outlabel, which label the transitionsof the pSTS with the INPUT or OUTPUT statements that are executed duringthe course of a transition. We omit the straightforward technical construc-tion of this labeling here. In the example in Tables 5 and 6, we see thatfor example inlabel(�3) = fINPUT(A)g and outlabel(�3) = fOUTPUT(B)g. Lets = s1; s2; : : : be an admissible state sequence for a given pSTS, and let TTdenote the set of transitions for this pSTS. We say that si j= INPUT(A) i�(9� 2 TT)(ta(si�1; si; �) ^ (INPUT(A) 2 inlabel(�))), and si j= OUTPUT(A)i� (9� 2 TT)(ta(si�1; si; �) ^ (OUTPUT(A) 2 outlabel(�))). This constructionaugments these labels to state propositions.6.4 Global State Transition SystemsSDL Speci�cations Formally. SDL speci�cations consist of collectionsof concurrent SDL processes. We say that the Global State Transition Sys-tem (GSTS) GP corresponding to an SDL speci�cation P is a tuple GP =(P 0; : : : ; P n) where each P i for i = 1; : : : ; n is a pSTS. P 0 (which representsthe environment behavior) is not a full pSTS, it only consists of an input andan output alphabet, and an input queue. P 0 has no state and we rely on thefacilitating assumption that P 0 will provide any of the other processes withinput signals whenever these wish to consume any such signal, and that P 0consumes instantly any signal which it receives from any process of the SDLsystem.SDL processes communicate asynchronously via one unique in�nite inputqueue per process. We interpret the sending of a signal A from a processP 1 to a process P 2, indicated by an OUTPUT(A) statement, such that a signalof type A is appended to P 2's input queue Q2. We slightly simplify the SDLmechanism of mapping of an output signal to a receiving process by assum-ing that a signal A is sent from a process P i to a process P j i� A 2 Ij 11 .11 In SDL this involves a mapping of signal names via signal lists to signal routes orchannels that point to the receiving process. Note that we only model non-delaying20

PROCESS P1; PROCESS P2;STATE S1; STATE S3;INPUT(A); INPUT(B);OUTPUT(B) NEXTSTATE S3;NEXTSTATE S2;Table 7SDL speci�cation�1j P 1j Q1j�11 �1 = S1 ^Q1 = AX ^Q2 = Y �01 = S2 ^Q01 = X ^Q02 = Y B�12 �1 = S1 ^Q1 = CX ^ C 6= A �01 = S1 ^Q01 = XTable 8Predicates describing SDL speci�cationFurthermore, we require (8i = 1; : : : ; n)(8a 2 Oi)(9j 6= i)(a 2 Ij) and(8i = 1; : : : ; n)(Oi \ I i = ;). As we saw in Section 6.2, the execution of anINPUT(A) statement (which in the SDL terminology is often just referred toas signal-consumption) represents an event purely local to some SDL process.Transition Predicates for OUTPUT statements. The execution of anOUTPUT statement involves a non-local action. It means that the execution ofthe statement is a local event of the sending process, whereas the reception(which in SDL is di�erent from the consumption of the message and justmeans that the message will be appended to the tail of the receiving process'input queue) is a local event of another (the receiving) process. Therefore, onecan not formalize these transitions by state propositions that solely refer tostate variable of only one process. Table 8 presents a simple example of a two-process SDL speci�cation P = (P 0; P 1; P 2). Transition � 11 describes both thestate change in P 1 and the appending of the signal B to the input queue of P 2.Although strictly speaking this transition also changes the state of process P 2for our formal treatment we consider transition � 11 to be a transition belongingto process P 1.Global System States, Transitions, Global State Sequences, and theSatisfaction Relation. Let GP = (P 0; : : : ; P n) denote the GSTS for anSDL speci�cation P . We say that the vector s = (s1; : : : ; sn) is a global systemstate (GSS) of the SDL speci�cation P i� si is a state of pSTS P i for alli = 1; : : : ; n. In the course of each change of the GSS exactly one pSTS changesits local system state. This implements the interleaving semantics that weuse to model concurrency in SDL speci�cations. In a given GSS s, a demonselects nondeterministically one out of all enabled transitions in all pSTS tochannels here, the modeling of delaying channels is a straightforward extension.21

be executed next. Executing a transition de�nes the successor GSS s0. Let� = s0; : : : ; sk denote a �nite sequence of GSS. We call this sequence admissiblei� (80 � j < k)(9� il)((sij; sij+1) 2 T i)). This de�nition extends to in�nitesequences in the obvious way. Also, the interpretations of the state propositionsen, ta, INPUT and OUTPUT extend in the obvious way from pSTS states toGSS. Based on the above de�nitions we may now de�ne a satisfaction relationj=SDL for SDL speci�cations. Let P be an SDL speci�cation and let �!P theset of all in�nite sequences of GSS of P . For a � 2 �!P we write � j=SDL P i�� is an admissible sequence with respect to P .6.5 Using Temporal Logic for SDL Speci�cationsThe characterization of properties by the use of temporal logic is accomplishedby interpreting the temporal logic speci�cation such that the models satisfyingall formulas determine the set of admissible state sequences of the system.Now, as we have seen in Section 5, SDL speci�cations also specify admissiblesequences of states. Temporal logic formulas can be thought of as �lters on theadmissible sequences speci�ed by the SDL speci�cation and therefore can beused to specify those real-time and liveness properties inexpressible in SDL.A crucial point is the selection of a suitable temporal logic language. We willuse a temporal logic similar to the logic described in [58], called PropositionalTemporal Logic (PTL) and a real-time extension based on PTL, called MetricTemporal Logic (MTL) [34] [43]. However, other temporal logics like TLA [49]or CTL [24] may be linked to SDL speci�cations in very much the same wayas we present it here for MTL.A State Proposition Language. We assume that the state propositionswe use in complementary temporal logic formulas all refer to observable com-ponents of the system state, and we use, in particular, the following statepropositions for an SDL speci�cation P :(i) Actual State: let S = Si1; : : : ; Sin denote the symbolic states for a givenprocess P i of P , then at Sik denotes the state proposition that the i-thcomponent of the global system state is in symbolic state Sik, i.e. �i = Sik.(ii) Input and output: we use the state propositions INPUT and OUTPUTas de�ned above to denote that we are in a state where an input or anoutput of a signal has just occurred in the last GSS transition.(iii) Data: we allow the reference to visible data variables and allow standardcomparison operators on the variables. We allow state formulas to beconstructed by using boolean operators between state propositions andwe call composed state formulas state predicates.22

Example. The state formula n � 3 ^ INPUT(A) holds in all GSS in whichthe value of variable n is less than or equal to 3 and an input of a signal oftype A has just been executed. The state formula at S1 � n � 3 holds in allthose GSS in which if the control is in symbolic state S1 then the value ofvariable n is greater than or equal to 3.Temporal Logic. The Propositional Temporal Logic (PTL) we use here isa linear time temporal logic taken from [58]. We'll use the future operators3 (\eventually"), 2 (\henceforth") and U (\until"). In addition we de�ne astrong eventuality operator 3: so that 3: p holds in some future state s thatis not the current state, formally si j= 3: p i� (9j > i)(sj j= p). The formalsemantics of PTL de�nes a satisfaction relation j=PTL. An execution sequence� = s0; : : : of states si satis�es a formula � i� � holds in s0, and we write� j=PTL �. We say that a system satis�es a formula � i� all its executionsequences satisfy �.Metric Temporal Logic. We use an extension of PTL for the speci�cationof real-time requirements, calledMetric Temporal Logic (MTL). For a completeformal de�nition of the syntax and semantics of MTL we refer the reader to[4] and [34, Section 3.4]. The models over which we interpret MTL formulasare timed observation sequences o = o1; : : : as de�ned in Section 5. Informally,MTL contains formulas of the form 3I� which assert that one of the followingstates within the time-interval described by expression I is a state whichsatis�es �. Formulas of the form 2I� assert that all states in the time-intervaldescribed by I satisfy �. The expression I describes an either open or closedinterval over the time domain and we sometimes use semi-algebraic expressionsto refer to these intervals. We write o j=MTL p i� the sequence o satis�es theMTL formula p.6.6 Complementary Speci�cationsAssume we have an SDL speci�cation P and a set of formulasM in MTL. Now,P and M are complementary speci�cations if we require from the speci�edsystem that for all its timed observation sequences o = (s0; t0); : : : the followingcondition holds: s j=SDL P ^ o j=MTL M:Scoping. It is beyond the scope of this paper to discuss the scoping ofnames used in SDL/MTL propositions in detail. In the later examples we23

will only make use of signal names as basic propositions. According to theSDL de�nition, signal names have to be unique in the name scope of an SDLsystem. Hence there is no problem with name ambiguities. However, whenprocess internal variables are to be used it is easy to disambiguate these bypre�xing their names in formulas with the name of the context (e.g., theprocess or block name) which de�nes their scope.7 Real-Time Estelle7.1 IntroductionThe standardized FDT Estelle [38], like SDL, is an automata-based language.An Estelle speci�cation describes a system as a set of hierarchically ordered�nite state machines called modules. Modules communicate with each othervia asynchronous FIFO queues. The communication ports of a module arecalled interaction points (IPs). A module's behavior is described by states andtransitions between them. A transition is composed of communication actions,variable assignments, procedure and function calls. Modules at level n in thehierarchy may be dynamically created or destroyed by their parent module(module at level n� 1) during system runtime. According to synchronizationrules speci�ed in the Estelle standard modules can be allowed to executeconcurrently, or they can exclude each other from simultaneous execution.The execution model of Estelle uses an interleaving approach to model theconcurrency in an Estelle speci�cation. An Estelle transition is the smallestobservable execution unit. It is atomic and executed as a whole or not at all.Intermediate results during its execution are not visible.The execution model of Estelle is very similar to the state transition executionmodel introduced in Section 5. This makes it an easy task to enhance thismodel in order to describe timed state sequences, see Subsection 7.2. Notionssimilar to the Global State Transition System and the Process State TransitionSystem de�ned in Section 6 already exist in Estelle and need not be de�ned.Unlike SDL/MTL, where functional and temporal speci�cations are expressedby completely di�erent syntactic constructs, we developed Real-Time Estelleas a syntactic extension of standard Estelle, The syntax of standard Estelleis a superset of the programming language Pascal. In the design of the real-time extension, the main considerations were that (i) the real-time restrictionsshould be included in the functional speci�cation and (ii) the additional lan-guage constructs should be in line with the spirit of the existing language,keeping Estelle as simple as it is from a syntactic point of view. This includesthe idea that every speci�cation should be writable in pure ASCII to make24

it immediately processable by a machine. The syntax of Real-Time Estelle isdescribed in Subsection 7.3.Due to the high degree of
exibility that complementary semantics o�er, weadopt this approach for Real-Time Estelle. The details can be found in Subsec-tion 7.4. Finally, we present a �rst introductory example showing how Estelleand Real-Time Estelle parts are combined to express real-time requirementsbased on a given functional speci�cation.Related work. It has previously been suggested to extend Estelle by furtherreal-time constructs. In [22] the authors add upper and lower bounds (therecalled \execution time parameters") on the execution time to transitions. Theidea is to constrain the real-time behaviour of a system by using known execu-tion times of certain system components as execution time parameters. In [15]the same e�ect is obtained by adding a new clause doby(x) to transi-tions, implying a hard upper time bound for the transition execution relativeto the time of enabling. The approach described in [71] is more performance-oriented, introducing constructs such as resources and probabilities into thelanguage. All these approaches relate real-time or performance requirementsto single transitions. While this technique is suitable for timed simulations, thesame critique as for the basic timed automata models described in Section 2applies to it with respect to QoS requirement speci�cation. A new timed vari-ant of Estelle has recently been proposed in [70] where timing relationshipscan be speci�ed between modules and transitions. However, the approach israther incomplete, lacks a formal de�nition, and mistakes in the speci�cationexamples in [70] make it di�cult to evaluate its usefulness.7.2 Real-time ModelDuring the execution of an Estelle speci�cation, each module is characterizedby a current state which is composed of the current symbolic state, the currentvalues of local variables, and the current contents of message queues. A globalsituation (overall state of the speci�cation, equivalent to the global systemstate in SDL) is composed of the states of all modules plus additional infor-mation about module hierarchies, communication relationships and transitionsstill to be executed. Transitions of a speci�cation are executed in two-phasecycles. During the system management phase, a number of transitions (atmaximum one per module) is selected for execution according to certain rules.The transition execution itself takes place during the second phase. As soonas all selected transitions are executed, the system enters a new managementphase. The global situation of a speci�cation is changed by executing eithera module's transition or a system management phase. In reference to Section25

6, a module can be compared to a Process State Transition System, while theoverall speci�cation transition system is similar to the Global State TransitionSystem.Estelle o�ers several ways to specify indeterministic behavior, leading to nu-merous ways to select transitions for execution in each global situation. Eachsequence of global situations produced by the global transition system is calleda computation in Estelle, and the system is fully speci�ed by all computationsproduced by the transition system. Compared to the real-time model describedin Section 5, (timed state sequences), Estelle`s computations do not have a timecomponent. To upgrade this model to timed state sequences we need to addthe time aspect to computations. We do this by adding one component to theglobal state description. This time component is a positive integer variable,and the only restriction on its value is the following: given two subsequentstates si and si+1 of one computation, with time components li and li+1, thenli � li+1, i.e., if time changes then it increases. This notion of time is exactlycompatible with that introduced in the standard. Conforming to the real-timemodel introduced in Section 5, a pair (si; li) denotes the point in time li fromwhere on the system is in state si.In addition to the time aspect, we also extend the possibilities to characterizestates. The Estelle standard de�nes the components of a system state (Sections5.3 and 9.4), e.g., value of local variables, major state of a module or contentsof queues. To these state components, we add predicates SENDING OF (p.m)and RECEIVING OF (p.m) which are true when message m has either beensent (output-statement) over or received (when-clause) at interaction point pduring the last transition, respectively. These predicates are comparable tothose described in Section 6. As we will see in Section 8, they are very usefulto describe temporal relationships between communication events, a majormeans to specify QoS requirements.Furthermore, we introduce the instance operator [] to allow counting of mes-sages sent or received at a certain IP since the instantiation of the respectivemodule. The predicate SENDING OF (p.m[z]) is true when the zth instance ofmessage m has just been sent over interaction point p. As we will see, this op-erator is useful for specifying properties of consecutive communication eventsof the same type, and requiring numbers of occurrences of such events in agiven time interval.7.3 Syntax of Real-Time EstelleAll real-time constraints referring to a module are collected in a new section ofthe module's behavior description, i.e., inside the module's body. The section26

is marked by the keywords TIME CONSTRAINTS. Assigning the constraints tothe body description is advantageous compared to other solutions. Assigningthem to the module interface description would make it impossible to refer tostates of the module. Assigning them to single transitions as in [22] proves tobe too in
exible with respect to QoS requirement speci�cation, as we arguedabove. It should be noted that this approach does not limit the expressivenessof Real-Time Estelle with respect to more global requirements concerning morethan one module. Such requirements can be expressed in a higher-level modulecomprising the modules in question. A typical example would be a servicemodule which includes two protocol modules. A global delay requirement canthen be expressed by referring to the service module's communication interfacerather than to those of the protocol modules.The following is an example of a typical module body in Real-Time Estelle:1 body m-behavior for m-interface;2 var v1 : V1Type;34 state s1, s2, sn;56 time constraints7 constraint1; 8 constraint2;910 initialize to s1 begin end;1112 trans13 from s1 to s2 when14 end;We now discuss how real-time constraints are constructed. The basic build-ing blocks of temporal restrictions in Real-Time Estelle are state descrip-tions. State descriptions are basically boolean algebra expressions composedof atomic state propositions and boolean operators:(i) If p is an atomic state proposition in a module, then it is a state descrip-tion.(ii) If p and q are state descriptions, then p AND q, p OR q, p IMPLIES q, pOTHERWISE q and NOT p are state descriptions.Atomic state propositions can be composed of any of the predicates de�ned inthe Estelle standard concerning a module's state, plus the predicates we addedin Subsection 7.2. A typical atomic proposition is WHEN(p.m), which is truei� the message m is at the head of the message queue of IP p. The operatorsAND, OR and IMPLIES have their usual boolean logic semantics. The expres-sion p OTHERWISE q is semantically equivalent to (NOT p AND q) OR (p ANDNOT q) and therefore to the boolean exclusive-or operator. The choice of thekeyword, however, indicates that it can be used to express a di�erence be-tween the desired behavior and the one the system has to show if the formercannot be provided. In this case, p describes a condition on the desired be-havior, whereas q is a condition that holds if the desired behavior cannot beachieved 12 .12 This construct proves useful to support a run-time environment in deciding whichbehavior to support and what has to happen if this support fails, based on the Real-27

Using the global time function now and time variables allows to refer to real-time in state descriptions. The function now provides values of type time,which denote the current system time, i.e., refer to the time component of thetimed state sequences described above. In a Real-Time Estelle restriction, thevalue of now may be di�erent for di�erent states. The value of time variablesis the same for the whole expression (rigid variables). Values of now can be\stored" in time variables and referenced in other parts of the expression. Thetype time is de�ned as TYPE time=integer 13 , and the unit of time steps isgiven by the standard Estelle optional timescale clause.Time variables can be used in time expressions. They may be compared toeach other or to time constants (using the operators =; <;>;�;�). Now is con-sidered to be a special time variable and may also be used in time expressions.It is allowed to add constants to time variables. Time variables occurring in aReal-Time Estelle expression have to be quanti�ed over by EXISTS or FORALLclauses preceding the expression.To specify temporal properties of states we use temporal operators. In Real-Time Estelle, the operators HENCEFORTH and EVENTUALLY are available. HENCE-FORTH p means, that from now on, p is always true. Similarly, EVENTUALLY pmeans that there is a future state where p is true. The following bounded-response property expresses that q is observable within 3 units of time af-ter p: FORALL x:TIME; HENCEFORTH (p AND x=now IMPLIES EVENTUALLY (qAND now <= x+3));. In addition to the operators described above, some ab-breviations may be used. They are de�ned with respect to the existing oper-ators: the expression p AND x=now may be replaced by p AT x. For p IMPLIESEVENTUALLY q, one may write p LEADSTO q, and p IMPLIES HENCEFORTH NOTq may be substituted by p FORBIDS q. As the examples in Section 8 will show,these abbreviations make real-time constraints much more readable and easierto understand. With these de�nitions, the syntax of Real-Time Estelle is thatof a �rst-order temporal logic with time variables and is similar to that ofReal-Time Temporal Logic (RTTL) [62]. The complete syntax in BNF can befound in [26].7.4 SemanticsThe semantics we use for Real-Time Estelle is called complementary, sinceit is composed of two partial semantics: an operational part for the untimedportion of a Real-Time Estelle speci�cation and a model-theoretic part for theTime Estelle speci�cation.13 As we argue above, only non-negative values should be assigned to variables oftype time. However, Estelle does so far not possess a built-in type \non-negativeinteger". 28

logic semantics

Estelle specification

describes

p AT x LEADSTO

 q AT y

models for the

real-time system

interpretation over
timed state sequencesreal-time restrictions

logic formulas

sequences
timed state specified

gets a temporalFig. 2. Hybrid semantics for Real-Time Estelle.real-time component of the language. Therefore, the speci�cation of a system'sbehavior consists of timed state sequences constructed as follows: �rst, timedstate sequences are obtained by using the operational semantics described inthe Estelle Standard and the real-time model extensions given in Section 7.2.Then, these sequences are used as models for the temporal logic formulasdescribed by the Real-Time Estelle restrictions. Only those sequences whichsatisfy all formulas are part of the overall real-time system. This scheme isvisualized in Figure 2.A satisfaction relation j= for Real-Time Estelle has been de�ned in [26]. Itde�nes the conditions a timed state sequence must meet to ful�ll Real-TimeEstelle expressions. This semantics is, as well as the syntax, similar to that ofRTTL [62].7.5 An ExampleThe following (partial) Real-Time Estelle speci�cation describes a modulewhich receives a message, performs two transitions and outputs another mes-sage. The real-time constraint expresses the requirement that between recep-tion of the �rst and sending of the second message no more than 5 units oftime may elapse.1 body m-behavior for m-interface;2 state s1, s2;34 time constraints5 FORALL x:time; HENCEFORTH (6 RECEIVING OF p1.m1 AT x LEADSTO7 SENDING OF p2.m2 AT (x < now < x+5));8 ...9 trans
10 from s1 to s2 when p1.m111 begin (* do some work *) end;1213 from s2 to s1 begin14 (* do some more work *)15 output p2.m2;16 end;17 end;

29

8 Speci�cationsSender-Receiver System. We are now interested in illustrating the spec-i�cation of QoS requirements using the languages that we have introduced.We will keep our running example low in functional complexity. While thisfacilitates the presentation, it is also in line with the typically low complexityof high-speed communication protocols and services. The running example israther simplistic: We will consider a sender-receiver system (SRS) that con-sists of a S (sender) process, an R (receiver) process and an underlying Mediumservice. Users in the system's environment are sending data from the senderend to the receiver end of the communication link. We assume that the userat the sender end sends data by a UDreq service primitive, and receives UDconor UDrej primitives that indicate successful and unsuccessful data transmis-sion, respectively. A process S implements the sender side of the service byinvoking an underlying Medium service using MDreq, MDcon and MDrej primi-tives in the obvious fashion. The Medium process (the behavior of which we donot explicitly specify) is assumed to be unreliable. However, we assume thatit possesses the miraculous capability to detect, whether or not a data unitthat has been sent could be successfully delivered at the receiver end of theconnection. In case of successful delivery the data unit will be presented by anMDind primitive to the process R which in turn hands the same data over tothe user at the receiving end using an UDind primitive. In case of unsuccess-ful delivery, process S is informed of the unsuccessful data transmission by aMDrej primitive. A UDrej indicates this circumstance to the user at the senderend of the connection. It will be the responsibility of higher layer protocols toprovide for error-correcting mechanisms.The SRS example captures some typical features of high-speed protocols,namely simple protocol functionality, absence of
ow control, simplicity ofthe failure indication mechanism and absence of a retransmission mechanism.Compare with similar protocol mechanisms in ATM [27,50]. A graphical de-scription of the Estelle speci�cation's architecture for SRS is given in Figure3 14 . The functional speci�cation of the sender and receiver Estelle mod-ule bodies can be found in Figure 4 15 . The SDL version of the SRS exampleis given in two parts: Figure 5 presents the SDL system level diagram, andFigure 6 contains the behavior of the sender and receiver processes.
14 Note that this diagram is not part of the Estelle speci�cation for SRS.15 The speci�cations include TIME CONSTRAINTS sections. These will be �lled by thereal-time constraints developed later in this Section.30

sender-receiver

ssap rsap

appsap

medsap

r_appsaps_appsap

appsap

medsap

S R

MFig. 3. Estelle Architecture of SRS1 BODY sender_body FOR sender;2 STATE s1, s2;3 INITIALIZE TO s1;45 TRANS6 FROM s1 TO s27 WHEN appsap.UDreq BEGIN8 OUTPUT medsap.MDreq;9 END;1011 TRANS12 FROM s213 WHEN medsap.MDrej TO s1 BEGIN14 OUTPUT appsap.UDrej;15 END;1617 WHEN medsap.MDcon TO s1 BEGIN18 OUTPUT appsap.UDcon;19 END;2021 TIME CONSTRAINTS

22 (* to be filled *)23 END:2425 END;262728 BODY receiver_body FOR receiver;29 STATE s1;30 INITIALIZE TO s1 BEGIN END;3132 TRANS33 FROM s1 TO same34 WHEN msap.MDind BEGIN35 OUTPUT appsap.UDind;36 END;3738 TIME CONSTRAINTS39 (* to be filled *)40 END:41 end;42Fig. 4. Estelle speci�cation of sender and receiver modules for SRS
MDreq

MDrej
MDcon

MDcon

MDreq

MDrej

MDind

MDind

S

UDreq

UDrej
UDcon

UDreq

UDind

UDind
UDrej
UDcon

R

BLOCK Medium

BLOCK Sender BLOCK Receiver

SYSTEM Sender-Receiver

Fig. 5. SDL System Diagram of SRS31

S2

UDreq

UDind

MDind

MDreq

PROCESS R

S1

UDrej
S1

MDrej

S2

S1

PROCESS S

MDcon

S1

S1

UDconFig. 6. SDL Process Diagrams for Sender-Receiver System8.1 Application QoS RequirementsAs argued in Section 3, application level QoS requirements are often formu-lated in the terminology of the end-user. Also, they often refer to the humanperception rather than technical characteristics of the communication system.Therefore we will give two examples of how application level requirementscan be translated in formally speci�ed requirements on the communicationsystem.8.1.1 Inter-stream synchronizationIn most existing multimedia systems, audio and video streams of the same ap-plication level connection are handled separately as two di�erent streams. Thatmakes handling of such multimedia applications more
exible, for instance bypermitting di�erent storage locations for video and audio data. An example forsuch an application is the distributed multimedia news-on-demand databasedescribed in [31]. However, synchronization becomes a problem, since videoframes have to be played out at approximately the same time as the cor-responding audio packets. According to [68] the video stream must not fallbehind the corresponding audio stream by more than 120 ms since other-wise the end user perceives lip synchronization to be lost. Likewise, the videostream must not precede the audio stream by more than 15 ms to avoid lossof perceived lip synchronization.In the SRS, we model two streams by sequences of UDind packets. Each packethas two parameters: the �rst indicates if the packet belongs to the audio (a)or the video stream (v), and the second contains the sequence number 16 . Forthe sake of simplicity we assume that each video packet is associated withexactly one audio packet with the same sequence number.SDL/MTL. Inter-stream synchronization is a QoS requirement. The under-lying communication subsystem has to provide for mechanisms guaranteeing16We will, for instance, write INPUT(UDindv(n)). Note that the parameter n canbe interpreted as a variable. For the formal treatment of variables see Section 6.32

this requirement. We introduce the speci�cation of two di�erent sorts of inter-stream synchronization, namely the exact and time-bounded variants.Exact synchronization means that we require the audio as well as the videodata unit to be received at the same instant in time. This leads to an interest-ing problem: SDL processes have just one input queue, so they can not receivemessages simultaneously but only in a nondeterministically chosen order. Wecan o�er two ways around this problem.Concurrent video and audio systems: We assume that there is one in-stance of the SRS system for the video-data, and one for the audio-dataand that both together form an SDL system. We'll write subscripts v formessages belonging to the video subsystem, and a for the audio subsystem.The processing of the audio and the video stream is handled outside the sys-tem by the user which is located in the environment. It would be temptingto specify the exact inter-stream requirement as2(INPUT(UDindv(n)) � INPUT(UDinda(n))):This expresses that in the same global state in which INPUT(UDindv(n))holds, INPUT(UDinda(n)) has to hold as well. However, based on our in-terleaving model there can be no such state, because in any global systemstate only one INPUT predicate can hold and the above formula is thereforenon-satis�able.There is a �nite supply of sequence numbers. Hence, when pairing videoand audio packets that have been disambiguated by the sequence numberwe need to make sure that identical instances of a sequence number usageare being paired. Therefore, we introduce a time constant ts chosen suchthat more than ts time units pass between the i-th and the i + 1-st usageof any sequence number n for all natural i > 0 17 .We modify the above unsatis�able formulation of the synchronizationrequirement using the 3=0 operator. We require that if we observe a videoframe with sequence number n that is followed within ts time units by anaudio frame with the same sequence number at all, then we'll see this audioframe within 0 delay in a future state 18 :2((INPUT(UDindv(n)) ^3�tsINPUT(UDinda(n)))� 3=0INPUT(UDinda(n))):17 For an estimation of tS compare the number of frames transmitted per second ina multimedia application, which is typically less than 25, with the possible size ofthe range of a sequence number of 2m where m is likely to be greater or equal to 8.TCP has recently been changed to have a 32 bit sequence number.18 Note that we are not interested in specifying any reliability or liveness propertieshere. I.e., it is not required that we will see a corresponding audio frame at all.33

A similar relationship holds if we see the audio frame �rst:2((INPUT(UDinda(n)) ^3�tsINPUT(UDindv(n)))� 3=0INPUT(UDindv(n))):Luckily, we de�ned the time stamp component of our timed state sequencemodel such that it is weakly monotonic, allowing concurrent states withidentical time stamps to appear in any order of an execution sequence.Consequently, this requirement is satis�able.Interleaving of video and audio stream: Now, we assume that the SRSsystem transmits the audio and the video stream along the same mediumconnection and consider the type to be a parameter of the messages received.The exact inter-stream synchronization requirement then reads2((INPUT(UDind(v; n)) ^3�tsINPUT(UDind(a; n)))� 3=0INPUT(UDind(a; n)))2((INPUT(UDind(a; n)) ^3�tsINPUT(UDind(v; n)))� 3=0INPUT(UDind(v; n))):Note that the de�nition of MTL we have used does not allow for quanti�cationover variables. We assume that there is a �nite set of sequence numbers, andif we want to avoid quanti�cation we have to repeat each of the formulasn times replacing the variable n with a constant. Alternatively, restrictedquanti�cation as in [9,10] can be used.In the time-bounded model of inter-stream synchronization we do not re-quire the two data streams to be synchronized with zero time delay. Insteadwe allow for an upper limit of 120 ms and 15 ms on the loss of synchroniza-tion of the audio and video streams, respectively. Assume ts > 120ms. In thiscase, for the concurrent audio and video model the time-bounded inter-streamsynchronization reads:2((INPUT(UDindv(n)) ^3�tsINPUT(UDinda(n)))� 3�15msINPUT(UDinda(n)))2((INPUT(UDinda(n)) ^3�tsINPUT(UDindv(n)))� 3�120msINPUT(UDindv(n))):This extends to the interleaved video and audio streams in an obvious way.34

Real-Time Estelle. Similar considerations apply to the Real-Time Estellespeci�cation. For the concurrent systems approach, we assume an SRS withtwo sender and two receiver modules, handling audio and video streams sep-arately. The SRS now has four external interaction points instead of two,namely s audiosap, s videosap, r audiosap and r videosap. A zero delaysynchronization requirement to receive an audio and a video packet from thesystem at exactly the same point in time can be expressed as follows, takingadvantage of Real-Time Estelle`s time variables and the capability to comparethem:FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH ((RECEIVING OF r_videosap.UDind_v(n) AT x ANDEVENTUALLY RECEIVING OF r_audiosap.UDind_a(n)AT (x <=y <= x + ts))IMPLIES (x=y));FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH ((RECEIVING OF r_audiosap.UDind_a(n) AT x ANDEVENTUALLY RECEIVING OF r_videosap.UDind_v(n)AT (x <=y <= x + ts))IMPLIES (x=y));In this and all following Real-Time Estelle speci�cations the unit of timeconstants is determined by the TIMESCALE option. We assume that for allfuture examples the line \TIMESCALE=milliseconds;" is included.The interleaving case can be modeled by the r appsap interaction point of theoriginal SRS speci�cation for reception of both types of messages. Note thatin Real-Time Estelle it is not necessary to list a formula for every possiblevalue of n. We use a quanti�er to express this in one formula. For the time-bounded version of inter-stream synchronization the bounded delay version ofthe speci�cation reads:FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH ((RECEIVING OF r_appsap.UDind(a,n) AT x ANDEVENTUALLY RECEIVING OF r_appsap.UDind(v,n)AT (x <= y <= x + ts))IMPLIES (y <= x+120));FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH ((RECEIVING OF r_appsap.UDind(v,n) AT x ANDEVENTUALLY RECEIVING OF r_appsap.UDind(a,n)AT (x <= y <= x + ts))IMPLIES (y <= x +15) 35

);8.1.2 Frame RateEnd users describe the perceived moving image quality of a video connectionin terms of \high vs. low quality". The technical representation of this charac-terization relates to the allocated video frame rate, i.e. the number for videoframes that can be played out per second at the receiver end of the connec-tion. A rate of 8 frames per second fails to give the impression of a movingpicture. For high-quality video transmission, a rate of about 25 frames persecond is required. In our speci�cations we assume that each UDind packet inSRS carries one video frame.
SDL/MTL. Frame rates are usually measured by the number of frames pertime period, called the observation interval. A certain rate, however, can beachieved by transmitting a number of frames within a very short period oftime, and then a few more at the end of the observation interval. However,SDL/MTL does not allow for counting of events in the MTL formula part.This would constitute a non-trivial extension of the logic [29]. We o�er anapproximation of this requirement by means of a reciprocal consideration: ifwe want to require that at least 25 frames be transmitted per second, then weassume that this can be reached by transmitting at least one frame every 0.04sec. We therefore suggest the following exact inter-send time requirement asan approximation of the original frame rate requirement:2(OUTPUT(MDind) � 3: �0:04secOUTPUT(MDind)):
Real-Time Estelle. We make use of the additional expressiveness of Real-Time Estelle to formulate a more lenient requirement on the frame rate. Werequire that it should be about 25 frames per second. Our �rst formula reads:FORALL x: TIME; FORALL z:integer; HENCEFORTH (SENDING OF r_appsap.UDind[z] AT x LEADSTOSENDING OF r_appsap.UDind[z+1] AT (x + 37 <= now <= x + 43));However, using only this formula, the frame rate could vary between 23 and27 frames per second. To further restrict the rate to a value near to 25 framesper second, we give a second formula, which requires that after the z-th framehas been sent, the z + 24-th frame should be sent between 997 and 100336

milliseconds later 19 .FORALL x: TIME; FORALL z: INTEGER; HENCEFORTH (SENDING OF r_appsap.UDind[z] AT x LEADSTOSENDING OF r_appsap.UDind[z+24] AT (x + 997 <= now <= x + 1003));8.2 Transport QoS requirementsIn this section we address QoS related properties at the transport connectionlayer. We do not strictly abide to the OSI model here, we are happy to consider,for example, the ATM Adaptation Layer a `transport' layer.8.2.1 Guaranteed Response of the transport systemFunctional system properties are often distinguished into safety and progressproperties, and into safety and liveness properties [58,16]. Both classi�cationsare orthogonal. In the SRS example liveness and progress of the service pro-vided by the medium is an important property to infer liveness of the serviceprovided by the SRS system. One such property we wish to express is thatif data transmission has been requested by a MDreq, then eventually we willeither see a MDind or a MDrej message telling us about the success of our re-quest 20 . Note that this is a purely functional property. However, neither SDLnot Estelle is capable of expressing liveness properties. We show how Real-Time Estelle and SDL/MTL can also be used to specify these properties forSDL and Estelle speci�cations. Note that to specify guaranteed response weonly need to use the untimed constructs of Real-Time Estelle und SDL/MTL.SDL/MTL.2(OUTPUT(MDreq) � 3(INPUT(MDind) _ INPUT(MDrej))):Real-Time Estelle.HENCEFORTH (SENDING OF medsap.MDreq LEADSTO (19 It should be noted that our speci�cation technique is not stochastic. This speci-�cation does not specify an average frame rate of 25 frames in the sense that anysystem satisfying this speci�cation would have a frame rate that converges to 25.Systems may satisfy this speci�cation even if their frame rates converge to slightlyless or more than 25, as the reader can easily check.20 Strictly speaking, this property is a conjunction of a safety and a liveness property,see [16]. 37

RECEIVING OF medsap.MDind ORRECEIVING OF medsap.MDrej));8.2.2 DelayLet us assume that the medium service in SRS is a service that provides real-time guarantees on the delivery of transmitted data units. [27] argues, forexample, that an HDTV-quality 21 remote surgery system must be based ona telecommunications subsystem that guarantees an end-to-end delay of notmore than 1 ms. To specify the QoS requirement of a delay bound of 1 ms onthe sending and receiving of data units from the medium in the SRS examplewe use the following speci�cations 22 .SDL/MTL.2(OUTPUT(MDreq) � 3�1ms(INPUT(MDind) _ INPUT(MDrej))):Note that our SDL/MTL speci�cation does not distinguish multiple instancesof the signal typesReal-Time Estelle. Assuming a TIMESCALE of milliseconds we specify:FORALL x: TIME; HENCEFORTH (SENDING OF medsap.MDreq AT x LEADSTO ((RECEIVING OF medsap.MDind ORRECEIVING OF medsap.MDrej) AT (now <= x + 1)));Note that for both the SDL/MTL and the Real-Time Estelle speci�cation ofSRS we do not require the medium service to be reliable, we only require apositive or negative indication eventually to be given.21 High De�nition Television, a high resolution digital TV standard.22 Note that the correctness of this speci�cation hinges upon the fact that the SRSexample uses a \stop-and-go" protocol. I.e. after observing an OUTPUT(MDreq)signal the next instance of an OUTPUT(MDreq) signal can only be observed incase an intermittent INPUT(MDind) or INPUT(MDrej) signal has been observed.38

8.2.3 JitterDelay-related QoS requirements may become more subtle. Successive dataunits routed through a complex network may be subject to varying delays overtime. The ATM service is, as one example, prone to this sort of delay variation[50]. The delay variation may be caused by changing network load which maylead to temporal congestion in network internal ATM switches, or by routingsuccessive cells on di�erent routes. When the application requires continuousmedia streams to be transmitted it may be necessary to limit the variation inthe delay that successive data units experience. Multimedia applications whichneed to reconstruct continuous signals require data to be delivered within atime interval around the mean value of the transmission delay, depending onthe coding scheme used. The delay variance is called delay jitter and formallyde�ned as follows: let dmin denote the minimal and let dmax, dmin < dmax,denote the maximal delay between sending and receiving of a sequence oftransmitted data units, then J = dmax � dmin denotes the delay jitter 23 .Let us assume that the SRS system has some QoS mechanism (which wehaven't speci�ed) that guarantees a bound on the delay jitter and at the sametime ensures reliable transmission. The following speci�cations then specifythe QoS requirement bounding the delay jitter at the user interface. Let usfurthermore assume that the sequence of packets models a video stream withina video conference. For this case, [33] found a maximum acceptable delay of250ms and a maximum jitter of 10ms. We require a maximum delay boundand set dmax = 200ms and assume a minimum delay dmin = 190ms.SDL/MTL. 2(INPUT(UDreq) �(:OUTPUT(UDind) U[190;200] OUTPUT(UDind))):Real-Time Estelle. We insert the following time constraint into the sen-der-receiver process speci�cation of Figure 3:FORALL x: TIME; HENCEFORTH (RECEIVING OF s_appsap.UDreq AT x IMPLIES (HENCEFORTH NOT (SENDING OF r_appsap.UDindAT (x < now <= x + 190))ANDEVENTUALLY SENDING OF r_appsap.UDind AT (now <= x + 200)23 Note that some absolute delay may be tolerable for some types of tra�c likeuni-directional broadcast, even when tight delay jitter bounds are crucial for thereasons explained above. 39

));If the communication service can guarantee that there will be no messagelosses, we can make use of Real-Time Estelle`s instance operator in order torewrite this speci�cation more concisely:FORALL x: TIME; FORALL z:integer; HENCEFORTH (RECEIVING OF s_appsap.UDreq[z] AT x LEADSTOSENDING OF r_appsap.UDind[z] AT (x+ 190 < now <= x + 200));8.3 ATM AAL QoS requirements8.3.1 IsochronicityIsochronicity is a characteristic of communication systems supporting multi-media applications. It means that certain communication events, for examplesending and receiving of multimedia data units, occur periodically at equallydistanced points of time. This is important for continuous media applicationsthat need to have video frames available for playout at isochronous instantsin time in order to guarantee a user-perceived moving image QoS. The needfor isochronicity depends on the coding scheme in use. Isochronicity is par-ticularly important for simple coding schemes in which samples of the analogsignal are taken and sent periodically without pixel-di�erential encoding andimplicitly stored time stamps. Isochronicity is an example for an intra-streamsynchronization QoS requirement.Isochronous sending: We refer again to the SRS example and considerisochronous sending of UDreq messages from the user to the Sender pro-cess. Note that this is therefore a speci�cation of environment behavior andnot the speci�cation of a QoS requirement.SDL/MTL. The SDL formalization requires that within the right-openinterval of t time units after sending a frame by a UDreq primitive it is notallowed to send another UDreq message, while the next UDreq message hasto follow exactly t time units after its predecessor.2(INPUT(UDreq) � (:3: <tINPUT(UDreq) ^3=tINPUT(UDreq))):Real-Time Estelle. The requirement could be formulated similarly tothe one in SDL/MTL. However, we again make use of the instance operatorand require that two consecutive data units arrive at a distance of t time40

units. Therefore, it is not necessary to forbid the arrival of data units withinthis interval:FORALL x:TIME; FORALL z:integer; HENCEFORTH (RECEIVING OF s_appsap.UDreq[z] AT x LEADSTORECEIVING OF s_appsap.UDreq[z+1] AT (now = x+t));Isochronous receiving: On the receiver side, the receiving application pro-cess may require to have successive data units available at isochronous mo-ments in time. This now turns out to be a QoS requirement imposed on theservice provided by the receiver process.SDL/MTL. 2(OUTPUT(UDind) �(:3: <tOUTPUT(UDind) ^3=tOUTPUT(UDind))):Real-Time Estelle. Again, we use the instance operator:FORALL x: TIME; FORALL z:integer; HENCEFORTH (SENDING OF r_appsap.UDind[z] AT x LEADSTOSENDING OF r_appsap.UDind[z+1] AT (now = x + t));8.4 QoS Mechanisms8.4.1 Delay Jitter CompensationGuaranteeing a bound on the delay jitter of a transmission medium does notyet guarantee isochronous delivery of messages to an application, even if thesource is sending data isochronously. In order to compensate the residual delayjitter and to guarantee an isochronous delivery of data units to a user it hasbeen suggested to use a jitter compensation bu�er between the network serviceand the user. In the context of ATM this bu�er is often called playout bu�er[50].SDL/MTL. Assume that the process R in SRS has the functionality of aplayout bu�er, which can easily be implemented in SDL 24 . Henceforth, R24 Think of the following SDL process as implementing the bu�er: If a messagearrives, it will be stored using an SDL SAVE primitive. This will be done until thetarget �lling is reached ([50] argues that this is approximately two ATM cells).Then, use a timer and replay the messages from the SAVE queue when the timerexpires, or SAVE incoming messages. 41

accepts the possibly non-isochronous but jitter-bounded data stream from theMedium service by MDind signals. Every signal will be delayed for a minimumtime span of t1 time units. This means that the �rst data units in a streamwill �ll the bu�er up to a certain threshold number. Then, at latest t2 >t1 time units after the arrival at the bu�er the data units will be deliveredto the user by means of a UDind signal. The delivery of successive MDindsignals then occurs isochronously with an inter-signal delivery time of p, whichshould ideally correspond to the inter-send event time at the sender in orderto ensure isochronous tra�c with identical inter-send times on the sender andon the receiver side. The jitter compensation requirement for the process Rthen reads 25 :2(INPUT(MDind) � (2�t1:OUTPUT(UDind) ^3�t2OUTPUT(UDind)))^2(OUTPUT(UDind) � 3: =pOUTPUT(UDind)):The �rst conjunct in this formula speci�es a property of the playout bu�erQoS mechanism, while the second conjunct speci�es a QoS guarantee that thismechanism has to provide.Real-Time Estelle. We follow the approach sketched for SDL and assumethat module receiver has the functionality of a playout bu�er. Unlike SDL,Estelle has no SAVE command. Instead, messages can be assigned to variables.Thus, the obvious implementation of the playout bu�er is a ring bu�er variablewhere incoming MDind messages are stored. A second transition reads thestored data from the ring bu�er, encodes them in UDind messages and sendsthem out over the interaction point to the user. The real-time constraintsfor the receiver's playout bu�er are partitioned into two Real-Time Estelleconstraints and read as follows:FORALL x: TIME; HENCEFORTH ((RECEIVING OF medsap.MDind AT x FORBIDSSENDING OF r_appsap.UDind AT (x <= now <= x + t1))AND(RECEIVING OF medsap.MDind AT x LEADSTOSENDING OF r_appsap.UDind AT (now <= x + t2)));FORALL x: TIME; HENCEFORTH (25 Note that while the previously sketched SDL implementation of the playout bu�erused the SDL timer mechanism in an operational fashion to generate stimuli forreplaying saved messages to the user. However, only the conjunction of this opera-tional model with the following MTL formulas guarantees that the resulting modelsatis�es hard real-time isochronicity bounds.42

SENDING OF r_appsap.UDind AT x LEADSTOSENDING OF r_appsap.UDind AT (now = x + p));The �rst constraint describes a minimum and a maximum time a packet has tostay within the playout bu�er, while the second one ensures isochronicity 26 .8.4.2 Reaction on QoS ViolationThe examples that we have shown so far provided speci�cations of require-ments that tell the `good' system behaviors from the `bad' ones. If only oneof the possible executions of a system violates one of the above requirementspeci�cations, then this will invalidate the system with respect to the speci�-cation. However, systems will in some cases not become unusable in the eventof a violation of some QoS guarantee. Instead, the system will raise an ex-ception condition to indicate the QoS guarantee violation to an operator, andthen proceed. We call this mechanism QoS monitoring. In the SRS examplewe require that whenever an MDreq, carrying one encoded video frame, is notfollowed within 200ms by either a MDind or MDrej data unit, which wouldcorrespond to meeting the QoS guarantee of positive or negative indicationwithin 200ms, then the sender process will send a signal ALARM within 220mstime units of having sent MDreq.SDL/MTL. Assume that in the SRS example the sender process has thecapability to indicate the violation of a delay QoS guarantee by the mediumusing a signal of type ALARM. Then the following speci�cation ensures theproper functioning of this monitoring mechanism:2(:(OUTPUT(MDreq) � 3�200ms(INPUT(MDind) _ INPUT(MDrej)))� (2�200ms:OUTPUT(ALARM) ^3�220msOUTPUT(ALARM))):Real-Time Estelle. We use the keyword OTHERWISE to express that weprefer QoS not to be violated, but that there is a possible reaction if it happens.FORALL x: TIME; HENCEFORTH (SENDING OF medsap.MDreq AT x LEADSTO ((RECEIVING OF medsap.MDindORRECEIVING OF medsap.MDrej)26 The formulation in Real-Time Estelle uses the abbreviations FORBIDS andLEADSTO. Note that in the earlier delay jitter example, instead of these keywords,the long forms have been used. 43

AT (x <= now <= x + 200)OTHERWISESENDING OF s_appsap.ALARM AT (x + 200 < now <= x + 220))AND HENCEFORTH NOT SENDING OF s_appsap.ALARM AT (now <= x + 200));8.4.3 QoS NegotiationThe tra�c pattern dynamics in broadband communication systems make itnecessary for the involved parties to negotiate and renegotiate QoS guarantees[42]. Assume the sender process in the SRS example has the capability of ne-gotiating an increase in certain QoS guarantees with the underlying mediumservice. Let us also assume that there is an obvious QoS (re-)negotiation pro-tocol that has been speci�ed between the sender process and the medium: Theapplication sending data via SRS requests an increase in delay bound by send-ing a UINCreq signal which the service forwards to the medium (MINCreq). Weassume that there is an appropriate network management process maintain-ing the network resources inside the medium subsystem. The medium eithergrants the increase (MINCcon) or it refuses the increase (MINCrej). Both re-actions are indicated accordingly to the user. We are not interested in themechanism itself, but in specifying the e�ect that a successful renegotiationhas. It may be useful to state that successful renegotiation entails a hence-forth invariant property to hold, namely the newly established level of QoSguarantee. This is invariant until a new renegotiation is initiated. This maybe useful in showing the correctness of other parts of the system that rely onthe speci�ed delivery bound.SDL/MTL. As an example assume that a user was no longer satis�ed withthe medium delay and asked for a better video quality. The transmission pro-tocols translate this request to a new maximum acceptable delay of 200ms.We thus require that whenever INPUT(MINCcon(200ms)) has been exe-cuted, the delivery delay of the medium is henceforth limited to 200ms, untilanother, arbitrary INPUT(MINCcon())) is observed. Note that we assumethat there is a �nite number of constants that can appear as an argument tothe MINCcon primitive.2(OUTPUT(MINCcon(200ms)) �(2((INPUT(MDreq) ^3OUTPUT(MDind)) � 3�200msOUTPUT(MDind)))U OUTPUT(MINCcon())):44

Real-Time Estelle. A temporal until operator is not de�ned in Real-TimeEstelle. The following speci�cation can therefore not express the boundedinvariance that holds until renegotiation takes place. The temporal contextremains unbounded.FORALL x,y: TIME; HENCEFORTH (SENDING OF medsap.MINCcon AT x LEADSTO (HENCEFORTH ((RECEIVING OF medsap.MDreq AT (y>=x) ANDEVENTUALLY SENDING OF MDind) LEADSTOSENDING OF MDind AT (now <= y + 200))));9 Concluding RemarksIn this paper, we have shown how the standardized FDTs Estelle and SDLcould be enhanced in order to be suitable tools for the speci�cation of typicalrequirements and characteristics of broadband and multimedia systems. Thegeneral idea is to describe a system's functional behavior with the standard-ized part of Estelle or SDL syntax, and the non-functional QoS aspects byvariants of real-time temporal logic formulas. In the case of SDL these formu-las complement the SDL speci�cation, in the case of Real-Time Estelle theyform part of the syntax of an extended Estelle language. We have shown ex-amples of how to apply the two speci�cation techniques to some typical QoSrequirements, guarantees and mechanisms.In this concluding Section we will �rst present a comparison of Real-Time Es-telle and SDL/MTL. Then, we will give an outlook on future work. We discussthe application of our notations to formal validation and veri�cation, and toautomatic implementation. Finally, we discuss possible stochastic extensionsto our deterministic approaches.9.1 Comparison of Real-Time Estelle and SDL/MTLSimilarities between the the Real-Time Estelle and the SDL/MTL approachcomprise the usage of an language based on communicating extended �nitestate machines for the basic functional properties, and real-time temporal logicnotations for the non-functional QoS properties. We now mention di�erencesbetween these two approaches.Syntax: From a syntactical point of view Real-Time Estelle is a languageextension, while SDL/MTL uses temporal logic formulas that complementSDL speci�cations. Consequently, in SDL/MTL two syntactically disjoint45

speci�cations are needed to express the overall system requirements whileReal-Time Estelle speci�cations are just one syntactic unit. To favor theone or the other approach requires weighing uniformity of the language vs.modularity and abstraction in the speci�cation. A complementary speci�ca-tion separates operational properties from temporal and real-time proper-ties and hence supports separation of concerns. The Promela language andthe XSPIN tool are a practical example for a complementing speci�cationapproach: XSPIN will accept Promela speci�cations of and check Promelamodels against complementing Linear Temporal Logic formulas [37].Readability: In the selection of the syntax for its extension part, Real-TimeEstelle was guided by simplicity, readability for human readers and similar-ity to the existing Estelle keyword set. Important design decisions were theselection of only ASCII keywords and the provision of suitable short formsfor certain expressions (like LEADSTO and FORBIDS). The goal of SDL/MTLwas mainly to remain close to standardized SDL for the functional speci�-cation and to add QoS requirements without needing to change the syntaxof the functional speci�cation.The syntactic approaches we have chosen to account for real-time expres-siveness have the nature of case-studies: It is easy to see that one couldequally de�ne a complementary speci�cation approach based on Estelle andMTL as one could incorporate a Real-Time Estelle-like real-time syntaxinto SDL. We hope that our discussions will help those interested in accom-modating the SDL and Estelle standards to new needs of expressiveness inchoosing adequate syntax (and semantics, we hasten to add).Semantics: The dynamic semantics of SDL is operationally de�ned in [41].We found this semantics de�nition not suitable for our purposes and there-fore exempli�ed an axiomatic approach to an SDL semantics based on Hoaretriples. We applied this approach rigorously to a subset of the full SDL lan-guage. A more complete interpretation of Z.100 SDL based on our approachcan be given. The semantic de�nition of Estelle in the standard is less rigor-ous than the SDL de�nitions. Again, we propose that the approach chosenfor SDL can easily be adapted to de�ning an axiomatic semantics for Estelle.Note that [13] de�nes a predicate transformer-based axiomatic semantics forEstelle.Expressiveness: The semantics of Real-Time Estelle's logic part has beendesigned with the goal of reaching suitable expressiveness. The logic is sim-ilar to Ostro�'s RTTL [62]. MTL is less expressive than RTTL. It doesn'tallow for counting of events or the use of variables over arbitrary domains. Interms of real-time expressiveness the ability to quantify over time variablesallows Real-Time Estelle to express so-called `non-local timing requirements'that MTL is unable to express [4]. Both Real-Time Estelle and SDL/MTLuse future time operators. Others have found past-time operators useful insimplifying speci�cations [9 11]. While we were happy with the exclusiveuse of future time operators it should be noted that past time operators caneasily be added both syntactically and semantically, and that their intro-46

duction does not add signi�cant tractability problems.Complexity: The increased expressiveness of Real-Time Estelle has to bepaid for in terms of decision complexity. Satis�ability of MTL is EXSPACE-complete while it is non-elementary for Real-Time Estelle [4]. This meansthat one can hope that SDL/MTL speci�cations may be veri�ed with somee�ort which is not the case for Real-Time Estelle.9.2 Veri�cation and ValidationThe goal of a formal veri�cation method for QoS requirements is to prove thata system speci�cation S satis�es a set of QoS requirements Q. In particular, Smay be the functional speci�cation of a protocol or a service. The QoS guaran-tees that a service is capable of providing greatly depends on the performanceof the underlying communications network. Let P denote a speci�cation ofthe QoS guarantees implemented by the underlying communications network.Let us consider the SRS example again, and let us assume that the func-tional behavior of SRS is given as a logic speci�cation S. Assume the systemperformance to be described by the following minimal response time formula:P : 2((INPUT(MDreq) ^3OUTPUT(MDind))� 2<t1:OUTPUT(MDind)):Let a QoS requirement on SRS be described by the following formula:Q : 2(OUTPUT(UDreq) � 3�t2(INPUT(UDcon) _ INPUT(UDrej))):This gives rise to a veri�cation problem, namely the question, whether basedon S and P the QoS requirement Q can at all be satis�ed, hence whether theassertion P ^ S � Q holds. Intuitively, the answer depends amongst otherson the choice of values for t1 and t2. To formally establish this conjectureit is necessary to employ formal veri�cation methods. Amongst the numer-ous veri�cation approaches in the literature, [1] contains an approach to theformal veri�cation of temporal logic based real-time requirements, and [3]discusses real-time model checking algorithms. RT-Spin [69] is based on themodel checking approach in [3].9.3 ImplementationAs we pointed out earlier, formal speci�cations can have multiple functionsin the systems engineering process: they can be abstract requirements models47

or implementation-biased design speci�cations. The implementation of a de-sign speci�cation given in Real-Time Estelle needs to be based on a real-timeimplementation environment since otherwise, no guarantees for the speci�edreal-time constraints can be given. In [25], a method for the automatic imple-mentation of Real-Time Estelle speci�cations in a real-time operating systemenvironment has been suggested. The general idea is to map each real-timeenhanced Estelle module in the speci�cation onto one thread of the operatingsystem and derive the scheduling parameters from the real-time constraints inthe speci�cation.
9.4 Stochastic Extensions[46] distinguishes deterministic and statisticalQoS guarantees. We have silentlyassumed that QoS can be treated as a deterministic phenomenon. The stochas-tic nature of some broadband and multimedia systems may make it necessaryto express requirements in a stochastic fashion. An example is the requirementthat with a probability of p the cell transfer delay in ATM will be less than ttime units. There have been a number of approaches that combine temporallogic, real-time and probabilities [2,32]. In these logics formulas do not onlyneed to be satis�ed by a timed state execution model, they also need to satisfyaccumulated path probabilities in a given Markov chain model.We informally describe this approach. Intuitively, let 3�a�t p denote the re-quirement that with a probability of at least a within the next t time units pwill hold. The real-time annotation can be omitted in which case the formulais purely stochastic. This allows us to express the idea of stochastic reliabil-ity, namely that if a data unit is sent then it will with a probability a with0 < a � 1 be eventually received:2(INPUT(MDreq) � 3�aOUTPUT(MDind)):An interpretation of this requirement in the context of ATM is that the cellloss rate is < 1� a. The more meaningful requirement, however, is that sucha cell loss rate will be achieved within a �nite interval of t time units, whichcan be expressed as follows:2(INPUT(MDreq) � 3�a�tOUTPUT(MDind)):48

AcknowledgementsThe authors wish to thank the anonymous referees for their detailed andhelpful comments. Reinhard Gotzhein contributed further to debugging thepaper. The research of the second author was in part supported by the NaturalSciences and Engineering Research Council (NSERC) of Canada.References[1] M. Abadi and L. Lamport. An Old-Fashioned Recipe for Real Time. In [21],pages 1{27, 1992.[2] R. Alur, C. Courcoubetis, and D. Dill. Model Checking for ProbabilisticReal-time Systems. In J. L. Albert, B. Monien, and M. R. Artalejo, editors,International Colloquium on Automata, Languages and Programming, volume510 of Lecture Notes in Computer Science. Springer Verlag, 1991.[3] R. Alur and D. Dill. A theory of timed automata. Theoretical ComputerScience, 126(2):183{235, 1994.[4] R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In[21], pages 45{73, 1992.[5] F. Anger. On Lamport's Interprocess Communication Model. ACMTransactions on Programming Languages and Systems, 11(3):404{417, July1986.[6] C. Aurrecoechea, A. Campbell, and L. Hauw. A Survey of QOS Architectures.Multimedia Systems Journal, Special Issue on QoS Architectures, 1997. Toappear.[7] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from ProtocolSpeci�cation. Prentice Hall International, 1991.[8] S. Ben-David. The global time assumption and semantics for concurrentsystems. In Principles of Distributed Computing, pages 223 { 231. ACM, 1988.[9] G. S. Blair, L. Blair, and J. B. Stefani. A speci�cation architecture formultimedia systems in open distributed processing. Computer Networks andISDN Systems, 29:473{500, 1997.[10] L. Blair, G. Blair, H. Bowman, and A. Chetwynd. Formal speci�cation andveri�cation of multimedia systems in open distributed processing. ComputerStandards and Interfaces, 17:413{436, 1995.[11] H. Bowman, G. Blair, L. Blair, and A. Chetwynd. Time versus abstraction informal descriptions. In R. L. Tenney, P. D. Amer, and M. �U. Uyar, editors,Formal Description Techniques, VI, pages 467{482. Elsevier Science PublishersB.V. (North{Holland), Amsterdam, 1994.49

[12] D. Brand and P. Za�ropulo. On communicating �nite-state machines. Journalof the ACM, 30(2):323{342, Apr. 1983.[13] J. Bredereke, R. Gotzhein, and F. H. Vogt. Design of a formal Estelle semanticsfor veri�cation. In [23], pages 153{168, 1993.[14] M. Broy. Towards a Formal Foundation of the Speci�cation and DescriptionLanguage SDL. Formal Aspects of Computing, 3(1):21{57, 1991.[15] S. C. Chamberlain. Estelle Enhancements for Formally Specifying DistributedSystems. PhD thesis, University of Delaware, USA, 1992.[16] E. Chang, Z. Manna, and A. Pnueli. The safety-progress classi�cation. In sub-series F: Computer and System Science, NATO Advanced Science InstitutesSeries. Springer-Verlag, 1992.[17] K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generationusing the extended �nite state machine model. In Proceedings of the 30th DesignAutomation Conference DAC-93, pages 86{91, 1993.[18] C. Courcoubetis, editor. Computer Aided Veri�cation: Proceedings of CAV'93,volume 697 of Lecture Notes in Computer Science. Springer Verlag, 1993.[19] J.-P. Courtiat and R. C. de Oliveira. RT-LOTOS and its application tomultimedia protocol speci�cation and validation. In B. Sarikaya and S. Saito,editors, IEEE International Conference on Multimedia Networking (MmNet95),Participants' Proceeedings, pages 31{45. IEEE Computer Society Press, Sept.1995.[20] A. M. Davis. Software Requirements: Objects, Functions and States. Prentice-Hall, 1993.[21] J. W. de Bakker, C. Huizing, W. de Roever, and G.Rozenberg, editors. Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.Springer-Verlag, 1992.[22] P. Dembi�nski and S. Budkowski. Simulating Estelle speci�cations with timeparameters. In Rudin and West [65], pages 265{279.[23] M. Diaz and R. Groz, editors. Formal Description Techniques, V. IFIPTransactions C-10, Proceedings of the Fifth International Conference on FormalDescription Techniques. North-Holland, 1993.[24] E. A. Emerson. Temporal and modal logic. In J. v. Leeuwen, editor, Handbookof Theoretical Computer Science, chapter 16. Elsevier Science Publishers B. V.,1990.[25] S. Fischer. Implementation of multimedia systems based on a real-timeextension of Estelle. In Gotzhein and Bredereke [30], pages 310{326.[26] S. Fischer. Real-Time Estelle. Technical Report TR-96-003,University of Mannheim, 1996. Available at: URL=ftp://pi4.informatik.uni-mannheim.de/pub/techreports/tr-96-003.ps.gz.50

[27] D. Ginsburg. ATM solutions for enterprise networking. Addison Wesley, 1996.[28] R. Gotzhein. Temporal logic and applications { a tutorial. Computer Networksand ISDN Systems, 24(3):203{218, 1992.[29] R. Gotzhein. Open distributed systems: on concepts, methods, and design froma logical point of view. Vieweg advanced studies in computer science. Friedr.Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, Germany,1993.[30] R. Gotzhein and J. Bredereke, editors. Formal Description Techniques IX {theory, application and tools, Kaiserslautern, Germany, 1996. Chapman & Hall.[31] A. Ha�d and G. v. Bochmann. Quality of Service Negotiation in News-on-Demand Systems: An Implementation. In A. Azcorra, T. D. Miguel, E. Pastor,and E. Vazquez, editors, Proceedings of the Third International Workshop onProtocols for Multimedia Systems, Madrid, Spain, pages 221{240, Oct. 1996.[32] H. A. Hanson. Time and Probability in Formal Design of Distributed Systems.PhD thesis, Uppsala University, Sweden, 1991.[33] D. Hehmann, M. Salmony, and H. J. St�uttgen. Transport services formulti{media application on broadband networks. Computer Communications,13(4):197{203, 1990.[34] T. A. Henzinger. The Temporal Speci�cation and Veri�cation of Real-TimeSystems. Phd thesis, Stanford University, Department of Computer Science,August 1991. Also published as Report No. STAN-CS-91-1380.[35] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. Inde Bakker et al. [21], pages 226{251.[36] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-HallInternational, 1991.[37] G. J. Holzmann. The veri�cation of concurrent systems. AT&T BellLaboratories, to be published by Prentice-Hall, 1995.[38] Information processing systems | Open Systems Interconnection | Estelle:A formal description technique based on an extended state transition model.International Standard ISO 9074, 1989.[39] ISO/IEC JTC1/SC21. Quality of service - basic framework - working draft #4,July 1994.[40] ITU-T. Recommendation Z.100: Speci�cation and Description Language(SDL). Geneva, Switzerland, 1993.[41] ITU-T. Recommendation Z.100: Speci�cation and Description Language(SDL), Annex F3: Dynamic semantics. Geneva, Switzerland, 1993.[42] ITU-T. Recommendation I.371: Tra�c control and congestion control in B-ISDN. Geneva, Switzerland, 1995. Temporary Document.51

[43] R. Koymans. Specifying Message Passing and Time-Critical Systems withTemporal Logic. PhD thesis, Technical University of Eindhoven, 1989.[44] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.Real-Time Systems Journal, 2(4):255{299, Nov. 1990.[45] A. S. Krishnakumar. Reachability and recurrence in extended �nite statemachines: Modular vector addition systems. In [18], pages 111{122, 1993.[46] J. Kurose. Open issues and challenges in providing quality of service guranteesin high-speed networks. ACM Computer Communication Review, 23(1):6{15,1993.[47] L. Lamport. Specifying concurrent program modules. ACM Transactions onProgramming Languages and Systems, 5(2):190{222, Apr 1983.[48] L. Lamport. The mutual exclusion problem: Part I { a theory of interprocesscommunication. Journal of the ACM, 33(2):313{326, April 1986.[49] L. Lamport. The Temporal Logic of Actions. ACM Transactions onProgramming Languages and Systems, 16(3):872{923, May 1994.[50] J.-Y. Le Boudec. The asynchronous transfer mode: a tutorial. ComputerNetworks and ISDN Systems, 24:279{309, 1992.[51] L. L�eonard and G. Leduc. An introduction to ET-LOTOS for the description oftime-sensitive systems. Computer Networks and ISDN Systems, 29(3):271{292,1997.[52] S. Leue. QoS speci�cation based on SDL/MSC and temporal logic. InG. v. Bochmann, J. de Meer, and A. Vogel, editors, Proceedings of Workshopon Distributed Multimedia Applications and Quality of Service Veri�cation,Montreal, Quebec, Canada, May 1994.[53] S. Leue. Specifying real-time requirements for SDL speci�cations { a temporallogic-based approach. In P. Dembi�nski and M. �Sredniawa, editors, Proceedingsof the Fifteenth International Symposium on Protocol Speci�cation, Testing,and Veri�cation PSTV'95. Chapman & Hall, 1995.[54] T. D. C. Little and A. Ghafoor. Synchronization and storage models formultimedia objects. IEEE Journal on Selected Areas in Communication,8(3):52{61, Apr. 1990.[55] M. T. Liu. Protocol engineering. In M. C. Yovitis, editor, Advances inComputers, volume 29, pages 79{195. Academic Press, Inc., 1989.[56] G. Luo, A. Das, and G. v. Bochmann. Software testing based on SDLspeci�cations with Save. IEEE Transactions on Software Engineering,20(1):72{87, 1994.[57] N. Lynch and F. Vaandrager. Forward and Backward Simulation for Timing-Based Systems. In de Bakker et al. [21], pages 397{446.52

[58] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and ConcurrentSystems: Speci�cation. Springer-Verlag, 1992.[59] P. M. Merlin and D. J. Farber. Recoverability of Communication Protocols{ Implication of a theoretical Study. IEEE Transactions on Communications,Com-24:1046{1043, Sept. 1976.[60] S. M�rk, J. Godskesen, M. Hansen, and R. Sharp. A timed semantics for SDL.In Gotzhein and Bredereke [30], pages 295{309.[61] X. Nicollin and J. Sifakis. An Overview and Synthesis of Timed ProcessAlgebras. In de Bakker et al. [21], pages 526{548.[62] J. S. Ostro�. Temporal Logic of Real-time Systems. Research Studies Press,1990.[63] J. Quemada and A. Fernandez. Introduction of Quantitative Relative Timeinto LOTOS. In Rudin and West [65], pages 105{121.[64] H. Rudin. The dimension of Time in Protocol Speci�cation. In Lecture Notes inComputer Science 248, pages 360{372. Springer{Verlag Berlin Heidelberg NewYork, 1986.[65] H. Rudin and C. H. West, editors. Protocol Speci�cation, Testingand Ver�cation VII. Elsevier Science Publishers B.V. (North{Holland),Amsterdam, 1987.[66] H. Saito, T. Hasegawa, and Y. Kakuda. Protocol veri�cation system for SDLspeci�cations based on acyclic expansion algorithm and temporal logic. InK. Parker and G. Rose, editors, Formal Description Techniques, IV: Proceedingsof the Third International Conference on Formal Description Techniques, pages511{526. North-Holland, 1992.[67] P. S�enac, M. Diaz, and P. de Saqui-Sannes. Toward a formal speci�cation ofmultimedia synchronization scenarios. Annuaires T�el�ecommunication, 49(5{6):297{314, 1994.[68] R. Steinmetz and C. Engler. Human Perception of Media Synchronization.Technical Report 43.9310, IBM European Networking Center, Heidelberg,Germany, 1993.[69] S. Tripakis and C. Courcoubetis. Extending Promela and Spin for real time. InT. Margaria and B. Ste�en, editors, Tools and Algorithms for the Constructionand Analysis of Systems, Proceedings of the Second International Workshop,TACAS'96, volume 1055 of LNCS, pages 329{348. Springer Verlag, 1996.[70] T. Tsang and R. Lai. Time Estelle: An Extended Estelle Capable of ExpressingMultimedia QoS Parameters. In IEEE Int. Conf. on Multimedia Computing andSystems (ICMCS'97), Ottawa, Canada. IEEE Computer Society Press, 1997.To appear. 53

[71] G. v. Bochmann and J. Vaucher. Adding Performance Aspects to Speci�cationLanguages. In S. Aggarwal and K. Sabnani, editors, Protocol Speci�cation,Testing and Veri�cation VIII, pages 19{29. Elsevier Science Publishers B.V.(North{Holland), Amsterdam, 1988.

54

	Text6: First publ. in: Computer Networks and ISDN Systems 30 (1998), 9-10, pp. 865-899
	Text7:
	Text8: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6512/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65121

