First publ.in: ComputeMetworksand ISDN System&80 (1998),9-10,pp. 865-899

Formal Methods for Broadband and Multimedia
Systems

Stefan Fischer?

2 University of Montréal, DIRO, C.P. 6128, succ. Centre-Ville, Montréal, (PQ)
H3C 3J7, CANADA, Email: fischer@iro.umontreal.ca

Stefan Leue?

Y Blectrical and Computer Engineering, University of Waterloo, Waterloo,
Ontario N2L 3G1, CANADA, Email: sleue@swen.uwaterloo.ca

The proper capture of desired system properties is a pivotal step in pro-
viding high quality systems. The formal specification of these properties is
necessary to provide unambiguous documentation as well as automated
transformation of system requirements during all stages of the life cy-
cle. The standardized Formal Description Techniques (FDTs) Estelle and
SDL have proved useful for the specification of traditional protocols and
distributed systems. With the availability of high-speed networks new ap-
plications with additional requirements and characteristics are becoming
reality. These requirements are often referred to as Quality of Service
(QoS) requirements. We show that the above mentioned FDTs do not
possess the expressiveness to capture important classes of QoS require-
ments, namely quantitative deterministic real-time-related properties. It
is the purpose of this paper to exemplify steps that need to be taken in
order to overcome this deficit.

We first discuss choices that need to be made when designing a suitable
real-time execution model for SDL and Estelle and proceed to present two
remedies to the inexpressiveness problem: First, we introduce the con-
cept of complementary real-time specification by reconciling the semantic
models of Metric Temporal Logic and SDL and showing how both lan-
guages can be used in a complementary fashion. Second, we suggest a lan-
guage extension and the corresponding semantic interpretation for Estelle.
While we present examples from the domain of multimedia and broad-
band systems, the applicability of our specification methods extends to
hard real-time systems. Finally, we discuss extensions of our techniques to
capture QoS stochastic properties, and we allude to formal requirements
verification and automatic implementation based on our techniques.

Konstanze©Online-Publikations-Syste(KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6512/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65121

http://www.sciencedirect.com/science/journal/01697552
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65121
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6512/

1 Introduction

The specification of requirements on the observable behavior of distributed,
communicating real-time system is an important step in the engineering of
these systems. Requirements specifications help avoiding inconsistencies in
the requirements, they are the basis for deriving correct system designs, they
are essential in establishing the system’s correctness by serving as a basis for
testing and formal verification, and they are important in the documentation
of system requirements. [20] suggests that proper requirements engineering, of
which requirements specification is an important step, is pivotal in avoiding
pitfalls of what is called the ‘software crisis’. Facets of the software crisis
include systems that have low reliability or even unusability at time of delivery
to the customer, and software projects that exceed budget limits and project
deadlines. [20] argues that the cost of repairing a bug due to a falsely stated
requirement at the maintenance stage of the system’s life cycle is about 200
times higher than the cost of repair at the requirements specification stage.

The complexity of software projects in the area of embedded real-time and
telecommunications systems calls for automated tool support. This can only
be provided if the underlying engineering methods have a formal foundation.
Formal Description Techniques (FDTs) like Estelle [38] and SDL [40] have
been successfully applied to the specification of ‘traditional’ communication
protocols, services and network applications. With the deployment of high-
speed networks such as ATM [27] new distributed applications with a new
set of characteristics have emerged. This leads to new requirements on the
communication subsystems: while in traditional systems the notion of system
correctness is defined in terms of the functional correct ordering of externally
observable events, the new type of systems is deemed correct in case it abides
to the functional correctness as well as a set of quantitative characteristics,
frequently called quantitative Quality of Service (QoS) characteristics. We con-
jecture that the high-speed and multimedia systems that are currently being
developed are largely software driven, which is why our methods are relevant
to the engineering of these systems.

Distributed multimedia systems are an important example for the emerging
class of applications. For these systems requirements on a single media stream
(e.g. throughput, delay and delay jitter) and on multiple streams (e.g. stream
synchronization) have to be taken into account. These requirements are largely
related to timing aspects in the system, which is why we limit the discussion
of QoS characteristics to real-time related properties. The relevance of QoS
requirements is not restricted to services and protocols in individual layers
of the communication subsystem. QoS requirements also apply to end-to-end
connections and to application-user interfaces, and our specification method
shall be general enough to accommodate all of these application areas.

In this paper we will focus on the standardized FDTs Estelle and SDL that
enjoy a high degree of acceptance within the telecommunications engineer-
ing community. Both are based on the paradigm of extended, communicating
finite state machines. Both have textual syntaxes and semi-formally defined
standardized semantics. In addition, SDL has a graphical syntax and it enjoys
support by a wide range of industrial-strength CASE tools. It is therefore of
great importance that the various QoS requirements can be adequately ex-
pressed in the chosen formalism, and hence that these formalisms have an
adequate expressiveness to account for real-time phenomena.

The standardized versions of both techniques provide asynchronous timer-
based real-time concepts. As we will show these concepts are not suitable to
express the real-time related QoS characteristics that we alluded to. We shall
therefore develop extended notations and their formal semantics that allow
for expressing the required characteristics. For Estelle we define a real-time
language extension (called Real-Time Estelle), while we show for SDL how
SDL specifications can be complemented by real-time temporal logic formulas
(we call this approach SDL/MTL).

Paper organization: In Section 2 we survey related work, especially ap-
proaches towards extending formal specification techniques by real-time ex-
pressiveness. In Section 3 we introduce the QoS-related terminology, in par-
ticular as far as the relevant ISO standard is concerned, and identify ‘typical’
real-time related QoS parameters for various components of broadband and
multimedia systems. In Section 4 we argue for the inexpressiveness of stan-
dard Estelle and SDL with respect to real-time properties. We next present our
approaches to adding real-time expressiveness to both languages. We first in-
troduce a general state-transition based model for timed systems in Section 5.
SDL/MTL will then be presented in Section 6, followed by Real-Time Estelle
in Section 7. To show the applicability of both approaches to QoS require-
ment specification we give examples in Section 8. Finally, Section 9 concludes
the paper with a comparison of the approaches, perspectives for verification,
automatic implementation and the incorporation of stochastic expressiveness.

Precursors of this work have appeared in [26], which introduces Real-Time
Estelle, and in [52,53] in which the SDL based approach was first presented.

2 Related Work

Basic models. Many of the existing models used to specify functional sys-
tem behavior operational techniques such as automata, Petri nets, process

algebra, and descriptive techniques like logics have been enriched by means
to express non-functional real-time properties. The work of [3], [35], [64] and
[67] is based on variants of timed automata. Time restrictions are introduced
by labeling transitions or states of extended finite state machines with time
limits, clocks and time variables. An upper bound u and a lower bound [is
assigned to each transition of the timed automaton. Once enabled, the tran-
sition may be executed not sooner than [and not later than u time units
after the enabling. Similar conditions for the enabling of transitions can be
formulated referring to the values of time variables. These are model-theoretic
techniques in that they distinguish all execution sequences of a system into
those that satisfy the timing constraints (the “good” omnes), and those that
do not satisfy them (the “bad” omnes). Only those systems that can only re-
veal “good” execution sequences implement the specification. Similar timed
extensions have been defined for Petri Nets, see Time Petri Nets [59], Object
Composition Petri Nets [54] and Time Stream Petri Nets [67]. There have also
been numerous real-time extensions to process algebras, see for example [61]
and [63,51,19]. A process algebra-based QoS specification language based on
the FDT LOTOS has been proposed in [9 11]. We note that as of the time
of writing state-transition based specification methods dominate in the area
of practical telecommunications systems engineering, which is why we adhere
to these techniques and do not pursue Petri net and process algebra based
approaches.

Temporal logics are the descriptive counterpart to specifying state transition
systems by automata [58,47,28]. Temporal logics specify qualitative temporal
relationships between states. A program satisfies a temporal logic specifica-
tions if all of its execution state sequences satisfy these temporal relations. As
can be expected, extensions have been introduced to augment temporal logics
with constructs that specify quantitative real-time relations between states.
Examples are Metric Temporal Logic (MTL) [44] and Quality of Service Tem-
poral Logic QTL [9 11] that use real-time interval annotations to the temporal
operators, and techniques introducing explicit timer variables as in Real-Time
Temporal Logic (RTTL) [62] or Temporal Logic of Actions (TLA) [1].

Suitability for QoS specification. The specification of many QoS char-
acteristics requires reference to events and states that belong to different tran-
sitions in an automaton model, and sometimes even to different automata if
the model is composed of concurrently executing state machines like in SDL
or Estelle (see discussion in [26]). Due to their syntactic independence from
particular automata constructs logic formulas are much better suited to ex-
press QoS requirements than real-time annotations on automata transitions.
Both Real-Time Estelle and SDL/MTL therefore encompass real-time tempo-
ral logic formulas.

3 QoS Terminology and Typical Requirements

To lay a foundation for the remainder of the paper we first discuss standard
QoS terminology as defined by ISO. Next, we introduce aspects of QoS archi-
tecture and discuss a number of quantitative QoS requirements that typically
appear in broadband and multimedia systems. The examples are presented in
natural language here, but we will revisit some of them in Section 8 to illus-
trate the use of Real-Time Estelle and SDL/MTL in formally specifying them.
Finally we motivate the importance of real-time aspects in the specification
of QoS properties.

3.1 QoS Terminology and Standards

As it can be expected for a relatively young and immature area like ‘QoS-
engineering’, there is an abundance of terminology with ambiguous interpre-
tations in the literature. In a joint effort, the International Standards Organi-
zation (ISO) and the International Telecommunications Union - Telecommu-
nications Standardization Sector (ITU-T) have devised a standards document
for Quality of Service in an Open Systems Interconnection context [39]. We
will briefly review some of the terminology used in this standard and relate
the meaning to our usage of these terms.

Quality of Service. The standard does not provide a clear definition of
what Quality of Service denotes. However, it derives a definition from the
related Open Systems Interconnection (OSI) standards document:

“Quality of Service: A set of qualities related to the provision of an (N)-
service, as perceived by an (N)-service user.”

We will assume that the underlying ontology of our discussion will be that of
characteristic aspects of communications services, where the presence, absence
or gradual presence of these aspects defines qualities of a communications
service to be provided.

QoS Characteristic. In line with the above definition the standard uses
the term QoS characteristic as a fundamental term from which many other
terms and concepts are derived:

“ .. some aspect of QoS that can be quantified . .. It is defined independently
of the means by which it is represented or controlled.”

The important aspect here is that the QoS characteristic is independent of
particular mechanism for its implementation, a concept helpful in maintaining
abstraction in specifications. This term defines the physical aspect of Quality
of Service, in the terminology of the standard “the true underlying state of
affairs”.

QoS Requirement. The standard phrases:

“QoS information that expresses part or all of a requirement to manage one
or more QoS characteristics, ...; when conveyed between entities, a QoS
requirement is expressed in terms of QoS parameters.”

In standard software and systems engineering terminology, requirements com-
monly express design-time desiderata - properties that are required to hold
of some artifact, independently of its implementation [20]. We note problems
relating the standard terminology to the more common usages of the term
“requirement”, in particular because a “requirement” in the standard seems
to relate to a run-time function of the implementation rather than defining
an implementation independent abstract design-time requirement. We prefer
to use the more common connotation and say that the “QoS requirement”
defines a constraint on one or more of the system’s QoS characteristics that
may at run-time not be violated without invalidating the system’s purpose. In
other words, QoS requirements define the software engineering aspect of QoS
- they are the basis for the documentation of QoS related system constraints,
and they are used to perform QoS-related testing and system validation.

QoS Parameter. The standard describes this as
“... a vector or scalar value relating to QoS that is conveyed between enti-
ties.”

In other words, this covers the syntactic aspect of QoS related mechanisms
at run-time of the system. As an example, QoS parameters can be found in
a protocol data unit when two protocol entities negotiate a QoS value for a
particular connection.

QoS Guarantees and Mechanisms. While we understand QoS require-
ments to represent design-time constraints, we say that at run-time a system
is to provide a service guaranteeing® a certain level of QoS. Open Distributed
Systems frequently change their appearance and characteristics: bandwidth

1 Note that the standard does not know the concept of a QoS guarantee, while it
is a term that is frequently used in the literature (see for example [46]).

requirements change largely over time, users sign on and sign off, and network
components are being added or removed from the system. Therefore, in order
to implement QoS guarantees, the service will need to employ certain QoS
mechanisms:

“Meeting a QoS requirement may require the use of mechanisms for QoS
establishment, QoS monitoring, QoS alert, QoS maintenance, QoS control
or QoS enquiry ...”

In a somewhat broader sense we will say that QoS mechanisms are algorithms
or functions implementing a QoS guarantee at run-time?.

QoS Management Function. The boundary between QoS management
functions and QoS mechanisms is not really crisp. Both relate to the algorith-
mic aspect of QoS. The standard says:

“ .. s the general term for a function designed to meet a QoS requirement.”
We will use this term to denote particular protocol or service provision mech-

anisms that help in implementing QoS requirements at run-time. Examples
are QoS negotiation, monitoring and adaptation.

3.2 QoS Architecture

A few years ago QoS was only defined at the boundary between applications
and the communication network transport service. It was then realized that
the identification of quantitative measures of service quality are also necessary
at other interfaces, for instance between user and application or between the
communication system and the operating system, and between end users. To
deal with end-to-end QoS, several so-called QoS architectures have been devel-
oped [6]. One of the most important tasks of a QoS architecture is to provide
specifications for QoS requirements on different layers of a given system. Since
different layers provide different services the QoS requirements need to be de-
fined in terms of the terminology used at the respective layer interface. For
example, it makes no sense to offer a parameter like mazimum allowed ATM
cell transfer delay at the user interface since to a user at the application level
ATM cell transfer delay is a meaningless QoS characteristic. We now give an
overview of typical QoS requirements encountered at different system levels.

2 As an example the “playout buffer” mechanism in ATM implements a delay jitter
bound [50].

User/Application QoS. At the user level, QoS requirements on multime-
dia data are formulated in a way human users can easily understand. A typical
example in a video-on-demand environment would be to offer a movie in dif-
ferent qualities: high resolution color or low-resolution blackéwhite. The audio
belonging to this movie could either be mono or stereo, it could be telephone
or CD quality. A user does not care if the movie needs a throughput of 2 or 4
MBit /s since this is meaningless to him. Furthermore, the user will not spec-
ify that video and audio parts of a movie are lip-synchronized he expects
that implicitly. Therefore, the mapping of user-defined QoS requirements to
the respective transport parameters has to be done by the application. It also
has to split a movie in its different streams (video and audio) and derive the
respective QoS requirements for each of them as well as necessary inter-stream
synchronizations. For this purpose, intermediate application-oriented QoS re-
quirements may be used, e.g. the frame rate of a video stream (25 frames per
second) or the sampling rate of an audio stream.

Transport System QoS. On the transport level, well-known parameters
are throughput, transfer delay and jitter on an end-to-end basis, i.e. process to
process communication. Requirements on these parameters have to be derived
from the user requirements. To be able to transfer the huge amount of data
a movie usually consists of, a certain throughput is required. By specifying
a certain delay, the time between sending a given packet at one side and
receiving it at another may be limited. This is especially important for video
or voice conferences with direct human-to-human interaction. Jitter, finally,
is a measure for the variation in delay. If the jitter becomes too high, which
means that data packets arrive on a very irregular basis, the quality of audio
transmission may be highly affected.

Medium Access QoS. The QoS characteristics for medium access may
differ widely, depending on the kind of medium or network to be accessed. For
ATM, there are several QoS parameters defined on the cell level, e.g. cell loss
rate, cell transfer delay or cell insertion ratio.

3.3 The Role of Real-time in QoS Specification

The QoS characteristics that we discussed above can be classified as quanti-
tative QoS characteristics, as far as they refer to layers below the end user
application. Note that they all refer to quantifiable properties as for example
in “a rate of 15 frames per second” or a “delay of 200 milliseconds”. Note also
that all the examples we introduced refer to real-time. A desired throughput,

as an example, is typically expressed by a a certain number of data pack-
ets or bits to be sent per second. Inter-stream synchronization requires two
data units of two independent streams to be received within a time interval
of several milliseconds.

In other words, the correctness of these systems does not solely depend on
the functionally correct sequence of observable events but also on a correct
timing of the event sequences. We conclude that in order to use an FDT for
the specification of quantitative QoS requirements this FDT has to possess
suitable real-time expressiveness, including a formal semantics accounting for
real-time. In the following Section we analyze whether standard Estelle and
SDL meet these requirements.

4 Real-time concepts in Estelle and SDL

Both standard Estelle and SDL already have a built-in real-time mechanism.
Estelle uses a delay clause to express timing constraints whereas SDL uses
a timer mechanism. We analyze the suitability of these constructs to express
hard real-time constraints.

4.1 Real-time in Estelle

Informally, the semantics of a clause delay(E1,E2) associated with a transi-
tion ¢ can be described as follows (see also [38]):

(i) Once newly enabled®, ¢t cannot be executed until it remains enabled for
at least F'1 time units.

(i) If ¢ remains enabled but is not executed for £ time units, F1 < F < E2,
then even if ¢ is the only enabled transition within a module instance at
the moment, ¢ still may or may not be executed.

(iii) If ¢t has been enabled for F time units, £ > FE2, then if ¢ is the only
enabled transition, ¢ will execute. Otherwise, any other enabled transition
may also be executed, possibly disabling ¢.

It is possible to omit the second parameter: the form delay(E1) is equivalent
to delay(E1,E1).

3 An Estelle transition is enabled if all its enabling conditions are true. These
conditions comprise the when and provided clauses. Note that satisfaction of the
delay clause is not required.

The result of the above is that a transition ¢ with delay clause delay(E1)
will, if at all, execute at a point in time 7). Let Ty denote the time instant at
which ¢ becomes enabled, then T, = T + E'1 + €. The value of € is unbounded
since it largely depends on the execution times of other Estelle modules in
the same system module subtree. The Estelle standard explicitly states that
no assumptions can be made about the execution speed of transitions. We
conclude that T, is also unbounded and that no real-time guarantee can be
given for the point in time at which ¢ executes. This makes it impossible to
specify hard real-time constraints using the delay clause. As we argue above,
however, hard real-time requirements are an essential ingredient in specify-
ing deterministic QoS requirements, and we conclude that standard Estelle is
therefore not suitably expressive to specify this sort of QoS requirements.

Suitability of transition-based real-time constraints. The delay clause
does only refer to single transitions. Many quantitative QoS requirements,
however, refer to more than one state transition of a process, or even to more
than one process. Consider a process doing MPEG decoding. This process can
be further structured into a dispatcher module and some decoding modules
running in parallel. Every time a group of frames arrives at the process, the
dispatcher assigns it to one of the decoders where the frames are decoded and
passed back to the dispatcher. The latter then passes them on to the presen-
tation device. A typical QoS requirement on such a process would be that no
more than a certain delay may be added to the overall delay by the execu-
tion of this process. Inside the process, this maximum additional delay has
to be further distributed among the dispatcher and decoder modules, but we
are not interested in specifying which module gets which share of the allowed
delay. This illustrates the need for a more global real-time construct that is
independent of the reference to individual transitions.

4.2 Real-time in SDL

In SDL, real time is introduced by an asynchronous timer mechanism. Figure
1 specifies an SDL “design pattern” found in many specifications: the require-
ment is that if for a request Q (that is sent either to another process or the
environment) a response A is not received within t time units, a signal alarm
will be sent. An SDL specification can access the value of a global clock by
reference to a variable called NOW which always refers to the current moment
in time. The SDL command set (NOW+t,T) sets the value of a timer called
T to a time value ¢ time units greater than the current moment of time. A
process which sets a timer is called a timed process. The set timer is controlled
by an independent timer process. Each time a timed process in the specifi-
cation sets a timer, an instance of the timer process is generated (compare

Timer process, T

1. (NOW =T)

PR

Fig. 1. Partial SDL specification with timer

I. in Figure 1). The timer process continuously compares the value to which
the timer is set with the current global time. When the value that has been
set is reached or exceeded (I1.), the timer process communicates the expiry
to the timed process by placing a timer signal at the end of the input queue
of the timed process. Like any other signal, the timed process may consume
the timer signal from its input queue whenever it has reached the head of the
queue (II1.), and react accordingly (IV.). Timers may be reset by the timed
process in which case the timer process deactivates the respective timer. The
reset also removes the timer signal from the timed processes’ input queue in
case the timer expired before the reset but hasn’t yet been consumed by the
time the reset occurs.

Similar to Estelle, the delay 0 between the point in time when the timer
expires and the moment at which the SDL specification reacts to the expiry
is unbounded. The value of § can be estimated as 0 < 6 < Ty + Ty + 13. T}
is the time between the generation of the timer signal and its placement in
the timed processes’ input queue. T5 is the time it takes for the time signal to
reach the head of the input queue. Finally, T3 is the time it takes for the timed
process to consume the signal once it has reached the head of its input queue.
All of these delays are unbounded and consequently ¢ is unbounded. As is the
case with Estelle, no hard real-time properties and therefore no deterministic
QoS requirements can be specified using the SDL timer mechanism.

4.8 Conclusion

Our analysis of the built-in real-time mechanisms in Estelle and SDL reveals a
major difference between these techniques and the model theoretic techniques

10

we alluded to earlier in the paper. This difference lies in the fact that systems
satisfy the Estelle and SDL specifications even if they exceed the time limits
specified by the delay clause of the timer mechanism by an unspecified and
even potentially unbounded amount of time. In other words, they do not allow
to tell the “good” execution sequences from the “bad” ones, as far as hard
real-time constraints are concerned. The most they can express is that there is
a minimum amount of time that passes between the setting of the timer and
the recognition of its expiry by the timed process. In subsequent Sections we
will show how Estelle and SDL can be extended to model theoretic techniques.
In the following Section we define a general timed execution model that will
later serve for interpreting Real-Time Estelle and SDL/MTL specifications.

5 A Real-Time Execution Model

We discuss the design of a timed execution model that will allow us to interpret
the executions of systems specified in Real-Time Estelle and SDL/MTL. There
are three major questions that need to be answered when defining a timed
execution model: (1) is it adequate to assume the existence of global time, (2)
how does one augment untimed state sequence execution models to account for
time, and (3) what impact does the inherent concurrency of the specification
model have on the choice of the time representation?

Global time model. We first address the question of finding a suitable
time model that adequately reflects the distributed nature of the systems we
are interested in. Essentially, for any ‘reasonably’ behaving system the global
time assumption is valid, which is why we conjecture that we can always use
a global time model in our specifications.

Timed observation sequences. We model system executions by infinite
discrete state sequences s = s, s1,...° . We restrict ourselves to the externally
observable state component of any system and assume the existence of global
system states. For an arbitrary state sequence s described by an Estelle or SDL
specification the semantics of Estelle or SDL determines which transitions from
an s; to an s;;1 are legal. Alternatively, we may obtain s by observation of

4 Lamport’s axiomatization of temporal relationships between events in [48] makes
minimal assumptions about the system. In particular, it assumes no atomicity of
events and it is space-time relativistic. [8] and [5] show independently that for any
system satisfying Lamport’s axioms, and we call any such system ‘reasonable’; there
is a global time model.

5 Qur presentation here follows [4].

11

the sequences of global states of an executing system at run-time. Following
the global time assumption we associate a global time interval /; € R with
any system state s; and assume that state changes only occur at the left and
right interval boundaries [; and r;, respectively. For a sequence of intervals
Iy, I ... we assume that any two neighboring intervals are adjacent and that
for any t € R there is an [; so that ¢ € [;. As we assume that state changes
only occur at the interval boundaries and that events triggering state changes
are instantaneous, we may use either the left or the right interval boundary
to describe the sequence of global time intervals associated with the sequence
of states. For instance, we represent the interval sequence

1,3),[3,3.1),[3.1,5). ...

by the sequence

1,3,3.1,5,...

of left interval boundaries. In any finite interval I; there can be only finitely
many observable state changes or events (the finite variability assumption).
Furthermore, we assume that all events in the system coincide with the clicks
of a global clock. As a consequence, there can only be countably many state
changes in any execution sequence and it suffices to use the nonnegative inte-
gers as time domain®. For example, we may represent the above sequence of
rational left interval bounds by the integer sequence

10, 30, 31, 50, . ..
We define a timed observation sequence o = o1,... as a tuple (s,l) where
s = 8g,81,...1s a discrete state sequence and [= [y, [y, ... is the sequence

of corresponding left interval bounds. An example of a timed observation se-
quence is

(S[], 10), (81, 30), (82, 31), (83, 50), .

Interleaving semantics and real-time. Both SDL and Estelle describe
concurrent systems, and it is most useful and common to give them an inter-
leaving trace semantics. Assume that sq, so and s3 are global system states of
an SDL or an Estelle specification, and that s, and s3 are concurrent states.
Following an interleaving semantics, both sq, So, 53, ... and s1, s3, s, . .. are ad-
missible sequences in the untimed model. In order to express that both s, and

6 However, discrete time domains can hinder refinement steps. Hence, if refinement
is crucial dense time domains like the positive reals are necessary (c.f. [1] and [57]).

12

s3 may occur concurrently in the timed model (which means that they have
the same time stamp) we have to allow that both timed observation sequence

(Sl,ll) — (Sg,lg) — (83,13) — ...

and

(Sl,ll) — (83,12) — (Sg,lg) — ...

are admissible and that lo = [3. Therefore, we generally assume the sequence [;
of a left interval bound time stamps to be a weakly-monotonic integer sequence.

6 Complementary SDL and Metric Temporal Logic Specifications

In this Section we define a rudimentary computational model for SDL speci-
fications, a so-called Global State Transition System (GSTS), which will serve
as a common formal model for the interpretation of SDL specifications and
temporal logic formulas. We define the global state in the GSTS model to
be determined by the local state of the processes plus the state of the com-
munications in between processes. The main components of the GSTS model
are:

Process control and data manipulation. This component represents the local
behavior of an SDL process which executes transitions between symbolic
states.

Communication. SDL processes communicate asynchronously via poten-
tially unbounded queues. Each SDL process has exactly one input queue
handling all incoming communication from any other process”. The local
state of an SDL process hence consists of the combination of current values
for the data variables, the point of local process control, and the state of
the input queue.

Global System States and State Transitions. The global system state (GSS)
is the product of all local states of all processes of an SDL specification.
SDL processes run concurrently. In accordance with the standard documents
[40,41] we choose an interleaving approach to represent this concurrency.
We assume a nondeterministic choice when more than one process has an
enabled transition in a given GSS.

" For reasons of conciseness we do not address inter-process communication mecha-
nisms like viewing or remote procedure call, but a treatment of these communication
mechanisms within our framework is straightforward. Furthermore, we only consider
so-called non-delay channels in the SDL specifications.

13

Note that the resulting GSTS model for SDL specifications is not finite. For
a given SDL specification, the unwinding of the corresponding GSTS model
will describe all admissible sequences of states of an SDL specification, called
its computations. In describing sequences of states, the model also describes
sequences of state transitions, which are in turn triggered by events (e.g. input
and output) in the system. The computations will later serve as models for
what we call complementary temporal logic specifications, only those specifi-
cations which satisfy both the properties expressed by the SDL specification
and the properties expressed by the temporal logic specifications are consid-
ered to satisfy the complementary specification. It should be emphasized that
the goal here is not to define yet another formal semantics for SDL in addition
to the ones already defined (e.g. [40] or [14]). The motivation for defining our
own SDL semantics is two-fold: First, we found none of the published seman-
tics suitable for our purposes, which are to interpret SDL specifications and
Temporal Logic formulae on common model-theoretic grounds. Second, our
semantics is exemplary in nature and intended to cover only a small subset of
the SDL language.

Overview. In Section 6.1 we define the notion of a Process State Transi-
tion System (pSTS). A pSTS has components similar to an extended finite
state machine, plus a process-unique input queue. We also define a transition
relation and the notion of an admissible state sequence for pSTS here. The
interpretation of pSTS as SDL processes is presented in Section 6.2. In Section
6.3 we demonstrate how to augment INPUT and OUTPUT statements to state-
propositions. In Section 6.4 we define global state transition systems (GSTS)
which correspond to SDL specifications. They consist of concurrently operat-
ing pSTS. We show in this Section how to formally handle OUTPUT statements
and we define global system state sequences which yields the computational
model over which we will later interpret temporal logic formulas.

Related work. Our definitions here are close to the Basic Transition Sys-
tems of [58]. Our pSTS models can be seen as a logic-based formulation of
Eztended Finite State Machines (EFSM) [55]. The modeling of SDL processes
as EFSMs has been suggested in [7] and [66]. However, as we will see later,
the mapping of SDL process transitions as informally described in these ap-
proaches is too coarse in order to adequately represent the structure of an
SDL transition. [56] contains a formalization of SDL based on FSM, hence
without treating data variables over infinite domains. Formalizations of EF-
SMs can be found in [36] (where the state space is finite by limitation of the
range of data variables and variables representing the state of communication
channels to finite domains), and in [17] and [45] (from where we take part of
our formalization). [12] describes and formalizes the use of queues to model
the collective behavior of concurrent FSM which communicate asynchronously

14

via queues (there called protocols) and we use part of their formalization for
our work. Similar to our approach [13] presents a temporal logic-based seman-
tics for Estelle using Dijkstra’s predicate transformers. Our interest here is
not primarily in verification, therefore we use the more intuitive Hoare-style
triples consisting of a pre-condition, a code fragment, and a post-condition.
[60] agrees with our analysis of the shortcomings of the SDL real-time mech-
anism, and proposes reconciling SDL with the Duration Calculus.

6.1 Process State Transition Systems

The pSTS that we introduce in this Section define an SDL process as a set
of symbolic states, a set of program variables (consisting of control and data
variables), and a set of communication events (input and output of signals).
The ‘logic’ of an SDL process is encoded in its state transition relation.

Formal Definition Process State Transition System (pSTS). A Pro-
cess State Transition System P is defined as a tuple (S, D,V,0,I1,Q.,T,C)
where

S is a finite set of symbolic states,

D is an n-dimensional linear space where each D,, is an interpretation domain,

V' is a finite set of program variables, V.= {m, vy, ..., v,} where m is a control
variable ranging over elements of S and vy, ..., v, are data variables so that
v=(v1,...,0,) € D,

O is a finite set of output signal types,

I is a finite set of input signal types,

@ is a linear sequence qp,...,q, (in the standard mathematical sense) of
elements from I x D which we call input queue,

T is a transition relation, with T : S x 2P x Q — S x 2P x @, and

C is an initial condition on S x 2P x Q.

A state s, is a function s : V x Q — 29 x 2P assigning a value to every variable
in V and to Q. s can evidently have a potentially infinite range. By s[z] we
denote the value of variable x in state s.

Transition Relation, Admissible Sequences, and Reachable States.
We associate a set Tr = {71, ..., Ty, } of transitions with the transition relation
T of an pSTS. With each transition 7; we associate a pair of state propositions
Pj and @); and we call P; a precondition and Q); a postcondition of transition ;.
We assume the existence of a satisfaction relation |=p which relates assertions

15

about the system state to system states for a given pSTS P®. In particular,
we write s = p iff state s satisfies state-proposition p? . Now, in order to relate
states s and s’ we say that (s,s') € T iff

(3 € Tr)(s E P As Q).

Let 0 = sp,...,s; denote a finite sequence of states. We call this sequence
admissible iff

(VO < j < k)((sj, 8541) € T).

This definition extends to infinite sequences in the obvious way. A state s;
is a reachable state iff the sequence o = s, ..., s, is admissible and sy = C,
i.e. s¢ is the initial state. In state formulas, when referring to states s and s’
with (s,s') € T we sometimes denote s[v] by v and s'[v] by v'. In order to
express that a transitions 7 is enabled in a state s we write s |= en(7g) iff
s |= Py. For a pair of states (s,s’) we say the transition 7; has been taken iff
s = en(n) and s’ = Q;. We denote this by ta(s, s, ;). Let the variables X and
Y range over the queues of a pSTS, i.e. over sequences of signal types, and
A over signal types. The concatenation of a sequence and a singleton element
is expressed by juxtaposition. For a signal queue X and a signal type A the
term XA describes a sequence where A is the last element. Conversely, AY
describes a sequence where A is the first element.

6.2 Interpreting SDL-Processes as pSTS

We now explain the mapping of an SDL process to the components of a pSTS.
In SDL terminology, a transition describes the change of processes control from
one symbolic state to a symbolic successor state. In the example in Table 1
the two symbolic states are S1 and S2, hence for the corresponding pSTS S =
{S1,S2}. The body of a transition consists of different sorts of statements, like
assignments, decisions, communication statements, etc. In order to describe
the state of the system before and after the execution of a transition we assign
pre- and postconditions to every transition. In a few cases, when the transition
body has a trivial structure, the determination of pre- and post-conditions is
straightforward. However, as we shall see later, we also need to treat more
complex transition structures differently.

8 We omit the reference to P when this is clear from the context.
9 We will not define all details of the relation = formally and refer the reader to
[58].

16

STATE S1;

INPUT (4) ;

TASK x :=y + 1;
NEXTSTATE S2;

Table 1

SDL Transition I
Tj P; Qj
T T=81ANQ=AX T=8S2NQ =XANzx'=y+1
T | T=SINQ=CXANC#A T =S1IANQ' =X

Table 2
pSTS predicates for Transition I

Formal Treatment of INPUT Statements, Control Flow, and Variable
Assignments. For the time being we only consider single SDL processes
and we do not yet interpret effects of communication. INPUT statements have
a semantics purely local to one process, i.e. to remove the signal at the head
of the input queue and assign its value to a local variable. Table 2 shows the
mapping of an SDL transition to transitions 7; of a corresponding pSTS. More
precisely, when executing a transition associated with an INPUT (X) statement,
the process first checks whether the signal at the head of its input queue is of
type X 19 If this is true the process consumes the signal by removing it from the
head of the queue and assigning its value to a local variable with the name X.
However, if the signal at the head of the queue does not have the expected type,
then the message is removed from the head of the queue, discarded, and the
same INPUT statement is re-enabled. We therefore need to split the treatment
of INPUT statements into two logical cases, the first being the one where the
expected signal type is not at the head of the queue, and the second where
the expected signal is at the head. Hence, we treat transitions with INPUT
statements as two transitions which are mutually exclusive (see transitions 7
and 75 in Table 2). The logical exclusion is encoded by the test @ = AX which
is true in case the head of the input queue contains the message of expected
type A, and the test Q = CX N C # A which evaluates to true iff this is not
the case. Attention has also to be paid to the control flow in a transition. If
we consider a transition which brings a process from symbolic state S1 into
symbolic state S2, then this can be interpreted as though control lies in code
location S1 before execution of the transition, and in location S2 afterwards.
We defined a distinguished variable 7 to range over code locations, called
symbolic states, and we use this variable to formulate pre- and postconditions
characterizing the control flow inside an SDL process (see the use of variable
7 in Table 2). Variable assignments are treated in a very standard way, as for

10 For reasons of conciseness we do not treat the handling of SAVE statements here,
for their modeling in the context of an FSM interpretation we refer the reader to
[56].

17

STATE S1;

INPUT(A) ;
DECISION D(A);
(true):
NEXTSTATE S2;
(false):
NEXTSTATE S3;
ENDDECISION;
Table 3
SDL Transition IT
Tj P; Qj
n| m=S1ANQ=AXAD(A) |7'=852AnQ' =X
T | T=SINQ=AXA-D(A) | 7' =S3AQ'=X
| T=SINQ=CXANC#A |7 =851A"Q =X
Table 4

pSTS predicates for Transition I1

example, described in [58]. Let z and y denote variables in a state s, let 2’ and
y' denote these variables in the successor state s’, and let the system transit
from s to s’ through the execution of a statement y:= x + 1. We describe
this transition by the postcondition 3" = x + 1 which is required to hold in
state s’ (see Table 2 for the postcondition describing the update of variable x
in the example of Table 1).

Formal Treatment of DECISION Statements. We decompose a DECISION
P(x) statement into two mutually exclusive transition alternatives. The first
is that the decision predicate holds, i.e. P(z) is true, the second is that P(z) is
not true. As an example see the treatment of the decision in Table 3 in Table
4.

Handling Iterative Transitions. So far we assumed that the symbolic
states in the set S are identical to the symbolic states used in the SDL spec-
ification. However, SDL transitions may have iterative structure, achieved by
a goto and labeling mechanism (the goto statement is called JOIN in SDL, see
Table 6). Therefore we need to abandon the idea that a transition in an SDL
process leads from one symbolic state to a symbolic successor state, as for
example suggested in [7]. We need to allow cyclic control flow structures and
suggest introducing auxiliary symbolic states which correspond to the target
locations in the control flow to which a process jumps back or forth when
executing JOIN statements. In the example in Table 6 we introduced an ad-
ditional symbolic state S1-1, corresponding to the point of control which is
reached when jumping to label 11 (we introduced a comment /* S1-1 */ in

18

the SDL code at the location corresponding to auxiliary state S1-1). The tran-
sitions 74 and 75 represent cases in which control lies in the auxiliary symbolic
state S1-1.

STATE S1;
INPUT(A);
/* S1-1 x/
11:
DECISION D(A);
(true):
NEXTSTATE S2;
(false):
OUTPUT(B) ;
TASK A:=A-1;
JOIN 11;
ENDDECISION;
Table 5
SDL Transition III.

Atomicity of transitions. The SDL standard semantics [41] is not explicit
about the question which constructs in SDL are to be executed atomically. It
can only be inferred from [41] that atomicity is at the primitive statement
level (according to the standard the interpretation of complex statements is
based on a decomposition into primitive statements). The above resolution of
the join statement in Table 6 assumes a “maximum progress” semantics in
which the atomic parts are assumed to be as large as possible. This reduces
the state space when using validation tools like Spin [36].

pSTS and Extended Finite State Machines. The derivation of an EFSM
from a pSTS is straightforward. For the example in Tables 5 and 6 the resulting
EFSM would have 3 states (S1, S1 — 1 and S2), and 5 transitions.

7 by Qj

m|m=SIAQ=CXANC+A T =SIAQ =X

T | m=S1AQ =AX AD(A) m=852AQ' =X

3 | T=SINQ=AXA-D(A) |7'=S1-1AQ' =XANA =A-1

T4 7 =S1—1A D(A) 7 = S2

5 7=81—-1A-D(A) m=S1-1NA"=A-1
Table 6

pSTS for Transition ITI

19

6.3 State Propositions INPUT and OUTPUT

The state predicates we defined so far allow us to specify formulas referring
to the current point of control (e.g. m = S1) or on the state of data variables
(e.g., @ = AX N A = DR where DR stands for a message type). However,
sometimes one would much rather specify properties of communication events
to happen, i.e. input or output of signals that are about to take place or
that have just been executed. We therefore introduce state predicates which
indicate which transition has been taken as a last step in a computation,
and whether this transition entailed any communication events. Technically,
we introduce two relations, inlabel and outlabel, which label the transitions
of the pSTS with the INPUT or OUTPUT statements that are executed during
the course of a transition. We omit the straightforward technical construc-
tion of this labeling here. In the example in Tables 5 and 6, we see that
for example inlabel(r3) = {INPUT(A)} and outlabel(ts) = {OUTPUT(B)}. Let
s = s1, 82,... be an admissible state sequence for a given pSTS, and let Tp
denote the set of transitions for this pSTS. We say that s; = INPUT(A) iff
(37 € Tr)(ta(si—1,s;, 7) A (INPUT(A) € inlabel(T))), and s; = OUTPUT(A)
iff (37 € Tr)(ta(si—1,si,7) A (QUTPUT(A) € outlabel(t))). This construction
augments these labels to state propositions.

6.4 Global State Transition Systems

SDL Specifications Formally. SDL specifications consist of collections
of concurrent SDL processes. We say that the Global State Transition Sys-
tem (GSTS) Gp corresponding to an SDL specification P is a tuple Gp =
(P° ..., P") where each P’ for i = 1,...,nis a pSTS. P? (which represents
the environment behavior) is not a full pSTS, it only consists of an input and
an output alphabet, and an input queue. P° has no state and we rely on the
facilitating assumption that P° will provide any of the other processes with
input signals whenever these wish to consume any such signal, and that P°
consumes instantly any signal which it receives from any process of the SDL
system.

SDL processes communicate asynchronously via one unique infinite input
queue per process. We interpret the sending of a signal A from a process
P! to a process P2, indicated by an OUTPUT(A) statement, such that a signal
of type A is appended to P?’s input queue Q?. We slightly simplify the SDL
mechanism of mapping of an output signal to a receiving process by assum-
ing that a signal A is sent from a process P' to a process P7 iff A € 71,

' 1n SDL this involves a mapping of signal names via signal lists to signal routes or
channels that point to the receiving process. Note that we only model non-delaying

20

PROCESS P1; PROCESS P2;

STATE S1; STATE S3;
INPUT(A); INPUT (B) ;
OUTPUT (B) NEXTSTATE S3;
NEXTSTATE S2;
Table 7
SDL specification
1 1 1
7 b Q;
7'11 Al =SIAQ'=AXANQ*=Y | 7' =892AQ"=XAQ?=YB
| T =8SIAQI=CXAC#A Tl =81AQT=X
Table 8

Predicates describing SDL specification

Furthermore, we require (Vi = 1,...,n)(Va € O) (35 # i)(a € [?) and
(Vi =1,...,n)(0O" N I" = Q). As we saw in Section 6.2, the execution of an
INPUT(A) statement (which in the SDL terminology is often just referred to
as signal-consumption) represents an event purely local to some SDL process.

Transition Predicates for OUTPUT statements. The execution of an
QUTPUT statement involves a non-local action. It means that the execution of
the statement is a local event of the sending process, whereas the reception
(which in SDL is different from the consumption of the message and just
means that the message will be appended to the tail of the receiving process’
input queue) is a local event of another (the receiving) process. Therefore, one
can not formalize these transitions by state propositions that solely refer to
state variable of only one process. Table 8 presents a simple example of a two-
process SDL specification P = (P°, P!, P?). Transition 7{ describes both the
state change in P! and the appending of the signal B to the input queue of P2
Although strictly speaking this transition also changes the state of process P2
for our formal treatment we consider transition 7] to be a transition belonging
to process P1.

Global System States, Transitions, Global State Sequences, and the
Satisfaction Relation. Let Gp = (P°,..., P") denote the GSTS for an
SDL specification P. We say that the vector s = (s,...,s") is a global system
state (GSS) of the SDL specification P iff s’ is a state of pSTS P* for all
t =1,...,n.In the course of each change of the GSS exactly one pSTS changes
its local system state. This implements the interleaving semantics that we
use to model concurrency in SDL specifications. In a given GSS s, a demon
selects nondeterministically one out of all enabled transitions in all pSTS to

channels here, the modeling of delaying channels is a straightforward extension.

21

be executed next. Executing a transition defines the successor GSS s'. Let
o = sg, ..., s denote a finite sequence of GSS. We call this sequence admissible
iff (YO < j < k)(37/)((s}.s%,,) € T")). This definition extends to infinite
sequences in the obvious way. Also, the interpretations of the state propositions
en, ta, INPUT and OUTPUT extend in the obvious way from pSTS states to
GSS. Based on the above definitions we may now define a satisfaction relation
Fspr, for SDL specifications. Let P be an SDL specification and let %% the
set of all infinite sequences of GSS of P. For a o € ¥4 we write o =gpy, P iff
o is an admissible sequence with respect to P.

6.5 Using Temporal Logic for SDL Specifications

The characterization of properties by the use of temporal logic is accomplished
by interpreting the temporal logic specification such that the models satisfying
all formulas determine the set of admissible state sequences of the system.
Now, as we have seen in Section 5, SDL specifications also specify admissible
sequences of states. Temporal logic formulas can be thought of as filters on the
admissible sequences specified by the SDL specification and therefore can be
used to specify those real-time and liveness properties inexpressible in SDL.
A crucial point is the selection of a suitable temporal logic language. We will
use a temporal logic similar to the logic described in [58], called Propositional
Temporal Logic (PTL) and a real-time extension based on PTL, called Metric
Temporal Logic (MTL) [34] [43]. However, other temporal logics like TLA [49]
or CTL [24] may be linked to SDL specifications in very much the same way
as we present it here for MTL.

A State Proposition Language. We assume that the state propositions
we use in complementary temporal logic formulas all refer to observable com-
ponents of the system state, and we use, in particular, the following state
propositions for an SDL specification P:

(i) Actual State: let S = Si ..., S! denote the symbolic states for a given
process P’ of P, then at_S} denotes the state proposition that the i-th
component of the global system state is in symbolic state S, i.e. 7* = S}.

(ii) Input and output: we use the state propositions INPUT and OUTPUT
as defined above to denote that we are in a state where an input or an
output of a signal has just occurred in the last GSS transition.

(iii) Data: we allow the reference to visible data variables and allow standard
comparison operators on the variables. We allow state formulas to be
constructed by using boolean operators between state propositions and
we call composed state formulas state predicates.

22

Example. The state formula n < 3 A INPUT(A) holds in all GSS in which
the value of variable n is less than or equal to 3 and an input of a signal of
type A has just been executed. The state formula at_S1 D n > 3 holds in all
those GSS in which if the control is in symbolic state S1 then the value of
variable n is greater than or equal to 3.

Temporal Logic. The Propositional Temporal Logic (PTL) we use here is
a linear time temporal logic taken from [58]. We'll use the future operators
<& (“eventually”), O (“henceforth”) and U (“until”). In addition we define a
strong eventuality operator < so that ©p holds in some future state s that
is not the current state, formally s; = ©p iff (35 > i)(s; = p). The formal
semantics of PTL defines a satisfaction relation =ppr,. An execution sequence
o = Sg,... of states s; satisfies a formula ¢ iff ¢ holds in sy, and we write
o FEprL ¢. We say that a system satisfies a formula ¢ iff all its execution
sequences satisfy ¢.

Metric Temporal Logic. We use an extension of PTL for the specification
of real-time requirements, called Metric Temporal Logic (MTL). For a complete
formal definition of the syntax and semantics of MTL we refer the reader to
[4] and [34, Section 3.4]. The models over which we interpret MTL formulas
are timed observation sequences 0 = oq, ... as defined in Section 5. Informally,
MTL contains formulas of the form ;¢ which assert that one of the following
states within the time-interval described by expression [is a state which
satisfies ¢. Formulas of the form O;¢ assert that all states in the time-interval
described by I satisfy ¢. The expression I describes an either open or closed
interval over the time domain and we sometimes use semi-algebraic expressions
to refer to these intervals. We write o E=yr, p iff the sequence o satisfies the
MTL formula p.

6.6 Complementary Specifications

Assume we have an SDL specification P and a set of formulas M in MTL. Now,
P and M are complementary specifications if we require from the specified
system that for all its timed observation sequences o = (sg, tg), . . . the following
condition holds:

s FEspL P Ao =L M.

Scoping. It is beyond the scope of this paper to discuss the scoping of
names used in SDL/MTL propositions in detail. In the later examples we

23

will only make use of signal names as basic propositions. According to the
SDL definition, signal names have to be unique in the name scope of an SDL
system. Hence there is no problem with name ambiguities. However, when
process internal variables are to be used it is easy to disambiguate these by
prefixing their names in formulas with the name of the context (e.g., the
process or block name) which defines their scope.

7 Real-Time Estelle

7.1 Introduction

The standardized FDT Estelle [38], like SDL, is an automata-based language.
An Estelle specification describes a system as a set of hierarchically ordered
finite state machines called modules. Modules communicate with each other
via asynchronous FIFO queues. The communication ports of a module are
called interaction points (IPs). A module’s behavior is described by states and
transitions between them. A transition is composed of communication actions,
variable assignments, procedure and function calls. Modules at level n in the
hierarchy may be dynamically created or destroyed by their parent module
(module at level n — 1) during system runtime. According to synchronization
rules specified in the Estelle standard modules can be allowed to execute
concurrently, or they can exclude each other from simultaneous execution.
The execution model of Estelle uses an interleaving approach to model the
concurrency in an Estelle specification. An Estelle transition is the smallest
observable execution unit. It is atomic and executed as a whole or not at all.
Intermediate results during its execution are not visible.

The execution model of Estelle is very similar to the state transition execution
model introduced in Section 5. This makes it an easy task to enhance this
model in order to describe timed state sequences, see Subsection 7.2. Notions
similar to the Global State Transition System and the Process State Transition
System defined in Section 6 already exist in Estelle and need not be defined.

Unlike SDL/MTL, where functional and temporal specifications are expressed
by completely different syntactic constructs, we developed Real-Time Estelle
as a syntactic extension of standard Estelle, The syntax of standard Estelle
is a superset of the programming language Pascal. In the design of the real-
time extension, the main considerations were that (i) the real-time restrictions
should be included in the functional specification and (ii) the additional lan-
guage constructs should be in line with the spirit of the existing language,
keeping Estelle as simple as it is from a syntactic point of view. This includes
the idea that every specification should be writable in pure ASCII to make

24

it immediately processable by a machine. The syntax of Real-Time Estelle is
described in Subsection 7.3.

Due to the high degree of flexibility that complementary semantics offer, we
adopt this approach for Real-Time Estelle. The details can be found in Subsec-
tion 7.4. Finally, we present a first introductory example showing how Estelle
and Real-Time Estelle parts are combined to express real-time requirements
based on a given functional specification.

Related work. It has previously been suggested to extend Estelle by further
real-time constructs. In [22] the authors add upper and lower bounds (there
called “execution time parameters”) on the execution time to transitions. The
idea is to constrain the real-time behaviour of a system by using known execu-
tion times of certain system components as execution time parameters. In [15]
the same effect is obtained by adding a new clause doby(x) to transi-
tions, implying a hard upper time bound for the transition execution relative
to the time of enabling. The approach described in [71] is more performance-
oriented, introducing constructs such as resources and probabilities into the
language. All these approaches relate real-time or performance requirements
to single transitions. While this technique is suitable for timed simulations, the
same critique as for the basic timed automata models described in Section 2
applies to it with respect to QoS requirement specification. A new timed vari-
ant of Estelle has recently been proposed in [70] where timing relationships
can be specified between modules and transitions. However, the approach is
rather incomplete, lacks a formal definition, and mistakes in the specification
examples in [70] make it difficult to evaluate its usefulness.

7.2 Real-time Model

During the execution of an Estelle specification, each module is characterized
by a current state which is composed of the current symbolic state, the current
values of local variables, and the current contents of message queues. A global
situation (overall state of the specification, equivalent to the global system
state in SDL) is composed of the states of all modules plus additional infor-
mation about module hierarchies, communication relationships and transitions
still to be executed. Transitions of a specification are executed in two-phase
cycles. During the system management phase, a number of transitions (at
maximum one per module) is selected for execution according to certain rules.
The transition execution itself takes place during the second phase. As soon
as all selected transitions are executed, the system enters a new management
phase. The global situation of a specification is changed by executing either
a module’s transition or a system management phase. In reference to Section

25

6, a module can be compared to a Process State Transition System, while the
overall specification transition system is similar to the Global State Transition
System.

Estelle offers several ways to specify indeterministic behavior, leading to nu-
merous ways to select transitions for execution in each global situation. Each
sequence of global situations produced by the global transition system is called
a computation in Estelle, and the system is fully specified by all computations
produced by the transition system. Compared to the real-time model described
in Section 5, (timed state sequences), Estelle‘s computations do not have a time
component. To upgrade this model to timed state sequences we need to add
the time aspect to computations. We do this by adding one component to the
global state description. This time component is a positive integer variable,
and the only restriction on its value is the following: given two subsequent
states s; and s;,1 of one computation, with time components /; and /; 1, then
l; <l;iq, i.e., if time changes then it increases. This notion of time is exactly
compatible with that introduced in the standard. Conforming to the real-time
model introduced in Section 5, a pair (s;, ;) denotes the point in time [; from
where on the system is in state s;.

In addition to the time aspect, we also extend the possibilities to characterize
states. The Estelle standard defines the components of a system state (Sections
5.3 and 9.4), e.g., value of local variables, major state of a module or contents
of queues. To these state components, we add predicates SENDING OF (p.m)
and RECEIVING OF (p.m) which are true when message m has either been
sent (output-statement) over or received (when-clause) at interaction point p
during the last transition, respectively. These predicates are comparable to
those described in Section 6. As we will see in Section 8, they are very useful
to describe temporal relationships between communication events, a major
means to specify QoS requirements.

Furthermore, we introduce the instance operator [1 to allow counting of mes-
sages sent or received at a certain IP since the instantiation of the respective
module. The predicate SENDING OF (p.m[z]) is true when the zth instance of
message m has just been sent over interaction point p. As we will see, this op-
erator is useful for specifying properties of consecutive communication events
of the same type, and requiring numbers of occurrences of such events in a
given time interval.

7.3 Syntax of Real-Time FEstelle

All real-time constraints referring to a module are collected in a new section of
the module’s behavior description, i.e., inside the module’s body. The section

26

is marked by the keywords TIME CONSTRAINTS. Assigning the constraints to
the body description is advantageous compared to other solutions. Assigning
them to the module interface description would make it impossible to refer to
states of the module. Assigning them to single transitions as in [22] proves to
be too inflexible with respect to QoS requirement specification, as we argued
above. It should be noted that this approach does not limit the expressiveness
of Real-Time Estelle with respect to more global requirements concerning more
than one module. Such requirements can be expressed in a higher-level module
comprising the modules in question. A typical example would be a service
module which includes two protocol modules. A global delay requirement can
then be expressed by referring to the service module’s communication interface
rather than to those of the protocol modules.

The following is an example of a typical module body in Real-Time Estelle:

1 body m-behavior for m-interface; 8 constraint2;

2 var vl : ViType; 9

3 10 initialize to sl begin end;
4 state s1, s2, sn; 11

5 12 trans

6 time constraints 13 from s1 to s2 when
7 constraintil; 14 end;

We now discuss how real-time constraints are constructed. The basic build-
ing blocks of temporal restrictions in Real-Time Estelle are state descrip-
tions. State descriptions are basically boolean algebra expressions composed
of atomic state propositions and boolean operators:

(i) If p is an atomic state proposition in a module, then it is a state descrip-
tion.

(ii) If p and q are state descriptions, then p AND q, p OR q, p IMPLIES q, p
OTHERWISE q and NOT p are state descriptions.

Atomic state propositions can be composed of any of the predicates defined in
the Estelle standard concerning a module’s state, plus the predicates we added
in Subsection 7.2. A typical atomic proposition is WHEN (p.m), which is true
iff the message m is at the head of the message queue of IP p. The operators
AND, OR and IMPLIES have their usual boolean logic semantics. The expres-
sion p OTHERWISE q is semantically equivalent to (NOT p AND q) OR (p AND
NOT q) and therefore to the boolean exclusive-or operator. The choice of the
keyword, however, indicates that it can be used to express a difference be-
tween the desired behavior and the one the system has to show if the former
cannot be provided. In this case, p describes a condition on the desired be-
havior, whereas q is a condition that holds if the desired behavior cannot be
achieved '2 .

12 This construct proves useful to support a run-time environment in deciding which
behavior to support and what has to happen if this support fails, based on the Real-

27

Using the global time function now and time variables allows to refer to real-
time in state descriptions. The function now provides values of type time,
which denote the current system time, i.e., refer to the time component of the
timed state sequences described above. In a Real-Time Estelle restriction, the
value of now may be different for different states. The value of time variables
is the same for the whole expression (rigid variables). Values of now can be
“stored” in time variables and referenced in other parts of the expression. The
type time is defined as TYPE time=integer!®, and the unit of time steps is
given by the standard Estelle optional timescale clause.

Time variables can be used in time expressions. They may be compared to
each other or to time constants (using the operators =, <, >, >, <). Now is con-
sidered to be a special time variable and may also be used in time expressions.
It is allowed to add constants to time variables. Time variables occurring in a
Real-Time Estelle expression have to be quantified over by EXISTS or FORALL
clauses preceding the expression.

To specify temporal properties of states we use temporal operators. In Real-
Time Estelle, the operators HENCEFORTH and EVENTUALLY are available. HENCE-
FORTH p means, that from now on, p is always true. Similarly, EVENTUALLY p
means that there is a future state where p is true. The following bounded-
response property expresses that q is observable within 3 units of time af-
ter p: FORALL x:TIME; HENCEFORTH (p AND x=now IMPLIES EVENTUALLY (q
AND now <= x+3));. In addition to the operators described above, some ab-
breviations may be used. They are defined with respect to the existing oper-
ators: the expression p AND x=now may be replaced by p AT x. For p IMPLIES
EVENTUALLY q, one may write p LEADSTO q, and p IMPLIES HENCEFORTH NOT
q may be substituted by p FORBIDS q. As the examples in Section 8 will show,
these abbreviations make real-time constraints much more readable and easier
to understand. With these definitions, the syntax of Real-Time Estelle is that
of a first-order temporal logic with time variables and is similar to that of
Real-Time Temporal Logic (RTTL) [62]. The complete syntax in BNF can be
found in [26].

7.4 Semantics

The semantics we use for Real-Time Estelle is called complementary, since
it is composed of two partial semantics: an operational part for the untimed
portion of a Real-Time Estelle specification and a model-theoretic part for the

Time Estelle specification.

13 As we argue above, only non-negative values should be assigned to variables of
type time. However, Estelle does so far not possess a built-in type “non-negative
integer”.

28

. timed state specified
Estelle specification sequences real-time system

modelsfor the 0=0 O

ﬁ\ describ:
Q\ o _Gescribes | o500 | T0To-TCT -

J logicformulas | O—=0—=0
interpretation over

real-time restrictions timed state sequences

pAT x LEADSTO gets atemporal

qATYy logic semantics

Fig. 2. Hybrid semantics for Real-Time Estelle.

real-time component of the language. Therefore, the specification of a system’s
behavior consists of timed state sequences constructed as follows: first, timed
state sequences are obtained by using the operational semantics described in
the Estelle Standard and the real-time model extensions given in Section 7.2.
Then, these sequences are used as models for the temporal logic formulas
described by the Real-Time Estelle restrictions. Only those sequences which
satisfy all formulas are part of the overall real-time system. This scheme is
visualized in Figure 2.

A satisfaction relation = for Real-Time Estelle has been defined in [26]. It
defines the conditions a timed state sequence must meet to fulfill Real-Time

Estelle expressions. This semantics is, as well as the syntax, similar to that of
RTTL [62].

7.5 An Erample

The following (partial) Real-Time Estelle specification describes a module
which receives a message, performs two transitions and outputs another mes-
sage. The real-time constraint expresses the requirement that between recep-
tion of the first and sending of the second message no more than 5 units of
time may elapse.

1 body m-behavior for m-interface; 10 from s1 to s2 when pl.ml

2 state s1, s2; 11 begin (* do some work *) end;
3 12

4 time constraints 13 from s2 to sl begin

5 FORALL x:time; HENCEFORTH (14 (* do some more work *)

6 RECEIVING OF pi.mi AT x LEADSTO 15 output p2.m2;

7 SENDING OF p2.m2 AT (x < now < x+5)); 16 end;

8 -].7 end;

9 trans

29

8 Specifications

Sender-Receiver System. We are now interested in illustrating the spec-
ification of QoS requirements using the languages that we have introduced.
We will keep our running example low in functional complexity. While this
facilitates the presentation, it is also in line with the typically low complexity
of high-speed communication protocols and services. The running example is
rather simplistic: We will consider a sender-receiver system (SRS) that con-
sists of a S (sender) process, an R (receiver) process and an underlying Medium
service. Users in the system’s environment are sending data from the sender
end to the receiver end of the communication link. We assume that the user
at the sender end sends data by a UDreq service primitive, and receives UDcon
or UDrej primitives that indicate successful and unsuccessful data transmis-
sion, respectively. A process S implements the sender side of the service by
invoking an underlying Medium service using MDreq, MDcon and MDrej primi-
tives in the obvious fashion. The Medium process (the behavior of which we do
not explicitly specify) is assumed to be unreliable. However, we assume that
it possesses the miraculous capability to detect, whether or not a data unit
that has been sent could be successfully delivered at the receiver end of the
connection. In case of successful delivery the data unit will be presented by an
MDind primitive to the process R which in turn hands the same data over to
the user at the receiving end using an UDind primitive. In case of unsuccess-
ful delivery, process S is informed of the unsuccessful data transmission by a
MDrej primitive. A UDrej indicates this circumstance to the user at the sender
end of the connection. It will be the responsibility of higher layer protocols to
provide for error-correcting mechanisms.

The SRS example captures some typical features of high-speed protocols,
namely simple protocol functionality, absence of flow control, simplicity of
the failure indication mechanism and absence of a retransmission mechanism.
Compare with similar protocol mechanisms in ATM [27,50]. A graphical de-
scription of the Estelle specification’s architecture for SRS is given in Figure
314, The functional specification of the sender and receiver Estelle mod-
ule bodies can be found in Figure 4% . The SDL version of the SRS example
is given in two parts: Figure 5 presents the SDL system level diagram, and
Figure 6 contains the behavior of the sender and receiver processes.

14 Note that this diagram is not part of the Estelle specification for SRS.
15 The specifications include TIME CONSTRAINTS sections. These will be filled by the
real-time constraints developed later in this Section.

30

CONUTTERWN -

S_appsap

r_appsap

sender-receiver

S

appsap

medsap

appsap

medsap

rsap

Fig. 3. Estelle Architecture of SRS

BODY sender_body FOR sender;
STATE s1, s2;
INITIALIZE TO si;

TRANS
FROM s1 TO s2
WHEN appsap.UDreq BEGIN
0UTPUT medsap.MDreq;
END;

TRANS
FROM s2

WHEN medsap.MDrej TO s1 BEGIN

OUTPUT appsap.UDrej;
END;

WHEN medsap.MDcon TO s1 BEGIN

0UTPUT appsap.UDcon;
END;

TIME CONSTRAINTS

22
23
24

END;

end;

(* to be filled *)
END:

BODY receiver_body FOR receiver;
STATE s1;
INITIALIZE TO s1 BEGIN END;

TRANS

FROM s1 TO same

WHEN msap.MDind BEGIN
OUTPUT appsap.UDind;

END;

TIME CONSTRAINTS
(* to be filled *)
END:

Fig. 4. Estelle specification of sender and receiver modules for SRS

SYSTEM Sender-Receiver

o

UDcon
UDr¢j

EDina

BLOCK Sender

fGored

prord

UDcon
UDrgj

MDcon
MDrg

col

fuored

BLOCK Receiver

@Dma

o

/@D@

BLOCK Medium

Fig. 5. SDL System Diagram of SRS

31

PROCESS S PROCESSR

o
T

MDreq

Fig. 6. SDL Process Diagrams for Sender-Receiver System

8.1 Application QoS Requirements

As argued in Section 3, application level QoS requirements are often formu-
lated in the terminology of the end-user. Also, they often refer to the human
perception rather than technical characteristics of the communication system.
Therefore we will give two examples of how application level requirements
can be translated in formally specified requirements on the communication
system.

8.1.1 Inter-stream synchronization

In most existing multimedia systems, audio and video streams of the same ap-
plication level connection are handled separately as two different streams. That
makes handling of such multimedia applications more flexible, for instance by
permitting different storage locations for video and audio data. An example for
such an application is the distributed multimedia news-on-demand database
described in [31]. However, synchronization becomes a problem, since video
frames have to be played out at approximately the same time as the cor-
responding audio packets. According to [68] the video stream must not fall
behind the corresponding audio stream by more than 120 ms since other-
wise the end user perceives lip synchronization to be lost. Likewise, the video
stream must not precede the audio stream by more than 15 ms to avoid loss
of perceived lip synchronization.

In the SRS, we model two streams by sequences of UDind packets. Each packet
has two parameters: the first indicates if the packet belongs to the audio (a)
or the video stream (v), and the second contains the sequence number 1° . For
the sake of simplicity we assume that each video packet is associated with
exactly one audio packet with the same sequence number.

SDL/MTL. Inter-stream synchronization is a QoS requirement. The under-
lying communication subsystem has to provide for mechanisms guaranteeing

16 We will, for instance, write INPUT(U Dind,,(n)). Note that the parameter n can
be interpreted as a variable. For the formal treatment of variables see Section 6.

32

this requirement. We introduce the specification of two different sorts of inter-
stream synchronization, namely the exact and time-bounded variants.

Exact synchronization means that we require the audio as well as the video
data unit to be received at the same instant in time. This leads to an interest-
ing problem: SDL processes have just one input queue, so they can not receive
messages simultaneously but only in a nondeterministically chosen order. We
can offer two ways around this problem.

Concurrent video and audio systems: We assume that there is one in-
stance of the SRS system for the video-data, and one for the audio-data
and that both together form an SDL system. We'll write subscripts v for
messages belonging to the video subsystem, and a for the audio subsystem.
The processing of the audio and the video stream is handled outside the sys-
tem by the user which is located in the environment. It would be tempting
to specify the exact inter-stream requirement as

O(INPUT(UDind, (n)) = INPUT(UDind, (n))).

This expresses that in the same global state in which INPUT(U Dind,,(n))
holds, INPUT(U Dind,(n)) has to hold as well. However, based on our in-
terleaving model there can be no such state, because in any global system
state only one INPU'T predicate can hold and the above formula is therefore
non-satisfiable.

There is a finite supply of sequence numbers. Hence, when pairing video
and audio packets that have been disambiguated by the sequence number
we need to make sure that identical instances of a sequence number usage
are being paired. Therefore, we introduce a time constant £, chosen such
that more than ¢, time units pass between the i-th and the ¢ + 1-st usage
of any sequence number n for all natural ¢ > 017

We modify the above unsatisfiable formulation of the synchronization
requirement using the ¢_gy operator. We require that if we observe a video
frame with sequence number n that is followed within ¢, time units by an
audio frame with the same sequence number at all, then we’ll see this audio
frame within 0 delay in a future state!®:

O((INPUT(UDind,(n)) A O<;, INPUT(U Dind,(n)))

S ©_oINPUT(U Dind,(n))).

17 For an estimation of tg compare the number of frames transmitted per second in
a multimedia application, which is typically less than 25, with the possible size of
the range of a sequence number of 2" where m is likely to be greater or equal to 8.
TCP has recently been changed to have a 32 bit sequence number.

18 Note that we are not interested in specifying any reliability or liveness properties
here. I.e., it is not required that we will see a corresponding audio frame at all.

33

A similar relationship holds if we see the audio frame first:
O((INPUT(UDind,(n)) A O« INPUT(U Dind,(n)))
D O_oINPUT(UDind,(n))).

Luckily, we defined the time stamp component of our timed state sequence
model such that it is weakly monotonic, allowing concurrent states with
identical time stamps to appear in any order of an execution sequence.
Consequently, this requirement is satisfiable.

Interleaving of video and audio stream: Now, we assume that the SRS
system transmits the audio and the video stream along the same medium
connection and consider the type to be a parameter of the messages received.
The exact inter-stream synchronization requirement then reads

O((INPUT(UDind(v,n)) N ><, INPUT(U Dind(a,n)))
D O_oINPUT(UDind(a,n)))
O((INPUT(UDind(a,n)) AN C<, INPUT(U Dind(v,n)))
D O_oINPUT(UDind(v,n))).
Note that the definition of MTL we have used does not allow for quantification
over variables. We assume that there is a finite set of sequence numbers, and
if we want to avoid quantification we have to repeat each of the formulas
n times replacing the variable n with a constant. Alternatively, restricted

quantification as in [9,10] can be used.

In the time-bounded model of inter-stream synchronization we do not re-
quire the two data streams to be synchronized with zero time delay. Instead
we allow for an upper limit of 120 ms and 15 ms on the loss of synchroniza-
tion of the audio and video streams, respectively. Assume ¢, > 120ms. In this
case, for the concurrent audio and video model the time-bounded inter-stream
synchronization reads:

O((INPUT(UDind,(n)) A <, INPUT(U Dind,(n)))

D O<15ms INPUT(U Dind,(n)))
O((INPUT(UDind,(n)) A < INPUT(U Dind,(n)))

This extends to the interleaved video and audio streams in an obvious way.

34

Real-Time Estelle. Similar considerations apply to the Real-Time Estelle
specification. For the concurrent systems approach, we assume an SRS with
two sender and two receiver modules, handling audio and video streams sep-
arately. The SRS now has four external interaction points instead of two,
namely s_audiosap, s_videosap, r_audiosap and r_videosap. A zero delay
synchronization requirement to receive an audio and a video packet from the
system at exactly the same point in time can be expressed as follows, taking
advantage of Real-Time Estelle's time variables and the capability to compare
them:
FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH (

(RECEIVING OF r_videosap.UDind_v(n) AT x AND

EVENTUALLY RECEIVING OF r_audiosap.UDind_a(n)

AT (x <=y <= x + ts))

IMPLIES (x=y)

)

FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH (
(RECEIVING OF r_audiosap.UDind_a(n) AT x AND
EVENTUALLY RECEIVING OF r_videosap.UDind_v(n)

AT (x <=y <= x + ts))
IMPLIES (x=y)
)

In this and all following Real-Time Estelle specifications the unit of time
constants is determined by the TIMESCALE option. We assume that for all
future examples the line “TIMESCALE=milliseconds;” is included.

The interleaving case can be modeled by the r_appsap interaction point of the
original SRS specification for reception of both types of messages. Note that
in Real-Time Estelle it is not necessary to list a formula for every possible
value of n. We use a quantifier to express this in one formula. For the time-
bounded version of inter-stream synchronization the bounded delay version of
the specification reads:
FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH (

(RECEIVING OF r_appsap.UDind(a,n) AT x AND

EVENTUALLY RECEIVING OF r_appsap.UDind(v,n)

AT (x <=y <= x + ts))

IMPLIES (y <= x+120)

)s

FORALL x,y: TIME; FORALL n: INTEGER; HENCEFORTH (
(RECEIVING OF r_appsap.UDind(v,n) AT x AND
EVENTUALLY RECEIVING OF r_appsap.UDind(a,n)

AT (x <= y <= x + ts))
IMPLIES (y <= x +15)

35

8.1.2 Frame Rate

End users describe the perceived moving image quality of a video connection
in terms of “high vs. low quality”. The technical representation of this charac-
terization relates to the allocated video frame rate, i.e. the number for video
frames that can be played out per second at the receiver end of the connec-
tion. A rate of 8 frames per second fails to give the impression of a moving
picture. For high-quality video transmission, a rate of about 25 frames per
second is required. In our specifications we assume that each UDind packet in
SRS carries one video frame.

SDL/MTL. Frame rates are usually measured by the number of frames per
time period, called the observation interval. A certain rate, however, can be
achieved by transmitting a number of frames within a very short period of
time, and then a few more at the end of the observation interval. However,
SDL/MTL does not allow for counting of events in the MTL formula part.
This would constitute a non-trivial extension of the logic [29]. We offer an
approximation of this requirement by means of a reciprocal consideration: if
we want to require that at least 25 frames be transmitted per second, then we
assume that this can be reached by transmitting at least one frame every 0.04
sec. We therefore suggest the following exact inter-send time requirement as
an approximation of the original frame rate requirement:

DO(OUTPUT(MDind) D © < 0450 OUTPUT(MDingd)).

Real-Time Estelle. We make use of the additional expressiveness of Real-
Time Estelle to formulate a more lenient requirement on the frame rate. We
require that it should be about 25 frames per second. Our first formula reads:
FORALL x: TIME; FORALL z:integer; HENCEFORTH (
SENDING OF r_appsap.UDind[z] AT x LEADSTO
SENDING OF r_appsap.UDind[z+1] AT (x + 37 <= now <= x + 43)
)s

However, using only this formula, the frame rate could vary between 23 and
27 frames per second. To further restrict the rate to a value near to 25 frames
per second, we give a second formula, which requires that after the z-th frame
has been sent, the z 4+ 24-th frame should be sent between 997 and 1003

36

milliseconds later ™.
FORALL x: TIME; FORALL z: INTEGER; HENCEFORTH (
SENDING OF r_appsap.UDind[z] AT x LEADSTO
SENDING OF r_appsap.UDind[z+24] AT (x + 997 <= now <= x + 1003)
)

8.2 Transport QoS requirements

In this section we address QoS related properties at the transport connection
layer. We do not strictly abide to the OSI model here, we are happy to consider,
for example, the ATM Adaptation Layer a ‘transport’ layer.

8.2.1 Guaranteed Response of the transport system

Functional system properties are often distinguished into safety and progress
properties, and into safety and liveness properties [58,16]. Both classifications
are orthogonal. In the SRS example liveness and progress of the service pro-
vided by the medium is an important property to infer liveness of the service
provided by the SRS system. One such property we wish to express is that
if data transmission has been requested by a MDreq, then eventually we will
either see a MDind or a MDrej message telling us about the success of our re-
quest 2° . Note that this is a purely functional property. However, neither SDL
not Estelle is capable of expressing liveness properties. We show how Real-
Time Estelle and SDL/MTL can also be used to specify these properties for
SDL and Estelle specifications. Note that to specify guaranteed response we
only need to use the untimed constructs of Real-Time Estelle und SDL/MTL.

SDL/MTL.

O(OUTPUT(M Dreq) > ©(INPUT(M Dind) vV INPUT(M Drej))).

Real-Time Estelle.
HENCEFORTH (
SENDING OF medsap.MDreq LEADSTO (

191t should be noted that our specification technique is not stochastic. This speci-
fication does not specify an average frame rate of 25 frames in the sense that any
system satisfying this specification would have a frame rate that converges to 25.
Systems may satisfy this specification even if their frame rates converge to slightly
less or more than 25, as the reader can easily check.

20 Strictly speaking, this property is a conjunction of a safety and a liveness property,
see [16].

37

RECEIVING OF medsap.MDind OR
RECEIVING OF medsap.MDrej
)
)

8.2.2 Delay

Let us assume that the medium service in SRS is a service that provides real-
time guarantees on the delivery of transmitted data units. [27] argues, for
example, that an HDTV-quality 2! remote surgery system must be based on
a telecommunications subsystem that guarantees an end-to-end delay of not
more than 1 ms. To specify the QoS requirement of a delay bound of 1 ms on
the sending and receiving of data units from the medium in the SRS example
we use the following specifications 2 .

SDL/MTL.

O(OUTPUT(MDreq) > ©<ims(INPUT(M Dind) v INPUT(M Drej))).

Note that our SDL/MTL specification does not distinguish multiple instances
of the signal types

Real-Time Estelle. Assuming a TIMESCALE of milliseconds we specify:
FORALL x: TIME; HENCEFORTH (
SENDING OF medsap.MDreq AT x LEADSTO (
(RECEIVING OF medsap.MDind OR
RECEIVING OF medsap.MDrej) AT (now <= x + 1)
)
)

Note that for both the SDL/MTL and the Real-Time Estelle specification of
SRS we do not require the medium service to be reliable, we only require a
positive or negative indication eventually to be given.

21 High Definition Television, a high resolution digital TV standard.

22 Note that the correctness of this specification hinges upon the fact that the SRS
example uses a “stop-and-go” protocol. I.e. after observing an OUTPUT(M Dreq)
signal the next instance of an OUTPUT(M Dreq) signal can only be observed in
case an intermittent INPUT(M Dind) or INPUT(M Drej) signal has been observed.

38

8.2.8 Jitter

Delay-related QoS requirements may become more subtle. Successive data
units routed through a complex network may be subject to varying delays over
time. The ATM service is, as one example, prone to this sort of delay variation
[50]. The delay variation may be caused by changing network load which may
lead to temporal congestion in network internal ATM switches, or by routing
successive cells on different routes. When the application requires continuous
media streams to be transmitted it may be necessary to limit the variation in
the delay that successive data units experience. Multimedia applications which
need to reconstruct continuous signals require data to be delivered within a
time interval around the mean value of the transmission delay, depending on
the coding scheme used. The delay variance is called delay jitter and formally
defined as follows: let d,,;, denote the minimal and let d,,a0, dpmin < dimass
denote the maximal delay between sending and receiving of a sequence of
transmitted data units, then J = d, 45 — dynin denotes the delay jitter 2% .

Let us assume that the SRS system has some QoS mechanism (which we
haven’t specified) that guarantees a bound on the delay jitter and at the same
time ensures reliable transmission. The following specifications then specify
the QoS requirement bounding the delay jitter at the user interface. Let us
furthermore assume that the sequence of packets models a video stream within
a video conference. For this case, [33] found a maximum acceptable delay of
250ms and a maximum jitter of 10ms. We require a maximum delay bound
and set d,,., = 200ms and assume a minimum delay d,,;, = 190ms.

SDL/MTL.
O(INPUT(UDreq) D

Real-Time Estelle. We insert the following time constraint into the sen-
der-receiver process specification of Figure 3:
FORALL x: TIME; HENCEFORTH (
RECEIVING OF s_appsap.UDreq AT x IMPLIES (
HENCEFORTH NOT (SENDING OF r_appsap.UDind
AT (x < now <= x + 190))
AND
EVENTUALLY SENDING OF r_appsap.UDind AT (now <= x + 200)

23 Note that some absolute delay may be tolerable for some types of traffic like
uni-directional broadcast, even when tight delay jitter bounds are crucial for the
reasons explained above.

39

)
);

If the communication service can guarantee that there will be no message
losses, we can make use of Real-Time Estelle's instance operator in order to
rewrite this specification more concisely:
FORALL x: TIME; FORALL z:integer; HENCEFORTH (
RECEIVING OF s_appsap.UDreql[z] AT x LEADSTO
SENDING OF r_appsap.UDind[z] AT (x+ 190 < now <= x + 200)
)3

8.8 ATM AAL QoS requirements

8.3.1 Isochronicity

Isochronicity is a characteristic of communication systems supporting multi-
media applications. It means that certain communication events, for example
sending and receiving of multimedia data units, occur periodically at equally
distanced points of time. This is important for continuous media applications
that need to have video frames available for playout at isochronous instants
in time in order to guarantee a user-perceived moving image QoS. The need
for isochronicity depends on the coding scheme in use. Isochronicity is par-
ticularly important for simple coding schemes in which samples of the analog
signal are taken and sent periodically without pixel-differential encoding and
implicitly stored time stamps. Isochronicity is an example for an intra-stream
synchronization QoS requirement.

Isochronous sending: We refer again to the SRS example and consider
isochronous sending of UDreq messages from the user to the Sender pro-
cess. Note that this is therefore a specification of environment behavior and
not the specification of a QoS requirement.

SDL/MTL. The SDL formalization requires that within the right-open
interval of ¢ time units after sending a frame by a UDreq primitive it is not
allowed to send another UDreq message, while the next UDreq message has
to follow exactly ¢ time units after its predecessor.

O(INPUT(UDreq) o (=© o, INPUT(U Dreq) A O, INPUT(U Dreq))).

Real-Time Estelle. The requirement could be formulated similarly to
the one in SDL/MTL. However, we again make use of the instance operator
and require that two consecutive data units arrive at a distance of ¢ time

40

units. Therefore, it is not necessary to forbid the arrival of data units within
this interval:
FORALL x:TIME; FORALL z:integer; HENCEFORTH (
RECEIVING OF s_appsap.UDreql[z] AT x LEADSTO
RECEIVING OF s_appsap.UDreql[z+1] AT (now = x+t)
);

Isochronous receiving: On the receiver side, the receiving application pro-
cess may require to have successive data units available at isochronous mo-
ments in time. This now turns out to be a QoS requirement imposed on the
service provided by the receiver process.

SDL/MTL.
O(OUTPUT(UDind) >

(=© o, OUTPUT(UDind) A ©_,OUTPUT(U Dind))).

Real-Time Estelle. Again, we use the instance operator:
FORALL x: TIME; FORALL z:integer; HENCEFORTH (
SENDING OF r_appsap.UDind[z] AT x LEADSTO
SENDING OF r_appsap.UDind[z+1] AT (now = x + t)
)

8.4 QoS Mechanisms

8.4.1 Delay Jitter Compensation

Guaranteeing a bound on the delay jitter of a transmission medium does not
yet guarantee isochronous delivery of messages to an application, even if the
source is sending data isochronously. In order to compensate the residual delay
jitter and to guarantee an isochronous delivery of data units to a user it has
been suggested to use a jitter compensation buffer between the network service
and the user. In the context of ATM this buffer is often called playout buffer
[50].

SDL/MTL. Assume that the process R in SRS has the functionality of a
playout buffer, which can easily be implemented in SDL?*. Henceforth, R

24 Think of the following SDL process as implementing the buffer: If a message
arrives, it will be stored using an SDL SAVE primitive. This will be done until the
target filling is reached ([50] argues that this is approximately two ATM cells).
Then, use a timer and replay the messages from the SAVE queue when the timer
expires, or SAVE incoming messages.

41

accepts the possibly non-isochronous but jitter-bounded data stream from the
Medium service by MDind signals. Every signal will be delayed for a minimum
time span of #; time units. This means that the first data units in a stream
will fill the buffer up to a certain threshold number. Then, at latest t, >
t; time units after the arrival at the buffer the data units will be delivered
to the user by means of a UDind signal. The delivery of successive MDind
signals then occurs isochronously with an inter-signal delivery time of p, which
should ideally correspond to the inter-send event time at the sender in order
to ensure isochronous traffic with identical inter-send times on the sender and
on the receiver side. The jitter compensation requirement for the process R
then reads?® :

O(INPUT(MDind) > (Q<;, ~OUTPUT(UDind) A <<y, OUTPUT(UDind)))

ADO(QUTPUT(UDind) > %_,0UTPUT(UDind)).

The first conjunct in this formula specifies a property of the playout buffer
QoS mechanism, while the second conjunct specifies a QoS guarantee that this
mechanism has to provide.

Real-Time Estelle. We follow the approach sketched for SDL and assume
that module receiver has the functionality of a playout buffer. Unlike SDL,
Estelle has no SAVE command. Instead, messages can be assigned to variables.
Thus, the obvious implementation of the playout buffer is a ring buffer variable
where incoming MDind messages are stored. A second transition reads the
stored data from the ring buffer, encodes them in UDind messages and sends
them out over the interaction point to the user. The real-time constraints
for the receiver’s playout buffer are partitioned into two Real-Time Estelle
constraints and read as follows:
FORALL x: TIME; HENCEFORTH (
(RECEIVING OF medsap.MDind AT x FORBIDS
SENDING OF r_appsap.UDind AT (x <= now <= x + t1))
AND
(RECEIVING OF medsap.MDind AT x LEADSTO
SENDING OF r_appsap.UDind AT (now <= x + t2))
)

FORALL x: TIME; HENCEFORTH (

25 Note that while the previously sketched SDL implementation of the playout buffer
used the SDL timer mechanism in an operational fashion to generate stimuli for
replaying saved messages to the user. However, only the conjunction of this opera-
tional model with the following MTL formulas guarantees that the resulting model
satisfies hard real-time isochronicity bounds.

42

SENDING OF r_appsap.UDind AT x LEADSTO
SENDING OF r_appsap.UDind AT (now = x + p)
)

The first constraint describes a minimum and a maximum time a packet has to
stay within the playout buffer, while the second one ensures isochronicity 2¢ .

8.4.2 Reaction on QoS Violation

The examples that we have shown so far provided specifications of require-
ments that tell the ‘good’ system behaviors from the ‘bad’ ones. If only one
of the possible executions of a system violates one of the above requirement
specifications, then this will invalidate the system with respect to the specifi-
cation. However, systems will in some cases not become unusable in the event
of a violation of some QoS guarantee. Instead, the system will raise an ex-
ception condition to indicate the QoS guarantee violation to an operator, and
then proceed. We call this mechanism QoS monitoring. In the SRS example
we require that whenever an MDreq, carrying one encoded video frame, is not
followed within 200ms by either a MDind or MDrej data unit, which would
correspond to meeting the QoS guarantee of positive or negative indication
within 200ms, then the sender process will send a signal ALARM within 220ms
time units of having sent MDregq.

SDL/MTL. Assume that in the SRS example the sender process has the
capability to indicate the violation of a delay QoS guarantee by the medium
using a signal of type ALARM. Then the following specification ensures the
proper functioning of this monitoring mechanism:

O(=(OUTPUT(M Dreq) > < <ooms(INPUT(M Dind) v INPUT(M Drej)))

S (O<200ms—m OUTPUT(ALARM) A © <930,s OUTPUT(ALARM))).

Real-Time Estelle. We use the keyword OTHERWISE to express that we
prefer QoS not to be violated, but that there is a possible reaction if it happens.
FORALL x: TIME; HENCEFORTH (
SENDING OF medsap.MDreq AT x LEADSTO (
(RECEIVING OF medsap.MDind
OR
RECEIVING OF medsap.MDrej)

26 The formulation in Real-Time Estelle uses the abbreviations FORBIDS and
LEADSTO. Note that in the earlier delay jitter example, instead of these keywords,
the long forms have been used.

43

AT (x <= now <= x + 200)
OTHERWISE
SENDING OF s_appsap.ALARM AT (x + 200 < now <= x + 220)
)
AND HENCEFORTH NOT SENDING OF s_appsap.ALARM AT (now <= x + 200)
)

8.4.3 QoS Negotiation

The traffic pattern dynamics in broadband communication systems make it
necessary for the involved parties to negotiate and renegotiate QoS guarantees
[42]. Assume the sender process in the SRS example has the capability of ne-
gotiating an increase in certain QoS guarantees with the underlying medium
service. Let us also assume that there is an obvious QoS (re-)negotiation pro-
tocol that has been specified between the sender process and the medium: The
application sending data via SRS requests an increase in delay bound by send-
ing a UINCreq signal which the service forwards to the medium (MINCreq). We
assume that there is an appropriate network management process maintain-
ing the network resources inside the medium subsystem. The medium either
grants the increase (MINCcon) or it refuses the increase (MINCrej). Both re-
actions are indicated accordingly to the user. We are not interested in the
mechanism itself, but in specifying the effect that a successful renegotiation
has. It may be useful to state that successful renegotiation entails a hence-
forth invariant property to hold, namely the newly established level of QoS
guarantee. This is invariant until a new renegotiation is initiated. This may
be useful in showing the correctness of other parts of the system that rely on
the specified delivery bound.

SDL/MTL. As an example assume that a user was no longer satisfied with
the medium delay and asked for a better video quality. The transmission pro-
tocols translate this request to a new maximum acceptable delay of 200ms.
We thus require that whenever INPUT(MINCcon(200ms)) has been exe-
cuted, the delivery delay of the medium is henceforth limited to 200ms, until
another, arbitrary INPUT(MINCcon())) is observed. Note that we assume
that there is a finite number of constants that can appear as an argument to
the M INC'con primitive.

O(OUTPUT(MINCcon(200ms)) D

(O((INPUT(MDreq) A ©OUTPUT(MDind)) > ©<y00ms OUTPUT(MDind)))

U OUTPUT(MINCcon())).

44

Real-Time Estelle. A temporal until operator is not defined in Real-Time
Estelle. The following specification can therefore not express the bounded
invariance that holds until renegotiation takes place. The temporal context
remains unbounded.
FORALL x,y: TIME; HENCEFORTH (

SENDING OF medsap.MINCcon AT x LEADSTO (

HENCEFORTH ((RECEIVING OF medsap.MDreq AT (y>=x) AND
EVENTUALLY SENDING OF MDind) LEADSTO

SENDING OF MDind AT (nmow <= y + 200)))

)s

9 Concluding Remarks

In this paper, we have shown how the standardized FDTs Estelle and SDL
could be enhanced in order to be suitable tools for the specification of typical
requirements and characteristics of broadband and multimedia systems. The
general idea is to describe a system’s functional behavior with the standard-
ized part of Estelle or SDL syntax, and the non-functional QoS aspects by
variants of real-time temporal logic formulas. In the case of SDL these formu-
las complement the SDL specification, in the case of Real-Time Estelle they
form part of the syntax of an extended Estelle language. We have shown ex-
amples of how to apply the two specification techniques to some typical QoS
requirements, guarantees and mechanisms.

In this concluding Section we will first present a comparison of Real-Time Es-
telle and SDL/MTL. Then, we will give an outlook on future work. We discuss
the application of our notations to formal validation and verification, and to
automatic implementation. Finally, we discuss possible stochastic extensions
to our deterministic approaches.

9.1 Comparison of Real-Time Estelle and SDL/MTL

Similarities between the the Real-Time Estelle and the SDL/MTL approach
comprise the usage of an language based on communicating extended finite
state machines for the basic functional properties, and real-time temporal logic
notations for the non-functional QoS properties. We now mention differences
between these two approaches.

Syntax: From a syntactical point of view Real-Time Estelle is a language

extension, while SDL/MTL uses temporal logic formulas that complement
SDL specifications. Consequently, in SDL/MTL two syntactically disjoint

45

specifications are needed to express the overall system requirements while
Real-Time Estelle specifications are just one syntactic unit. To favor the
one or the other approach requires weighing uniformity of the language vs.
modularity and abstraction in the specification. A complementary specifica-
tion separates operational properties from temporal and real-time proper-
ties and hence supports separation of concerns. The Promela language and
the XSPIN tool are a practical example for a complementing specification
approach: XSPIN will accept Promela specifications of and check Promela
models against complementing Linear Temporal Logic formulas [37].

Readability: In the selection of the syntax for its extension part, Real-Time
Estelle was guided by simplicity, readability for human readers and similar-
ity to the existing Estelle keyword set. Important design decisions were the
selection of only ASCII keywords and the provision of suitable short forms
for certain expressions (like LEADSTO and FORBIDS). The goal of SDL/MTL
was mainly to remain close to standardized SDL for the functional specifi-
cation and to add QoS requirements without needing to change the syntax
of the functional specification.

The syntactic approaches we have chosen to account for real-time expres-
siveness have the nature of case-studies: It is easy to see that one could
equally define a complementary specification approach based on Estelle and
MTL as one could incorporate a Real-Time Estelle-like real-time syntax
into SDL.. We hope that our discussions will help those interested in accom-
modating the SDL and Estelle standards to new needs of expressiveness in
choosing adequate syntax (and semantics, we hasten to add).

Semantics: The dynamic semantics of SDL is operationally defined in [41].
We found this semantics definition not suitable for our purposes and there-
fore exemplified an axiomatic approach to an SDL semantics based on Hoare
triples. We applied this approach rigorously to a subset of the full SDL lan-
guage. A more complete interpretation of Z.100 SDL based on our approach
can be given. The semantic definition of Estelle in the standard is less rigor-
ous than the SDL definitions. Again, we propose that the approach chosen
for SDL can easily be adapted to defining an axiomatic semantics for Estelle.
Note that [13] defines a predicate transformer-based axiomatic semantics for
Estelle.

Expressiveness: The semantics of Real-Time Estelle’s logic part has been
designed with the goal of reaching suitable expressiveness. The logic is sim-
ilar to Ostroff’s RTTL [62]. MTL is less expressive than RTTL. It doesn’t
allow for counting of events or the use of variables over arbitrary domains. In
terms of real-time expressiveness the ability to quantify over time variables
allows Real-Time Estelle to express so-called ‘non-local timing requirements’
that MTL is unable to express [4]. Both Real-Time Estelle and SDL/MTL
use future time operators. Others have found past-time operators useful in
simplifying specifications [9 11]. While we were happy with the exclusive
use of future time operators it should be noted that past time operators can
easily be added both syntactically and semantically, and that their intro-

46

duction does not add significant tractability problems.

Complexity: The increased expressiveness of Real-Time Estelle has to be
paid for in terms of decision complexity. Satisfiability of MTL is EXSPACE-
complete while it is non-elementary for Real-Time Estelle [4]. This means
that one can hope that SDL/MTL specifications may be verified with some
effort which is not the case for Real-Time Estelle.

9.2 Verification and Validation

The goal of a formal verification method for QoS requirements is to prove that
a system specification S satisfies a set of QoS requirements @). In particular, S
may be the functional specification of a protocol or a service. The QoS guaran-
tees that a service is capable of providing greatly depends on the performance
of the underlying communications network. Let P denote a specification of
the QoS guarantees implemented by the underlying communications network.
Let us consider the SRS example again, and let us assume that the func-
tional behavior of SRS is given as a logic specification §. Assume the system
performance to be described by the following minimal response time formula:

P : O((INPUT(MDreq) AN OOUTPUT(MDind))

S Oy, ~OUTPUT(MDind)).

Let a QoS requirement on SRS be described by the following formula:

Q : O(OUTPUT(UDreq) > © <y, (INPUT(UDcon) v INPUT(UDrej))).

This gives rise to a verification problem, namely the question, whether based
on § and P the QoS requirement Q can at all be satisfied, hence whether the
assertion P A S D Q holds. Intuitively, the answer depends amongst others
on the choice of values for t; and t5. To formally establish this conjecture
it is necessary to employ formal verification methods. Amongst the numer-
ous verification approaches in the literature, [1] contains an approach to the
formal verification of temporal logic based real-time requirements, and [3]
discusses real-time model checking algorithms. RT-Spin [69] is based on the
model checking approach in [3].

9.3 Implementation

As we pointed out earlier, formal specifications can have multiple functions
in the systems engineering process: they can be abstract requirements models

47

or implementation-biased design specifications. The implementation of a de-
sign specification given in Real-Time Estelle needs to be based on a real-time
implementation environment since otherwise, no guarantees for the specified
real-time constraints can be given. In [25], a method for the automatic imple-
mentation of Real-Time Estelle specifications in a real-time operating system
environment has been suggested. The general idea is to map each real-time
enhanced Estelle module in the specification onto one thread of the operating
system and derive the scheduling parameters from the real-time constraints in
the specification.

9.4 Stochastic Extensions

[46] distinguishes deterministic and statistical QoS guarantees. We have silently
assumed that QoS can be treated as a deterministic phenomenon. The stochas-
tic nature of some broadband and multimedia systems may make it necessary
to express requirements in a stochastic fashion. An example is the requirement
that with a probability of p the cell transfer delay in ATM will be less than ¢
time units. There have been a number of approaches that combine temporal
logic, real-time and probabilities [2,32]. In these logics formulas do not only
need to be satisfied by a timed state execution model, they also need to satisfy
accumulated path probabilities in a given Markov chain model.

We informally describe this approach. Intuitively, let <>§?p denote the re-

quirement that with a probability of at least a within the next ¢ time units p
will hold. The real-time annotation can be omitted in which case the formula
is purely stochastic. This allows us to express the idea of stochastic reliabil-
ity, namely that if a data unit is sent then it will with a probability a with

0 < a <1 be eventually received:

O(INPUT(MDreq) > O2*OUTPUT(MDind)).

An interpretation of this requirement in the context of ATM is that the cell
loss rate is < 1 — a. The more meaningful requirement, however, is that such
a cell loss rate will be achieved within a finite interval of ¢ time units, which
can be expressed as follows:

O(INPUT(MDreq) > ©Z¢ OUTPUT(MDind)).

48

Acknowledgements

The authors wish to thank the anonymous referees for their detailed and
helpful comments. Reinhard Gotzhein contributed further to debugging the
paper. The research of the second author was in part supported by the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

References

[1] M. Abadi and L. Lamport. An Old-Fashioned Recipe for Real Time. In [21],
pages 1-27, 1992.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model Checking for Probabilistic
Real-time Systems. In J. L. Albert, B. Monien, and M. R. Artalejo, editors,
International Colloquium on Automata, Languages and Programming, volume
510 of Lecture Notes in Computer Science. Springer Verlag, 1991.

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

[4] R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In
[21], pages 45-73, 1992.

[65] F. Anger. On Lamport’s Interprocess Communication Model. ACM
Transactions on Programming Languages and Systems, 11(3):404-417, July
1986.

[6] C. Aurrecoechea, A. Campbell, and L. Hauw. A Survey of QOS Architectures.
Multimedia Systems Journal, Special Issue on QoS Architectures, 1997. To
appear.

[7] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol
Specification. Prentice Hall International, 1991.

[8] S. Ben-David. The global time assumption and semantics for concurrent
systems. In Principles of Distributed Computing, pages 223 — 231. ACM, 1988.

[9] G. S. Blair, L. Blair, and J. B. Stefani. A specification architecture for
multimedia systems in open distributed processing. Computer Networks and
ISDN Systems, 29:473-500, 1997.

[10] L. Blair, G. Blair, H. Bowman, and A. Chetwynd. Formal specification and
verification of multimedia systems in open distributed processing. Computer
Standards and Interfaces, 17:413-436, 1995.

[11] H. Bowman, G. Blair, L. Blair, and A. Chetwynd. Time versus abstraction in
formal descriptions. In R. L. Tenney, P. D. Amer, and M. U. Uyar, editors,
Formal Description Techniques, VI, pages 467-482. Elsevier Science Publishers
B.V. (North-Holland), Amsterdam, 1994.

49

[12] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2):323-342, Apr. 1983.

[13] J. Bredereke, R. Gotzhein, and F. H. Vogt. Design of a formal Estelle semantics
for verification. In /23], pages 153-168, 1993.

[14] M. Broy. Towards a Formal Foundation of the Specification and Description
Language SDL. Formal Aspects of Computing, 3(1):21-57, 1991.

[15] S. C. Chamberlain. FEstelle Enhancements for Formally Specifying Distributed
Systems. PhD thesis, University of Delaware, USA, 1992.

[16] E. Chang, Z. Manna, and A. Pnueli. The safety-progress classification. In sub-
series F: Computer and System Science, NATO Advanced Science Institutes
Series. Springer-Verlag, 1992.

[17] K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generation
using the extended finite state machine model. In Proceedings of the 30th Design
Automation Conference DAC-93, pages 86-91, 1993.

[18] C. Courcoubetis, editor. Computer Aided Verification: Proceedings of CAV’93,
volume 697 of Lecture Notes in Computer Science. Springer Verlag, 1993.

[19] J.-P. Courtiat and R. C. de Oliveira. RT-LOTOS and its application to
multimedia protocol specification and validation. In B. Sarikaya and S. Saito,
editors, IEEE International Conference on Multimedia Networking (MmNet95),
Participants’ Proceeedings, pages 31-45. IEEE Computer Society Press, Sept.
1995.

[20] A. M. Davis. Software Requirements: Objects, Functions and States. Prentice-
Hall, 1993.

[21] J. W. de Bakker, C. Huizing, W. de Roever, and G.Rozenberg, editors. Real-
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

[22] P. Dembinski and S. Budkowski. Simulating Estelle specifications with time
parameters. In Rudin and West [65], pages 265-279.

[23] M. Diaz and R. Groz, editors. Formal Description Techniques, V. IFIP
Transactions C-10, Proceedings of the Fifth International Conference on Formal
Description Techniques. North-Holland, 1993.

[24] E. A. Emerson. Temporal and modal logic. In J. v. Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 16. Elsevier Science Publishers B. V.,
1990.

[25] S. Fischer. Implementation of multimedia systems based on a real-time
extension of Estelle. In Gotzhein and Bredereke [30], pages 310-326.

[26] S. Fischer. Real-Time Estelle. Technical Report TR-96-003,
University of Mannheim, 1996. Available at: URL=ftp://pi4.informatik.uni-
mannheim.de/pub/techreports/tr-96-003.ps.gz.

50

[27] D. Ginsburg. ATM solutions for enterprise networking. Addison Wesley, 1996.

[28] R. Gotzhein. Temporal logic and applications — a tutorial. Computer Networks
and ISDN Systems, 24(3):203-218, 1992.

[29] R. Gotzhein. Open distributed systems: on concepts, methods, and design from
a logical point of view. Vieweg advanced studies in computer science. Friedr.
Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, Germany,
1993.

[30] R. Gotzhein and J. Bredereke, editors. Formal Description Techniques IX —
theory, application and tools, Kaiserslautern, Germany, 1996. Chapman & Hall.

[31] A. Hafid and G. v. Bochmann. Quality of Service Negotiation in News-on-
Demand Systems: An Implementation. In A. Azcorra, T. D. Miguel, E. Pastor,
and E. Vazquez, editors, Proceedings of the Third International Workshop on
Protocols for Multimedia Systems, Madrid, Spain, pages 221-240, Oct. 1996.

[32] H. A. Hanson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, Uppsala University, Sweden, 1991.

[33] D. Hehmann, M. Salmony, and H. J. Stiittgen. Transport services for
multi—-media application on broadband networks. Computer Communications,
13(4):197-203, 1990.

[34] T. A. Henzinger. The Temporal Specification and Verification of Real-Time
Systems. Phd thesis, Stanford University, Department of Computer Science,
August 1991. Also published as Report No. STAN-CS-91-1380.

[35] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. In
de Bakker et al. [21], pages 226-251.

[36] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall
International, 1991.

[37] G. J. Holzmann. The verification of concurrent systems. AT&T Bell
Laboratories, to be published by Prentice-Hall, 1995.

[38] Information processing systems — Open Systems Interconnection — Estelle:
A formal description technique based on an extended state transition model.
International Standard ISO 9074, 1989.

[39] ISO/IEC JTC1/SC21. Quality of service - basic framework - working draft #4,
July 1994.

40| ITU-T. Recommendation Z.100: Speciﬁcation and Description Language
guag
(SDL) Geneva, Switzerland, 1993.

411 ITU-T. Recommendation Z.100: Speciﬁcation and Description Language
guag
(SDL), Annex F3: Dynamic semantics. Geneva, Switzerland, 1993.

[42] ITU-T. Recommendation 1.371: Traffic control and congestion control in B-
ISDN. Geneva, Switzerland, 1995. Temporary Document.

ol

[43] R. Koymans. Specifying Message Passing and Time-Critical Systems with
Temporal Logic. PhD thesis, Technical University of Eindhoven, 1989.

[44] R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic.
Real-Time Systems Journal, 2(4):255-299, Nov. 1990.

[45] A. S. Krishnakumar. Reachability and recurrence in extended finite state
machines: Modular vector addition systems. In [18/, pages 111-122, 1993.

[46] J. Kurose. Open issues and challenges in providing quality of service gurantees
in high-speed networks. ACM Computer Communication Review, 23(1):6-15,
1993.

[47] L. Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2):190-222, Apr 1983.

[48] L. Lamport. The mutual exclusion problem: Part I — a theory of interprocess
communication. Journal of the ACM, 33(2):313-326, April 1986.

[49] L. Lamport. The Temporal Logic of Actions. ~ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

[50] J.-Y. Le Boudec. The asynchronous transfer mode: a tutorial. Computer
Networks and ISDN Systems, 24:279-309, 1992.

[61] L. Léonard and G. Leduc. An introduction to ET-LOTOS for the description of
time-sensitive systems. Computer Networks and ISDN Systems, 29(3):271-292,
1997.

[62] S. Leue. QoS specification based on SDL/MSC and temporal logic. In
G. v. Bochmann, J. de Meer, and A. Vogel, editors, Proceedings of Workshop
on Distributed Multimedia Applications and Quality of Service Verification,
Montreal, Quebec, Canada, May 1994.

[63] S. Leue. Specifying real-time requirements for SDL specifications — a temporal
logic-based approach. In P. Dembinski and M. Sredniawa, editors, Proceedings
of the Fifteenth International Symposium on Protocol Specification, Testing,
and Verification PSTV’95. Chapman & Hall, 1995.

[64] T. D. C. Little and A. Ghafoor. Synchronization and storage models for
multimedia objects. [EEE Journal on Selected Areas in Communication,
8(3):52-61, Apr. 1990.

[65] M. T. Liu. Protocol engineering. In M. C. Yovitis, editor, Advances in
Computers, volume 29, pages 79-195. Academic Press, Inc., 1989.

[66] G. Luo, A. Das, and G. v. Bochmann. Software testing based on SDL
specifications with Save. IEEE Transactions on Software FEngineering,
20(1):72-87, 1994.

[67] N. Lynch and F. Vaandrager. Forward and Backward Simulation for Timing-
Based Systems. In de Bakker et al. [21], pages 397-446.

52

[68] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

[59] P. M. Merlin and D. J. Farber. Recoverability of Communication Protocols
— Implication of a theoretical Study. IEEE Transactions on Communications,
Com-24:1046-1043, Sept. 1976.

[60] S. Mgrk, J. Godskesen, M. Hansen, and R. Sharp. A timed semantics for SDL.
In Gotzhein and Bredereke [30], pages 295-309.

[61] X. Nicollin and J. Sifakis. An Overview and Synthesis of Timed Process
Algebras. In de Bakker et al. [21], pages 526-548.

[62] J. S. Ostroff. Temporal Logic of Real-time Systems. Research Studies Press,
1990.

[63] J. Quemada and A. Fernandez. Introduction of Quantitative Relative Time
into LOTOS. In Rudin and West [65], pages 105-121.

[64] H. Rudin. The dimension of Time in Protocol Specification. In Lecture Notes in
Computer Science 248, pages 360-372. Springer—Verlag Berlin Heidelberg New
York, 1986.

[65] H. Rudin and C. H. West, editors. Protocol Specification, Testing
and Verfication VII. Elsevier Science Publishers B.V. (North—Holland),
Amsterdam, 1987.

[66] H. Saito, T. Hasegawa, and Y. Kakuda. Protocol verification system for SDL
specifications based on acyclic expansion algorithm and temporal logic. In
K. Parker and G. Rose, editors, Formal Description Techniques, IV: Proceedings

of the Third International Conference on Formal Description Techniques, pages
511-526. North-Holland, 1992.

[67] P. Sénac, M. Diaz, and P. de Saqui-Sannes. Toward a formal specification of
multimedia synchronization scenarios. Annuaires Télécommunication, 49(5—
6):297-314, 1994.

[68] R. Steinmetz and C. Engler. Human Perception of Media Synchronization.
Technical Report 43.9310, IBM European Networking Center, Heidelberg,
Germany, 1993.

[69] S. Tripakis and C. Courcoubetis. Extending Promela and Spin for real time. In
T. Margaria and B. Steffen, editors, Tools and Algorithms for the Construction
and Analysis of Systems, Proceedings of the Second International Workshop,
TACAS’96, volume 1055 of LNCS, pages 329-348. Springer Verlag, 1996.

[70] T. Tsang and R. Lai. Time Estelle: An Extended Estelle Capable of Expressing
Multimedia QoS Parameters. In IEEFE Int. Conf. on Multimedia Computing and
Systems (ICMCS’97), Ottawa, Canada. IEEE Computer Society Press, 1997.
To appear.

53

[71] G. v. Bochmann and J. Vaucher. Adding Performance Aspects to Specification
Languages. In S. Aggarwal and K. Sabnani, editors, Protocol Specification,
Testing and Verification VIII, pages 19-29. Elsevier Science Publishers B.V.
(North—Holland), Amsterdam, 1988.

o4

	Text6: First publ. in: Computer Networks and ISDN Systems 30 (1998), 9-10, pp. 865-899
	Text7:
	Text8: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6512/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65121

