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Abstract—This paper proposes a new method for a measure
of coherent similarity between temporal multichannel synthetic
aperture radar (SAR) images and its implementation to change
detection application. The method is based on mutual infor-
mation (MI) from information theory. The MI measures the
amount of information in common between coherent temporal
multichannel SAR acquisitions. In order to develop an algo-
rithm for all kinds of SAR images, such as interferometric SAR,
polarimetric–interferometric SAR (PolInSAR), and partial PolIn-
SAR, first, the joint density function of temporal multichannel
images based on their second-order statistics has been derived.
Then, the derived joint density function is used to calculate an
analytical expression for the MI between temporal images, which
is assumed to be maximal if the temporal images are identical.
Although, in this paper, a new coherent similarity measure has
analytically been derived for temporal polarimetric SAR images
based on complex Wishart process in time, since the mathematical
formulation is general, it can equally well be implemented into
any kind of multivariate remote sensing data, such as multispec-
tral optical and interferometric images after small continuation.
This derived quantity has been implemented for change detection
application whose aim is to characterize the temporal behavior
of the acquisitions. A comparison between the proposed and the
other well-known change detection methods by means of scene
characterization is shown, describing the advantages due to the
fact that the proposed change detector involves almost every facet
of applied change detection.

Index Terms—Change detection algorithms, mutual informa-
tion, parameter estimation, polarimetric synthetic aperture radar.

I. INTRODUCTION

THE SPECIAL case of temporal scene characterization
known as change detection mapping is one of the core

applications in the field of remote sensing considering that
natural objects are characterized by their spatial patterns and
also by their temporal dynamics, i.e., changing backscattering
properties due to their inherent properties. Even though many

Manuscript received September 19, 2010; revised January 19, 2011, May 25,
2011, and July 11, 2011; accepted October 23, 2011 Date of publication
December 14, 2011; date of current version June 20, 2012.

E. Erten is with the Chair of Earth Observation and Remote Sensing, Institute
of Environmental Engineering, Swiss Federal Institute of Technology (ETH)
Zurich, 8093 Zurich, Switzerland (e-mail: erten@ifu.baug.ethz.ch).

A. Reigber is with the Microwaves and Radar Institute, German Aerospace
Center (DLR), 82230 Wessling, Germany (e-mail: andreas.reigber@dlr.de).

L. Ferro-Famil is with the Institute of Electronics and Telecommunica-
tions of Rennes, University of Rennes 1, 35042 Rennes, France (e-mail:
Laurent.ferro-famil@univ-rennes1.fr).

O. Hellwich is with the Department of Computer Vision and Remote
Sensing, Technische Universität Berlin, 10587 Berlin, Germany (e-mail:
hellwich@cs.tu-berlin.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2011.2174155

studies are based on multispectral remote sensing images [1],
[2], the availability and the efficiency of optical data sets are
often limited by illumination and weather conditions. Hence,
for change detection applications, temporal multichannel syn-
thetic aperture radar (SAR) images become more attractive
since the backscatter properties of SAR are almost independent
of weather conditions. Additionally, the utilization of temporal
multichannel SAR data is favored in order to make use of their
inherent properties for a better temporal analysis of surface
scattering.

Although the interpretation of SAR data is more difficult than
that of multispectral imagery, several studies have assessed the
positive impact of temporal SAR imaging on change detec-
tion applications [3]–[6]. In particular, temporal multichannel
change detection techniques are interesting considering their
inherent properties which are independent of SAR imaging
mode, such as the generalized variance ratio [7] and the
maximum-likelihood ratio test (MLRT) [5], [8], [9]. In the case
of comparing the variabilities of two multivariate populations,
a natural measure is the ratio of their generalized variances:
For temporal single-channel images, it is the ratio of their
intensities, and for temporal multichannel images, it is the ratio
of determinants of covariance matrices of polarimetric SAR
(PolSAR) images. Although this ratio image is very robust to
speckle noise, it is not sufficient to characterize different kinds
of temporal changes. For small changes in temporal intensities,
the technique suffers from a significant false-alarm rate. Such
test statistics can, for example, be used to test the equality of
mean power of temporal images. The MLRT has been used to
test the equality of temporal polarimetric covariance matrices,
which follow complex Wishart distributions. It is equivalent to
testing the equality of two Gamma-distributed intensity images
for temporal single-channel images. Because this technique
takes into account much more higher statistics, it can deal with
different types of change. This technique is very powerful in
the presence of step changes, such as ship detection, vehicle
detection in forest, and diseased plant monitoring. Like the
generalized variance ratio, the MLRT describes also incoherent
resemblance of temporal images. In both techniques, PolSAR
data improve the detection performance compared to single-
channel information by exploiting the wave polarization, allow-
ing for a more sophisticated physical interpretation of temporal
SAR data sets.

As discussed in the previous paragraph, taking into account
higher order statistics improves the characterization of temporal
behavior of data sets, so it is more useful to consider the proba-
bility density function (pdf) of the temporal images’ pixels. This
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is why various similarity measures for pdf have been used in
change detection applications. One of the similarity measures
from information theory for multivariate populations is the
Kullback–Leibler (KL) divergence. KL divergence is a non-
commutative measure of the difference between two probability
distributions, and its interesting implementation to SAR images
can be seen in recent publications, such as [10] and [11]. KL
divergence has been used for contrast analysis of multichannel
SAR images in [10] and for change detection application in
[11] by noting that a multiscale approach will improve the
detection performance. Even though previous works mainly
concentrated on the KL divergence, here, instead of the KL
divergence, another measure from information theory called
mutual information (MI) will be used to determine temporal
similarity between multichannel SAR images. The MI is a
basic concept from information theory, quantifying the mutual
dependence of the two random variables.

MI has been previously used in coregistration of medical im-
ages [12] and recently used in fusion of optical and SAR images
[13], [14]. This paper expands the ideas first presented in [15]
which uses the MI to detect regions of change in video surveil-
lance. In this work, the MI scalar is the state variable used to
describe the coherent similarity between temporal multichannel
SAR images by making use of the second-order statistics of
the acquisitions. This paper is organized as follows. Section II
reviews the principles of temporal SAR vector acquisitions in
detail and includes the derivation of the joint density function
of temporal polarimetric covariance matrices. The theoretical
concept of the new coherent similarity measure by means of
the MI is presented in Section III, whereas the implementation
of this measure for real data is described in Section IV. In
this section, the other well-known change detection technique
called the MLRT is also reviewed to underline the potential
of the MI to characterize the scene change between temporal
acquisitions. Eventually, Section V concludes this paper with
some discussions and some directions for future works.

II. POLARIMETRIC–INTERFEROMETRIC IMAGE MODEL

A. Acquisition Vector

Let a temporal acquisition vector �k = [�k1 �k2]
T be a com-

plex vector distributed as a multicomponent circular Gaussian
NC(0,Σ) that consists of two target vectors �k1 ∼ NC(0,Σ11)

and �k2 ∼ NC(0,Σ22) obtained from temporal multichannel
SAR images at times t1 and t2, respectively. These two ob-
servations can be correlated or uncorrelated processes over
time depending on the monitored objects. Here, the number of
elements in one of the target vectors �ki at time ti is represented
by m, and hence, the temporal target vector �k has the dimension
of q = 2×m. For example, q = 2 corresponds to interfero-
metric SAR (InSAR) images, whereas q = 6 corresponds to
polarimetric–interferometric SAR (PolInSAR) images. It can
be remembered that, with single-channel data (m = 1), only
one copolarized channel �ki = �khh or �ki = �kvv is recorded,
and the phase carries no useful information for distributed
targets. When multichannel (polarimetric) data are available,
e.g., �ki = [khh khv khv], phase differences between channels

provide information about dielectric and geometric properties
of the scattering medium [16].

The true covariance matrix Σ, which contains suffi-
cient statistics to characterize the acquisition vector �k, is
not known and is estimated using a maximum-likelihood
method by n-sample (n-look) spatial coherent averaging: A =
(1/n)

∑n
j=1

�kj�k
†
j . The true covariance matrix Σ, as well as its

n-sample estimate A, can be portioned as

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
A =

[
A11 A12

A21 A22

]
(1)

which summarize all the information (joint and marginal)
from temporal multichannel SAR acquisitions. A12 = A†

21 is
an m×m-dimensional cross-correlation matrix between the
acquisition vectors �k1 and �k2 which characterizes the interfero-
metric and polarimetric information. The matrices A11 and A22

are the standard n-look and m×m-dimensional polarimetric
covariance matrices of separate temporal images. The pdf of
the n-sample covariance matrix A, known as a complex Wishart
distribution with n degrees of freedom, is

p(A) ∼ WC(n,Σ) =
nmn|A|n−m

|Σ|nΓ̃m(n)
etr(−nΣ−1A) (2)

provided that n ≥ m [17]. Here, etr and | · | denote the ex-
ponential trace and the determinant of the positive definite
covariance matrix, respectively, and the normalization constant
Γ̃m(n) is the multivariate Gamma function

Γ̃m(n) = πm(m−1)/2
m∏
i=1

Γ(n− i+ 1).

Substituting m = 1 into (2), the well-known single-channel
multilook intensity distribution, named the Gamma distribu-
tion, is obtained where n-look polarimetric covariance matrix
Aii reduces to the n-look single-channel intensity image ai.
Hence, all the properties of the Gamma distribution are simple
consequences of those of the complex Wishart distribution.

B. Joint Density Function of Temporal Polarimetric
Covariance Matrices: p(A11, A22)

The joint statistics of complex Wishart matrices in time
gives the theoretical basis required to study the time-varying
behavior of SAR images, owing to the MI. The properties of the
Hermitian matrix A in (1) permit deriving the joint pdf of the
temporal covariance matrices A11 and A22 as in the following.

The conditional pdf of A11 given A22 follows the complex
Wishart distribution with n−m degrees of freedom [17]

A11|22 =A11 −A12A
−1
22A21

p(A11|A22) =WC(n−m,Σ11|22) (3)

where Σ11|22 = Σ11 − Σ12Σ
−1
22Σ21. Moreover, as the sample

covariance matrix of A22 follows a complex Wishart den-
sity function with n degrees of freedom WC(n,Σ22), the
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conditional probability density of A12 given A22 is a complex
normal function [18]

p(A12|A22) ∼ NC(Σ12Σ
−1
22A22,Σ11|22 ⊗A22) (4)

where ⊗ denotes the Kronecker product of the matrices. Due to
the fact that any linear transformation of a normal vector has a
normal distribution, multiplying (4) with A

−1/2
22 yields

p
(
A12A

−1/2
22 |A22

)
=NC

(
Σ12Σ

−1
22A

1/2
22 ,Σ11|22⊗Im

)
. (5)

Here, Im is the m×m identity matrix. Since A12 = A†
21,

A12A
−1
22A21 can be formulated as A12A

−1/2
22 (A12A

−1/2
22 )

†
.

Then, p(A12A
−1
22A21|A22) follows a complex noncentral

Wishart distribution with m degrees of freedom and noncen-
trality parameter Σ12Σ

−1
22A22Σ

−1
22Σ21. Hereafter, the shorthand

W ∼ WC(b,Φ,Θ) is used to express that W = SS† follows the
noncentral complex Wishart distribution according to the pdf
[19, Def. II]

p(W ) = etr(−Θ)0F̃1(b,ΘΦ−1W )
etr(−Φ−1W )|W |b−c

Γ̃c(b)|Φ|b︸ ︷︷ ︸
WC(b,Υ)

(6)

where the b× c matrix S is N c(Υ,Φ⊗ Ib) with c ≤ b and Θ =
Φ−1ΥΥ† is the matrix of noncentrality parameters. With the
help of this definition, p(A12A

−1
22A21|A22) can be expressed as

p
(
A12A

−1
22A21|A22

)
= WC

(
m,Σ11|22,Σ12Σ

−1
22A22Σ

−1
22Σ21Σ

−1
11|22

)
. (7)

Writing A12A
−1
22A21 = D, one then obtains the density func-

tion of p(A11|22, A22, D|A22) as

p(A11|22, A22, D|A22) = p(A11|22)p(A22)p(D|A22). (8)

Thus, from (2), (3), and (7) follows

p(A11|22, A22,D|A22)

=
nmn|A22|n−m exp

(
−ntrΣ−1

22A22

)
|Σ22|nΓ̃m(n)

×
nm(n−m)|A11|22|n−2m exp

(
−ntrΣ−1

11|22A11|22

)
|Σ11|22|n−mΓ̃m(n−m)

×
exp

(
−ntrΣ−1

11|22D−ntrΣ−1
11|22Σ12Σ

−1
22A22Σ

−1
22Σ21

)
|Σ11|22|mΓ̃m(m)

×0F̃1

⎛⎜⎝m,n2Σ−1
11|22Σ12Σ

−1
22A22Σ

−1
22Σ21Σ

−1
11|22D︸ ︷︷ ︸

M

⎞⎟⎠. (9)

Here, 0F̃1(s,M) is the complex hypergeometric function of
matrix M and closely related to Bessel functions. This function
can be calculated with the help of the positive eigenvalues of
the Hermitian matrix M by [20]

0F̃1(s, t) = (−1)m(m−1)/2
m∏

k=1

(s− k)!

×

∣∣∣t(m−s+i−1)/2
j Is−m+i−1(2

√
tj)

∣∣∣m
i,j=1∏m

i<j(ti − tj)
(10)

where Iα(x) is a hypergeometric Bessel function of the first kind
and tm < tm−1 < · · · < t1 are the positive eigenvalues of the
m×m Hermitian matrix M . Substituting A11 = A11|22 +D

and R2 = A
−1/2
11 A12A

−1
22A21A

−1/2
11 into (9) and applying the

rule of the change of variables [17, Th. 2.1.5]

R2 =A
−1/2
11 DA

−1/2
11

dR2 = |A11|mdD,

p(A11, A22, R
2) can be written as in (11), shown at the bottom

of the page, with P 2 = Σ
−1/2
11 Σ12Σ

−1
22Σ21Σ

−1/2
11 . It is clear

that (11) is valid under the conditions A11, A22 > 0 and 0 <
R2 < Im, which means that A11, A22, R2, and Im −R2 are
the positive definite matrices.1 Integrating R2 over (11) with
the help of [22, eq. A.3.1], the joint distribution of temporal
multichannel SAR images is given by

p(A11, A22) =

∫
0<R2<Im

p(A11, A22, R
2)dR2 (12)

following (13). In single-channel SAR imaging mode, i.e., m =
1, p(A11, A22) may be rewritten in a simpler closed form, as
a bivariate Gamma distribution p(a1, a2) with common shape
parameter n > 0, scale parameters σ1 > 0 and σ2 > 0, and
correlation coefficient ρ2 = (σ2

12/σ1σ2) [23]. By setting m = 1
in (12) and substituting (10) into (12), the bivariate Gamma
distribution (13), shown at the bottom of the next page, is
obtained. Such an expression has already been used to detect the
changes and to register single-channel temporal SAR images,
as stated in [24].

Having introduced, the joint density of polarimetric covari-
ance matrices p(A11, A22) can be plotted in a simple case and
compared to that with Monte Carlo simulations. Fig. 1 shows
the comparison between the theoretical bivariate distribution

1The joint distribution of two real Wishart-distributed samples can be found
in [21]. The joint distribution of two complex Wishart-distributed samples with
the condition of Σ11 = Σ22 is presented in [20]. However, the joint distribution
function of the second-order statistics of two PolSAR images is not clearly
defined since, generally, Σ11 �= Σ22.

p(A11, A22, R
2) =

etr
(
−nΣ−1

11|22A11

)
etr

(
−nΣ−1

22|11A22

)
0F̃1

(
m,n2A

1/2
11 Σ−1

11|22Σ12Σ
−1
22A22Σ

−1
22Σ21Σ

−1
11|22A

1/2
11 R2

)
|Σ22|nΓ̃m(n)Γ̃m(n−m)|Σ11|n|Im − P 2|nΓ̃m(m)|I −R2|q−n|A11|m−nn−2mn|A22|m−n

(11)
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Fig. 1. Comparison between the theoretical bivariate distribution (12) with the
simplest SAR imaging mode (m = 1) and the 2-D bivariate histogram from
simulated data in the case of n = 9. For simulation, the amplitudes and their
correlation are given by σ1 = σ2 = 1 and ρ = 0.1, respectively. When n →
∞, a1 = σ1 = 1, and a2 = σ2 = 1.

derived in (12) and a simulated 2-D bivariate histogram. The
Kolmogorov–Smirnov test, established as well [25], indicates
an excellent fit between p(a1, a2) and the simulated data,
with a p value of 0.92. This fit may also be observed by a
visual comparison of the pdfs shown in Fig. 1. Additionally,
histograms obtained using a 3 × 3 estimation window over
different agricultural fields in real images (Experimental-SAR
(E-SAR) L-band) are compared with the theoretical density
function (12) where the number of samples of eight has been
found to provide the best fit to reconstructed histograms.

III. NEW COHERENT SIMILARITY MEASURE

BY MEANS OF MI

In probability and information theory, the MI is a commu-
tative measure of the difference between the joint probability
distribution pX,Y (x, y) and the marginal probability distribu-
tions pX(x) and pY (y) of the random variables X and Y ,
respectively. The MI between X and Y is given by

DMI(X;Y ) =

∫
Y

∫
X

log

(
pX,Y (x, y)

pY (y)pX(x)

)
pX,Y (x, y) dx dy

=H(X)−H(X|Y )

=H(Y )−H(Y |X) (14)

where H(X|Y ) and H(Y |X) are the conditional entropies and
H(X) and H(Y ) are the marginal entropies of the random vari-

ables X and Y [26]. The MI quantifies the dependence between
the random variables X and Y . Since entropies are regarded
as a measure of uncertainty, DMI(X;Y ) simply measures how
much knowing one of these variables reduces the uncertainty
about the other.

Clearly, H(X) ≥ H(X|Y ), and H(Y ) ≥ H(Y |X): Hence,
DMI(X;Y ) ≥ 0. Additionally, the MI is a symmetric distance
measurement: DMI(X;Y ) = DMI(Y ;X). From (14), it fol-
lows that DMI(X;Y ) can be written as an expected value

DMI(X;Y ) = E

{
log

pX,Y (x, y)

pY (y)pX(x)

}

which takes its minimum in the case of pX,Y (x, y) = pY (y)×
pX(x) and its higher values if the joint density is sparse
with localized peaks, implying that the two vectors are highly
correlated and knowledge of one of them reduces the entropy
with respect to the other.

The MI can be extended to the case where several parameters
of the random variables X and Y are known. Moreover, it
can also be implemented in the case of sequences of random
vector variables, i.e., multichannel SAR acquisition vectors. In
this case, the MI between two temporal acquisition random
vectors is an appropriate tool to describe the temporal and
spatial variations of the acquired signals characterized by their
own local pdf.

Using the MI (14) as a measure of coherent similarity
requires knowledge of the joint distribution function of the
second-order statistics of temporal target vectors. Then, taking
the derived joint density function, a new coherent similarity
measurement may be formulated as

Dn
MI(A11;A22) =

∫
log

(
p(A11, A22)

p(A11)p(A22)

)
p(A11, A22)d

−→
A

(15)

where A is the vector including 2m2 elements obtained by
stacking the columns of A11 and A22 consecutively. Here, n
indicates the number of samples used in the estimation of the
covariance matrices.

The analytical derivation of the MI can then be followed as
in (16), shown at the bottom of the next page, by substituting
the joint density (12) and the marginal densities (2) into
(15) and using the equalities Σ11|22 = Σ11(Im − P 2),

Σ22|11 = Σ22(Im − P 2), and C = n2A
1/2
11 Σ−1

11|22Σ12Σ
−1
22

A22Σ
−1
22Σ21Σ

−1
11|22A

1/2
11 . Since the expectation of the sample

covariance matrix Aii equals its true covariance matrix Σii, i.e.,

p(A11, A22) =
etr

(
−n

Σ−1
22 A22+Σ−1

11 A11

I−P 2

)
|A11A22|n−m

0F̃1

(
n, n2A

1/2
11 Σ−1

11|22Σ12Σ
−1
22A22Σ

−1
22Σ21Σ

−1
11|22A

1/2
11

)
n−2mn|Σ11Σ22|n|I − P 2|nΓ̃m(n)2

p(a1, a2) =
nn+1a

n−1
2

1 a
n−1
2

2 ρ
1−n
2

Γ(n)σ
n+1
2

1 σ
n+1
2

2 (1− ρ)
In−1

(
2n

√
ρ

1− ρ

√
a1a2
σ1σ2

)
exp

(
−n

a1

σ1
+ a2

σ2

1− ρ

)
(13)
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Fig. 2. (a) MI between temporal single-channel (m = 1) SAR images simulated with the parameters of σ1 = 1, σ2 = 1.5, and ρ = 0.65 for different levels
of n. (b) MI between temporal single-channel SAR images as a function of different levels of normalized correlation coefficients with different levels of n.
(c) Simulated MI pdfs for different numbers of channels and levels of correlation with n = 9.

E{Aii} = Σii, with i = 1, 2, the following decision statistics
can be obtained:

Dn
MI(A11;A22) = −tr

(
2nP 2

Im − P 2

)
− n log

(
|Im − P 2|

)
+E

{
log

(
0F̃1(n,C)

)}
. (17)

E{log(0F̃1(n,C))} can easily be obtained from (10) by
spatial averaging. At this point, it can be seen from (17)
that the decision statistic Dn

MI(A11;A22) is a function of the
true correlation matrix P 2, which means that the estimated
correlation matrix R2 and Dn

MI(A11;A22) quantify the
coherent similarity between temporal acquisitions by partly
sharing the same original information. As expected, after
substituting m = 1 and (10) into (17), (17) converges to the MI
of the bivariate Gamma distribution [24].

A. Estimation Performance

This section evaluates the MI estimation based on differ-
ent numbers of samples and levels of correlation based on
simulations. The number of Monte Carlo runs is 1000 for all
figures presented in this section. The first simulation [Fig. 2(a)]
shows the unbiased estimate of the MI related to the number
of estimation samples n. From this figure, it can be concluded
that the MI is asymptotically unbiased for a large number of
samples. The second simulation [Fig. 2(b)], plotting the MI
versus the correlation, shows the interest of the MI for low
correlated temporal polarimetric pairs, which have much less
variance than the correlated pairs, particularly for less number
of samples. These simulation results, which are in line with
[27], show that reliable estimation of the MI can be obtained
for values of n larger than 5 × 5. Fig. 2(c) shows a comparison
of the simulated MI pdfs for different numbers of channels.

Dn
MI(A11;A22) =

∫
A11,A22≥0

log

⎛⎝etr
(
−n

(
Σ−1

11|22A11 +Σ−1
22|11A22 − Σ−1

11A11 − Σ−1
22A22

))
|Im − P 2|n 0F̃1(n,C)

⎞⎠ p(A11, A22)d
−→
A

=

∫
log

(
etr

(
−n

(
Σ−1

11A11P
2

Im − P 2
+

Σ−1
22A22P

2

Im − P 2

)))
p(A11, A22)d

−→
A

+

∫
log

(
0F̃1(n,C)

)
p(A11, A22)d

−→
A −

∫
log

(
|Im − P 2|n

)
p(A11, A22)d

−→
A

= − tr

(
E{A11}n

Σ−1
11 P

2

Im − P 2

)
− tr

(
E{A22}n

Σ−1
22 P

2

Im − P 2

)
+ E

{
log

(
0F̃1(n,C)

)}
− n log

(
|Im − P 2|

)
(16)
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Fig. 3. PolSAR image color composition (red—HV, green–HH, blue–VV) of
AgriSAR scenes captured (a) on April 19 and (b) on August 2. The black area
shows the location of a maize field which is used in Section IV-C for ROC
analysis. MI between April and August (c) PolInSAR and (d) InSAR images
with HH-polarized channels. (e) MLRT of the PolInSAR image calculated
based on (20). The results range from dark to bright (no change) depending on
the amount of change. The MI values vary between 0 and 34 for the PolInSAR
data set and between 0 and 28 for the InSAR data set, whereas the MLRT
(− logQ) values vary between 0 and 7.

As expected, by increasing the correlation and the number of
channels, the mean of the MI increases. A higher generalized
variance ratio |Σ11|/|Σ22| shifts the pdfs to the right and,
in parallel, reduces the MI variance (i.e., more deterministic
scatterers).

IV. EXPERIMENTAL RESULTS

The proposed coherent similarity measure (17) is applied
to fully polarimetric images acquired by the airborne E-SAR
system of the German Aerospace Center (DLR) in the frame
of the AgriSAR project [28]. PolInSAR data sets with 30- and
0-m spatial baseline configurations were collected over the
Görmin test site, located in northern Germany, during a whole
vegetation growth period, between two acquisition dates on
April 19 [Fig. 3(a)] and August 2 [Fig. 3(b)]. The sequence
of acquisitions used in this work is listed in Table I. The last
data set is used to investigate the influence of volumetric effect

TABLE I
E-SAR L-BAND ACQUISITIONS OVER THE GÖRMIN

AGRICULTURAL TEST SITE. RANGE PIXEL SPACING ∼1.5 m.
AZIMUTH PIXEL SPACING ∼3 m

on the coherent similarity, whereas the other ones are used to
monitor temporal stability.

Experimental results with real data include three parts. In the
first part, the proposed coherent similarity measure is applied
into the entire test site using PolInSAR and InSAR data sets as
reported in Fig. 3(c) and (d), respectively. In the second part,
the significance of the features of the new coherent similarity
parameter is highlighted using histograms over selected areas
involved. This part evaluates the proposed measure through
different combinations of polarimetric channels over three dif-
ferent agricultural fields. In the third part, the performance of
the proposed measure for temporal scene characterization is
evaluated by comparison with the well-known change detector
called the MLRT.

A. Global Analysis of the MI

Section III-A and the experimental results using real and sim-
ulated data indicate that the estimation accuracy of polarimetric
covariance matrices increases with the number of estimation
samples. However, as discussed in the literature, the use of
larger window sizes with fixed shapes may give unsatisfactory
results, since the stationary/homogeneous assumption is often
no longer valid and the accuracy of final estimates can decrease.
Because of this, different covariance matrix estimation methods
can be considered [29], [30]. Here, a region growing technique
explained in [30] has been used instead of a fixed window size.
In this method, only six intensity values from PolInSAR data
are used to decide on the number of samples for maximum-
likelihood covariance estimation. After an initial three-sample
complex multilooking, the adaptive growing technique has been
applied in order to supply homogeneity conditions for the
estimation of the sample covariance matrices A11 and A22.
Then, the unknown asymptotic parameters Σ11, Σ22, and P 2,
which parameterize the pdf p(A11, A22), can be estimated by
maximum-likelihood rule as explained in the Appendix. In
practice, the estimation of nonrandom variables may be relaxed:
The random variables A11 and A22 are estimated by an initial
nine-sample multilooking; then, the expectation variables can
be calculated from the covariance matrices obtained by the
method [30]. Here, it is worth noting that the estimated matrices
by the practical technique are essentially the same as the
matrices obtained directly employing the maximum-likelihood
rule explained in the Appendix. Even though the maximum-
likelihood estimation (MLE) of nonrandom parameters is given
in the Appendix, the way to estimate the nonrandom variables
is let to the reader.
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Fig. 4. Examples of agricultural fields illustrating the study areas by RGB polarimetric color composition (red—VV, green—HV, blue—HH) and the histograms
of the intensity ratio and the coherence images with HH and HV polarizations. (a) Area 1. (b) Area 2. (c) Area 3. (d) Histogram of the intensity ratio. (e) Histogram
of coherences.

The proposed coherent similarity measure is applied to
PolInSAR and InSAR (with HH-polarization channels) images
having 135-day temporal resolution to scale temporal change
scenario, and they are shown in Fig. 3(c) and (d), respectively.
The results range from dark to bright (no change) depending on
the amount of temporal scene change. From these figures, one
may easily observe that PolInSAR data supply a more detailed
geometrical structure than the one with the InSAR image, and
both measures have large values for residential areas, showing
no significant difference between the fully polarimetric and
single-channel images. The two most apparent differences be-
tween the results are that the full PolInSAR coherent similarity
measure appears darker at identifying the large change in the
fields having a volumetric decorrelation while the InSAR data
set appears relatively lighter at identifying the small change and
that the field of periodic surfaces (sometimes Bragg scattering
over periodic surfaces) shows more delimited structures having
high MI via the PolInSAR image than via the InSAR image.
The first difference is easily explained by low degrees of
correlation over some agricultural fields (e.g., forest) due to the
high levels of volume decorrelation in PolInSAR acquisition.
Since the physical parameters like roughness and geometric
features can be extracted better with coherent techniques, the
second difference appears.

B. Analysis of the MI Through Selected Agricultural Fields

In order to focus on the role of the MI in change detec-
tion applications, three fields with different crop types, which
are shown in Fig. 4(a)–(c) by polarimetric red–green–blue
(RGB) color composition, have been selected based on their
differences in harvest/sowing time, crop volume, and structure.
Fig. 4(d) and (e) shows the histograms of the intensity ratio
and the coherence of these selected areas from data set I. The
intensity ratio, known as the generalized variance ratio in terms
of statistics, has been demonstrated the ability to distinguish

different crops by identifying changes in the mean backscatter
power [31]. The coherence has also been used in change
detection applications such as urban monitoring and the effect
of floods [32], [33]. As seen from these histograms, there are
many types of temporal scene change, and each type can have a
different effect on change detection analysis. Defining the type
of change to be detected is as important as choosing the change
detector. Considering these, the primary interest, through the
three selected agricultural fields, is to figure out the behavior
of MI as a temporal scene change detector, which allows the
input of single and fully polarimetric images and multiple
polarizations in different representations. The MI is applied
using single polarizations (HH, HV, and VV) and combinations
of two polarizations VV–HV known as partial PolInSAR data
and fully polarimetric data. For single-polarized images, the MI
makes use of the bivariate Gamma distribution (13). However,
for PolInSAR and partial PolInSAR images, the MI uses the
derived pdf (12).

The temporal evolution of the data set for each multidimen-
sional channel combination is obtained with respect to the new
coherent similarity measure, as expounded in Section III. Fig. 5
shows the histograms of Dn

MI(A11;A22) extracted from differ-
ent channel configurations over the selected three agricultural
fields. Several effects can be observed. First, not surprisingly,
the observed MI values depend on the used polarization com-
binations. Second, Dn

MI(A11;A22) increases with high coher-
ence. A difference in the range of the MI values depending on
the crop type of polarimetric scattering mechanism is seen. The
presence of correlations between temporal HH and temporal VV
channels over area 2 affects the histogram of Dn

MI of area 2
which is easily distinguished from those of area 1 and area 3.
Although the mean values of the MI for area 2 in Fig. 5(a) with
m = 2 and in Fig. 5(c) with m = 3 are very close, the variance
decrease by increasing number of channels is seen. This result
is confirmed in Fig. 2(c), which shows the decrease of the MI
variance with increasing number of channels.
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Fig. 5. Reconstructed probability distribution (histogram) of the decision statistic Dn
MI(A11;A22) associated to the selected areas in Fig. 4 through different

channel configurations, i.e., (a) partial PolInSAR with HH–VV channels, (b) partial PolInSAR with HH–HV channels, and (c) PolInSAR. It can be stated that there
is no any partial PolSAR imaging mode including HH–VV-polarized channels. This combination is shown here to highlight that the change detector varies based
on the scattering mechanism (polarimetric properties) of the scene.

Fig. 6. Three-dimensional scatterplots showing an association of decision statistic Dn
MI(a1; a2) between HH, HV, and VV temporal InSAR images through the

three selected areas in Fig. 4. The color bar of each plot is scaled based on Dn
MI(a1; a2) obtained by InSAR mode with HV polarization. (a) Area 1. (b) Area 2.

(c) Area 3.

The 3-D scatterplots in Fig. 6 allow one to see the association
of Dn

MI(a1; a2) values between InSAR images with HH, VV,
and HV polarizations which are separately plotted on each
axis. Considering all three selected areas, Dn

MI obtained from
temporal InSAR with HV polarization is lower than those of
HH and VV polarizations. Dn

MI(a1; a2) through area 1 and

area 3 shows a small coincidence in their spatial extent and
location. However, Dn

MI(a1; a2) through area 2 spreads over a
wide range of 3-D space, and Dn

MI is greater in area 2 than in
area 1 and area 3 for all polarizations. The comparison of the
plots in Fig. 6 makes it clear that, in the cases of area 3 and
area 1, polarimetry does not have a strong influence on the
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Fig. 7. Temporal photographs of the maize field which were taken simultaneously with PolSAR acquisitions in Table I. (a) April 16, 2006. (b) May 24, 2006.
(c) June 21, 2006. (d) July 26, 2006.

temporal variation analysis. However, for the case of area 2,
the different combinations of polarimetric channels result in
different ranges of the MI values.

This set of plots illustrates a number of important issues. First
and of great significance, even though the new coherent similar-
ity measure is a simple function of the cross-correlation param-
eter, known as coherence, it does not take only cross-correlation
parameters into account. It is the MI between two complex
covariance matrices following the Wishart distribution whose
random variables are their diagonal terms (mean backscatterer
powers) and the real and imaginary parts of the upper off-
diagonal terms (cross-correlation parameters). Second, it can be
applied to any type of data such as polarimetric, interferomet-
ric, multifrequency, or any combination of these. As expected
from multidimensional analysis, MI decreases with decreasing
dimensionality if the whole channels have the same temporal
characteristics. More precisely, the MI between two temporal
images should be smaller if one only considers InSAR data
instead of PolInSAR data if there is no difference between
temporal behaviors of polarimetric channels. Third, the MI
variation through selected areas might be simply explained by
the coherence and the intensity ratio maps from a statistical
point of view. However, in the presence of detailed information
about vegetation geometry (e.g., orientation and dimension of
branches) and soil roughness, this issue can also be clarified
from a physical point of view.

C. Gain of the Change Detection Application

In terms of testing dependence of two sets of variables,
any algorithm, as the one just proposed, depends only on the
matrices of the canonical correlation R2 and the variance ratio
A11A

−1
22 , which are, in the remote sensing field, known as the

interferometric coherence matrix and the mean power ratio,
respectively. For example, as detailed in [17, Ch. 8], the well-
known likelihood ratio test about investigating the equality of
temporal polarimetric covariance matrices is

Δ =

(
|A|

|A11||A22|

)n

. (18)

Writing the equality of |A| = |A11|22‖A22|11‖Im −R2| and
R2 = A−1

11A12A
−1
22A21 into (18) implies that

Δ =
∣∣Im −A−1

11A12A
−1
22A21

∣∣n
=

m∏
i=1

(
1− r2i

)n
(19)

where m is the dimension of the acquisition at time ti and
0≤r21 < r22 < · · ·< r2m < 1 are the nonzero eigenvalues of R2.

Additionally, the polarimetric change detector of the MLRT as
a function of A11A

−1
22 is [8], [9]

Q =
|A11|n|A22|n
|A11 +A22|2n

=
|A11A

−1
22 |n∣∣Im +A11A

−1
22

∣∣2n . (20)

Thus, the final goal of this study is to highlight the advan-
tage of using the MI compared to (20)—which is shown in
Fig. 3(e)—as a change detector. To evaluate the performance
of the proposed detector derived in (17) and (20), the metric
of detection algorithm performance called receiver operating
characteristic (ROC) curves can be used. ROC curves are the
curves of probability of detection (PD) versus probability of
false alarm (PFA) and describe the detection performance by
expressing the tradeoff between PD and PFA. For practically
analyzing the changed (PD) and unchanged (PFA) hypotheses,
the relatively flat maize agricultural field indicated by the black
line in Fig. 3(a) is chosen. For formulating the unchanged scene
hypothesis (PFA) related to the bare field, the acquisition vector
�k = [�k1 �k2] is formed by PolSAR images acquired on May 11
and 16. For the changed hypothesis related to the presence of
vegetation, the PolInSAR data sets III, IV, and V in Table I were
used. Observing the photographs of the maize field in Fig. 7,
which were simultaneously taken with PolSAR acquisitions, it
can be noticed that the maize field was sown in the beginning
of May and starts to grow in the end of July. It is interesting to
underline the fact that there is no significant mean power change
for this field until the end of July. However, there is a significant
change in temporal scattering mechanisms. Fig. 8 shows the
ROC plots of (17) and (20) obtained by applying appropriate
thresholds. It is clear that (17) has a significantly better de-
tection performance for short temporal analysis, allowing the
scene temporal changes to be more readily discerned. However,
on the time of harvesting, the MLRT change detector has also
a very good detection performance because the fully developed
maize field has produced significant changes in the pixel inten-
sities. The ROC curve example can be increased by choosing
other agricultural fields. In that case, it can be seen that the PFA
is low also for the MLRT technique where the type of change is
easily detected by computing the mean value. However, when
a more complex type of change occurs, the proposed measure
has a lower PFA than the one by the MLRT. This could be
because, compared to the MLRT, the MI takes also into account
the interferometric information, making the proposed technique
also attractive for defining man-made scene disturbances.

V. DISCUSSIONS AND CONCLUSION

In this paper, a new coherent similarity measure based on
the second-order statistics of the acquisition vector has been
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Fig. 8. ROC curves of (17) and (20) by means of change detection. It can be noted that, since the ROC curves are a function of the thresholds, to make a fair
comparison, the threshold values are chosen by the same rule. The thresholds applied in each case range to achieve a fixed number of false alarms in unchanged
samples. (a) May 24, 2006. (b) June 21, 2006. (c) July 26, 2006.

proposed for temporal multichannel SAR images, particularly
for a PolInSAR image. This new parameter makes use of the
MI between Wishart processes over time. For InSAR images,
the proposed parameter agrees with the one provided in [24],
and it is the MI of the bivariate Gamma distribution. Although,
in this paper, the MI has analytically been derived for PolIn-
SAR images, since the mathematical formulation is general,
it can be implemented into some kind of multivariate remote
sensing image such as multispectral optical and interferometric
images. Moreover, a new simple joint distribution function
of two polarimetric covariance matrices, so-called complex
Wishart matrices, has been derived based on temporal SAR
acquisition vector history. As corollaries to this new result,
explicit expressions for the statistics of the joint distribution
of temporal Wishart processes can be interesting for future
temporal applications as well. Capitalizing on the foregoing
distribution, it becomes possible the removal of the bias in
temporal multichannel parameters.

The aim of this work is to provide a unique scalar parameter
that allows one to represent and scale the coherent similarity
occurring between the acquisitions at time 1 and time 2 and
to utilize this scalar parameter as a tool for change detection
application. Since change detection application—hence the im-
plementation of the proposed metric—is application dependent,
it is avoided to give a specific example of application such as
identifying areas inundated by flood, discriminating crop types,
and urban and glacier monitoring. Although defining assump-
tions and constraints for an application is left to the readers, the
new coherent similarity measure has been implemented to fully
polarimetric data to characterize temporal scene change. The
analysis carried out with real data provided interesting results
for each different polarimetric channel combination and con-
firmed the capabilities of the proposed technique for temporal
information characterization. The implementation of the pro-
posed detector into different polarimetric channel combinations
allows studying the spatial and temporal behavior of the data
through different polarizations. This analysis showed that the
development of an optimal approach for the exploitation of the
temporal change may be application dependent. To put in a nut-
shell, only single-channel acquisition with any polarization is
enough to characterize temporal behavior, while it is necessary
to work on polarimetric data to characterize temporal behavior
at other times.

The proposed detector has also been compared to the well-
known and powerful change detector known as the MLRT

and has been shown to have a more detailed change detection
analysis than this classical algorithm based on real data. As a
concrete example, if the aim is to detect military tracks in a
forest, the MLRT has a very small false-alarm rate based on
a big change in mean backscatter power. However, to detect
a much more complicated temporal scene scenario, the pro-
posed measure can better characterize the temporal change. The
strength of MI is in its ability to find similarity between not only
temporal polarimetric information—as the MLRT does—but
also interferometric information.

Further research is needed to figure out the influence of
implementation issues, such as multiscale optimization, the
number of samples, and cumulant-based methods. Furthermore,
the robustness of the method with respect to speckle has to be
investigated.

APPENDIX

MLE

Let X = (X1, X2, . . . , Xq) denote q independent vectors
representing q observations Xi = vec(Ai

11, A
i
22) following

the distribution of p(A11, A22), and it is interesting to es-
timate an unknown nonrandom parameter θ including Σ11,
Σ22, and P 2 which parameterize the pdf p(A11, A22). Then,
pθ(X

1, X2, . . . , Xq) is a function of θ alone, and the value of θ
that maximizes the aforementioned pdf (pθ(X1, X2, . . . , Xq))
is the most likely values for vector θ. Under the assumption
that X includes independent and identically distributed random
variables, the maximum log-likelihood function can be written
using pθ(X

1, X2, . . . , Xq) with the help of (12) as

L(X; θ)

=

q∑
i=1

log pθ(X
i)

=

q∑
i=1

(
log

[
etr

(
−n

Σ−1
22A

i
22 +Σ−1

11A
i
11

I − P 2

)]

+ log

[
n2mn

∣∣Ai
11A

i
22

∣∣n−m

|Σ11Σ22|n|I − P 2|n22Γ̃m(n)Γ̃m(n)

]
+ log

[
0F̃1

(
n, n2Ai

11
1/2

Σ−1
11|22Σ12Σ

−1
22A

i
22

×Σ−1
22Σ21Σ

−1
11|22A

i
11

1/2
)])

. (21)
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Substituting Σ11|22=Σ11(Im−P 2), P 2 = Σ−1
11Σ12Σ

−1
22Σ21,

and the means

A11 =
1

q

q∑
i=1

Ai
11 A22 =

1

q

q∑
i=1

Ai
22

into (21) and eliminating the constants give the following log-
likelihood function:

L(X; θ)=

q∑
i=1

log 0F̃1

⎛⎜⎜⎜⎝n, n2P
2Σ−1

11A
i
11Σ

−1
22A

i
22

(I−P 2)(I−P 2)︸ ︷︷ ︸
M

⎞⎟⎟⎟⎠
−nq

(
Σ−1

22A22

I−P 2
+
Σ−1

11A11

I−P 2
+log

(
|Σ11Σ22||I−P 2|

))
.

(22)

Differentiating with respect to the parameter vector θ yields

dL(X; θ)

dΣ11

=nq
Σ−1

11A11Σ
−1
11

Im−P 2
−nqΣ−1

11

− n2Σ−1
11 P

2

(Im−P 2)2

(
q∑

i=1

Σ−1
22A

i
22Σ

−1
11A

i
11

0F̃1(n+1,M)

0F̃1(n,M)

)

=nq
A11

Im−P 2
−nqΣ11

− n2Σ11P
2

(Im−P 2)2

(
q∑

i=1

Σ−1
22A

i
22Σ

−1
11A

i
11

0F̃1(n+1,M)

0F̃1(n,M)

)
=0

dL(X; θ)

dΣ22

=nq
Σ−1

22A22Σ
−1
22

Im−P 2
−nqΣ−1

22

− n2Σ−1
22 P

2

(Im−P 2)2

(
q∑

i=1

Σ−1
22A

i
22Σ

−1
11A

i
11

0F̃1(n+1,M)

0F̃1(n,M)

)

=nq
A22

Im−P 2
−nqΣ22

− n2Σ22P
2

(Im−P 2)2

(
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22A

i
22Σ

−1
11A

i
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0F̃1(n+1,M)
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)
=0

dL(X; θ)

dP 2

=nq
Σ−1

11A11

(I−P 2)2
+nq

Σ−1
22A22

(I−P 2)2
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To perform the derivations in (23), the following rules of the
differentials of matrices were used [34]:

d

dt
|A| = |A|A−1

d

dt
[A−1] = −A−1

(
d

dt
[A]

)
A−1

d(A+B) = dA+ dB the rule of linearity
d

dx
(pFq(a1, . . . , ap; c1, . . . , cq;x))

=

p∏
k=1

ak

q∏
j=1

cj

pFq(a1 + 1, . . . , ap + 1; c1 + 1, . . . , cq + 1;x).

Solving the equation of dL(X; θ)/Σ11 for Σ11 in terms of
Σ22, substituting this expression for Σ11 into the equation of
dL(X; θ)/Σ22, and simplifying the given expression give the
desired MLE of Σ11 and Σ22 as

Σ̂11 = A11︸ ︷︷ ︸
MLE

A11 =
1

q

q∑
i=1

Ai
11

Σ̂22 = A22︸ ︷︷ ︸
MLE

A22 =
1

q

q∑
i=1

Ai
22. (24)

Substituting the MLE of Σ11 and Σ22 into dL(X; θ)/dP 2,
the MLE function of the P 2 matrix corresponding to temporal
correlation is obtained

P̂ 2=Im−P 2−n

q

(
q∑

i=1

A
−1
22A

i
22A

−1
11A

i
11

0F̃1(n+1,M)

0F̃1(n,M)

)
︸ ︷︷ ︸

MLE

(25)

where

M =
n2P 2A

−1
11A

i
11A

−1
22A

i
22

(Im − P 2)(Im − P 2)
.

The root matrix of (25) is the MLE of P 2 with the con-
dition of 0 < P 2 < Im. The desired MLE of P 2 can be cal-
culated by the iterative method Newton fractal which is a
boundary set in the complex plane that is characterized by the
Newton–Raphson method applied to a fixed polynomial p(P ) ∈
C[P ]. Newton’s fractal method can often converge remarkably
quickly, particularly if the iteration begins “sufficiently near”
the desired root. In this case, it is efficient to start to iteration
with R2 = A

−1/2
11 A12A

−1
22A21A

−1/2
11 calculated from 2m× 2m

sample matrix A.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for the constructive discussions and suggestions to improve the
quality of this paper.



2850 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 7, JULY 2012

REFERENCES

[1] R. Dianat and S. Kasaei, “Change detection in optical remote sensing
images using difference-based methods and spatial information,” IEEE
Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 215–219, Jan. 2010.

[2] F. Bovolo, L. Bruzzone, and M. Marconcini, “A novel approach to un-
supervised change detection based on a semi-supervised SVM and a
similarity measure,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 7,
pp. 2070–2082, Jun. 2008.

[3] G. Margarit, J. J. Mallorquí, and L. Pipia, “Polarimetric characterization
and temporal stability analysis of urban target scattering,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 4, pp. 2038–2048, Apr. 2010.

[4] D. Kim, W. M. Moon, and Y. S. Kim, “Application of TerraSAR-X data
for emergent oil-spill monitoring,” IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 2, pp. 852–863, Feb. 2010.

[5] L. Ferro-Famil, A. Reigber, E. Pottier, and W. M. Börner, “Scene charac-
terization using subaperture polarimetric SAR data,” IEEE Trans. Geosci.
Remote Sens., vol. 41, no. 10, pp. 2264–2276, Oct. 2003.

[6] E. Erten, A. Reigber, and O. Hellwich, “Generation of three-dimensional
deformation maps from InSAR data using spectral diversity techniques,”
ISPRS J. Photogramm. Remote Sens., vol. 65, no. 4, pp. 388–394, Jul. 2010.

[7] P. R. Kersten, J. S. Lee, and T. L. Ainsworth, “A comparison of change
detection statistics in POLSAR images,” in Proc. IGARSS, Seoul, Korea,
2005, vol. 7, pp. 4836–4839.

[8] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, “A test statistic in
the complex Wishart distribution and its application to change detection
in polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 41,
no. 1, pp. 4–19, Feb. 2003.

[9] L. Novak, “Change detection for multi-polarization, multi-pass SAR,” in
Proc. SPIE Conf. Algorithms Synthetic Aperture Radar Imagery, 2005,
pp. 26–30.

[10] J. Morio, P. Réfrégier, F. Goudail, P. C. Dubois-Fernandez, and X. Dupuis,
“Information theory-based approach for contrast analysis in polarimetric
and/or interferometric SAR images,” IEEE Trans. Geosci. Remote Sens.,
vol. 46, no. 8, pp. 2185–2196, Jul. 2008.

[11] J. Inglada, G. Mercier, and T. Cnes, “A new statistical similarity measure
for change detection in multitemporal SAR images and its extension to
multiscale change analysis,” IEEE Trans. Geosci. Remote Sens., vol. 45,
pt. 2, no. 5, pp. 1432–1445, Apr. 2007.

[12] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187–198, Apr. 1997.

[13] P. Reinartz, R. Muller, P. Schwind, S. Suri, and R. Bamler, “Orthorectifi-
cation of VHR optical satellite data exploiting the geometric accuracy of
TerraSAR-X data,” ISPRS J. Photogramm. Remote Sens., vol. 66, no. 1,
pp. 124–132, Jan. 2011.

[14] S. Suri and P. Reinartz, “Mutual-information-based registration of
TerraSAR-X and Ikonos imagery in urban areas,” IEEE Trans. Geosci.
Remote Sens., vol. 48, no. 2, pp. 939–949, Feb. 2010.

[15] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: A systematic survey,” IEEE Trans. Image Process.,
vol. 14, no. 3, pp. 294–307, Feb. 2005.

[16] J. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to Appli-
cations. Boca Raton, FL: CRC Press, 2009.

[17] R. J. Muirhead, Aspects of Multivariate Statistic Theory. Hoboken, NJ:
Wiley, 1982.

[18] L. Ferro-Famil, E. Pottier, and J. S. Lee, “Unsupervised classifica-
tion of multifrequency and fullypolarimetric SAR images based on
the H/A/Alpha-Wishart classifier,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 11, pp. 2332–2342, Nov. 2001.

[19] M. McKay and I. Collings, “Statistical properties of complex noncentral
Wishart matrices and MIMO capacity,” in Proc. ISIT , 2005, pp. 785–789.

[20] P. J. Smith and L. M. Garth, “Distribution and characteristic functions
for correlated complex Wishart matrices,” J. Multivariate Anal., vol. 98,
no. 4, pp. 661–677, Apr. 2007.

[21] G. Iliopoulos, “UMVU estimation of the ratio of powers of normal gener-
alized variances under correlation,” J. Multivariate Anal., vol. 99, no. 6,
pp. 1051–1069, Jul. 2008.

[22] E. Erten, “Information theory of multi-temporal SAR systems with ap-
plication to motion detection and change detection,” Ph.D. dissertation,
DLR, Wessling, Germany, 2010, DLR-FB 2010-38.

[23] H. Holm and M. Alouini, “Sum and difference of two squared correlated
Nakagami variates in connection with the McKay distribution,” IEEE
Trans. Commun., vol. 52, no. 8, pp. 1367–1376, Jul. 2004.

[24] F. Chatelain, J. Y. Tourneret, J. Inglada, and A. Ferrari, “Bivariate gamma
distributions for image registration and change detection,” IEEE Trans.
Image Process., vol. 16, no. 7, pp. 1796–1806, Jul. 2007.

[25] Mathematica 8 homepage. [Online]. Available: http://reference.wolfram.
com/mathematica/ref/KolmogorovSmirnovTest.html

[26] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
4th ed. Singapore: McGraw-Hill, 2002.

[27] R. Moddemeijer, “A statistic to estimate the variance of the histogram-
based mutual information estimator based on dependent pairs of observa-
tions,” Signal Process., vol. 75, no. 1, pp. 51–63, Jan. 1999.

[28] I. Hajnsek, T. Jagdhuber, H. Schon, and K. P. Papathanassiou, “Potential
of estimating soil moisture under vegetation cover by means of PolSAR,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 442–454, Feb. 2009.

[29] J. S. Lee, S. R. Cloude, K. P. Papathanassiou, M. R. Grunes, and
I. H. Woodhouse, “Speckle filtering and coherence estimation of po-
larimetric SAR interferometry data for forest applications,” IEEE Trans.
Geosci. Remote Sens., vol. 41, no. 10, pp. 2254–2263, Oct. 2003.

[30] G. Vasile, E. Trouvé, J. Lee, and V. Buzuloiu, “Intensity-driven adaptive-
neighborhood technique for polarimetric and interferometric SAR pa-
rameters estimation,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6,
pp. 1609–1621, Jun. 2006.

[31] E. J. M. Rignot and J. J. Van Zyl, “Change detection techniques for ERS-1
SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 896–
906, Aug. 1993.

[32] D. Corr, “Coherent change detection for urban development monitoring,”
in Proc. IEE Colloq. Radar Interferometry, 2002, pp. 6/1–6/6.

[33] D. Geudtner, R. Winter, and P. W. Vachon, “Flood monitoring using
ERS-1 SAR interferometry coherence maps,” in Proc. IGARSS—Remote
Sensing for a Sustainable Future, 2002, vol. 2, pp. 966–968.

[34] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products. New York: Academic, 2007.

Esra Erten received the B.S. degree in geodesy and
photogrammetry engineering and the M.S.E.E. de-
gree in satellite communication and remote sensing
from Istanbul Technical University, Istanbul, Turkey,
in 2003 and 2005, respectively, and the Ph.D. degree
from the Technische Universität Berlin, Berlin, Ger-
many, in 2010.

From April 2008 to June 2010, she was with the
High-Frequency Institute, German Aerospace Center
(DLR), Wessling, Germany, where she worked on
information theory for multichannel synthetic aper-

ture radar (SAR) images. Since 2011, she has been with the Chair of Earth
Observation and Remote Sensing, Institute of Environmental Engineering,
Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland. Her
research interests include information extraction and image understanding from
SAR and optical images, particularly information theory, multivariate statistics,
polarimetry, interferometry, and hyperspectral imaging.

Andreas Reigber (M’02–SM’10) was born in
München, Germany, in 1970. He received the
Diploma degree in physics from the University of
Konstanz, Konstanz, Germany, in 1997, the Ph.D.
degree from the University of Stuttgart, Stuttgart,
Germany, in 2001, and the Habilitation from the
Technische Universität Berlin (TUB), Berlin, Ger-
many, in 2008.

From 1996 to 2000, he was with the Microwaves
and Radar Institute, German Aerospace Center
(DLR), Wessling, Germany, working in the field of

polarimetric synthetic aperture radar (SAR) tomography. In 2001, he joined the
Antenna, Radar and Telecommunication Laboratory, University of Rennes 1,
Rennes, France, for postdoctoral research on radar polarimetry and polarimetric
interferometry. From 2002 to 2007, he was a Research Associate with the
Department of Computer Vision and Remote Sensing, TUB. Since 2008, he
has been with the Microwaves and Radar Institute, DLR, where he is currently
the Head of the SAR Technology Department and directing the airborne SAR
activities of the institute. His current main research interests include the various
aspects of multimodal SAR, like SAR interferometry, SAR polarimetry, SAR
tomography, and time–frequency analysis, as well as filtering and classification
aspects of high-resolution SAR data.

Dr. Reigber was the recipient of the European Conference on Synthetic
Aperture Radar 2000 Student Prize Paper Award for an article on SAR
remote sensing of forests, the IEEE GEOSCIENCE AND REMOTE SENSING
TRANSACTIONS (GRSS) Prize Paper Award in 2001 for a work on polarimetric
SAR tomography, and the IEEE GRSS Letters Prize Paper Award in 2006 for a
work on multipass SAR processing.



ERTEN et al.: NEW COHERENT SIMILARITY MEASURE 2851

Laurent Ferro-Famil (M’00) received the Laurea
degree in electronics systems and computer engi-
neering, the M.S. degree in electronics, and the
Ph.D. degree from the University of Nantes, Nantes,
France, in 1996, 1996, and 2000, respectively.

In 2001, he became an Associate Professor with
the University of Rennes 1, Rennes, France, where
he has been a Full Professor since 2011 and is
currently the Head of the Radar Polarimetry Remote
Sensing Group, within the Institute of Electronics
and Telecommunications of Rennes. His current ac-

tivities in education are concerned with analog electronics, digital communica-
tions, microwave theory, signal processing, and polarimetric synthetic aperture
radar (SAR) remote sensing. He is particularly interested in polarimetric SAR
signal processing, radar polarimetry theory, and natural media remote sensing
using multibaseline polarimetric–interferometric SAR data, with application
to classification, electromagnetic scattering modeling and physical parameter
retrieval, time–frequency analysis, and 3-D reconstruction of environments.

Olaf Hellwich (M’98–SM’06) was born in 1962. He
received the B.S. degree in surveying engineering
from the University of New Brunswick, Fredericton,
NB, and the Ph.D. degree from the Technische Uni-
versität München, München, Germany, in 1997.

He headed the Remote Sensing Group, Depart-
ment of Photogrammetry and Remote Sensing, Tech-
nische Universität München. Since 2001, he has been
a Professor with the Technische Universität Berlin
(TUB), Berlin, Germany, initially for photogramme-
try and cartography and since 2004 for computer

vision and remote sensing. He is currently the Dean of the Faculty of Electrical
Engineering and Computer Science, TUB. His research interests are in 3-D
object reconstruction, e.g., from trinocular video sequences, object recognition,
e.g., real-time head pose estimation, and synthetic aperture radar remote
sensing, e.g., for surface motion estimation.

Dr. Hellwich was the recipient of the Hansa Luftbild Prize of the German
Society for Photogrammetry and Remote Sensing in 2000.


