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We present a new method for an automated markerless 
system to describe, analyze, and classify human gait 
motion. The automated system consists of three stages: i) 
detection and extraction of the moving human body and 
its contour from image sequences, ii) extraction of gait 
figures by the joint angles and body points, and iii) 
analysis of motion parameters and feature extraction for 
classifying human gait. A sequential set of 2D stick figures 
is used to represent the human gait motion, and the 
features based on motion parameters are determined 
from the sequence of extracted gait figures. Then, a k-
nearest neighbor classifier is used to classify the gait 
patterns. In experiments, this provides an alternative 
estimate of biomechanical parameters on a large 
population of subjects, suggesting that the estimate of 
variance by marker-based techniques appeared generous. 
This is a very effective and well-defined representation 
method for analyzing the gait motion. As such, the 
markerless approach confirms uniqueness of the gait as 
earlier studies and encourages further development along 
these lines. 
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I. Introduction 

Human gait is known to be one of the most universal and 
complex form of all human activities and has been described 
and analyzed more than any other total movement [1]-[3]. 
Moreover, human gait analysis has many challenging issues 
because the highly flexible structure and self-occlusion of the 
human body mandate complicated processes for the 
measurement and analysis of its motion [4]. Gait motion is 
defined as a form of locomotion in which the body’s center of 
gravity moves alternately on the right side and left side. It 
requires the simultaneous involvement of all lower limb joints 
in a complex pattern of movement [1], [5]. Furthermore, each 
person appears to have his or her own characteristic gait pattern. 
There is much evidence from psychophysical experiments [6], 
[7] and medical and biomechanical analysis [1], [2], [8], [9] 
that gait patterns are unique to each individual. In computer 
vision, recognition of humans by their gait has recently become 
a challenging area [10]-[15]. 

As a biometric, human gait is defined as a means of 
identifying individuals by the way they walk [3]. Using gait has 
many advantages over other biometrics, such as fingerprints, 
iris, and face recognition, most notably because it is non-
invasive and available at low resolution. There are two major 
approaches to gait recognition in computer vision [3], [15]. The 
first is model-based, where the subject’s movement is 
described by a body model. In this approach, a body model is 
fitted to the human in every frame of the walking sequence, 
and kinematic parameters are generally measured on the body 
model as the model deforms over the walking sequence. An 
alternative method is to apply a model-free (or holistic) 
description to the set of images. Model-free approaches use 
features based on the motion or shape of subjects. Thus, 
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extracting features which truly discriminate among groups is a 
critical task in identification or recognition of humans because 
improperly extracted features frequently lead to a low 
classification rate and require complex classification algorithms. 

On the other hand, gait measurement is crucial in clinical 
applications, biomechanical analysis, computer graphics, and 
human identification. At present, most available measurement 
systems are based on external markers which are attached to key 
anatomical positions of the human body [16], [17]. Accordingly, 
trajectories of the gait motion are observed by each marker’s 3D 
position, and the trajectories translate into kinematic variables, 
such as body movements and joint angles [18]. Using markers 
can help us acquire precise motion information, but such 
markers require intrusive specialized hardware and subject 
contact. Therefore, with advances in computing power, 
markerless methods have recently been investigated for use in 
computer vision. However, many markerless motion capture 
systems have been studied for tracking and extracting objects, 
though not for biomechanical or recognition purposes [19]. To 
enable greater application capability, an effective markerless 
system is an essential requirement. 

In this paper, we propose a new approach to an automated 
markerless system for describing, analyzing, and classifying 
human gait by computer vision techniques without subject 
contact or intervention. The human body and its contour are 
extracted from the image sequences from one of the largest 
video gait databases, which comprises digital video (DV) 
recordings of walking subjects. Then, the gait figure, 
represented by a planar stick figure with six joints and eight 
sticks is extracted from the body contour data. In the sequence 
of gait figures, motion parameters are calculated and measured 
to characterize the human gait patterns. Also, features based on 
the motion parameters are extracted and selected from the gait 
sequence by statistical analysis. In addition, a k-nearest 
neighbor (k-NN) classifier is used to derive introductory 
classification results, demonstrating recognition capability. As 
such, the new system aims to derive measures which can 
supplement those of established biomechanical significance, in 
part demonstrated by classification capability. 

II. Representing Human Gait Motion 

An automated markerless analysis of human motion can be 
achieved by a vision-based method in complex image 
sequences. This method normally does not require any 
specialized hardware attached to a human body. The only input 
needed is a video recording of the subject. The vision-based 
method involves segmenting the body parts, tracking the 
movement of joints, and recovering the body structure in an 
image sequence [20]. This low-level processing requires  

 

Fig. 1. Automated markerless system for analyzing human gait.
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complicated vision computing on a high-performance 
computer system. The markerless system consists of three 
stages. In the first stage, the images are preprocessed by 
brightness and morphological analysis which in turn derives a 
body contour from the image data. This is a binary image 
wherein the contour points are white, and the remainder are 
black. In the second stage, gait figures are extracted from the 
contour data to recover the human movement from a non-
invasive image sequence. In the final stage, the motion is 
analyzed from within a sequence of moving gait figures. This 
is represented as joint angles and vertex points, which are 
together used for gait classification. Figure 1 shows the 
procedure of the markerless gait analysis system used within 
this study. 

The simplified 2D stick figure model, with six joint angles, is 
closely related to the observation that human motion is 
essentially the movement of the human skeleton; thus, the stick 
figure can be described as a collection of body segments and 
joint angles with various degrees of freedom [11], [20]. Also, 
the horizontal center of mass which is approximated by two 
border points at the chest region is used as a gait symmetry 
point to detect the gait cycle. According to biomechanical 
analysis, the torso, that is, the upper body part, is moving in 
both the plane of progression and the frontal plane as an 
inverted pendulum which rotates about the hip joint [2].  
Therefore, the upper body’s speed varies a little, being fastest 
during the double support phases and slowest in the middle of 
the stance and swing phases [17]. In addition, the center of 
mass of the upper body will keep the maximum distance from 
the front foot at initial contact, end of terminal stance, or 
terminal swing, and it has minimum distance from the front 
foot at end of mid-stance or mid-swing. Consequently, 
important gait phases can be detected from the peaks and 
troughs in a time series of the gait symmetry points, which are 
essentially a measure of the width of the subject’s contour. 

1. Video-Based Gait Database 

Our database, hereafter referred to as the SOTON database 
[10], comprises two forms of indoor data (under controlled  
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Fig. 2. Indoor walking track used in SOTON database: (a) front
view, (b) far view, and (c) layout and views. 
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lighting with a special background) and one of outdoor data 
(without lighting or background control). The first form of 
indoor data is of a subject constantly walking on a treadmill. 
The second form is that of a subject walking along a specially 
designed track shown in Fig. 2. The use of track and treadmill 
for the same subject allows for analysis of any influence on gait 
by the treadmill, but that is not done here as the evaluation 
concerned the indoor track data only. As can be seen in the 
figure, a chroma-key laboratory with controlled lighting 
conditions gives the special purpose background for the indoor 
treadmill and track data. Green was chosen to be the chroma-
key color because it contrasts well with the clothing of the 
majority of the subjects. Also, the outdoor data used a similar 
track layout with a greater distance between subject and 
camera. An image sequence contains only a single subject 
walking at normal speed and was acquired at 25 fps with 
720×576 color pixels from good quality progressive scan DV 
cameras. All subjects in the database are filmed at a fronto-
parallel view (where the walking path is normal to the plane of 
the camera view) or at an oblique angle. Each subject has at 
least four image sequences, and each image sequence contains 
at least one gait cycle, together with images of the background 
without the subject present, and other supporting data, such as  

 

Fig. 3. Images from SOTON database: (a) indoor track image and 
(b) outdoor image.  

 
the subject’s height and weight. 

The SOTON database contains more than 100 different 
subjects and was mostly acquired from young and healthy 
university students during the summer. Figure 3 shows sample 
images from the SOTON database. Given the use of the green 
chroma-key background, human body extraction from the 
image sequences can be easily achieved by subtracting an 
image of the background. Here, we used a thresholding 
method based on similarity measures of color and brightness 
between the background and the object. Thresholding is a 
simple image segmentation method, and erosion will remove 
the outer layer of pixels from an object. If dilation can be said 
to add pixels to an object or to make it bigger (thickening), then 
erosion makes an object smaller by removing pixels (thinning). 
Therefore, an object’s contour (or outline) can be obtained just 
by subtracting the results of dilation and erosion. 

2. Extracting Human Gait Figures 

The analysis of human motion often requires knowledge of 
the properties of body segments. The dimensions of various 
body segment-links callipered from cadavers have been 
extensively studied [21], [22]. To extract body points from a 
contour image, the skeleton data with body segment properties 
is used to guide the initial estimate. For a body height H, the 
initial estimate of the vertical position of the neck, shoulder, 
waist, pelvis, knee, and ankle was set by a study of anatomical 
data to be 0.870H, 0.818H, 0.530H, 0.480H, 0.285H, and 
0.039H, respectively. The gait skeleton can be simply obtained 
by two border points of each body segment p with a range 
constraint as 

            , , ,( ) / 2,s p b p e px x x= +                (1) 

where xb and xe represent the horizontal position of the first and 
the end pixels on the horizontal line, respectively. In the images 
from the SOTON database, an estimation of a primary gait 
skeleton is highly susceptible to difficulty by the movement of 
the arm and foot. Therefore, to reduce the effects of noise 
(outlier), the estimated mean value and standard deviation of 
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each body segment position are used to select a skeleton point 
as 
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where σ is standard derivation of xs,p, and α is a parameter  
(1≤ α ≤ 3) which depends on the body segments and tuned by 
analysis of training data. Figures 4(a) and (b) show the gait 
skeleton and the noise-removed skeleton data. 

Now we can calculate the body angles from the skeleton data 
by linear regression. The angles θp of body segment p are 
approximated by using the slope of the lines by linear 
regression as 
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where n is the number of the skeleton points in the body 
segment. The points are determined successively, starting with 
the top of the head and finishing with the feet. Each body point 
(many of which are joint positions) is calculated by using the 
joint angle and the size of each body segment as 

, cos( ) sin( )p p i p p i p px y x L y Lφ θ φ θ⎡ ⎤= + + + −⎣ ⎦ ,    (4) 

where φ is the phase shift, xi and yi are the coordinates of the 
previously established position for that body point, and Lp is the 
length of body segments [22] which are approximated by 
anatomical segments’ data based on measured image body 
height. As shown in Fig. 4(c), a 2D stick figure with the nine 
body points (whose position is shown by the small circles) is 
derived from the skeleton data of each body segment by linear 
regression. These include the shoulder, waist, knee, and ankle 
points as routinely used in gait analysis. 

The body points around double support phases (initial 
contact, terminal stance, and terminal swing) are clearly 
extracted, but the points around single support phases are not 
extracted as well as those around the double supports. 
Therefore, a motion tracking method between double supports 
is used to extract body points at the lower limbs. To track knees 
and ankles, the most forward skeleton points around the knee 
region and the rear-most skeleton points around the ankle 
region are considered. The skeleton points by each body 
segment are sorted as 

{ } { }knee 1 ankle 1|  and  | .i i i ix x x x x x+ += < = >x x    (5) 

The proper size of body segments is also guided by anatomical 
knowledge. The knee and ankle points for tracking are given 
by their mean value as 

{ }| ,...,  and  mean( ),s i s sx i m n= = =x x x       (6) 

where m and n are data indices, here set to 3 and 5, respectively.  

  

Fig. 4. Extracting stick figure at a key-frame: (a) gait skeleton, (b) 
outliers removed, and (c) stick figure. 
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Fig. 5. Stick figure at a crossover of the legs: (a) t–1, (b) t, and (c) 
t+1. 
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Walking left, the knee position around a single support can be 
determined by the minimum distance from x-axis, and the 
ankle position can be determined by the maximum distance 
from x-axis. The forward displacement Δxt at frame t is 
calculated as 

1.t t tx x x −Δ = −                 (7) 

In normal walking, the knee and ankle positions are moving in 
the direction of walking, hence the forward displacement 
should be measured as a positive value. 

Finally, the body points at frame t are calculated by (3) and 
(4) using the new angle values and segment sizes of thigh and 
shin. In addition, functional or physical constraints exist in 
human gait motion. During the gait cycle, the other foot is in 
contact with the floor (and does not move forwards). Also, 
the knee angle should be equal to or smaller than the hip 
angles. The crossover of the two legs is performed on two 
single support (mid-stance and mid-swing) points during one 
gait cycle. Figure 5 shows an example of body point 
extraction by using the gait constraints. In the figure, the 
crossover at the knee is detected during the three frames of a 
single support, and ankle crossover is started after a single 
support. These constraints are used to improve the robustness 
of the method. 
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3. Motion Parameters of Human Gait 

The trajectories of gait figures contain the general gait 
parameters (also known as the temporal and spatial parameters), 
such as stride length, cycle time, and speed, and provide a basic 
description of the gait motion [2]. The period of the gait motion 
is determined by number of frames during one gait cycle in 
image sequence, and the frame rate of the SOTON database was 
25 frames/s. The cycle time and the gait speed are given by 

_ (frames)_ (s)
_ (frames / s)

gait periodcycle time
frame rate

= ,       (8) 

_ (m)(m/s)
_ (s)

stride lengthspeed
cycle time

= ,         (9) 

where the stride length can be directly estimated from the 
physical dimensions of the image plane. The stride length is 
determined by the coordinates of the forward displacements of 
the gait figures during one gait cycle. 

In addition, the kinematic parameters are usually 
characterized by the joint angles between body segments and 
their relationships to the events of the gait cycle. In the gait 
figures, the joint angles can be determined from the coordinates 
of the body points. By definition, the joint angles are measured 
as one joint relative to another, so the relative angles in each 
joint are derived from the extracted angle values [2]. In normal 
walking, the torso of a human body can be considered to be 
almost vertical. Thus, the relative hip angle is the same as that 
of the extracted value, and the relative knee angle θKnee can be 
defined from the extracted hip angle θH and knee angle θK as 
θKnee=θH–θK. The trajectories of the gait figure contain many 
kinematic characteristics on human movement including linear 
and angular position, their displacements, and the time 
derivatives, notably the linear and angular velocities and 
accelerations. Basically, the trajectories are a vector-valued 
function at each frame t of an image sequence, and they are 
periodic as in gait motion. 

Typically, statistical analyses of the gait relationships use 
continuous curves of the time series data measured over the 
gait cycle. Medical study [8] has shown that the pattern of gait 
motion is approximately sinusoidal in nature. Trigonometric 
functions are naturally suited to estimating a gait curve from 
time series data. Accordingly, an assumed functional 
relationship between periodic gait motion and time can be 
modeled by interpolation of trigonometric polynomials. Also, 
further gait motion can be predicted by the periodicity of this 
interpolation model. An n-th-order trigonometric-polynomial 
interpolant function is 

1
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1
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where the a0, an, ak, and bk are unknown curve-specific 
coefficients. As n→∞, yn(t) tends to the Fourier series. The 
interpolation of much (equally-spaced) data by trigonometric 
polynomials can make for very accurate results. 

III. Experimental Results 

In the experiments, 100 different subjects (16 females and 84 
males) with seven image sequences of each subject from the 
SOTON indoor track database, a total of 700 image sequences 
(≅19,534 images), are used. A set of gait data extracted from 
image sequences provides potentially valuable time-dependent 
pattern as a gait time series. The stick figures extracted from an 
image sequence during one gait cycle are shown in Fig. 6(a), 
and its forward displacement at hip, knee, and ankle is shown 
in Fig. 6(b). The forward displacement of joints is consistent 
with medical data by Inman’s analysis [1], and it is an 
important component for showing quality of the extracted gait 
figures. 

In the image plane of the SOTON indoor track database 
based on the viewing geometry and viewing distance, one pixel  
 

 

Fig. 6. Example of gait motion during one gait cycle: (a) 
sequence of stick figures and (b) forward displacements.
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Table 1. General gait parameters from SOTON database. 

Age level Gender 
Cadence 

(steps/min) 
Cycle time 

(s) 
Stride 

length (m)
Speed 
(m/s) 

Male 109-130 0.92-1.10 1.36-1.52 1.23-1.65
Children 

Female - - - - 

Male 103-116 1.03-1.17 1.57-1.76 1.42-1.62
Adults 

Female 110-122 0.98-1.10 1.43-1.62 1.38-1.56

 

was approximated by the physical dimension 0.5 cm×0.5 cm, 
thus the dimension of the human body and its motion 
parameters can be simply estimated by the coordinates of the 
body points and forward displacements in the gait figures. 
Table 1 shows the variation of the general gait parameters, 
which are obtained. In the table, the speed is based on 
estimated stride length, and all parameters belong to the range 
of the expected value shown in a medical study [17]. In 
practice, the speed is likely to be close to the upper limit as the 
majority of the subjects in the SOTON database might have a 
preponderance of young subjects in the sample. Also, the 
markerless measurement is a non-impeding method, which is 
enabling them to walk in a natural and more relaxed manner. 
Accordingly, a person may achieve a greater stride length than 
with a marker-based approach. 

In addition, human gait motion can be described in a 
compact form, as a sequence of the joint parameters. Figure 7 
shows the results of measuring relative joint angles obtained 
from 100 different subjects during one gait cycle. In the figures, 
the lines are the curves that result from using 4th-order 
trigonometric-polynomial interpolants in (10). As in medical 
studies [2], [5], [8], the hip and knee at initial contact are flexed 
by about 25° and 5° from the vertical, respectively. During the 
loading response, the hip position is relatively stable, possibly 
losing 2° to 3° of flexion, and the hip progressively extends at a 
similar rate after mid-stance. Also, albeit by a different 
technology, the variance in Figs. 7(c) and 7(d) would appear to 
be smaller than for Winter’s analysis [2]. These results concern 
100 subjects with seven sequences of each subject, a total of 
700 sequences, that is, a much larger volume of data than in 
Winter’s analysis. Further, in this analysis, subjects were not 
supervised and carried no markers, allowing for relaxed 
walking patterns. This is also reflected in the small number of 
traces that lie outside of the general trend. However, it can 
clearly be seen that the general trend is followed by most of the 
traces, suggesting that earlier analyses could be informed by 
this new approach. 

However, one of the most distinctive characteristics of 
human gait is the fact that it is individualistic. To classify the 
gait patterns, a simple k-NN algorithm is employed as a  

` 

Fig. 7. Relative inter-segment angles from SOTON database: (a) 
hip angles vs. time, (b) knee angles vs. time, (c) hip 
angles vs. time with mean (solid line) and variance 
(dotted lines), and (d) knee angles vs. time with mean and 
variance. 
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Table 2. Classification results by k-NN classifier. 

No. of feature vectors CCR (%) No. of 
subjects Training Test k=1 k=3 k=5 

30 150 30 96.7 93.3 96.7 

60 300 60 91.7 86.7 85.7 

100 500 100 84.0 80.0 82.0 

 

classifier applied to a feature space comprised of 10 features 
based on the motion parameters: body height, cycle time, stride 
length, speed, average joint angles, variation of hip angles, the 
correlation coefficient between the left and right leg angles, and 
the center coordinates of the hip-knee cyclogram. Undoubtedly, 
a more sophisticated classifier would be prudent, but the 
interest here is to examine the genuine discriminatory ability of 
the features. A total of the 500 feature vectors extracted from 
the front four of the seven sequences and their means for each 
of 100 different subjects are used as the training samples. Also, 
a total of 100 feature vectors extracted from the means of the 
remaining three of the seven sequences for each of 100 
different subjects are used as the test samples.  

Table 2 shows the classification results by number of 
subjects. As can be seen in the table, the new method achieved 
up to a 96.7% correct classification rate (CCR) for 30 subjects 
and 84.0% CCR for 100 subjects, which compares well with 
other studies [3]. In recognition studies, the variation of the 
cluster of measurements for repeated same-subject exposure is 
called the within-class variance. The between-class variance 
describes the variation between different subjects. Recognition 
can be achieved via distance in the feature space (the k-NN is 
the mode class of the k nearest subjects in feature space) so 
long as the within-class variance is less than that of the 
between-class variance. Reduction in recognition capability 
with increase in k (the number of neighbors considered) reflects 
the clusters of features overlap, but this is not always the case 
here.  

Also, a back-propagation neural network algorithm is 
applied to the SOTON indoor database for identifying humans 
by their gait. The 10 selected gait features for each subject are 
used as input data, and the numbers of hidden nodes and output 
nodes are set to 28 and 13, respectively. The neural networks 
are trained until recognition on the training data reached 100%, 
thus the classification rates for each group of the training sets 
were 100%. The neural network approach achieved a 
recognition rate of up to 90% for 30 subjects. In practice, other 
studies [3] have clearly confirmed classification capability on 
this database, using more features by area masks, a symmetry 
operator, velocity moments, and principal component analysis 

than given here to achieve a similar classification rate (97.3% 
CCR for 28 subjects) to our approach gives. Although the 
recognition rate does not reach 100%, the results show that 
people are unique in their walking patterns, in line with earlier 
biomechanical suggestions, and buttressing other similar results. 
In future, we will concentrate both on improving of the gait 
figures (to reduce clutter) and on developing of the efficient 
feature vector with evaluation and experiments using real-
world data to expose further gait as a biometric. 

IV. Conclusion 

We have described an automated markerless gait analysis 
system using computer vision techniques. To achieve this, a 
stick figure representation has been extracted by combining a 
statistical approach and topological analysis guided by 
anatomical knowledge. In the sequence of stick figures, the 
motion parameters were calculated, and the joint angles were 
efficiently interpolated by trigonometric-polynomial functions. 
The trajectories of the joint angles followed the earlier results 
of medical studies. Also, the gait features based on the motion 
parameters were extracted, and the k-NN classifier was used to 
analyze the discriminatory ability of the extracted features. The 
results produced classification rates of 97% CCR for 30 
subjects and 84% CCR for 100 subjects. As such, the 
automated markerless analysis system not only accords with 
biomechanical analysis in the results it can produce, but also 
confirms recognition capability, as earlier suggested in 
biomechanical studies, and by computer vision-based 
approaches. There is interest in markerless gait analysis for 
medical purposes as its convenience will also benefit analysis 
of children and elderly. Further, there is opportunity for greater 
realism in biometrics and capacity to relate measures here to 
those of direct interest in clinical studies. We will doubtless 
require more sophisticated modeling strategies and perhaps 
with consideration of 3D geometry. This awaits further 
development, but the success of this necessary and initial 
approach and its ability to generate informative measurements 
in natural and non-invasive scenario encourage future 
developments. 
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