
Paper 25.1                                   INTERNATIONAL TEST CONFERENCE                                        1 
978-1-4244-7207-9/10/$26.00 ©2010 IEEE 978-1-4244-4867-8/09/$25.00 ©2010 IEEE                            

                                                 

MT-SBST: Self-Test Optimization in Multithreaded Multicore Architectures 
 

N. Foutris1                  M. Psarakis1              D. Gizopoulos1             A. Apostolakis1 
X. Vera2  A. Gonzalez2 

1 University of Piraeus, Department of Informatics, Greece 
{nfoutr | mpsarak | dgizop | andapo}@unipi.gr 

2 Intel Barcelona Research Center, Intel Labs-UPC, Barcelona, Spain 
{xavier.vera | antonio.gonzalez}@intel.com 

 

Abstract 
Instruction-based or software-based self-testing (SBST) is a 
scalable functional testing paradigm that has gained increasing 
acceptance in testing of single-threaded uniprocessors. Recent 
computer architecture trends towards chip multiprocessing and 
multithreading have raised new challenges in the test process. In 
this paper, we present a novel self-test optimization strategy for 
multithreaded, multicore microprocessor architectures and apply 
it to both manufacturing testing (execution from on-chip cache 
memory) and post-silicon validation (execution from main 
memory) setups. The proposed self-test program execution 
optimization aims to: (a) take maximum advantage of the 
available execution parallelism provided by multiple threads and 
multiple cores, (b) preserve the high fault coverage that single-
thread execution provides for the processor components, and (c) 
enhance the fault coverage of the thread-specific control logic of 
the multithreaded multiprocessor. The proposed multithreaded 
(MT) SBST methodology generates an efficient multithreaded 
version of the test program and schedules the resulting test 
threads into the hardware threads of the processor to reduce the 
overall test execution time and on the same time to increase the 
overall fault coverage. We demonstrate our methodology in the 
OpenSPARC T1 processor model which integrates eight CPU 
cores, each one supporting four hardware threads. MT-SBST 
methodology and scheduling algorithm significantly speeds up 
self-test time at both the core level (3.6 times) and the processor 
level (6.0 times) against single-threaded execution, while at the 
same time it improves the overall fault coverage. Compared with 
straightforward multithreaded execution, it reduces the self-test 
time at both the core level and the processor level by 33% and 
20%, respectively. Overall, MT-SBST reaches more than 91% 
stuck-at fault coverage for the functional units and 88% for the 
entire chip multiprocessor, a total of more than 1.5M logic gates. 

1. Introduction 
The physical limits of semiconductor microelectronics 
have become a major concern in manufacturing 
technology. The diminishing gains in processor’s 
performance due to the increasing gap between processor 
and memory speed (memory wall), the absence of enough 
parallelism in single instruction streams (ILP wall) and the 
escalation in power consumption (power wall) motivate 
computer architects to look at different directions for next 
processor generations. 
Current microprocessor industry trend is towards the 
development of chip multiprocessors (CMP) and chip 
multithreaded (CMT) architectures which although 
operate at lower frequencies are able to deliver higher 

performance exploiting thread-level (intra-core) or 
processor-level (inter-core) execution parallelism. 
However, to cope with this industry trend, the test 
technology community has to explore the effective porting 
from the uniprocessor era to the multiprocessor era (CMP 
and CMT architectures) of all test and validation 
techniques, that have been recently devised to deal with 
the emerging reliability problems of modern 
microprocessors [1], [2]. The main objective of this 
porting of test techniques to multithreaded multiprocessors 
should be the exploitation of the execution parallelism of 
the new processor architectures to avoid excessive scaling 
of the overall test time. As a consequence, it will reduce 
test cost and improve time-to-market without degrading 
the effectiveness of the test techniques in terms of their 
fault detection capabilities (fault coverage). 
Software-Based Self-Testing (SBST) [3]–[15] is a testing 
method that has gained increasing acceptance with major 
microprocessor vendors and today forms an integral part 
of the manufacturing test flow of single-threaded 
processors. The SBST key idea is to exploit the instruction 
set architecture and on-chip programmable resources to 
execute effective self-test programs. The use of SBST 
methodologies contributes to the reduction of yield loss, 
while its non-intrusive nature does not require any 
processor hardware modification. In addition, at-speed 
testing ability enables screening of timing defects that do 
not manifest themselves at lower frequencies [12].  
The effective application of SBST to multithreaded 
multicore architectures poses significant challenges: (i) 
porting of existing test programs from the single-threaded, 
unicore case to efficiently test all the individual cores; (ii) 
providing sufficient fault coverage for the thread-specific 
control logic, which is a significant portion of the control 
logic in the multithreaded architectures; (iii) exploitation 
of thread-level and core-level parallelism to reduce test 
execution time; and (iv) avoiding the scaling of test 
program memory footprint with the number of cores.  
Software-based approaches for the manufacturing testing 
of CMP and CMT architectures have been proposed in 
[13], [14], and [15]. Bayraktaroglu et al. [13] proposed the 
conversion of existing legacy tests, either hand-written or 
randomly-generated to test the multithreaded cores of the 
CMT architecture of UltraSPARC T1. They described 
how a software-based cache-resident test methodology 
can be utilized during the manufacturing test flow of a 
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commercial multicore chip, UltraSPARC T1, and applied 
by a low-cost external tester. In [13], the CPU cores of the 
CMT architecture execute the test program sequentially 
while the other cores are disabled; this scheme eliminates 
the need for replicating the test program for each 
processor core but it does not exploit either the core-level 
parallelism or the thread-level parallelism of the 
architecture, thus, it does not satisfy one of the main 
objectives of a multithreaded SBST methodology. 
Apostolakis et al. [14] considered the application of SBST 
to bus-based CMP architectures consisting of multiple 
single-threaded cores of OpenRISC 1200 processor. A 
scheduling methodology has been proposed for the test 
routines to exploit core-level parallelism and minimize the 
time overheads coming from the memory subsystem in 
order to reduce the total test execution time. The work of 
[14] exploits only the core-level execution parallelism of a 
single-threaded CMP architecture. A first approach on the 
application of SBST in the CMT architecture of 
OpenSPARC T1 processor for manufacturing testing only, 
was proposed in [15] where thread-level parallelism is 
exploited to reduce self-test execution time. In [15], the 
impact of the test program scheduling in the fault coverage 
of the thread-specific control logic and the shared  
functional units of the OpenSPARC T1 processor were not 
taken into consideration. Overall, none of the above 
approaches considers the case of self-test program 
execution from main memory (as in a post-silicon 
validation setup), where the cache-residence limitation 
does not apply and a main memory subsystem is available 
to store the test program.  
In this paper, we present, for first time, a complete 
multithreaded software-based self-testing (MT-SBST) 
methodology that targets both the optimization of test 
execution time and the improvement of the fault coverage 
of the thread-specific control logic. First, we assess the 
impact of test routine scheduling in the fault coverage of 
hard-to-test control structures: the thread-switch logic 
inside the processor cores and the thread-specific control 
logic of the shared components outside the processor 
cores. Subsequently, we propose a multithread scheduling 
algorithm that achieves a very efficient balance between 
self-test program execution time and fault coverage of the 
thread-specific control logic. The algorithm is solely based 
on easy-to-obtain runtime statistics of the single-threaded 
execution of the self-test program. In particular, our 
proposed MT-SBST methodology performs the following: 
• Test program development for all the functional units 

of a CMT multiprocessor architecture.  
• Test program profiling, without multiple time-

consuming simulations, from single-threaded unicore 
execution.  

• Assessment of the impact of the multithreaded 
execution of test program on the fault coverage of the 
thread-specific control logic.  

• Test program scheduling to take advantage of thread-
level parallelism and speedup execution of its test 
routines for the on-core functional units, and core-
level parallelism to speedup the execution of its test 
routines for the off-core shared functional units. At 
the same time, our scheduling improves the fault 
coverage for those structures. 

We fully apply the proposed methodology in a complex 
publicly available CMT processor architecture, 
OpenSPARC T1 [16] consisting of 8 cores and 32 threads. 
Our experimental results show that the proposed 
multithread scheduling algorithm significantly speeds up 
the execution time of test program at both the core-level 
(up to 3.6X) and the processor-level (up to 6.0X) 
compared to the single-threaded execution. Furthermore, 
compared to straightforward multithreaded execution of 
the test program the proposed multithread schedule 
reduces test execution time at the core-level and the 
processor-level by more than 33% and 20%, respectively. 
On top of these significant speed improvements, and 
despite its much shorter execution time, the proposed MT-
SBST schedule improves the fault coverage of the thread 
switch logic of each core by about 10% compared to the 
straightforward multithreaded version. Overall, our 
methodology guarantees high stuck-at fault coverage 
levels: more than 91% for the functional units (all integer 
functional units of the eight cores and the off-core shared 
floating point unit) and more than 88% for the logic of the 
entire processor (including the functional units, the thread 
switch logic and the interconnection networking, which all 
together count about 1.5M logic gates). 
The rest of the paper is organized as follows: Section 2 
provides an overview of SBST, for single threaded and 
multithreaded architectures. Section 3 provides a detailed 
analysis of the proposed MT-SBST methodology and 
Section 4 presents the experimental results. Finally, 
Section 5 concludes the paper. 

2. Software-Based Self-Testing Overview 
2.1 SBST of single-threaded processors 
The basic concept of software-based self-testing (SBST) 
for a single-threaded uniprocessor is described in detail in 
[12], along with its position in the testing process. A test 
program is executed by the processor at normal mode of 
operation. The test instruction sequences usually load test 
patterns from memory (or generate them internally) and 
apply operations to excite faults in hardware components. 
Fault propagation is performed executing instructions that 
store test responses into data memory, from which they 
can be uploaded and evaluated by an external (low-cost) 
tester. A key task of an SBST methodology is the 
generation of test instruction sequences that can 
effectively test the processor modules and reach high fault 
coverage. Several recent works have proposed efficient 
test program generation methodologies that target different 
modules of single-threaded microprocessor cores, such as 
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integer functional units [4], [5], [6], pipeline control logic 
[7], [8], speculative mechanisms [9] and floating-point 
units [11]. Today, SBST forms an integral part of the 
manufacturing test flow [3], [13] of top-end processors, 
and its role is complementary to other traditional testing 
methods, either structural like scan-based test or BIST, or 
functional using external testers [12]. SBST improves the 
overall test quality without requiring any hardware 
modification or extra test equipment.  
SBST is also a potentially effective solution for post-
silicon validation. Execution of verification tests in early 
silicon prototypes is orders of magnitude faster than 
simulation-based verification tests and this enables 
designers to apply more comprehensive tests within a 
limited time period [17]. However, developing testbenches 
for post-silicon validation is a tedious task since it suffers 
from limited internal node observability compared to the 
full signal observability that a pre-silicon, simulation-
based environment offers. This problem is exacerbated in 
multithreaded, multicore architectures because of their 
more complex control logic (for thread scheduling and 
synchronization) and memory subsystems (cache 
coherence mechanisms) [18]. Therefore, utilization of self-
test programs from manufacturing testing as a starting 
point or using SBST methodologies to enhance the 
controllability and observability of functional verification 
tests (i.e. legacy tests) [19] could be a very efficient 
solution for the generation of effective post-silicon 
validation tests. 
Consequently, SBST can be a key part of an efficient flow 
for manufacturing testing and post-silicon validation 
stages, and in this paper we study both cases. The SBST 
experimental setup for these two stages differs in the 
storage device where the self-test program resides. In a 
manufacturing testing setup, test code and data are 
downloaded into on-chip caches (instruction and data) by 
an external tester and the test responses are also stored 
into the on-chip data cache [13]; after test program 
execution, the tester uploads the test responses to compare 
them with the golden signatures. This cache-resident setup 
eliminates the need for high-cost functional testers and 
speeds up the execution of self-test program. However, it 
imposes a restriction in the development of self-test 
program, that no cache misses occur during its execution. 
On the contrary, in a post-silicon validation setup of 
prototype chips, no such limitation exists, since a main 
memory subsystem is usually available for full system-
level testing. The test code and data are stored in main 
memory and this also allows the execution of the much 
larger programs used in post-silicon validation. In this 
paper, we utilize the same self-test programs for 
manufacturing testing and post-silicon validation, and 
study how the two different setups affect the 
multithreaded execution of self-test programs. Of course, 
in the case of post-silicon validation setup, the main 
memory transactions induce longer waiting intervals in the 
execution of self-test programs compared to the 

manufacturing testing setup. The proposed test scheduling 
algorithm efficiently exploits the waiting intervals to 
speedup execution of self-test threads in both cases and 
generates different schedules. 
It should be noted that the total test application time, both 
in manufacturing testing and post-silicon validation, 
consists of the test program download time, the test 
program execution time and the test responses upload 
time, which are affected by the underlying architecture, the 
cache access interface bandwidth, and the test routine 
structure. Our methodology primarily focuses on test 
program execution time optimization, but decent gains are 
also obtained in download time due to the single copy of 
test program. Further reduction of upload and download 
time could be achieved using test program compression 
and test response compaction techniques.  

2.2 Multithreaded (MT) SBST Preliminaries 
and Experimental Setup 

For the application of SBST in a multithreaded multicore 
architecture, we assume the following setup:  
• A test program consists of a set of test routines that 

target all the private functional units of each 
processor core (i.e. functional units in the execution 
pipeline of each core such as ALU, multiplier, divider 
and shifter) and the off-core shared functional units 
(i.e. a floating-point unit that all cores share).  

• A single copy of the test program (test code and data) 
is stored in memory (either on-chip cache or main 
memory depending on the setup) instead of separate 
copies for each core; this reduces the storage 
requirements and avoids the scaling of test program 
memory footprint with the number of cores. All 
processor cores have to execute the same test program 
to detect faults in their private units while the self-test 
program for the shared units must be executed once 
(by one or more cores). 

• Each processor core generates a set of separate test 
responses; this assumption enables faulty core 
diagnosis. Diagnosis capability is important for both 
manufacturing testing and post-silicon validation 
since it allows the binning of partially “good” chips. 

In order to reduce the execution time in an MT-SBST 
approach, we need to take advantage of both the available 
thread-level and core-level parallelism, visualized in 
Figure 1. Let assume four test routines for the functional 
units FU1, FU2, FU3, and FU4 of the processor core (these 
routines must be executed by each core) and one test 
routine for a shared functional unit (this routine must be 
executed once). Exploitation of core-level parallelism 
enables the parallel execution of the test routines FU1, 
FU2, FU3 and FU4 by all n processor cores and speeds up 
the execution of the shared-FU test routine. If execution 
parallelism is not exploited, the overall test execution time 
will scale with the number of processor cores (8 in T1 
multiprocessor). Instead of having a single core to execute 
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the shared-FU routine (top of Figure 1), the routine is split 
into n subroutines which can be executed in parallel 
(middle of Figure 1). We can schedule in a different way 
the test routines in the n cores to achieve the optimum 
utilization of the common memory subsystem and the 
interconnection network [14]. Next, we exploit thread-
level parallelism to speedup the execution of the test 
routines in each core; assuming that each core supports 
four hardware threads in an interleaved multithreading 
fashion, all four threads are used to execute the test 
routines as shown in Figure 1 (bottom). Τhe overlap of the 
idle intervals of one thread (i.e. due to a long latency 
operation or a cache miss) by another active thread is the 
key point for the efficient parallelization of test routines.  
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Figure 1: Exploiting MP and MT parallelism in the execution of 
the test program 

3. Proposed MT-SBST Methodology 
When normal applications are developed for a 
multithreaded architecture the main focus is the 
maximization of the application throughput and the 
processor resources utilization. The tuning of the 
application workload depends on its specific 
characteristics. In this paper, we aim to tune self-test 
program to the characteristics of multithreading 
technology to achieve the maximum speedup, that – as our 
experiments reveal – a naïve, straightforward 
multithreading schedule is not able to reach. Even in the 
case of a small number of cores and threads per core, the 
exhaustive search of the test program scheduling is 
infeasible and a high-level test scheduling algorithm based 
on simple single-thread runtime statistics is required. 
The main objectives of the proposed methodology are: (a) 
to develop test routines for the functional units of the 
processor; (b) to assess the test program execution 
characteristics for its efficient tuning towards a 
multithreaded architecture; (c) to analyze how the 
multithreaded execution of the test program affects the 
fault coverage of the thread-specific control logic (which 
is not explicitly targeted by the test routines for the 
functional units); and (d) to propose an efficient 
scheduling algorithm which reduces test program 
execution time without degrading its effectiveness in 

terms of fault coverage for the related logic. Overall, the 
main goal of our methodology is to achieve the best 
tradeoff point between self-test time reduction and self-test 
effectiveness for the thread-specific control logic. The 
steps of the methodology are summarized in Figure 2 and 
individually analyzed in the following subsections. 

 

Fault Coverage-driven
test routine splitting

Test program
profiling

Test program
development

Test 
scheduling

Fault Coverage-driven
test routine splitting

Test program
profiling

Test program
development

Test 
scheduling  

Figure 2: Proposed MT-SBST methodology 

3.1 Test program development 
Our demonstration vehicle is the open-source CMT 
processor model, OpenSPARC T1, which integrates eight 
64-bit SPARC V9 processor cores, each supporting four 
hardware threads [16]. Figure 3 shows the organization of 
the OpenSPARC T1 processor. Each CPU core 
implements a six-stage, single-issue execution pipeline 
and has 16KB L1 instruction cache and 8KB L1 data 
cache. An on-chip unified 3MB L2 cache divided in four 
banks is shared among all CPU cores. A crossbar switch 
handles communication between the CPU cores and the 
shared memory while at the same time it provides access 
to a shared floating-point subsystem. OpenSPARC T1 
implements fine-grain multithreading: it switches among 
the available threads at every cycle giving priority to the 
least recently executed thread.  

 
Figure 3: OpenSPARC T1 organization 

The first step of the proposed methodology is the 
development of test routines that target all the private 
functional units of each SPARC V9 core: ALU, shifter, 
integer multiplier, integer divider, stream processing unit 
(SPU), and floating-point frontend unit (FFU). The test 
routines for these six functional units must be executed by 
all processor cores. We also develop separate test routines 
for the components of the off-core shared floating-point 



 

Paper 25.1                                   INTERNATIONAL TEST CONFERENCE                                      5                       
                                                    

unit (FPU – FP adder, multiplier, divider) of OpenSPARC 
T1 each of which must be executed only once. 
For a few functional units, like the shifter and the 
multiplier we adopted proven effective optimized test sets 
from previous SBST approaches [6], [8] and tuned them to 
the functional units of SPARC V9 core. For the other 
modules, we either developed customized test routines 
(like in the cases of the ALU and the divider) or enhanced 
the regression tests of the modules (like in the cases of 
FFU and SPU) included into OpenSPARC T1 verification 
suite. This first step of self-test program development does 
not affect the operation of the subsequent steps. Thus any 
self-test program for the individual integer and floating-
point units can be used. 
Table 1 summarizes the characteristics of the functional 
units of the SPARC V9 core and the corresponding test 
routines. Second column presents the gate count of the 
functional units and third column gives the fault coverage 
obtained in a single-thread execution (results are for stuck-
at fault model using Synopsys’ TetraMAX).  

Single-thread 
execution time (K cycles) Functional 

units 

Gate 
count   

(K gates) 

Fault 
coverage 

(stuck-at %) Manufacturing 
testing 

Post-silicon
validation 

Shifter 5.9 97.5 14.4 45.2 
ALU 6.2 92.7 32.5 61.4 

Divider 11.4 97.3 54.5 78.4 
Multiplier 54.2 96.4 8.6 17.7 

FFU 16.6 72.1 9.9 18.3 
SPU 18.5 86.9 33.1 45.4 
Total 112.8 91.2 153.0 266.4 

Table 1: Private functional units and corresponding test 
routines of SPARC V9 core 

The two rightmost columns show the test routine 
execution time in a single thread for: (a) manufacturing 
testing (execution from on-chip shared L2 cache) and (b) 
post-silicon validation (execution from main memory). 
The execution time of the test routines depends on: the 
number of test patterns, the latency of the corresponding 
instructions and the development style (which affects the 
instruction-level parallelism of the routines – loops, etc). 
Our test program achieves more than 91% fault coverage 
in total for all the functional units, the highest structural 
fault coverage that has been reported by a software-based 
testing approach on a real open-source industrial processor 
such as OpenSPARC T1. 
In Table 2 we present the effectiveness of the FPU routine 
in terms of stuck-at fault coverage only for the execution 
pipelines (adder, multiplier, divider) of the shared 
floating-point unit. We deal with the control part of the 
FPU later. The developed FPU routine achieves more than 
92% stuck-at fault coverage for this complex functional 
unit. The total execution time of FPU routine is 2.6M 
clock cycles when executed from on-chip shared L2 cache 
(manufacturing testing) and 2.9M clock cycles when 
executed from main memory (post-silicon validation). 

Single-thread 
execution time (K cycles) Modules

Gate 
count

(K gates)

Fault 
coverage 

(stuck-at %) Manufacturing 
testing 

Post-silicon 
validation 

FP Add. 33.7 91.7 1300.1 1450.2 
FP Mult. 60.1 92.9 520.4 580.5 
FP Div. 13.6 91.0 780.2 870.2 
Total 107.4 92.3 2600.7 2900.9 

Table 2: Modules of the shared off-core floating point unit and 
corresponding test routines 

The fault coverage of the individual functional units 
remains the same when the corresponding test routines are 
executed in a multithreaded fashion. However, this is not 
the case for the control logic, either the thread-specific 
control logic of the core or the shared FPU control logic. 
In Section 3.3 we analyze how the multithreaded 
execution affects the fault coverage of these control 
modules. We aim to propose a multithreaded execution of 
our test routines that although reduces the total test 
execution time it does not reduce the fault coverage on this 
control logic. We discuss our scheduling algorithm in 
Section 3.4.  

3.2 Test program profiling 
The second step of the methodology is the high-level 
profiling of the single-thread version of the test program 
that allows us to quickly assess its scaling characteristics 
to a multithreaded environment. All test routines are 
executed in a single hardware thread of one SPARC V9 
core that has exclusive access to the core resources while 
the other three threads are parked (i.e. exclusive single-
thread performance). Figure 4 shows the exclusive single-
thread performance of all test routines for the two different 
SBST setups (note that routines DIV, FFU and SPU have 
been divided into two subroutines; at the end of this 
subsection we explain why we chose to split these 
routines). Each bar represents the fractions of time the 
state machine of the hardware thread, executing the 
corresponding test routine, stays in one of the five possible 
states: ready, run, wait, speculative ready, and speculative 
run. The SPARC V9 core switches among the available 
threads at every cycle (i.e. fine-grain multithreading). A 
thread can be scheduled (is available) when it is in one of 
the following states: ready, speculative ready, run, and 
speculative run1. On the other hand, a thread enters the 
wait state due to one of the following reasons: I-cache fill, 
store buffer full, long latency operation, and resource 
conflict (i.e. simultaneous requests to a shared resource). 
Therefore, when executing the test routines in a single-
thread, the core enters a wait state when the thread is 
unavailable. To collect runtime statistics for the thread 
state we used the functionality of the thread monitor unit 
of SPARC V9 core. 

                                                 
1 A thread speculates a load operation as a cache hit before the actual 
request is granted from the memory subsystem. 
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Figure 4: Test program profiling: exclusive single-thread 
execution for (a) manufacturing testing (b) post-silicon 
validation 

Test program profiling shows that the total core utilization 
is very low since the core is waiting for long time intervals 
because the thread is unavailable. In the case of 
manufacturing testing (Figure 4a) the thread is in wait 
state for the 62% of the total execution time of the test 
program. In the case of post-silicon validation (Figure 4b) 
the time that the thread waits increases due to the longer 
penalty of L2 cache misses and accesses to main memory; 
the thread is in wait state more than 77% of the total 
execution time. Hence, the test program profiling stage 
designates the ability for performance gains when routines 
are scheduled in an optimized multithreaded fashion. 

We further analyzed the profiles of the test routines to 
identify different execution phases, such as CPU-bound or 
memory-bound intervals, within a test routine execution 
and then we split it into more than one subroutines based 
on these phases. This splitting procedure enables us to 
schedule more efficiently the test routines into the 
hardware threads achieving better exploitation of thread-
level parallelism (TLP). In our study, routines Div, FFU 
and SPU, present different runtime statistics at different 
execution phases and are split into two subroutines each, 
Div1 (24.2 K) and Div2 (30.3 K), FFU1 (9.4 K) and FFU2 
(0.5 K) and SPU1 (23.8 K) and SPU2 (9.3 K), respectively 
(execution from L2 cache in clock cycles).  

3.3 Coverage-driven test routine splitting 
We study the effect of multithreaded execution of the test 
routines on the fault coverage of the on-core (thread-
switch logic) and off-core (shared FPU) control logic.  

On-core control logic (thread-switch logic). Thread-
switch logic fault coverage increases with the activity of 
the four thread state machines. Thus, to increase the fault 
coverage of the thread-switch logic, we should avoid 
decreasing the number of state transitions of the thread 
state machines by forcing the four threads to enter more 
times in the wait state. However, this target contradicts 
with the test execution time reduction goal since 
increasing the number of resource conflicts (i.e. 
simultaneous requests to a shared resource) will adversely 
affect the exploitation of CMT.  

We consider two routines from our basic core test program 
that can cause resource conflicts due to their long latency 
operations: multiplier and divider routines. We performed 
a set of fast, high-level experiments to quantify the 
speedup achieved if we split these test routines into two or 
four time-balanced subroutines and schedule two or four 
hardware threads to execute them in parallel. In Table 3, 
we compare the time of the single-threaded execution 
versus the multithreaded execution for these two routines 
for execution from L2 cache and main memory.  

1 thread 2 threads 4 threads Testing 
setup Routines ET (A)

K cycles
ET (B) 

K cycles 
Speedup 

(A/B) 
ET (C) 

K cycles
Speedup 

(A/C) 
Multiplier 8.6 5.7 1.5 5.4 1.6 Manuf. 

testing Divider 54.5 37.1 1.5 35.9 1.5 
Multiplier 17.7 9.3 1.9 8.3 2.1 Post-si. 

validation Divider 78.4 43.5 1.8 39.3 2.0 

Table 3: Single-threaded execution vs. multithreaded 
execution (ET: execution time) 

The experimental results show that the two-threaded 
execution achieves significant speedup over the single-
threaded execution which ranges between 1.5X and 1.9X. 
However, the speedup saturates at two threads since using 
more than two threads only slightly reduces execution 
time. Therefore, to improve the fault coverage of the 
thread-switch logic during the multithreaded execution we 
split the long-latency routines into subroutines that 
generate resource conflicts when executed in 
multithreaded mode. However, to achieve the best tradeoff 
between execution time reduction and fault coverage of 
the thread-switch logic the number of subroutines must not 
exceed the number of threads at which the speedup 
saturates. The output of this step is a number of sets each 
one containing the appropriate number of subroutines that 
must be executed in parallel to cause resource conflicts. In 
the case of the multiplier and the divider two sets are 
created: {Div1, Div2} and {Mult1, Mult2}. 

Off-core control logic (shared FPU). We exploit core-
level parallelism to execute the test routines for the off-
core shared FPU. In order to determine an efficient 
multicore, multithreaded execution of FPU test routine we 
study how the execution time and the fault coverage scale 
with the number of cores and threads that execute the test 
routines. Thus, we split FPU test routine into 4, 8, 16, and 
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32 subroutines and schedule them to different number of 
processor cores: 1, 4 or 8 cores each running 1 or 4 
threads. At this point it should be noted that partitioning 
the test routines in arbitrary number of subroutines with 
‘almost’ equivalent execution times, depends on code style 
that have been adopted in the development of test routines 
(e.g. load-apply-store routines, such FPU routine, allow 
this partitioning). Table 4 presents total execution time 
and combined stuck-at fault coverage of the two FPU 
control submodules: FP input that multiplexes the FPU 
requests from multiple cores and FP output that arbitrates 
the results of FP pipelines for the single FPU-crossbar 
connection. Also, Table 4 presents results for both the 
execution from L2 cache (manufacturing testing) and main 
memory (post-silicon validation). Our experiments 
demonstrate that the fault coverage is affected by the 
execution of FPU test routine by multiple cores and 
multiple threads. This happens because the FPU control 
modules carry thread and core id specific information. 
The results suggest that the most efficient FPU routine 
schedule in terms of speedup and fault coverage in both 
setups is 8 cores each running 4 threads: a total of 32 
hardware threads executing in parallel 32 different FPU 
time-balanced subroutines. Thus, in our proposed test 
scheduling the FPU test subroutines are executed in 
parallel by all processor cores – separately from basic 
core test routines – occupying all 32 threads of the CMT 
architecture. 

1 thread 4 threads Schedule 
ET (K cycles) FC (%) ET (K cycles) FC (%)

Manufacturing Testing 

1 core 2600.7 61.9 1400.1 62.7 
4 cores 920.1 89.9 490.3 91.0 
8 cores 519.2 90.9 437.4 91.6 

Post-silicon validation 

1 core 2900.9 62.3 1600.7 63.2 

4 cores 1000.5 90.5 517.8 91.2 
8 cores 563.1 91.2 460.5 92.3 

Table 4: Multicore, multithreaded execution of FPU test 
routine (ET: execution time, FC: fault coverage of FPU control 
logic) 

3.4 Test scheduling algorithm  
We propose an algorithm that schedules a set of on-core 
components test routines {R1, R2, …, RN} into k hardware 
threads targeting the best tradeoff between test execution 
time and fault coverage. The proposed algorithm is 
presented in Figure 5. 

The first part of the algorithm partitions test routines into 
two groups: GL which contains routines having waiting 
time fraction (WT) less than the average waiting time 
fraction (WTavg) of all test routines and GH which contains 
routines having WT more than WTavg. Then, the two 
groups are sorted in descending order according to the 

execution time (ET) of their routines (WT, WTavg and ET 
values are calculated during test program profiling). 

The second part of the algorithm picks test routines from 
the two groups and iteratively assigns them into threads. 
The long test routines (with the higher ET) are scheduled 
first in order to produce a time-balanced scheduling. When 
a routine that belongs to a resource conflict group (RCG) 
(an RCG contains routines that perform concurrent 
requests to a shared resource) is selected then all the other 
elements of the group are scheduled in parallel. If there are 
routines that can not be scheduled in parallel due to 
resource limitations they are not selected in the current 
loop iteration. For instance, routines SPU1 and SPU2 can 
not be executed in parallel since the co-processor 
implementing the SPU operations supports one 
outstanding SPU operation per core.  

The algorithm satisfies two scheduling criteria: (a) 
routines that generate resource conflicts (belong to a 
resource conflict group, RCG) are executed in parallel; 
and (b) at any time the set of currently executed routines 
(CXR) contains equal number of low-WT and high-WT 
test routines. The first criterion aims to improve the fault 
coverage of the thread-specific control logic and the 
second criterion aims to overlap the “long” waiting 
intervals of the half routines with the “running” intervals 
of the other half routines. The algorithm output is k sets 
SRth1, SRth2, … SRthk that contain the routines scheduled to 
each thread. 

4. Experimental Results 
We applied the proposed scheduling algorithm to the test 
routines of functional units of OpenSPARC T1 for the two 
different SBST setups: manufacturing testing and post-
silicon validation. For the purposes of our evaluation, we 
also set up a naïve (straightforward) multithreading 
schedule that assigns routines with the same characteristics 
to the same thread, i.e. routines using the multiplier (SPU 
and Mult), divider routines (Div), short latency operations 
(ALU and Sft) and floating-point operations (FFU and 
FPU). Both the naïve and the proposed multithreading 
schedules are based upon the same requirement: to avoid, 
as much as possible, resource conflicts that degrade test 
program performance. Therefore, naïve approach 
constitutes a fair alternative of the proposed approach. 

We first analyze core-level thread scheduling without 
considering testing of the off-core shared FPU. The 
generated test routine schedules for the two SBST setups 
and the naïve scheduling approach are shown in Table 5. 
Each column includes the test routines scheduled in each 
thread of the core. Notice that the proposed schedules for 
the two SBST setups are different which is due to the 
different results of the test program profiling stage. 
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Figure 5: The proposed core scheduling algorithm  
 
 

1. Inputs: k: number of threads 
2.   Basic core test routines: S = {R1, R2, …, RN} 
3.   Single-threaded test program profiling results: 
4.    ETi: execution time of routine Ri 

5.   WTi: waiting time fraction of routine Ri 
6.   WTavg: average waiting time fraction of all test routines 
7.     Groups of routines causing resource conflicts: RCG1, RCG2, …, RCGM 
8. Restrictions:  Routines cannot be executed concurrently due to limited resources (i.e. SPU1, SPU2) 
9.  
10. Output: Sets of scheduled test routines in k threads: {SRth1, SRth2, … SRthk} 
11.  
12. // Partition routines into two groups:GL (routines with low WT fraction) and GH (routines with high WT fraction) 
13. for i = 1, 2, …, N do 
14.   if WTi < WTavg  insert Ri to GL ; 
15.   else insert Ri to GH ; 
16. end for 
17.  
18. Sort GL and GH in descending order according to ETi  

19.  
20. ETth1, ETth2, … ETthk = 0 ;  // Accumulated execution times of routines assigned to threads 1…k 
21. SRth1, SRth2, … SRthk = Ø ;  // Set of routines scheduled to threads 1…k  
22. CXR = Ø ;     // Set of currently executed routines by all k threads 
23.  
24. while (GL, GH not empty) do 
25.   select thread j with shortest ETthj;  
26.   remove the last routine of SRthj from CXR ; // The last routine has been completed 
27.   
28.  // Picks up a routine from GH or GL and assigns it to thread j 
29.   if (GH empty) OR (# of routines in CXR with low WT < # of routines in CXR with high WT) then 
30.    select the longest routine Ri from GL that does not have restriction with any routine of CXR ; 
31.    remove Ri from GL ; 
32.   end if 
33.   if (GL empty) OR (# of routines in CXR with low WT ≥ # of routines in CXR with high WT) then 
34.    select the longest routine Ri from GH that does not have restriction with any routine of CXR ; 
35.    remove Ri from GH ; 
36.   end if 
37.   insert Ri to SRthj ; 
38.   insert Ri to CXR ; 
39.   
40.  // Schedules in parallel all routines having resource conflicts with Ri 
41.   if Ri belongs to an RCGm then  
42.    remove Ri from RCGm ; 
43.    while (RCGm not empty) do 
44.    select thread j with shortest ETthj ; 
45.   remove the last routine of SRthj from CXR ; 
46.   select next longest routine Ri from RCGm ; 
47.   remove Ri from RCGm; 
48.   remove Ri from its group (GL or GH) ; 
49.    insert Ri to SRthj ; 
50.    insert Ri to CXR ; 
51.    end while 
52.   end if  
53. end while 
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Thread 0 Thread 1 Thread 2 Thread 3 

Naïve 
scheduling 

SPU1 
SPU2 
Mult1  
Mult2 

Div1 

Div2 
ALU 
Sft 

FFU1 
FFU2 

Manufacturing Testing 
Thread 0 Thread 1 Thread 2 Thread 3 

ALU Div1 
Mult2 
FFU1 

Div2 
SPU2 

SPU1 

Mult1 
FFU2 
Sft 

Post-silicon validation 
Thread 0 Thread 1 Thread 2 Thread 3 

Proposed 
scheduling 

ALU 
FFU2 

Div1 

SPU2 
Mult2 

Div2 
FFU1 

Mult1 

SPU1 

Sft 

Table 5: Schedules of core test routines 

In Table 6 we compare the proposed multithreaded 
scheduling with the single-threaded and naïve scheduling 
approaches in terms of execution time and stuck-at fault 
coverage of the thread-switch logic (recall that the 
coverage for the functional units is in all cases more than 
91% – see Table 1 – since the coverage does not depend 
on the multithreaded execution). The speedup of the 
multithreaded approach is calculated against the test 
execution time of the single-threaded execution. The 
speedup obtained by the proposed multithreaded 
scheduling is up to 3.6X, very close to the ideal theoretical 
4X speedup, which means that it exploits the TLP very 
efficiently, using only easy-to-obtain runtime statistics 
from the single-threaded execution and avoiding time 
consuming simulations. Compared with the naive 
scheduling (that achieves a speedup only up to 2.5X), our 
methodology reduces the test time by 33%. 

 
Single 

threaded 
Naïve 

scheduling 
Proposed 

scheduling 
 Manuf. Post-si Manuf. Post-si Manuf. Post-si 

Execution 
time  

(K cycles) 
153.0 266.4 69.2 107.5 46.1 73.6 

Speedup – – 2.2 2.5 3.3 3.6 

FC (%) 32.6 33.5 67.6 68.3 75.5 77.2 

Table 6: Comparison of core level scheduling approaches (FC: 
Fault coverage of thread switch logic) 

Furthermore, the proposed scheduling does not reduce the 
fault coverage of thread-specific control logic of the core 
but on the contrary (due to the elaborate routines 
scheduling algorithm) it improves it up to about 10% 
compared with the naïve scheduling, thus achieving an 
excellent tradeoff between speedup and fault coverage. 
From this point onward, we include the testing of the 
control part of the off-core shared FPU (recall that the 
coverage for the FP adder, multiplier and divider is more 
than 92% – see Table 2) in our scheduling. In naïve 

scheduling the FPU routine is split into 8 subroutines 
(FPUi/8) which are executed by thread 3 of each core 
shown in bold in Table 7. In our approach the FPU test 
routine is split into 32 time-balanced subroutines (FPUi/32) 
which are executed by all four threads of each core before 
the basic core test routines: all 32 threads of the 
architecture are occupied to execute in parallel the FPU 
subroutines. Note that Table 7 presents only the schedules 
of processor core 0 for the naïve approach and our 
proposed approach for manufacturing testing and post-
silicon validation. The schedules for all processor cores 
are similarly produced scheduling the corresponding FPU 
subroutines before the core test routines. 

Thread 0 Thread 1 Thread 2 Thread 3 

Naïve 
scheduling 

SPU1 
SPU2 
Mult1 

Mult2 

Div1 
Div2 

ALU 
Sft 

FFU1 
FFU2 

FPU1/8 

Manufacturing Testing 
Thread 0 Thread 1 Thread 2 Thread 3 
FPU1/32 

ALU 
FPU2/32 

Div1 
Mult2 
FFU1 

FPU3/32 

Div2 
SPU2 

FPU4/32 

SPU1 

Mult1 
FFU2 
Sft 

Post-silicon Validation 
Thread 0 Thread 1 Thread 2 Thread 3 

Proposed 
Scheduling 

FPU1/32 
ALU 
FFU2 

FPU2/32 
Div1 

SPU2 
Mult2 

FPU3/32 
Div2 

FFU1  
Mult1 

FPU4/32 

SPU1 

Sft 

Table 7: Schedules of test routines at processor level 

Table 8 summarizes test execution time of single-threaded, 
naïve scheduling and proposed scheduling approaches and 
the speedup achieved by the multithreaded approaches 
over the single-threaded one. Compared with the naïve 
scheduling, the proposed scheduling reduces the test 
execution time of the entire processor by up to 20%. 

 Single 
threaded 

Naïve 
scheduling 

Proposed 
scheduling 

 Manuf. Post-si Manuf. Post-si Manuf. Post-si 
Execution

time  
(K cycles)

2753.7 3167.3 592.4 662.6 492.5 531.1 

Speedup – – 4.6 4.8 5.6 6.0 

Table 8: Comparison of scheduling approaches incl. FPU  

Finally, Table 9 presents the fault coverage for the 
complete targeted logic (about 1.5M gates of logic) of the 
OpenSPARC T1, which includes all the integer functional 
units and the on-core control logic (thread-switch logic 
and integer pipeline control logic) of all eight CPU cores, 
the off-core shared FPU (including the execution units and 
the thread-specific control logic) and also the 
interconnection network (this is not explicitly targeted by 
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test routines). The total fault coverage for all functional 
units (both integer and floating-point) is 91.3%, while the 
total fault coverage for the entire processor is 88.6%. 
Despite its shorter execution time, the proposed approach 
achieves higher fault coverage compared with naïve. 

Fault coverage (stuck-at %) 
Components 

Gate 
count  

(K gates) 
Single 

threaded 
Naïve 

Scheduling 
Proposed 

scheduling

IFUs 8 × 112.8 91.2 91.2 91.2 
Core (x8) 

CCL 8 × 28.4 62.2 71.8 82.8 

FPU 115.8 90.0 92.0 92.3 
Off-core 

INN 259.5 14.9 79.9 82.7 

Total (FUs) 1018.2 91.0 91.2 91.3 

Total 
(Processor) 1504.9 73.6 86.3 88.6 

Table 9: Fault coverage (IFUs: Integer Functional Units, FPU: 
Floating-Point Unit, CCL: Core Control Logic, INN: 
INterconnection Network, FUs: Functional Units of processor) 

5. Conclusions 
In this paper, we present the application of SBST in 
multithreaded, multicore architectures. The proposed MT-
SBST methodology leverages the existing thread-level 
parallelism (TLP) for test optimization. We analyze the 
impact of multithreaded test execution on fault coverage 
and propose a flexible methodology to speedup test 
execution time by exploiting execution parallelism without 
reducing the fault coverage of the control logic (but on the 
contrary improving it). Comprehensive experiments on 
OpenSPARC T1 demonstrate that our methodology speeds 
up the test time of a 4-threaded core by 3.3 and 3.6 times 
for manufacturing testing and post-silicon validation, 
respectively. Compared with a straightforward 
multithreaded scheduling the proposed methodology 
achieves significant time reduction, 33% at the core-level 
and 20% at the processor-level. Overall, our methodology 
guarantees high fault coverage, more than 91% fault 
coverage for the functional units and more than 88% for 
the entire OpenSPARC T1 processor logic (more than 
1.5M gates of logic). 
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