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Now Faithful play the Man, speak for thy God:

Fear not the wicked’s malice, nor their rod:

Speak boldly man, the Truth is on thy side;

Die for it, and to Life in triumph ride.
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Abstract

We propose a self-commissioning, user-adaptive blinds and electric lighting controller for
small office rooms. Self-commissioning, in this context, means that the controller builds an
internal representation of the room, in particular of the room’s daylighting characteristics,
automatically and without user input. By user-adaptive, we mean that the illuminances the
controller will seek to maintain are derived from a statistical analysis of the user’s behaviour
on the manually overridable blinds and electric lighting.

Self-commission and user-adaptation are implemented by two decoupled software elements.
The first element is a method for modeling the daylighting illuminance on arbitrary locations

in the office room, when the windows are shaded by one or two venetian blinds (though the
method can be generalized to an arbitrary number and kinds of window shadings). It uses the
past history of illuminance distributions in the office room for a similar scene configuration,
and models the current illuminance on a given point as a linear combination of outdoor global
and diffuse irradiance.

The second element is an algorithm for the estimation of the user’s visual discomfort prob-
ability. It is a function of the current illuminance distribution in that office room, and of
the past history of the user’s interactions with the blinds’ and lighting controls. A bayesian
formalism is applied to infer the probability that any illuminance distribution should be con-
sidered by the user as visually uncomfortable.

We describe how these elements have been integrated in a blinds and electric lighting
controller. That controller runs today on an office room of the experimental LESO building
and we present the results of the algorithm’s adaptation to the preferences of that room’s
user.

We have also assessed that controller’s performance on computer-simulated virtual office
rooms. We have let the controller run for one year simulated time on six different combinations
of office room location (Rome and Brussels) and orientation (north, west and south). These
simulations have let us evaluate the energy savings made possible with such a controller, and
the improvement of the user’s visual comfort.

Keywords: Bayes’s theorem, daylighting controller, user adaptation, self-commissioning,
smart buildings, embedded controller, non-parametric density estimation, linear daylighting
model.
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Résumé

Nous proposons un système de commande automatique de stores vénitiens et de l’éclairage
électrique pour des bureaux individuels. Ce système s’adapte, d’une part, aux caractéris-
tiques lumineuses du bureau concerné; et d’autre part, aux préférences de l’utilisateur, en
choisissant des niveaux d’éclairement en fonction d’une analyse statistique du comportement
de l’utilisateur sur les commandes mises à sa disposition.

Deux modules logiciels découplés permettent la double adaptation aux caractéristiques du
bureau et aux préférences de l’utilisateur.

Nous décrivons ces deux modules qui constituent ce système de commande. Dans un
premier temps nous décrivons une méthode de prédiction de l’éclairement naturel sur des
points arbitraires dans un bureau, pour des fenêtres munies d’un ou deux stores vénitiens (la
méthode se généralise facilement à un nombre arbitraire de protections solaires). La méthode
consiste à considérer l’éclairement en un point donné, et pour une configuration de scène
donnée, comme une combinaison linéaire de l’irradiance globale et diffuse extérieure.

Dans un deuxième temps, nous décrivons un algorithme pour l’estimation de la probabilité
d’inconfort visuel de l’utilisateur. Fonction de la distribution de l’éclairement dans la pièce,
la méthode utilise le formalisme bayesien pour analyser les situations ayant par le passé
provoqué une intervention manuelle de l’utilisateur sur ses stores ou l’éclairage électrique.
De cette analyse, une probabilité d’inconfort visuel peut être dérivée pour toute distribution
d’éclairement.

Ces deux éléments ont été intégrés dans un régulateur de stores vénitiens et d’éclairage
artificiel. Ce régulateur commande aujourd’hui les stores et l’éclairage dans un bureau du
bâtiment experimental LESO. Nous présentons le résultat de l’adaptation de ce régulateur
aux préférences de l’occupant de ce bureau.

Nous avons évalué les performances énergétiques de ce système par simulations informa-
tiques. Six combinaisons de bureaux, à savoir deux emplacements (Rome et Bruxelles) et
trois orientations (nord, ouest et sud), ont été simulées en présence du régulateur. Ces sim-
ulations ont permis d’évaluer les économies d’énergie possibles avec notre système, ainsi que
les améliorations du confort visuel.

Mots-clés: Théorème de Bayes, commande de l’éclairage naturel, adaptation à l’utilisateur,
mise en service automatique, commande embarquée, estimation non-paramétrique de densité,
modèle linéaire d’éclairage naturel.
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Foreword

I’ve been told that when people finish their doctoral
studies, they rarely are neutral about their topic.
Some are sick of the topic and quickly move on to
something else. Others remain enthusiastic about
the topic. I was in the latter camp.

(Martin Fowler)

To paraphrase Tolkien, this work grew in the writing.
What we initially thought would be a trivial modification of existing blinds control algo-

rithms to handle an arbitrary number of venetian blinds ended up as a very different beast.
A log entry on 17 September 2003, in the first of four logbooks filled during this work, records
the first tentative explorations of a bayesian analysis of user behaviour—what ended up as
the core of this thesis and a published paper.

By the time I wrote my thesis research plan in May 2003, it was clear our bayesian con-
troller would need a companion software module for modeling daylighting illuminance from
an arbitrary number of venetian blinds. At the time we still thought it would be possible to
measure in-situ the daylight coefficients for an arbitrary office room. The simplicity and ro-
bustness of the daylighting model that was eventually developed—at that time, a polynomial
model in the outdoor global irradiance—took us by surprise.

A further twist came, according to my logbooks, in February 2006 when our partners
insisted that the outdoor diffuse irradiance be“somehow”taken into account in the daylighting
model. I initially resisted this idea, until it became clear that it would lead to a linear
daylighting model instead of a polynomial one—something nobody had anticipated.

Serendipity is defined by the American Heritage Dictionary as the faculty of making fortu-
nate discoveries by accident. Serendipity has characterized much of this work—the previous
existence of vast data archives on which to test the bayesian model, the unforeseen benefits
of including the diffuse outdoor irradiance in the daylighting model—but never as much as
when we decided to build a simulation framework for testing the controller. Accidental de-
sign decisions made years before I joined LESO-PB made it possible to develop a simulation
framework in mere weeks—the first tests started in July 2006. It is unclear whether this thesis
would have been possible without this tool.

What you read today is far removed from what I wrote three years ago in my thesis research
plan, a mandatory three-year plan that EPFL requires of all doctoral students after one year
of enrollment. With the benefit of hindsight, any research plan that stretches out more than
one year—or even one month—into the future should be eyed with skepticism. Research that
proceeds according to plan for three years, without surprises or accidental discoveries, was
probably not worth doing in the first place. A mandatory research plan was introduced by
EPFL in 2003, and I hope this first batch of doctoral graduates (of which I am part) will
provide enough constructive feedback to amend this regulation. But I digress.

The following people have each contributed in their way to this work and I would like to
thank them:
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Foreword

Prof Jean-Louis Scartezzini and Dr Nicolas Morel, my thesis advisors, for granting me
enough freedom and independence to pursue this research,

Dr Antoine Guillemin, my predecessor at LESO-PB, for his patience and efforts to
ensure I could take over his work seamlessly,

Jessen Page, with whom I had the pleasure to share my office room for the last two
years, and with whom I have had many an interesting and enlightening discussion
(not to mention fine chess games),

The collaborators on the Ecco-build project, during which most of the ideas presented
in this work germinated, in particular Christophe Marty, Dr Sif Khénioui, Dr Marc
Fontoynont, Jan Wienold, Tilmann Kuhn and Dr Jens Christoffersen,

Dr Darren Robinson and Lee Ann Nicol, for patiently proof-reading two of my early
papers. It was Lee who first brought to my attention the virtues of non-sexist writing,

Irmeli Svendsen and my beloved Christine, who have patiently proof-read the “un-
technical” parts of this manuscript and given me the precious opinion of laypersons,

The support staff of the LESO-PB: Laurent Deschamps, Pierre Loesch, Suzanne Lep-
lattenier, Sylvette Renfer and Barbara Smith, each of whom I have at some point or
another pestered with completely unreasonable requests,

Dr Arne Kovac, who helped me solve problems in his implementation of the taut-string
algorithm,

Dr Sylvain Sardy, who provided me with numerous advice with some of the most
mathematically tricky questions,

Dr Paul Murrel, who showed me how to embed Computer Modern fonts in plots
produced by R,

Yannick Wurm, for his clarifications on some biological aspects of visual comfort,

Malcolm Reynolds, whose witticisms made the last months spent writing this manuscript
lighter to bear,

The Swiss Federal Office of Education and Research for funding this work,

All the programmers and engineers who have contributed the open source software
without which this work would have been impossible, in particular the Free Software
Foundation, the R Foundation for Statistical Computing, the Linux Project, Richard
Stallmann, Prof Donald E. Knuth and Dr Leslie Lamport,

All the good people at LESO-PB, too numerous to list here in full, who all contributed
to a warm and friendly atmosphere,

and last, but far from least, all my gratitude to Christine, who encouraged me to
embark on this journey. Thank you for your optimism and your patience. I love you,
Christine, and apologize for all the evenings you had to spend alone.
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1 Results summary

Where there are so many, all speech becomes a
debate without end. But two together may perhaps
find wisdom.

(J. R. R. Tolkien, The Fellowship of the Ring)

Bayesian statistics—the same formalism driving most modern spam filters—can be used to
build better automatic building management systems.

When you receive unwanted spam in your inbox, chances are your email program provides
a button that lets you send that spam to a junk folder. Your other messages are assumed
by the program to be normal email. A module in your email program then silently runs a
statistical analysis, both on your junk email and on your normal email, in order to improve
its capacity to classify directly incoming email as spam or ham.

We have built an integrated venetian blinds and electric lighting control system that runs
according to the similar principles. When a office room user is sufficiently disturbed by
insufficient lighting or glare to act on the blinds or electric lighting controls at their disposal,
our system learns that the visual environment before that reaction was visually uncomfortable.
Similarly, the environment after adjustment by the user is learned by the system as being
supposedly comfortable.

Bayesian statistics are used by our controller to analyze this data, and to estimate in
advance the probability that any scene configuration will be visually uncomfortable. At
regular intervals, our controller uses its internal daylighting model of the controlled office
room to calculate whether the visual discomfort probability could be reduced by adjusting
the venetian blinds or the electric lighting. If that probability can be significantly reduced by
adjusting the blinds or the electric lighting, then the appropriate commands are sent to the
blinds and lighting actuators.

We have also installed our controller on an occupied office room of the LESO experimental
building. Our controller has learned from the behaviour of that room’s occupant his visual
preferences, and uses that data to control the venetian blinds and the electric lighting in an
optimal way—both from the user’s point of view and from an energetic point of view.

Provided the user’s visual discomfort probability is kept reasonably small, the controller
also optimizes the use of free solar gains in order to reduce the office room’s heating or cooling
loads.

Computer simulations have shown that compared with a manual operation, our controller
achieves, on average:

� 60% energy savings on electric lighting,

� up to 35% energy savings on heating/cooling, but with a strong dependency on office
location and orientation,

� between 11% and 40% energy savings on the total energy demand,

1



1 Results summary

� a drop on the yearly average visual discomfort probability from 0.44 to 0.33.

The controller running on the real, occupied LESO office room has resulted in a reduction
by half of the rate of user interactions, suggesting the system was accepted by that user.

Throughout this work we have tried to keep in mind a possible industrial implementation
of the ideas underlying our controller. The latter was implemented in a popular programming
language, available on many embedded platforms. And the building automation system of
the LESO building is not custom-built, but commercially available. Our controller software
is ready to be deployed on any platform. We have tried to make the technology developed in
this work readily transferable to the industry, and believe it is.

2



2 The need for integrated daylighting
controllers in modern buildings

The traditional way to begin talking about
something is to outline the history, broad principles
and the like. When someone does that at a
conference, I get slightly sleepy. My mind starts
wandering with a low-priority background process
that polls the speaker until he or she gives an
example. The examples wake me up because it is
with examples that I can see what is going on. With
principles it is too easy to make generalizations, too
hard to figure out how to apply things. An example
helps make things clear.

(Martin Fowler)

In this chapter we will ask ourselves why an integrated daylighting and electric lighting
controller (herafter “daylighting controller”) is needed in today’s buildings, and what require-
ments it must fulfill. In section 2.1 we begin by reviewing the important contribution to
carbon emissions from the buildings sector. Section 2.2 will review why manual control is
not sufficient to achieve a correct management of daylighting. Section 2.3 is a brief review
of the recently acknowledged health benefits of daylight. In section 2.4 we will explore the
current state-of-the-art in estimating or evaluating visual discomfort. Section 2.5 will review
the current legislative efforts to standardize lighting conditions in office rooms, and to regu-
late the energy consumption of buildings. Section 2.6 will highlight the need for an adaptive
daylighting controller because of the statistical nature of most visual discomfort indices. We
will discuss in section 2.7 the difficulties in modeling the daylighting illuminance in an office
room equipped with venetian blinds, a very common situation in modern buildings. Section
2.8 will review recently proposed advanced daylighting control systems and the philosophies
driving them. Finally in section 2.9 we will briefly summarize the requirements of the control
algorithm that we are going to develop, implement and test in this work.

2.1 Global warming and carbon emissions

My entirely unscientific impression of the recent
weather is not just that it’s getting hotter—it’s
getting weirder.

(Slashdot)

On 7 December 2006 a 20 m wide tornado, rated 1–2 out of 6 on the Fujita scale, damaged
150 homes and hurt 6 people in Kensal Rise, in the north-west of London (see Figures 2.1
and 2.2). Tornadoes by themselves are not rare sights in the UK—the British Isles are hit

3



2 The need for integrated daylighting controllers in modern buildings

Figure 2.1: The Kensal Rise tornado.

Figure 2.2: The damage caused by the Kensal Rise tornado.

by as many as 40 tornadoes each year—but this was the first time since December 1954 that
the capital itself had been hit with such damage. Neither was this the first freak tornado to
hit the UK in recent years—a year earlier, in July 2005, a tornado rated 3–4 on the Fujita
scale, the worst in 25 years, hit Birmingham and caused devastating damage to homes and
businesses.

The public’s memory has not yet forgotten the extreme weather events of the past five
years: the 2002 floods in eastern european countries; the 2003 heat wave, which killed more
than 14 000 people in France alone; the 2005 floods in Lucerne, Switzerland; and the 2005
hurricane season, from which New Orleans has not recovered yet. The twentieth century has
been the warmest of its millenium, the 1990s have been their century’s warmest decade and
1998 has been the warmest year of the millenium in the northern hemisphere. Eleven of the
last twelve years rank among the twelve warmest years in the instrumental record of global
surface temperatures.

Global warming—the slow but steady increase of Earth’s global temperature—is believed
today to pose a grave danger to the stability of our environment, if it continues or (as some
scenarios suggest) accelerates. Although it is difficult to directly relate global warming with
the extreme weather events described above, the evidence suggests that more such events are
to be expected if nothing is done to mitigate the climate change.

The global temperature, a weighted average of land, air and sea surface temperatures, has
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Figure 2.3: Global temperatures 1850–2004, from Jones and Salmon (2006). The solid line is
a smoothed curve.

been instrumentally measured since 1850. The data is freely available (Jones and Salmon,
2006) and shown in Figure 2.3. Global temperatures have increased by about 0.8 °C in 150
years. A first increase happened between 1910 and 1945, and a second one from 1975 to this
day.

Not all parts of the world have warmed at the same rate. Nor is the temperature increase
equally distributed over the whole year. In Switzerland, for example, winters have become
about 2 °C warmer during the same time, while summers have remained stable (Bader and
Bantle, 2004). This explains why many glaciers in the swiss Alps have either disappeared or
been substantially diminished.

The full mechanism responsible for global warming is not yet understood, but there is little
doubt that a man-made increase of so-called greenhouse gases contributes to it substantially.
The fundamental principles of the greenhouse effect are today very well understood and
uncontroversial. We know that several gases can reflect or trap heat from the Earth that
would otherwise have radiated out into space.

There is nothing bad about this effect—without it, the Earth would be about 33 °C colder
than it is now, making it probably lifeless. But the greenhouse effect becomes a problem when
the concentrations of the greenhouse gases—water vapor, carbon dioxide (CO2), methane
(CH4), nitrous oxide (N2O), CFC gases and ozone (O3)—increase beyond their natural levels.
The International Panel on Climate Change have recently released their Climate Change 2007
report (Alley et al., 2007), which estimates that mankind’s production of carbon dioxide,
methane and nitrous oxide has retained globally an extra 2.30± 0.23 W/m2 of solar radiation
between 1750 and 1998, 70% of which is attributable to CO2 emissions alone (c.f. Figure 2.4).

CO2 is the main contributor to the anthropogenic greenhouse effect and its global emission
is usually taken as proportional to the emission of all other greenhouse gases. Variations in its
output are admitted to accompany corresponding variations in the output of all greenhouse
gases. Its atmospheric concentration is thus usually taken as a proxy for the total contribution
to global warming from greenhouse gases.
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Figure 2.4: Anthropogenic and natural climate forcing, from Alley et al. (2007).

In the 1950s, Professor Roger Revelle, concerned by the global post-World War II economic
expansion, was the first to propose a long term research program that would regularly collect
samples of CO2 atmospheric concentrations. He felt it was important to monitor how human
activities were influencing the delicate chemical balance of our atmosphere.

Under his direction, Keeling and Whorf began in 1958 a series of monthly measurements of
atmospheric CO2 concentrations on Mauna Loa, about 3400m above sea level on the barren
lava field of an active volcano in Hawaii. The site is considered as one of the best sites for
measuring undisturbed CO2 concentrations because of the complete absence of vegetation or
human activities, and influences from volcanic vents can be excluded from the record.

This measurement continued well into the 21st century and is today the longest continuous
record of CO2 concentrations available in the world. The measurements are freely available
(Keeling and Whorf, 2005) and are shown in Figure 2.5.

Cleveland (1993) uses this data as an example of an exhaustive graphical data analysis in
his classic Visualizing Data. The yearly oscillations in CO2 concentrations are normal and
are the signs of a healthy, breathing planet. There is much more landmass in the northern
hemisphere, hence more forest, which absorbs the CO2 during its growing season.

But the main growing trend of about 5% per decade is very worrying. The current CO2

levels are higher than they have been for 100 000 years (Petit et al., 1999), and there is no
doubt that most of this increase results from human activities.

Anthropogenic greenhouse gases are believed to have contributed to most of the observed
recent global warming. This view is summarized in the last IPCC report (Alley et al., 2007):

Most of the observed increase in globally averaged temperatures since the mid-20th
century is very likely due to the observed increase in anthropogenic greenhouse
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Figure 2.5: Atmospheric CO2 concentrations, from Keeling and Whorf (2005).
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gas concentrations. (italics in text)

Similarly, a National Academy of Sciences Commitee on the Science of Climate Change
report (NAS-2001) finds that:

The IPCC’s conclusion that most of the observed warming of the last 50 years is
likely to have been due to the increase in greenhouse gas concentrations accurately
reflects the current thinking of the scientific community on this issue.

Oreskes (2004) has conducted a survey of 928 peer-reviewed papers on the topic of “climate
change” and found that 75% of these agreed with this consensus view, 25% expressed no
opinion, and none disagreed. Neither does Lomborg, author of The Skeptical Environmentalist
(Lomborg, 2001), disagree with this consensus view, although he is critical of the way the
consequences of global warming have been modeled. No peer-reviewed published scientific
work disagrees that human activities are the cause of most of the global warming, and we
could find no scientific publication that did not agree that if CO2 concentration were allowed
to continue rising, the atmospheric temperatures will eventually rise, causing the polar ice
caps to melt, the coastal areas of the continents to flood and the overall global climate to
change dramatically.

Skeptics rightfully wonder whether the increase in CO2 concentrations might not be part
of a natural cycle of a shorter period than the geological timescales observed by Petit et al.
(1999), but longer than the one for which we have monthly instrumental readings. Robertson
et al. (2001) provides such measurments from the analysis of CO2 concentrations in air bubbles
trapped in ice cores. The data is publicly available and plotted in Figure 2.6, which shows
how atmospheric concentrations of CO2 have evolved in the last 500 years. It has been stable
between 1500 until the beginning of the industrial revolution around 1850. A drop is suggested
between 1600 and 1750, which would coincide suspiciously with the Little Ice Age. But since
1850 the increase in CO2 concentrations has exploded, reaching levels that have not been seen
in 500 years, nor indeed in 100 000 years. The current rise in CO2 concentration levels thus
coincides with the explosion of industrial activity (and CO2 emissions) that started with the
industrial revolution.

Switzerland alone emitted, in 2004, 44.55 millions of tons of CO2, or almost 6 tons per
capita. At standard pressure and temperature, this is more than 3 million liters per inhabitant,
the approximate volume of a typical hot-air balloon1.

Such compelling evidence, and the most elementary prudence, demands that we seek and
implement solutions to limit and decrease our emission of greenhouse gases. Broadly speaking,
there are two ways to accomplish this. The first, most comfortable, and most tempting
solution, is to look for alternative, cleaner energy sources that do not emit greenhouse gases.
This solution will, however, treat only the current symptoms instead of curing our disease.
Our fundamental problem is not our energy sources—it is the use we make of them. We are
addicted to energy, not oil. Human activities have emitted greenhouse gases since the dawn
of mankind, and plentiful oil has discouraged any rational use of that energy. Switching to a
carbon-neutral, plentiful, sustainable energy source is a laudable goal but not the best one.

The second, and, we believe, best solution, is to rationalize our current energy consumption.
We can try to limit our energy consumption, or reduce it by making it more efficient. This is
one of the driving ideas behind this work.

1The molar mass of CO2 is 44 g/mol. A perfect gas’s volume is 22.4 L/mol. Switzerland has 7.5 million
inhabitants. The volume of a typical hot-air balloon is 2500 m3.
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Figure 2.6: CO2 concentrations for the last 500 years, from Robertson et al. (2001)
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According to the International Energy Agency (IEA-2007), the energy demand in 2004 of
the “Residential” and “Commercial and Public Services” sectors of the OECD european coun-
tries was 461 984 thousands of tonnes of oil equivalent (ktoe), out of a total of 1 333 497 ktoe2.
These sectors use therefore about 35% of our energy (against 23% in 1991, c.f. Schipper et al.
1996), most of which is used for heating, cooling and lighting our buildings. Countries whose
energy supply depends on fossil fuels should therefore reduce the energy demands of their
buildings not only for economic reasons, but for environmental reasons too3.

The energy demands of buildings can be reduced through many different technologies. Inex-
pensive measures include weatherstripping, caulking, and insulating walls, floors and ceilings.
According to Cunningham and Saigo (1995), prototype buildings have achieved up to 94%
energy savings compared to the market average, and 83% compared to the most efficient
building on the market. Zero-energy buildings, i.e. buildings that produce more energy than
they use, are today technologically possible—the Pearl River Tower, currently under construc-
tion in Guangzhou in China, will be one of the world’s first zero-energy skyscrapers when it
is finished in 2009 (WIKI-PRT). In this work, we will not deal with changes to a building’s
infrastructure but instead focus on how a building’s operation can be improved to make more
efficient use of daylight.

According to the IESNA Lighting Handbook (Rea, 2000, p. 26-1), 20–25% of all electricity
in US buildings, or 5% of the national energy consumption, is used for lighting. The heat
generated by this same lighting represents between 15–20% of a building’s cooling load. It
makes therefore sense to develop control algorithms for building management systems that
minimize the use of energy for lighting.

The Handbook quotes field studies (Rea, 1984a) according to which 40% energy savings
are possible with elementary control systems, such as predictable scheduling where lighting
elements are connected to timers. Unpredictable scheduling (i.e., that relies on occupancy
sensors) has achieved up to 60% savings in some areas, and in extreme cases (Rubinstein
et al., 1984) up to 80% savings on lighting energy.

The dynamic range of daylight is about five times that of electric lighting, and architects and
contractors have extensively used daylight since almost two decades to replace or supplement
electric lighting. Daylight not only provides illuminance to the building occupants instead
of electric lighting, but an optimal usage of the building’s solar shading devices can help
reduce the energy demand for heating in winter and the cooling load in summer. Studies
(Guillemin, 2003) have shown that state-of-the-art integrated control algorithms can reduce
the overall energy consumption (lighting and heating) of a non-residential building by about
25%. Nevertheless, the instantaneous daylighting illuminance can be more than twice or less
than half the mean design values according to Rea (2000), so great care must be taken when
designing a blinds control system.

2The world consumes today about one cubic mile of oil (CMO) yearly, and Goldstein and Sweet (2007) argue
we should normalize all energy units to that quantity. The density of oil is about 920 kg/m3 and one cubic
mile is 4.17 cubic kilometers, so we would therefore say that the OECD countries use 0.12 CMO per year
on these sectors, out of 0.35 CMO. 0.12 CMO is enough oil to cover Switzerland with a 1.2 cm thick layer
of oil.

3Switzerland’s electricity, about 23% of that country’s final energy use, is almost entirely produced by carbon-
neutral dams and nuclear plants. But electricity powers the cooling and lighting of most buildings, whereas
their heating is powered by fossil fuels. Switzerland should therefore concentrate on achieving savings on
heating energy, rather than on cooling or lighting.
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2.2 Inadequacies of manual blinds control

That which is common to the greatest number has
the least care bestowed upon it. Every one thinks
chiefly of his own, hardly at all of the common
interest; and only when he is himself concerned as an
individual.

(Aristotle)

If an intensive use of daylight can help reduce the energy bill of the buildings sector and pro-
vide a pleasant environment to the occupants, why not let the occupants themselves manage
their shading devices?

The problem with completely manual blinds and electric lighting controls is that we humans
are fundamentally lazy. Or to put it in a less unfavorable way: we don’t mind small levels of
discomfort, especially if the alternative is to continuously adjust a shading device.

To ask building occupants to manage their shading devices in a continuous, optimal way
is unrealistic. But one might hope, at least, that the occupants’ behaviour towards their
blinds show some degree of rationality and that energy savings can still be obtained. This
is, unfortunately, not the case for the majority of building users, as has been reported in the
scientific literature.

Sutter et al. (2006) have recently monitored the use of venetian blinds in eight offices over
30 weeks, measuring the settings of the blinds every 15 min. Their data helped them validate
or invalidate certain hypotheses on the manual use of shading devices. From their study, we
should note the following:

� The use of shading devices is consistent, i.e. similar conditions cause similar usage
patterns.

� The use of shading devices depends on how easily accessible the controls are, and their
type (manual or motorized). Motorized venetian blinds were used three times more
often than manual fabric blinds. A previous study had found that manual fabric blinds
were used as little as once per month(!) (Paule, 2006).

� Most of the time, the venetian blinds are either fully retracted or fully closed. Whether
this is influenced by the type or placement of the blinds’ controls is not discussed by the
authors. In our building, once motorized blinds start moving, they will not stop until
the user presses the button again.

� There is hysteresis in the use of the blinds. The window luminance, or the indoor
illuminance, at which the users raise their blinds are not the same at which they lower
them again.

Although the manner in which the users use their blinds is consistent, these points suggest
that it is not optimal. From everyday’s experience we know that nobody will adjust their
blinds regularly but will only do so once a certain threshold of discomfort is reached. The
position of this threshold might even depend on the type and placement of the blinds’ controls.
In addition, few people consciously adjust their blinds before leaving their office to optimize
the use or rejection of solar gains. This has been confirmed by Galasiu and Veitch (2006)
in a literature review, in which they found that people tend to set their shading devices in
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a conscious and consistent way—though not necessarily rational—and to forget about them.
“Conscious”, in this sense, means the users know why they are adjusting their blinds, while
“consistent”means that similar external stimuli will yield similar manual blinds’ settings. This
was already pointed out by Rea (1984b). Indeed Galasiu and Veitch recommend that more
research projects be carried out to help us understand exactly how the user’s preferences are
distributed as a function of external stimuli.

2.3 Health benefits of daylight

Daylight makes the hills and valleys stand out like
the folds of a garment, clear as the imprint of a seal
on clay.

(Job 38:14)

Solar radiation can warm buildings in winter and save back-up energy, but has also recently
been shown to have measurable health benefits.

Retinal ganglion cells were discovered in 2002, a previously unknown connection between
the eye and the circadian pacemaker in the mammal brain that drives daily wake-sleep cycles
and certian hormonal levels (Berson et al., 2002).

Webb (2006) reviewed recently the non-visual effects of light on the human body, and
describes how the current bias towards visible light might affect us physiologically. Blue light
is known to affect the circadian rythm, mood and even behaviour. Skin exposure to ultraviolet
light causes vitamin D synthesis, and exposure to strong white light is regularly prescribed to
treat Seasonal Affective Disorder, whose sufferers experience depressive symptoms in winter.

In Galasiu and Veitch (2006) we read that there is evidence from Begemann et al. (1997)
that the physiological need for lighting might even vary over the course of the day, in response
to the circadian rythm. They note also that keeping a constant horizontal workplane illu-
minance might not be optimal. Recent research suggests that human bodies need a lighting
environment as close as possible to the natural daily cycle.

These researchers, and many others, suggest that any building construction code or building
lighting design based solely on a specification of maintained illuminances fails to satisfy the
spectral requirements of the human body. The development of a daylighting control system
that would take these needs into account is a research project in its own right, but the present
work was started before these effects were understood and our controller will not use these
findings.

2.4 Difficulties in defining visual comfort

One measures a circle beginning anywhere.

(Charles Fort)

2.4.1 Early ergonomical studies

Many disciplines that we call sciences in modern times started out as arts or crafts, i.e. as sets
of rules or general know-how that was known to work without really understanding how or
why. Shipbuilding, for instance, was until a few centuries ago not an exact science but relied
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entirely on the shipbuilder’s experience and prior work—or lack thereof. The Vasa swedish
ship of the line was the most powerful ship of the world when launched from Stockholm on
10 August 1628—until it capsized and sank, less than 1000 m into her maiden voyage. Its
complete design was in the head of the shipwright, based on shifting specifications given by
the King. Now that shipbuilding has become a science, we know that if the ship’s center of
gravity had been about 10 cm lower it would have remained afloat.

Almost no discipline related to human welfare can today be called an exact science. Med-
ical science is probably the most scientific-like of such disciplines, having also evolved from
empirical roots, but remains even today a science that relies heavily on probabilities and
statistics.

Our eyes are not optimally adapted to life indoors, to its short distances, and in particular
to its relatively low illuminances. The lighting in most of our modern workplaces, be they
factories, hospitals, offices, shops or workshops, is unnatural and unsuitable for our natural
condition. Understanding what makes an environment visually pleasant and healthy must
therefore be regarded as a difficult, inexact discipline that has immensely benefited from
science but that is still far from being completely consolidated.

There is no formal, universally accepted way of quantifying visual comfort. If there was
one, whose inputs were readily measurable quantities, a daylighting controller could be built
provided one knew how to control those quantities. We will discuss the most popular proposals
currently used in buildings codes in section 2.4.3 but first we will review early, more empirical
work on this matter.

Luckiesh and Moss (1937) is one of the earliest works on the topic of visual comfort still
easily available. Their text summarizes research that was carried out during and after World
War I, when it was important to maximize the industrial output from factory workers. The
effect of lighting on productivity was one such parameter that was investigated during that
time.

The authors note that to establish a suitable visual environment one must ask oneself three
questions: 1) What kind of light do we have? 2) How much of it do we have? and 3) What
do we do with it? The first two questions deal with what kind of Light is available, while the
third one deals with what Lighting we are to produce.

Nowadays, the production of light of any quality and quantity is no longer an economic
problem. Until 1880, mankind had to carry out most of its indoor activities with one-candela
light sources, under conditions that would be considered intolerable today4, whereas the cost
of the lighting equipment in a modern building is a small fraction of the overall building’s
cost.

The challenges left to the designer of a lighting control system are therefore to provide
a visual environment that makes human activities possible and comfortable with whatever
lighting is available, while minimizing its energy consumption. In this work we will develop a
controller for a pre-existing installation and there will be no guarantee that the office could
not be lit in a better way, but the visual environment we provide will be the one that makes
the optimal compromise between comfort and energy with the current lighting installation.

A common metric used in lighting prescriptions is the illuminance of the surface where
most of the work is being done. If this task illuminance is constant across the surface, it

4But which unfortunately are still the norm in many countries. Luxtreks (http://www.luxtreks.com) is a
not-for-profit organisation dedicated to donating solar-powered, battery-equipped lighting units to remote
villages in places such as Bolivia, Peru or Tanzania. Their beneficiaries suffer often from lung damages
caused by toxic fumes emitted from their crude ghee lamps (burning clarified butter) or kerosene lamps.
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must fall between two extremes: 1) an illuminance just sufficient for discerning the details
of the work at hand, for the duration of the work; and 2) an illuminance that provides the
easiest perception of the work surface. Any illuminance below this minimum will make the
work impossible while any illuminance above this maximum is a waste of energy (and a risk
of glare).

We might be tempted to search for such an intermediate illuminance, balancing the energetic
cost with the economic cost of having people not work in the easiest and most productive
conditions, but this is impossible in practice. Instead, as we will see, our system will try
to find a practical illuminance (retaining the terminology introduced by Luckiesh and Moss),
that is, an illuminance that still permits productive and healthy work to be done while keeping
energy expenditures low.

It is, of course, slightly ironic to spend so much energy on achieving a given illuminance,
which is something the eye is totally insensitive to. The brightness, or luminance of a surface,
is what is directly perceived by the eye, and depends not only on the surface’s illuminance
but also on its reflectance and specularity. For the relatively diffuse, homogenous surfaces
usually encountered in the workspace we will assume that the luminance of a surface as seen
by the observer is proportional to its illuminance.

Luckiesh and Moss give one of the earliest tables of recommended illuminances for different
tasks. They recommend 20–50 footcandles (fc), or 215–540 lx, for typical office work, i.e.
“moderately critical and prolonged tasks, such as clerical work, ordinary reading [...]”.

They also relate an experiment whereby 82 schoolteachers were asked to adjust the illumi-
nance they deemed necessary for reading black print on white paper for extended periods of
time. The results are shown in Figure 2.7. This experiment illustrates the extreme variations
that can be found from individual to individual (a factor of 100 more illuminance in the
extreme cases) and suggests that global illuminance prescriptions are not sufficient, but that
illuminances should be adjusted for (or by) each individual.

Luckiesh and Moss deal with adequate illuminances but provide little guidance on the
avoidance of excessive lighting levels. At the time their book was written, daylight was not
yet widely incorporated in building design, nor were electric lighting fixtures strong enough
to cause serious glare problems.

Weston (1935, 1945) has studied the relationship between task performance and task il-
luminance, especially above the visibility threshold. He has shown that in general, task
performance increased first rapidly with task illuminance until a point is reached where large
changes in task illuminance have only small effects. It is tempting to conclude that there is
no reason to provide more task illuminance than that required for an efficient execution of the
task—but a task illuminated just enough to carry it out cannot be sustained for prolonged
periods of time. There is more to visual comfort than just the speedy execution of a short
task.

Etienne Grandjean has carried out important research in every aspect of comfort in the
work environment, including visual comfort in the computerized environment. In Ergonomics
in Computerized Offices (Grandjean, 1987) he defines glare as “a gross overloading of the
adaptation processes of the eye, brought about by overexposure of the retina to light.” He
further distinguishes between “relative glare”, caused by “excessive brightness contrasts be-
tween different parts of the visual field”; “absolute glare”, caused by sources so bright that the
eye cannot physiologically adapt to them (e.g. the sun); and “adaptive glare”, a temporary
effect experienced, for instance, when coming out of a dark room into bright daylight.

He recommends that “All important surfaces withing the visual field should be of the same
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Figure 2.7: Preferred illuminance among 82 schoolteachers, from Luckiesh and Moss (1937).
The horizontal scale is logarithmic.
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order of brightness”, and that “The general level of illumination should not fluctuate rapidly
because pupil reaction as well as retinal adaptation is a relatively slow process.” His work is
one of the earliest works recommending spatial and temporal uniformity of luminances in the
field of view, in addition to a suitable range of illuminance and avoidance of glare.

He cites a study of 15 open-plan offices and 519 employees, where a workplane illuminance
of 1000 lx or more resulted in a statistically significant increase in reported eye complaints.
Employees preferred illuminance ranging between 400–850 lx. He points out that it is certainly
not the workplane illuminance itself which was the source of glare. A brightly lit office room
is rather more likely to have problems with reflections, deep shadows and relative glare.

Experiments showing preferred illuminances between 1000–4000 lx should, according to
Grandjean, be eyed with suspicion. Such findings could be artefacts that result from uncare-
fully designed brightly lit backgrounds.

Grandjean recommends that office jobs without visual display terminals (VDT) should be
illuminated by 500–700 lx, with brighter values for elder people. VDT tasks where most of the
time is spent staring at the screen should be given 300 lx. These recommendations, however,
were given at a time when computer screens were black with monochrome display and whose
letters had luminances of 40–50 cd/m2. It is not clear whether these prescriptions are still
valid today.

Refering to general lighting design and placement of luminaires, Grandjean gives the rules
summarized in Table 2.4.1.

Even today, reflections on computer screens are a major cause of discomfort. These should
be avoided, and the single most effective measure one can take according to Grandjean is to
adequately position the screen with respect to lights, windows and other bright surfaces.

He concludes by recommending between 300–500 lx for conversational tasks, i.e. tasks during
which one often glances at the screen, and 500–700 lx otherwise. Again, these values should
probably be revised since the widespread introduction of high-luminance flat screens.

Grandjean is also the author of Fitting the Task to the Man (Grandjean, 1988), whose
chapters 17 (Vision) and 18 (Ergonomic principles of lighting) are of interest to us. These
chapters pick up where his earlier book left off and complement it with more definitions and
prescriptions.

He defines “visual acuity” as the “ability to perceive two lines or points with minimal
intervals as distinct”. Visual acuity is essentially what enables us to carry out our work
efficiently and comfortably. It varies as follows:

1. It increases with the illuminance, plateauing at illuminances above 100 lx.

2. It increases with the contrast between the test symbols (letters on paper or on a screen)
and their immediate background.

3. It is greater for dark symbols on a bright background than the reverse.

4. It decreases with age, down to about 50% at 80 years old.

Since visual acuity does not greatly improve with higher illuminances, Grandjean cautions
again against more than 1000 lx in office spaces and recommends task illuminances in the
500–700 lx range.

Grandjean points out that the German (DIN) and American (IES, 5th ed, 1972) require-
ments for the same tasks are significantly different. The American values are systematically
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2 The need for integrated daylighting controllers in modern buildings

higher. The recommended illuminance for office work are a mere 500 lx in Germany but
1600 lx in the US. This should be taken as anecdotal evidence that official lighting recom-
mendations do not depend only on genuine ergonomic principles, but also on political and
economical ones, such as the price of energy.

Fitting the Task to the Man concludes with design rules with respect to daylight, that we
have also summarized in Table 2.4.1.

2.4.2 Preferred range of illuminance

It should be kept in mind that lighting is not an
exact science. It deals with people as well as things,
and the lighting in a given interior is not good unless
the occupants like it. An awareness of the fact that
lighting is as much an art as a science is, indeed,
central to a full appreciation of what is important in
interior lighting.

(CIE Guide on Interior Lighting, second edition)

In addition to the experiments described in the previous section, other researchers have
conducted similar experiments where volunteers were asked to rate illuminances, in order to
estimate what the optimal range of illuminance for typical office work should be.

Fischer (1970) has pooled the results of such experiments conducted by Balder (1957),
Muck and Bodmann (1961), Söllner (1966), Riemenschneider (1967), Westhoff and Horeman
(1963), Boyce (1968), and Bodmann et al. (1963). In each experiment the distribution of
the reported preferred illuminances on a logarithmic scale have been fitted with a normal
distribution. From these plots we have estimated the full width at half-maximum of each
distribution and deduced the fitted standard deviation.

The IESNA Lighting Handbook (Rea, 2000, page 3-39) gives some additional illuminance
ranges from Bodmann (1962), Saunders (1969), Bean and Hopkins (1980) and Nemecek and
Grandjean (1973), without specifying if these are confidence intervals, a fitted or sample
standard deviation or the standard error on the mean estimate. For example, Nemecek and
Grandjean report that:

[...] the frequency of eye troubles in the three offices with more than 1000 lx was
significantly higher than in the other ones (p < 0.001). Another analysis revealed
that lighting intensities between 400–850 lx were judged to be the best.

whereas Saunders report that:

[...] at 400 lx, approximately 85% of the observers found the lighting conditions
satisfactory or better, the figure increasing to 95% at 1000 lx.

Figure 2.8 summarizes these findings, assuming the work quoted by the IESNA Lighting
Handbook refers to the fitted standard deviation. The study due to Vine et al. (1998) was
included in a similar fashion.

Nabil and Mardaljevic (2005) have carried out one of the most recent reviews of the current
understanding of preferred illuminances. They conclude that:

� Daylight illuminances lower than 100 lx are generally considered insufficient to be either
the sole source of illumination or to contribute significantly to artificial lighting.
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2.4 Difficulties in defining visual comfort

Study
Balder
Muck 1
Muck 2
Bodmann
Westhoff
Söllner
Riemenshneider 1
Riemenshneider 2
Boyce
Saunders
Nemecek
Bean
Vine (morning)
Vine (afternoon)

Recommended value

Year
1957
1961
1961
1962
1963
1966
1967
1967
1968
1969
1973
1980
1998
1998

 100  200  500 1000 2000 5000

Workplane illuminance [lx]

Figure 2.8: Preferred illuminances in office rooms, pooled data. The width of each line is the
fitted standard deviation, with some exceptions (see text). The size of each dot
is inversely proportional to the fitted standard deviation. The vertical line is the
recommended value of 500 lx one often finds in lighting design codes.

19



2 The need for integrated daylighting controllers in modern buildings

� Daylight illuminances in the range of 100–500 lx are considered effective either as the
sole source of illumination or in conjunction with artificial lighting.

� Daylight illuminances in the range of 500–2000 lx are often perceived either as desirable
or at least tolerable.

� Daylight illuminances higher than 2000 lx are likely to produce visual or thermal dis-
comfort, or both.

From these observations they even propose a new measure of a building’s daylighting per-
formance, christened “Useful Daylight Illuminance” (UDI), defined as the total time in the
year the workplane’s illuminance is between 100–2000 lx. This range of illuminances was cho-
sen precisely as a result of this literature review. They propose that this metric shall replace
the Daylight Factor as an indicator of daylighting performance because:

It is recognized that the daylight factor approach offers only a limited insight into
true daylighting performance because it is founded on a measure of illumination
under a single, idealized overcast sky.

Figures 2.7 and 2.8 should make it clear that the range of preferred illuminances can vary
greatly from individual to individual, a phenomenon recognized by Galasiu and Veitch (2006).
Even within the restricted range of 100–2000 lx proposed by Nabil and Mardaljevic there is
plenty of manoeuvering room for a lighting controller to achieve energy savings, instead of
imposing a constant task illuminance on all occupants.

2.4.3 Objective quantification of visual discomfort and glare

If there is a universal mind, must it be sane?

(Charles Fort)

Throughout this work we will place much emphasis on the need to quantify objectively the
visual discomfort. This notion might, at first, sound very odd. We are all very capable of
determining by ourselves whether a visual environment is pleasant and productive or not, and
nobody has ever walked around a building with an instrument measuring the visual discomfort
(even though modern technology would in principle permit it). However, a rational assessment
of visual discomfort is, in our opinion, important for three reasons.

First, without such a tool, the building designers must rely on their expertise and rules
of thumb to ensure that a planned building will satisfy the visual requirements of its future
occupants. More often than not, these designers aim to satisfy national building construction
codes that might fail to account for some peculiarity of the building, ruining in some cases
the visual comfort.

Second, daylight plays an important role in newly designed buildings because of the po-
tential energy savings. But the use of daylight poses glare problems of its own that can be
overlooked unless one quantifies objectively the visual discomfort.

Third, the performance of most daylight-responsive control algorithms (including the present
one) will benefit from a rational quantification of the visual discomfort. Coupled with an accu-
rate daylighting model, the controller’s algorithm is free to explore its degrees of freedom and
find the combination of blinds’ settings and electric lighting power that provides an optimal
visual environment.
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2.4 Difficulties in defining visual comfort

In this section we will review the current understanding of this problem and the recom-
mendations used by practitioners.

Glare and insufficient illuminance are two main causes of visual discomfort in interior
environments, but are usually treated separately in the literature and in building codes.
Glare is, by far, the most difficult problem of the two.

Early work by Guth and Hopkinson focused on finding a mathematical relationship between
glare perception and the distribution, size and intensity of light sources. Field studies led to
the determination of Guth’s Discomfort Glare Rating and to Hopkinsons’s Glare Index in the
early sixties.

The Commission Internationale de l’Eclairage (CIE) compiled these results in 1983 and
published a report Discomfort Glare in the Interior Working Environment (CIE, 1983) on
the state-of-the-art on discomfort glare5 in the interior working environment. In the same
report, the CIE recommends the adoption of a formula proposed by Einhorn, considered as
the best compromise between different national systems. This formula led to the CIE Glare
Index (CGI), defined by:

CGI = 8 log10

[

2 · 1 + Ed/500

Ed + Ei

∑

s

L2
sωs

p2
s

]

(2.1)

where Ed is the direct vertical illuminance [lx] at eye level from all sources, Ei is the eye-level
indirect (excluding the glare source) illuminance [lx], Ls is the luminance [cd/m2] of the bright
part of each source s in the direction of the eye, and ωs is the solid angle [sr] of the latter.
ps is an index proposed by Guth that gives different weights to luminous sources according
to their position in the visual field: sources close to the center of the field of view will carry
more weight than sources in the field of view’s periphery. This index is defined by:

ps = exp
[

(35.2 − 0.31889 · α − 1.22 · exp(−2α/9)) · 10−3· β

+ (21 + 0.26667 · α − 0.002963 · α2) · 10−5 · β2
]

(2.2)

where α is the angle [rad] from vertical of the plane containing the source and the line of sight
and β is the angle [rad] between the line of sight and the line from the observer to the source.
This function is plotted in Figure 2.9.

The CGI made it difficult, however, for luminaire manufacturers to provide design aids
such as luminaire data sheets. This, and changes in the working environment, led in 1995 to
the publication of another CIE report Discomfort Glare in Interior Lighting (CIE, 1995) in
which the Unified Glare Rating (UGR) was introduced, defined by:

UGR = 8 log10

[

0.25

Lb

∑

s

L2
sωs

p2
s

]

(2.3)

where Lb = Ei/π is the background luminance [cd/m2] seen by the eye of the observer. The
UGR is thus a simplified version of the CGI in which no Ed appears, because“for the simplified
glare calculation procedures [...] it has not been possible to find a way to include the direct
illuminance.”

5Discomfort glare is defined as glare that causes discomfort without necessarily impairing the vision of objects.
It is distinct from disability glare, which is defined as glare that impairs the vision of objects without
necessarily causing discomfort.
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Figure 2.9: Guth’s position index ps for a source on a plane 3 m away and perpendicular to
the line of sight.
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2.4 Difficulties in defining visual comfort

VCP 50% 60% 70% 80% 90%
UGR 24.0 21.6 19.0 16.0 11.6

Table 2.2: Correspondence between the UGR and VCP.

The UGR takes on typically values between 10 and 30. One glare rating unit is the least
detectable step, while three glare rating units are considered the finest granularity that makes
sense for normative purposes. UGR = 14 and lower corresponds to the least perceptible glare
effect. The standard recommends the UGR be rounded to a value belonging to 13–16–19–
22–25–28. The advantage of this new formula was its relative simplicity, which would help
luminaire designers provide design aids and simplified glare calculation procedures. Today,
however, both indices are readily available from computer simulations.

The UGR is very popular among european lighting designers. American designers prefer the
Visual Comfort Probability (VCP), whose expression is given in the IESNA Lighting Handbook
(Rea, 2000) but is too involved to be reproduced here. The Handbook notes the correlation
between this index and the UGR and recommends a table of correspondence between the two,
given in Table 2.2.

Neither the CGI nor the UGR has been validated against daylight glare or against large
light sources. Glare from windows has been simulated in experiments at the Building Research
Station in England and at the Cornell University in the USA, using fluorescent lamps behind
diffusing screens. From these experiments, the “Cornell formula” (Chauvel et al., 1982) or
Daylight Glare Index (DGI) has been derived, defined by:

DGI = 10 log10 0.48
∑

s

L1.6
s Ω0.8

s

Lb + 0.07ω0.5
s Ls

(2.4)

where Ls is the source luminance [cd/m2], Lb is the background luminance [cd/m2], ωs is
the solid angle of the source [sr], and Ωs is the solid angle [sr] of the source modified by its
position in the field of view of the user.

Even the DGI has been derived from electric lighting though, and Chauvel et al. (1982)
found that a direct application of the DGI formula to a real daylit window overestimates the
sensation of glare. For example, a daylit window that would in theory have a DGI rating of
16 is perceived to be about as glary as a luminaire whose DGI would be 10. Recent research
by Tuaycharoen and Tregenza (2005) suggests that people are more tolerant towards visually
stimulating sources of glare that carry some form of information, instead of plain white lights6.

The CIE, in its report Collection on Glare (CIE-2002), points out that the UGR yields
glare estimates that are too severe for small (<0.005 m2) sources and too weak for large ones
(>1.5 m2). For example, a straightforward application of the UGR for a 15 W incandescent
lamp, 2m above eye level, 4m away, in 30 cd/m2 background luminance yields an UGR of 39,
i.e. totally intolerable glare.

According to this report, research has shown that for small sources in interior lighting it
is the projected area of the source7, rather than its solid angle (which for small sources is
the projected area divided by the distance), which should be used in the calculation of its

6Which does not necessarily mean that the visual comfort is improved. The sensation of glare can be reduced
without necessarily improving the visual comfort, in the traditional sense of “capacity to carry out some
work efficiently”.

7I.e., the area obtained by projecting the source on a plane whose normal is the line of sight.
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2 The need for integrated daylighting controllers in modern buildings

Illuminance [lx] 300 600 1000 1600
UGR 13 16 19 22

Table 2.3: UGR for large glare sources.

luminance. All small sources are therefore taken as being perceived as of size A = 0.005 m2,
or as discs 80mm in diameter, no matter their distance to the observer. Therefore, their
luminance L [cd/m2] shall be given as:

L =
I

A
= 200 · I (2.5)

where I is the intensity [cd] of the source.

The summand in the UGR formula should therefore be replaced with:

L2
sωs

p2
s

= 200
I2
s

r2
sp

2
s

(2.6)

where rs is the distance [m] to the source. This correction is valid for sources more than 5°

off the line of sight at typical indoor lighting distances.

For large glare sources, i.e. luminous ceilings, the standard does not recommend any glare
formula at all but gives a table of illuminances the ceiling might provide together with their
corresponding UGR rating. These values are given in Table 2.3.

The report proposes a new glare index called the GGR, that redefines the UGR in order to
make the transition between “normal” sources and large sources continuous:

GGR = UGR +

(

1.18 − 0.18

CC

)

8 log





2.55
(

1 + Ed

220

)

1 + Ed

Ei



 (2.7)

where CC is the ceiling coverage, taking values between 0.15–1.

The last glare index we will describe in this section is the Daylight Glare Probability index
proposed by Wienold and Christoffersen (2005), defined as:

DGP = 5.87 × 10−5Ev + 9.18 × 10−2 log10

(

1 +
∑

s

L2
sωs

E1.87
v p2

s

)

+ 0.16 (2.8)

where Ev is the vertical eye illuminance [lx], Ls is the luminance of the source [cd/m2], ωs is
the solid angle of the source [sr] and ps is Guth’s position index. They found this formula to
correlate well with reported glare for DGP values between 0.2–0.8.

The DGP estimates a glare probability as a function of the vertical eye-level illuminance8

and of the luminances of the most luminous sources in the field of view of the user, and has
been derived from real, daylit windows. The inputs to this index are simple enough for this
formula to be implemented in a commercial controller, provided outside solar conditions are
known to the controller and some reasonable assumptions are made as to the layout of the

8In Wienold and Christoffersen (2005), the authors measured this illuminance in a separate room adjacent
to, and identical to, the one in which the subjects underwent productivity tests. The illuminance was
measured close to the position where the subject’s eye would be.
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user’s environment (furniture, workplace disposition, etc), and as to the user’s location with
respect to the windows.

All these indices have been developed in an attempt to mathematically rate the glare
sensation of an environment, but require a complete knowledge of luminance distributions
in the field of view of the user. They are therefore difficult to use effectively in commercial
controllers without at least installing a luminance mapper behind the user.

Another limitation of these formulas is that they treat only visual discomfort caused by
glare, and do not address visual discomfort caused by insufficient light. Used on their own,
they are insufficient for the implementation of a lighting controller but have to be comple-
mented by normative prescriptions with respect to illuminance distributions in the field of
view of the user, such as the CIE recommendations (CIE, 1986).

The formulas presented in this section attempt to quantify numerically the glare sensation
or visual discomfort experienced by an average user as a function of lighting stimuli, leading
to expressions that have grown increasingly complicated over the years. According to Kuhn
(1996), a scientific theory that grows from an initial, simple formulation to layer upon layer
of corrections and addendas is ripe for a paradigm shift, much as the geocentrism of antiquity
whose simple initial expression failed to account for the observed planetary movements, and
had to be completed with the unelegant theory of epicycles.

More than once, a scientific theory has been adopted over competing theories because it
was the simplest, and there is an unspoken feeling among some scientists that for a theory to
be correct it must be elegant. Einstein would probably add that it should also be “as simple
as possible, but not simpler”. Neither the UGR, GGR or any other glare formulas described
in this section satisfy our definition of elegance or of simplicity, but more work in this field is
certain to lead to a theory of visual comfort whose naturalness will be the best proof of its
correctness.

The theories we have today require too much knowledge of the user’s visual environment,
and it is simply not practical to gather all this information. We do not have (yet) the necessary
instruments that can evaluate the visual discomfort in realtime and feed that information to a
daylighting controller. Besides, the current theories on visual comfort are statistical in nature
and do not account for individual variations. The present work will, therefore, regress back
to the way of empiricists and in chapter 5 we will develop a formalism for quantifying the
visual discomfort by observing the behaviour of the user.

2.5 Legislative efforts

Do you rulers ever give a just decision?

(Psalm 58:1, Good News Translation)

In this section we will review the most important legislative documents relating to lighting
comfort, control and energy management in buildings.

2.5.1 CIE Guide on Interior Lighting

The Guide on Interior Lighting report from the CIE (CIE, 1986) refers to the study men-
tioned above by Fischer (1970) where people rated workplane illuminances. The horizontal
illuminance was varied from 100 lx to about 20 000 lx. Three answers were possible: too dark,
satisfactory or too bright.
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Illuminance range [lx] Type of task

200–300–500 Tasks with simple visual requirements
300–500–750 Tasks with medium visual requirements
500–750–1000 Tasks with demanding visual requirements

Table 2.4: Range of illuminance prescribed by CIE (1986) for different kinds of tasks. The
middle value is the optimal illuminance.

The standard concluded that:

Practical experience has shown that an illuminance for general lighting of the order
of 1000 lx is least likely to give rise to complaints, providing careful attention is
paid to the avoidance of glare and to a proper balance of luminances of relevant
surfaces in the room.

The standard prescribes 20 lx as the minimum required for discerning features of the human
face and is therefore considered as the absolute minimum for non-working interiors. Below
200 lx, most working interiors appear unacceptably dim.

The standard ackowledges the logarithmic response of the human eye, and a 50% change
in illuminance is considered the smallest increment in illuminance that results in a significant
difference in subjective effect. This fact must be taken into account in tables of prescribed
illuminances, as illuminance increments below this threshold are not perceptible.

The standard gives a table with recommended illuminance ranges for different tasks, given
in Table 2.4.

The standard prescribes uniformity in task illuminance: the ratio of the minimum to the
average illuminance of the workplane shall not be less than 0.8; the average interior illuminance
shall not be less than 1/3 of the average workplane illuminance; and the average illuminance
of adjacent interiors should not vary by more than a factor 5.

2.5.2 CIE Lighting of Indoor Work Places

The Lighting of Indoor Work Places report from the CIE (CIE-2001) is a normative effort
at standardizing lighting conditions in office rooms and other workspaces. It bases its rec-
ommendations on the UGR, and gives a table that prescribes a maximum UGR, a mean
workplane illuminance, and a minimum colour rendering index for each kind of activity. For
office rooms, CAD workstations and conference rooms the required mean illuminance is 500 lx,
the maximum UGR is 19, and the minimum colour rendering index is 80. In circulation areas
the required illuminance is 300 lx, the other requirements remaining unchanged.

The daylight factor for interiors with side windows should not fall below 1% on the working
plane 3m from the window and 1 m from the walls. Supplementary lighting shall provide the
required illuminance and balance the luminance distribution.

This standard furthermore adds a clause limiting the luminance of overhead luminaires that
might cause discomfort glare by reflections on VDTs. For class I and II screens (high quality
screens, see ISO standard 9241-7), this maximum is 1000 cd/m2. For class III screens, this
maximum is 200 cd/m2.

26



2.5 Legislative efforts

The standard follows the one described in section 2.5.1 by prescribing task lighting unifor-
mity, which shall not be less than 0.7, while the uniformity of the surroundings shall not be
less than 0.5.

The logarithmic sensitivity of the human eye to illuminances is reiterated in this standard,
according to which, again, a factor of 50% is the smallest significant difference in subjective
effect of illuminance. This was also mentioned as early as 1937 by Luckiesh and Moss, who
pointed out that the human eye is sensible to relative differences of illuminances, not absolute
ones, so that a change from 50 to 100 lx is perceived as equivalent to that from 500 to 1000 lx,
provided the eye had had time to adapt before the increase.

This norm has been adopted today as the european norm EN 12464-1:2002; the latter has
been adopted as a swiss norm by the Schweizer Lichtgesellschaft.

2.5.3 European Parliament directive 2002/91/EC

In December 2002 the European Parliament adopted directive 2002/91/EC (EC-2002), in
recognition that:

The residential and tertiary sector, the major part of which is buildings, accounts
for more than 40% of final energy consumption in the Community and is expand-
ing.

The directive demands of Member States to establish national energy performance require-
ments for new and existing buildings, and to ensure that new buildings and buildings under-
going renovation are certified by independent energy experts. Boilers and air-conditioning
systems must be regularly inspected. The directive does however not demand that control
systems be taken into account.

2.5.4 Leadership in Energy and Environmental Design

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System
is a US benchmark for “the design, construction, and operation of high performance green
buildings”. It is a system of credits that assigns points to new or renovated buildings for
meeting sustainable development goals.

An intensive use of daylight and good views to the outside are part of LEED version 2.2
for new buildings. Credits 8.1 (Daylight 75% of Spaces, 1 point) is granted if:

� At least 75% of all occupied areas have at least 2% glazing factor9, or

� Computer simulations demonstrate that at least 75% of all regularly occupied areas
have 25 fc (about 250 lx) under clear sky conditions at noon on the equinox 30 in (about
75 cm) above the floor, or

� Measurements show that at least 75% of all regularly occupied areas have achieved at
least 25 fc (250 lx).

9The glazing factor is defined as Window area

Floor area
×Window geometry factor× Actual Tvis

Minimum Tvis

×Window height factor,
but the free LEED rating system does not define these terms—we assume they are defined in the purchasable
LEED reference guide.
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Credit 8.2 (Views for 90% of Spaces, 1 point) is granted if at least 90% of all regularly
occupied areas have a direct line of sight to the outdoor environment via a glazing between
2’6” (76 cm) and 7’6” (229 cm) above floor finish. It is however unclear how venetian blinds
whose slats are half-open should be accounted for.

2.5.5 ASHRAE 90.1-2004

ASHRAE publishes and maintains standard 90.1-2004, Energy Standard for Buildings Except
Low-Rise Residential Buildings. The standard provides requirements for low-energy buildings
and is intended to be adopted by local jurisdictions. It explicitly requires buildings of a certain
size to be equipped with lighting control.

Section 9.4.1.1 of the standard (Automatic Lighting Shutoff) states that:

Interior lighting in buildings larger than 5000 ft2 (465 m2) shall be controlled with
an automatic control device to shut off building lighting in all spaces. This auto-
matic control device shall function on either:

� a scheduled basis using a time-of-day operated control device that turns light-
ing off at specific programmed times [...], or

� an occupant sensor that shall turn lighting off within 30 minutes of an occu-
pant leaving a space, or

� a signal from another control or alarm system that indicates the area is
unoccupied.

Section 9.4.1.2 (Space Control) states that:

Each space enclosed by ceiling-height partitions shall have at least one control
device to independently control the general lighting within the space. Each man-
ual device shall be readily accessible and located so the occupants can see the
controlled lighting.

A control device shall be installed that automatically turns lighting off within 30
minutes of all occupants leaving a space [...] in classrooms [...], conference/meeting
rooms, and employee lunch and break rooms.

These spaces are not required to be connected to other automatic lighting shutoff
controls.

For all other spaces, each control device shall be activated either manually by
an occupant or automatically by sensing an occupant. Each control device shall
control a maximum of 2500 ft2 (232 m2) area for a space 10 000 ft2 (930 m2) or less
and a maximum of 10 000 ft2 for a space greater than 10 000 ft2 and be capable of
overriding any time-of-day scheduled shutoff control for no more than four hours.

Provided these requirements are met the designer is relatively free to choose what system
will schedule automatic lighting shutoff or decide that the space is no longer occupied.
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Very important
Daylight integration and control
Direct glare
Luminances of room surfaces
Reflected glare

Important
Color Appearance
Flicker
Light distribution on surfaces
Light distribution on task plane (uniformity)
Modeling of faces or objects
Shadows
Source/Task/Eye geometry
Surface Characteristics
Horizontal (500 lx) and vertical (50 lx) illuminances

Table 2.5: Elements that contribute to visual comfort, according to the IESNA Lighting Hand-
book

2.5.6 IESNA Lighting Handbook

The IESNA Lighting Handbook (Rea, 2000) is one of the most comprehensive handbooks
available for the lighting designer.

In its chapters on visual comfort, the Handbook uses the VCP as its visual comfort metric
since it is this metric that is predominantly used in the US. Discomfort glare is deemed not
to be a problem in a building if the VCP is 70% or more. Differences of 5 units or less are
not considered signficant.

In its appendices, the Handbook gives recommended illuminance ranges for a wide variety
of activities. For “General offices, typing, computer rooms”, illuminances between 300–750 lx
is recommended, 500 lx being optimal.

In its section “Quality of the Visual Environment”, the Handbook lists the elements that
contribute to visual comfort in a wide range of settings, and gives their relative qualitative
importance. These elements are given in Table 2.5. Note in particular the very high im-
portance granted to daylight integration and control for general offices, except for open-plan
offices where this element is considered less important.

2.5.7 Swiss norms

Swiss law requires not only that work spaces be sufficiently lit, it also requires that workers
have an unobstructed view to the outside (OLT 3, art. 15, 24 and OLT 4, art. 17). Exceptions
are allowed, but only if the work’s technical installations prevent the workers from having
their view to the outside or for special cases, such as computer rooms or photo-processing
laboratories. US-style cubicles are therefore illegal in Switzerland.

Task illuminance, maximum UGR and color indices must follow the european norm
EN 12464-1:2002 that we have previously discussed. The ratio between task luminance and
immediate surrounding luminance must be kept lower than 3:1. The ratio between task
luminance and general surrounding luminance must be kept lower than 5:1.
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Zone
Hours per year

Usage Example
Consumption
[MJ/m2·year]

Maximum Target

Office room
2750 h/year

300 lx, mostly daylight Private office room 35 12
500 lx, partly daylight Bright office room 70 40
300 lx, no daylight Computer room 90 60

Table 2.6: Maximum and target values for the electrical lighting energy consumption in offices
according to SIA 380/4.

Desired illuminance [lx]
Installed power [W/m2]

Normal Strong

50 3.2 2.5
100 4.5 3.5
200 7.0 5.5
300 10.0 7.5
400 12.5 9.0
500 15.0 11.0

Table 2.7: Recommended installed power for electric lighting. Values are given for normal
and strong energy performance requirements.

The total glazed area of the building must, furthermore, be at least one eighth of the floor
surface. At least half of that area must allow an outdoor view. Swiss norm SN 150911:1997
gives guidelines to building designers on how to integrate daylight in their designs.

Illuminances and glare ratings are covered in Switzerland by the european norm
EN 12464-1:2002, but the SIA (Société Suisse des Ingénieurs et Architectes) publishes recom-
mendations for the HVAC and electric lighting energy consumptions. The 380/4 recommen-
dation by the SIA L’Énergie Électrique dans le Bâtiment gives maximum and target values
for the electrical lighting energy consumption in different kinds of buildings. The values for
office buildings are given in Table 2.6.

This recommendation also provides limits on the installed electric lighting power. These
limits are reproduced in Table 2.7. Typical values for expected yearly peak consumption
hours are also given, and reproduced in Table 2.8.

Zone
Hours per year Usage

Peak consumption hours [hours/year]
Normal Strong

Office room
2750 h/year

300 lx, mostly daylight 1000 500
Partly daylight:

300 lx 1200 900
500 lx 1500 1100

No daylight 2750 2400

Table 2.8: Typical consumption peak hours for electric lighting. Values are given for normal
and strong energy performance requirements.
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The energy requirements for heating are covered in the SIA 380/1 recommendation L’Énergie
Thermique dans le Bâtiment. The limiting heating requirement for an administrative build-
ing are Qh = 75 + 90 × A/SRE [MJ/m2·year], where A [m2] is the ponderated sum of all
surfaces of the building’s envelope (ground surfaces or surfaces adjacent to unheated zones
being ponderated differently), and SRE [m2] is the energetic reference surface, the sum of all
the building’s floor surfaces (with exceptions, given in the recommendation). For a typical
administrative building, A/SRE = 0.8 and Qh = 147MJ/m2·year.

2.6 The need for an adaptive controller

Several normative documents acknowledge the difficulty of quantifying the visual discomfort
for a large population. The IESNA Lighting Handbook (Rea, 2000), for instance, has studied
the correlations between many of the glare indices described in section 2.4.3, and found that:

All give reasonable predictions for the average discomfort of a group of people but
give only poor predictions of an individual’s response.

Similarly, the Guide on Interior Lighting report (CIE, 1986) states that:

Because of this spread in glare sensation among people a quantity that is used
to characterize the discomfort glare from a lighting installation is essentially a
statistical quantity.

It seems to this author indeed very odd that the equation defining the glare indices such as
the UGR involve exclusively terms external to the observer; nowhere is there any dependency
on variables inherent to the personal preferences or physiology of the latter. This author had
recently to take out a new car insurance and was bombarded with highly personal questions
designed to tailor a very specific insurance offer that would, presumably, minimize the risk
to the insurer. It is mildly amusing to note how much effort is spent on getting to know the
individual by insurance companies, while no such effort is apparent in the equations describing
visual comfort nor, by extension, from building or lighting designers.

The differences between individuals make it very difficult to frame a fixed set of rules that
will fit all. As with thermal comfort, it is for all practical purposes impossible to satisfy
everyone if the same control rules are uniformly applied. There is, however, a major dif-
ference between thermal and visual comfort. Fanger’s formalism for thermal comfort (now
international standard ISO 7730) is widely held to satisfy 95% of users in the ideal case, and
more typically 90%—leaving only 5–10% of users dissatisfied. But US standards, as we have
seen, call for Visual Comfort Probabilities to be 70% or higher, implying that our current
state-of-the-art in lighting design will typically leave 30% of users dissatisfied—or three to six
times as many.

Until we have a formalism for visual comfort whose satisfaction rate matches that of
Fanger’s, we believe that any daylighting control system should apply different rules adapted
to the preferences of individual users. We believe this is the only way that satisfaction rates
higher than 90% can be achieved.
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2.7 Difficulties in modeling daylighting with modern blinds

A control algorithm that strives to maintain visual comfort while making an optimal use of
shading devices (particularly if implemented on a low-powered, embedded controller) will work
much better if it has an accurate, simple daylighting model of its lighting environment. The
relative errors due to this model (i.e. the ratio between absolute error and real illuminance)
must be smaller than illuminance differences the human eye can perceive.

According to Luckiesh and Moss (1937), there is a geometric relationship between illumi-
nance and perceived effect—doubling an illuminance from 100 to 200 lx is perceived approx-
imatively as the same change from 1000 to 2000 lx. In addition, the illuminance “must be
doubled to produce an obvious and significant improvement in seeing.”10 The IESNA Lighting
Handbook (Rea, 2000) is more conservative and gives an illuminance change of 20% as the
lowest detectable change.

These elements suggest that in the absolutely worst case, a daylighting model for controllers
cannot afford to be worse than 20% accurate, and 5–10% accuracy is a goal we should aim
for.

Few daylight modeling methods exist today that are both accurate and computationally
cheap enough to be used on embedded hardware. A ray-tracing program such as Radiance

(Larson and Shakespeare, 2003) is excluded because of its computational cost (especially when
venetian blinds are involved), and a much simpler model is needed.

The daylight factor (DF ) model assumes the indoor illuminance at a given point to be
proportional to the outdoor, unobstructed, horizontal illuminance for a CIE Overcast Sky
(CIE-1970)11. This definition predicts accurate daylight illuminances only for CIE Overcast
Skies. For such a sky, the indoor illuminance E is predicted by multiplying the daylight factor
by the outdoor illuminance:

E = DF × Eg hor (2.10)

where Eg hor is the outdoor horizontal illuminance and DF is the daylight factor.

The Daylight Factor method is one of two daylight illuminance calculation methods recom-
mended by the IESNA Lighting Handbook (Rea, 2000). The Handbook recommends decom-
posing the DF into its sky component, its externally reflected component and its internally
reflected component:

DF = SC + ERC + IRC (2.11)

The Handbook gives tables for hand-calculating these three components for a simple rect-
angular room under a CIE Overcast Sky, but warns that:

The daylight factor is a low-precision procedure for determining the illuminance
at any point in an interior space produced by a sky with a known luminance

10This phenomenon should not come as a surprise to acousticians. The human ear is capable of operating
across 12 orders of magnitude in acoustic energy. The human eye is likewise sensitive over 10 orders of
magnitude. This extraordinary capacity is only possible with some kind of logarithmic response to the
external stimuli—hence the geometric effect.

11The CIE Overcast Sky—originally known as the Moon and Spencer (1942) sky—was adopted in 1955. It
is a sky whose luminance Lθ [cd/m2] depends only on the height angle and whose zenith luminance LZ

[cd/m2] is three times that at the horizon:

Lθ = LZ

1 + 2 sin θ

3
(2.9)
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distribution. Direct sunlight is excluded. [...] It is used in northern Europe,
where overcast skies predominate [...]

The other method recommended by the Handbook is the so-called lumen method, which
“assumes an empty rectangular room with simple fenestration and shading devices.” Further-
more:

The procedure described here [...] does not provide for horizontal or vertical
window blinds, nor for exterior elements such as sidewalks, streets, other buildings,
and overhangs.

In light of these limitations, we will not describe the lumen method here.

As we will see in chapter 4, the DF model fails at predicting indoor illuminances for realistic
sky conditions. Indeed, Robinson and Stone (2004) and many others argue that isotropic sky
models (or models without azimuthal dependence, such as the CIE Overcast Sky) cannot
accurately predict the vertical irradiance on a window. Such models do not take the sun’s
position into account, and those errors will inevitably propagate on the calculation of the
indoor illuminance.

Guillemin (2003) has suggested that a better correlation than daylight factors might exist
between indoor illuminances and vertical facade illuminance. He found experimentally that
for the facades of our experimental building, the indoor illuminance could be modeled by

E = a exp(b · α)Eg vert (2.12)

where α (between 0 and 1) is the fraction of the window not covered by its textile blind,
Eg vert is the facade’s vertical illuminance and a and b are model parameters to be fitted. For
given blinds’ settings, the indoor illuminance is therefore assumed to be proportional to the
outdoor vertical illuminance. Guillemin reports that the errors of this model have a standard
deviation of 416 lx.

We will also test this model in chapter 4 and see that it is insufficiently accurate for our
needs. Moreover, this model was developed for textile blinds whereas our experiment will be
carried out in offices equipped with one or two venetian blinds.

Robinson and Stone (2006) have recently proposed a simplified indoor illuminance predic-
tion algorithm that achieves very good accuracy, in particular in the presence of reflecting
neighbouring buildings. However this model does not account for the particular reflecting
characteristics of venetian blinds.

Mahdavi (2001) is the only work we could find that describes a control system using a
lighting simulation program, in this case, LUMINA. The paper describes a venetian blinds
control system that tilts the blinds’ slats according to prescribed indoor lighting conditions
and is very close to fulfilling our requirements. It is however not clear whether this control
system is fast enough to run on a real controlled office.

Spasojević and Mahdavi (2005) report that an excellent indoor illuminance prediction can
be achieved by segmenting the sky vault in 12 sectors and measuring the luminance of each
sector. The luminance of each sector is then fed into the LUMINA lighting simulation pro-
gram, instead of a complete sky luminance distribution function. For an office room with
two unshaded south-east facing windows, the authors report a correlation between measured
and simulated indoor illuminance of R2 = 0.89. But again, there does not appear to be any
proof-of-concept implementation of this promising idea.
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Daylighting modeling methods based on so-called Daylight Coefficients (DC) have been
shown to be accurate enough to compete with ray-tracing methods, and to be computationally
light. Since they fulfill so many requirements for an embedded daylight controller we will defer
their discussion to chapter 4, where our own daylighting model will be described. Were it not
for one important shortcoming, DC methods would presumably have been adopted in this
project.

For the sake of completeness, Lehar and Glicksman (2007) have proposed an algorithm
whose inputs are the geometry of the office and the distribution of reflectances in it. Each
surface in the office is discretized into a mesh, and the brightness of each mesh element is
given an initial brightness. The algorithm iteratively refines that guess until an equilibrium is
reached and the brightness of each mesh element is a linear combination of the brightnesses
of all other mesh elements. The authors found the algorithm’s computation time to be about
3–5 s (i.e. too slow for our application, where tens of modellings will be made at each time
step) and that “roughly the same brightness levels are reported” between their model and a
Radiance model.

In light of this literature review it appears that no or few daylighting models exist that
are fast enough to serve the needs of a real-time controller. As we will see in chapter 3,
our controller will be tested against a real office room with two venetian blinds and against a
virtual one with only one blind, so the daylighting model we need must be able to accomodate
a variable number of venetian blinds. Such a model will be elaborated in chapter 4.

2.8 Recent control systems

In this section we will review control algorithms that have recently been proposed in the
academic literature, and that can therefore be taken as the state-of-the-art in daylighting
control.

Courret and Paule (1993) proposed a blinds control system that was to be fitted to the
new Centre Suisse d’Electronique et de Microtechnique building in Neuchâtel. The idea was
to attach artificial retinas to each facade and to classify the sky condition as either overcast,
intermediate or clear.

A different control strategy is used for each sky condition. For overcast skies, the blinds
are fully retracted. For intermediate skies, the blinds are completely lowered and their slats
are opened. For clear skies, the blinds are lowered and the slat angle is chosen to optimize
the protection against solar gains, the horizontal workplane illuminance, and visual comfort.

The slat angle is calculated to always cut off direct sun, deemed to pose too large a risk of
glare. Otherwise the slat angle is chosen to provide 300 lx throughout the room’s depth, and
to keep the Visual Comfort Probability (c.f. section 2.4.3) above 70%.

The authors use Radiance to calculate the illuminance and VCP profiles for different slat
angles for different sun positions. The study concludes with the computation of a daily slat
angle schedule for three typical days. The study is however completely theoretical in nature.
The system has unfortunately never been implemented, nor its performance assessed.

Lee et al. (1998) installed a dynamic venetian blind controller in an office room in Oakland
(California), and monitored the energy consumption of that office compared to an identical
one whose venetian blind was kept fixed (in the same position and slat angle) throughout
the experiment, which lasted 14 months between 1996 and 1997. The daylighting controller
adjusted the venetian blinds every 30 s to block direct sun and maintain the workplane illu-
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minance at 540–700 lx. The system achieved lighting energy savings of 22–86% and cooling
load reductions of about 28%. This study demonstrated the potential energy savings that
can be achieved with a proper daylighting controller, even with one that “merely” keeps the
workplane illuminance constant. Note in particular that the control algorithm makes no ex-
plicit attempt at minimizing solar gains during peak cooling periods; the cooling savings are
achieved because peak cooling periods correspond usually to periods when the blinds need to
be closed, resulting not only in a proper workplane illuminance but also in protection from
solar gains.

The same system was then assessed with 14 real occupants (Vine et al., 1998). Surveys
found that 57% of respondents found the overall lighting to be comfortable, 29% found it
uncomfortable, 71% of which because of insufficient daylight.

We have alread mentioned in section 2.7 the daylight model used by Mahdavi (2001). In
his paper, he also simulates the operation of a controller that uses this daylight model. His
controller calculates at each timestep the value of a utility function for each combination of
slat angle and electric lighting power, the optimal combination being then selected. This use
of a utility (or cost) function is also the basis of the daylight controller we have developed in
this work. It was also used by Ferguson (1990) in her thermal control algorithm.

Guillemin (2003) has proposed a daylight control algorithm for office rooms equipped with
two textile blinds based on a set of fuzzy rules. The variables that define the external environ-
ment (outdoor temperature, vertical facade illuminance, etc.) are discretized into categories
and each possible combination is assigned an optimal blinds’ position. He found that 18
rules were necessary for a typical office room. The values of each rule are optimized daily so
the controller can reproduce as closely as possible the blinds’ positions chosen by the users
themselves.

This algorithm is distinct from the previous ones in that it does not attempt to keep the
controlled environment close to a design value, or the illuminances to prescribed values, or a
glare index at a minimum. Instead, an expert judgment assigns initial values to each rule. If
and when the user overrides the system, these rules are accordingly adjusted. This algorithm
was shown to yield about 25% energy savings and to be accepted by 95% of the surveyed
users (about 20 in all). The algorithm was implemented on the LESO experimental building
(c.f. section 3.1), the same building on which the controller described in this work will be
implemented.

Variations on the theme of fuzzy logic control have been proposed by Lah et al. (2006) and
Kolokotsa et al. (2006). In both cases, the control of a building is done through a set of fuzzy
rules given initial values by a human expert. The work by Kolokotsa et al., in particular, is
very close to the work described by Guillemin in that the fuzzy logic controller is implemented
in Matlab and controls a building equipped with a commercial EIB system, which is exactly
the conditions in which Guillemin worked. However, neither of these systems carries out any
optimization of the rules nor takes into account user overrides.

In spite of such promising results by machine-learning control algorithms, no commercial
control system exists today that implements any of these ideas. Some innovative products are
being rumoured, but even the daylight control system that will equip the New York Times
Headquarters building, currently under constrution (Lee and Selkowitz, 2006), will limit itself
to preventing direct sunlight and complement daylight with artificial lighting until a suitable
workplane illuminance is reached (484–538 lx).

The control algorithm described in this work is the first venetian blinds and electric lighting
control algorithm proposed by our institute. Its underlying philosophy is different from that of
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the control algorithms described in this section, although it too attempts to minimize energy
consumption while adapting itself to the user’s preferences.

2.9 Scope of this project

This work was carried out as part of the Ecco-build project, whose goal was to develop
and implement an adaptive control algorithm for venetian blinds and electric lighting, that
minimizes the office room’s lighting and heating electrical consumption while maintaining the
user visual comfort. We have implemented this algorithm on a pre-existing, real, occupied
office while making sure it can also be run against a computer simulation of an office. The
control algorithm will keep the office room’s energy consumption to a minimum, but learn
from user overrides.

No particular assumption has been made about the geographical location or orientation
of the office, nor about its geometry or the distribution of its furniture. The location is an
input to the algorithm but only for calculating the sun’s position. No parameterized model
has been used in the visual discomfort estimation nor in the controller’s daylighting model,
which is deduced from first principles.

The controller has been implemented in a popular programming language used in embedded
controllers. A limited number of mathematically complicated modules will use a compiled
external mathematical library. Throughout this work we will not only discuss its theoretical
principles but always keep an eye on a possible implementation on a commercial embedded
controller.
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“What more do you want to know?”
“The names of all the stars, and of all living things,
and the whole history of Middle-Earth and
Over-heaven and of the Sundering Seas,” laughed
Pippin. “Of course! What else?”

(J. R. R. Tolkien, The Two Towers)

In this chapter we will describe not only the office rooms on which our controller has been
implemented, but also the computer model that helped develop and implement it, as well as
assess its energy performance in different situations.

Section 3.1 begins by describing the LESO solar experimental building, on which our con-
troller’s implementation runs today. We will describe the two building office rooms that were
fitted for that purpose and describe the hardware that has been installed.

Section 3.2 then describes the computer model of a typical office room that was developed
within this project, and that has been used for the development and assessment of the control
algorithm and its implementation. As we will see, the computer program that implements the
algorithm described in this work was designed to run indifferently against a real or a virtual
office room. This is possible because that program is completely decoupled from the interface
to the building automation system, which is replicated by the simulation program.

3.1 Office rooms description

The LESO solar experimental building (Figure 3.1) is a middle-size (1000m2) administrative
building with 20 south-oriented office rooms of 15.7m2 floor area each and height 2.8 m.
Approximately half of them have a single user and the other half two. The south facade of
the building was refurbished in 1999 with one that would satisfy sustainable development
requirements, being made principally of wood and integrating advanced daylighting systems
(so-called anidolic systems) that redistribute daylight in the offices (c.f. Figure 3.2).

The LESO building is divided in nine thermically isolated units (three per floor). Most
units have been partitioned in two office rooms. The conference room (LE 2 205) and the
workshop (LE 0 05) are exceptions and occupy a complete unit each. The materials making
up LESO’s construction elements are given in Table 3.1.

The doors are 3.0 m2 in area and made of 2 cm thick wood. The lower windows are 2.1 m2

in area. The upper (anidolic) windows are inclined 45° and are 1.7 m2 in area. All windows
(Silverstar N 13020 S glazing) are double glazed with IR coating, U-value 1.4W/m2·K and g-
value 0.54. The windows’ frame is made of wood and its area is 0.9m2, its U-value 2W/m2·K.

The monitored total energy intensity of the building (including electric heating, lighting,
computers and machines) is equal to 232MJ/m2·year, of which 76 MJ/m2·year are needed for
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Figure 3.1: The LESO solar experimental building in Lausanne, Switzerland.

Figure 3.2: The anidolic system of mirrors that redistribute daylight in LESO’s workshop.
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3.1 Office rooms description

Element Type Area Material Thickness
[m2] [cm]

South facade wall Light wall 5.4 Plaster panel 1
Thermal insulation 12
Wood 1

North wall Heavy partition wall 7.0 Concrete bricks 12
(towards circulation area) Thermal insulation 8

Concrete bricks 12
Wall between units Heavy partition wall 13.3 Concrete bricks 12

Thermal insulation 8
Concrete bricks 12

Wall within unit Light partition wall 13.3 Plaster panel 1
Thermal insulation 4
Plaster panel 1

Floor 15.7 Rubber coating 1
Screed 6
Thermal insulation 6
Concrete slab 25

Ceiling 15.7 Concrete slab 25
(last floor) Thermal insulation 16

Concrete and gravel 10

Table 3.1: Materials and thicknesses of LESO construction elements. The external (west and
east) walls have a 16 cm concrete bricks layer instead of 12 cm.
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3 Monitoring and simulation of controlled office rooms

heating space and 42 MJ/m2·year for lighting. The building is equipped with a grid-connected
photovoltaic installation on its flat roof which provides 15.4 MJ/m2·year. Altherr and Gay
(2002) have reported that the energy signature of the building when the outside temperature
drops below 13°C (the so-called temperature of heating interlocking) is 0.72W/m2·K. Above
this temperature, the free (casual and solar) gains of the building are sufficient to heat it.
The building has no active cooling or ventilation system except in one computer room. It is
otherwise naturally ventilated by a stack effect.

A detailed description of the building with its new southern facade, including an exhaustive
analysis of the building’s energy flows, is given by Altherr and Gay (2002).

The tasks carried out in these office rooms is evenly split between reading, writing, and
work on the computer. The VDTs are mostly flat-screen monitors. The windows of all offices
(except the ones used in this experiment) are protected by two external textile blinds. Floor
drawings of the three building floors are shown in Figure 3.3.

This building was used before its refurbishment for the experimentation of passive solar
systems. Today it serves as test bench for advanced control algorithms for building services
(heating, blinds and electric lighting). It is equipped with a commercial off-the-shelf European
Installation Bus (EIB) building management system, with the following sensors and actuators:

Outdoor sensors: outside air temperature, horizontal diffuse and global radiation, horizontal
and south vertical illuminance, wind speed and direction.

Indoor sensors (each office): air temperature, horizontal workplane illuminance, occupancy,
and window opening.

Indoor actuators (each office): blinds, electric lighting (continuous dimming), and electrical
heating.

User interface (each office): blinds, electric lighting, and indoor temperature setpoint.

The electrical consumption of each room is also recorded. Each electrical meter has a
rotating metallic disk on which a small (about 10°) sector is painted black. This disk is lit
and rotates in front of a photodiode. When the black sector passes in front of the photodiode,
a contact is broken, which is detected by a binary contact sensor connected to the EIB.

The heating (“Force” meters) is recorded separately from the other appliances (“Lumière”
meters). Most Force meters are rated at 120 revolutions per kWh, and most Lumière meters
at 480 revolutions per kWh. No details are given on the meters about their precision, and
we assume therefore conservatively an uncertainty of ±10 revolutions per kWh for both kinds
of meters, i.e. a relative uncertainty on the energy consumption measurement of 8% for the
Force meters and 2% on the Lumière meters.

The EIB building management system was installed in 1999. A PC is connected to that bus
through a EIB-serial interface in order to run the control and monitoring program described in
section 3.1.1. Since then, two research projects focused on control systems have been carried
out using mesurements on the building, AdControl (Guillemin, 2003; Guillemin and Morel,
2003; Guillemin and Molteni, 2002) and Ecco-build. A data acquisition program has been
running independently of any research project continuously since 2002 (except for upgrades).
The data is stored in a MySQL database (MySQL Development Team, 2004, c.f. section
3.1.3), representing slightly more than five years of monitoring. For data related to user
actions alone (change of occupancy, manual use of blinds or electric lighting controls, etc), we
have accumulated at the time of writing about three million datapoints.
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3.1 Office rooms description

Figure 3.3: Floor drawings of the LESO building. (0: basement; 1: first floor; 2: second
floor.)
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3 Monitoring and simulation of controlled office rooms

Figure 3.4: LESO office rooms equipped for this project. Office room 201 is to the left, office
room 202 to the right.

Two adjacent offices rooms (c.f. Figure 3.4) located on the second floor of the LESO building
were equipped with venetian blinds in July 2004 and used in this study. The lower window was
fitted with external blinds Baumann-Hüppe type“Noval 90”, bicolor slats RAL9016/RAL7035.
The upper window was fitted with indoor1 blinds Baumann-Hüppe type “Genius 50” (c.f.
Figure 3.5).

Table 3.2 lists the devices installed in each of these two office rooms, as well as the equipment
that monitors the outdoor environmental conditions.

The horizontal workplane illuminance is measured with Siemens brightness sensors GE 252,
which are actually ceiling-mounted luminance sensors shielded from the window’s luminance.
The conversion from the workspace’s luminance to its illuminance is a programmable feature
of the sensor, so that it can be calibrated to determine the illuminance, assuming a constant
reflectance in its visual field. Each sensor has been calibrated with a reference sensor by
Guillemin (2003). The sensors’ output is linear only up to about 500 lx, and has to be
software-corrected in order to be accurate up to 3500 lx.

Three additional illuminance sensors were installed in each office room used in this project,
Wienold and Christoffersen (2006) having reported a good correlation between the glare sen-
sation due to daylight and the eye-level vertical illuminance. Our control algorithm, described
in chapter 5, is able to combine information from different sources and will adapt faster to
the user’s preferences with three illuminance sensors instead of one. The first sensor was
vertically installed at eye-level on the rear wall, slightly next to the user’s usual sitting place.
The second one was placed on the opposite wall. The third sensor was placed horizontally
about 15 cm above the user’s desks, giving an accurate reading of the workplane illuminance.

The luxmeters provide an output current proportional to the intensity of the light flux
impinging on them. A 100Ω resistor was used to load them, allowing to read out a voltage
(instead of a current). We calibrated them by placing their sensor under an adjustable light
source, next to a reference illuminance sensor. The light source was gradually increased up
to about 50 000 lx and the corresponding voltage was read out. The calibration curves are
given in Figure 3.11. The sensors were then installed and connected to the GIRA Giersiepen
analog sensor interface. One such sensor is shown in Figure 3.9.

1The existing outdoor textile blinds, and the upper window’s slope, prevented us from fitting outdoor venetian
blinds to the upper windows (which would have been a superior setup, from a thermal point of view).
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3.1 Office rooms description

Figure 3.5: The blinds equipping office room 202. The upper indoor blinds are Baumann-
Hüppe type “Genius 50”, the lower outdoor blinds are Baumann-Hüppe type “No-
val 90”.

Figure 3.6: Presence and ceiling-mounted luminance sensor.
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3.1 Office rooms description

Figure 3.7: Venetian blinds manual controls.

Figure 3.8: Electric lighting and temperature setpoint control box. The user sets the electric
lighting’s dimming levels with the two middle rockers. The leftmost rocker is
used to select the temperature setpoint. The current temperature setpoint offset
from 20° is indicated by the LED on the horizontal scale. The rightmost rocker is
unused.
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3 Monitoring and simulation of controlled office rooms

Figure 3.9: Wall-mounted illuminance sensor EB3 in office 202.

Figure 3.10: Delta-T BF3 sunshine sensor. A shading mask ensures that at least one of seven
photosensitive diodes is always lit by direct sunlight, and at least one is shaded
from it. The sensor can thus determine the diffuse and global components of
daylight, and does not require any polar alignment (Delta-T Devices Ltd, 2006).

46
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Figure 3.11: Luxmeters calibration curves for the six luxmeters installed in office rooms 201
and 202. The luxmeters are labeled EB1, EB2 and so forth.

3.1.1 The Eibserver program

The LESO building is equipped with a commercial building management system that can
read out the status of the building’s sensors and actuators, and send commands to the latter.
It was installed in 1999. As of August 2004, 240 sensors and actuators were on this system.

Following the intial work of René Altherr, we have extended and currently maintain Eib-

server, a Java program that allows a PC connected to the EIB system via its serial port to
listen to, and send, EIB telegrams. It keeps in memory at all times the complete known state
of the LESO building—when any variable is modified, that change is committed to memory
and logged to disk (see section 3.1.2).

Eibserver implements the Java Remote Method Invocation (RMI) mechanism to allow
other processes, possibly running on remote machines, to subscribe for notification on specific
events, to query the building’s status and to send control commands of their own. This
can be done by any program implementing a Java virtual machine, including Matlab. But
Matlab is unlikely to run on embedded devices in the foreseeable future (both for technical
and economical reasons), whereas many Java virtual machines for embedded environments
exist today2. This is why we have tried to write as much of our controller in pure Java, as
discussed in chapter 6.

Below we give an example script written in Jython, an implementation of the Python
programming language written in Java, with which we interactively query and send commands
to the EIB system. Commands entered by the user are in bold:

2E.g., http://www.skelmir.com/ or http://k-embedded-java.com/.
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3 Monitoring and simulation of controlled office rooms

Figure 3.12: Interactive manipulation of textile blinds. The left photo is before sending the
command, the right is after. The blind that moved is circled in red.

1 [lindelof@lesopriv3 ~]$ jython

2 Jython 2.2a0 on java1.4.2_05 (JIT: null)

3 Type "copyright", "credits" or "license" for more information.

4 >>> from java.rmi import Naming

5 >>> blind_201 = Naming.lookup("//lesopc7/bld-low_201")

6 >>> blind_201.getPosition()

7 1.0

8 >>> blind_201.setPosition(0.2)

9 >>> blind_201.getPosition()

10 0.2031

11 [lindelof@lesopriv3 ~]$

On line 5 we query the RMI server running on the same machine as Eibserver (i.e.
lesopc7) for the remote object registered under the name bld-low_201, which is the lower
textile blind in office 201. In the next lines the blinds’ position is queried, then set to 20%
window’s fraction open, and queried again. The results, as seen by a webcam pointed at
LESO’s south facade, are shown in Figure 3.12.

As we will see, the remote interface exposed and implemented by Eibserver will also
be implemented by the building simulation program described in section 3.2. Because this
interface is common, it will be fully described in its own section 6.3.

3.1.2 Data logging

The Eibserver program logs all bus events to disk. It first creates, if they do not exist
already, subdirectories called lighting/, occupancy/, and so on in a results/ directory.

In each of these directories, a new text file named DDMMYY.res (possibly appended with one
or more tildes (~) if Eibserver had to restart that day) is created every night at midnight.
The Eibserver program appends to these files the data as it comes in.

The format of the data is, however, not quite consistent and has obviously evolved over
time. Presently, according to comments left by the Eibserver program’s original author, that
format is DDMMYY:HH:MM:SS;device_room;value where device is the name of the devices,
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3.1 Office rooms description

Table name Description Records

luminosity Indoor illuminance [lx] 26 946 119
skyluminosity Outdoor illuminance [lx] / irradiance [W/m2] 20 994 794
consumption Electrical meters [kWh] 5 238 006
occupancy User presence [boolean] 2 986 328
temperature Indoor and outdoor temperature [°C] 2 722 403
blind Textile and venetian blinds’ positions and slat angles [0–1] 976 656
heating Electrical heating power [%] 803 075
lighting Artificial lighting power [%] 379 339
window Windows open/closed status [boolean] 64 104
setpoint User-chosen temperature setpoint [°C] 5 508

Table 3.3: The tables in the ‘leso_eib’ database. The rows are sorted by decreasing number
of records. The table names are identical to the names of the data directories
created by Eibserver. The number of records are as of April 2007.

possibly prefixed with usr: or set:, and possibly suffixed with _stat, _pos or some other
descriptive string. room is the room number (3 digits), and value is the numeric data.

Note in particular that according to the prefix of the device’s name one knows whether it
was a user action or a command sent through Eibserver. It is thus possible to distinguish
controller commands from user commands.

Early data, however, presents difficulties. In rare cases the line is unrecoverable gibberish.
Occasionally, race conditions allowed a thread to write out its data while another one was
looking up the operating system’s definition of a newline, yielding two data entries on the
same line followed by two newlines. These problems were rare and have not occured anymore.

3.1.3 The ‘leso_eib’ database

We have written a Perl script (see Appendix C.1 for the source code) that starts every night
at 5 a.m.3, reads in the logfiles that have been written that day since midnight (one per
subdirectory), parses each line, and inserts the corresponding values in a MySQL database.
After reaching the end of each file the program checks every minute whether new data is
available in that file, and updates the database accordingly. It stops at midnight. The
MySQL database includes also all the data recorded by Eibserver since it began recording
data in 2002.

The database is made up of ten tables (sharing an identical structure), corresponding to
the ten categories of data that Eibserver records. These tables and their schema are given
in Tables 3.3 and 3.4.

The database is accessible from a web interface, available on the EPFL intranet from
http://lesopc28.epfl.ch/~lindelof/phpMyAdmin/index.php. From this interface users
have read-only access to the entire database, and can dump portions of the data as text files.
The main interface is shown in Figures 3.13 and 3.14. The database can, of course, also be
programatically accessed.

3All textile blinds are fully retracted by Eibserver at 2 a.m. and lowered again to their previous position.
This ensures that any drift in the measurement of the blinds’ position is kept to a minimum. The Perl
script starts at 5 a.m. to be sure that no other “administrative” process runs on the LESO building.
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3 Monitoring and simulation of controlled office rooms

Field MySQL Type Description

index int(11) Record index
date date Date of the record (YYYY-MM-DD)
time time Time of the record (HH:MM:SS)
room char(3) Office number (3-digit number, 300 for outdoor events)
type varchar(5) Source of the event (user, controller, sensor)
device varchar(20) Device name
action varchar(5) Kind of event (sensor, actuator command, etc.)
data double Numeric data

Table 3.4: Schema of the ‘leso_eib’ database’s tables.

Figure 3.13: The main interface to the ‘leso_eib’ database.
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3.2 Simbad model

Figure 3.14: Browsing a table of the ‘leso_eib’ database.

3.2 Simbad model

One of the goals of this project is to demonstrate through computer simulations the potential
energy savings with a blinds and electric lighting controller. To that end it was important to
choose and, if need be, extend a building simulation package.

Many software packages exist that model and simulate the thermal behaviour of building
elements. The U.S. Department of Energy’s website4 lists at the time of writing 344 of them.
ESP-r5 and EnergyPlus6 are the most popular packages in Europe and USA respectively.

In this project we needed a software package that would model the thermal and visual
aspects of an office room whose electric lighting and blinds are computer-controlled. We also
required that the existing controller implementation could be easily coupled to this simulator.

Simbad (SIMBAD-2006) is a Matlab toolbox for building simulation developed by the
french Centre Scientifique et Technique du Bâtiment (CSTB). It models most HVAC systems
within a building but comes with no accurate daylighting model for a complex system such
as venetian blinds. Simbad had, however, two very desirable features.

First, as a Matlab toolbox, it is a library of simulation blocks for Simulink, the graphical
tool for modeling and simulating dynamic systems under Matlab. Assembling a building
model is very easy in this environment. Simbad provides out-of-the-box blocks for many
building appliances such as heating elements or ventilation systems.

Second, Simulink runs under Matlab, which has its own Java virtual machine. Java
classes can therefore be loaded in Matlab and interact with the Matlab environment. Since

4http://www.eere.energy.gov/buildings/tools_directory/
5http://www.esru.strath.ac.uk/Programs/ESP-r.htm
6http://www.energyplus.gov/
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3 Monitoring and simulation of controlled office rooms

Figure 3.15: Radiance model of the virtual office room.

our controller’s implementation is completely decoupled from the interface to the building
management system, we can write an interface in Java to our Simbad model that masquerades
as the real building, and our controller will not see any difference.

The benefits of this approach cannot be understated. Again: as long as we have a well-
defined interface to the controlled systems, we are free to implement any control algorithm
in any dialect of Java. In particular, we can write prototypes in Python using Jython7

(a Python implementation written in Java), or Groovy8 (a scripting platform for the Java
language). This implementation can then run against Eibserver or against Simbad, since
they both present this well-defined interface. As we will see, this led to dramatically short
development cycles where programming defects were quickly discovered with the simulator
and fixed before the real office room’s controller software was updated. The interface used in
this project is described in section 6.3, but this idea of a common controller interface for any
building management system will be elaborated further in Appendix A.

The full details of our office room model are given by Marty and Fontoynont (2006). In
the following we will discuss the elements of this model most important to us: the daylight-
ing model, the user behaviour model and the heating/cooling model. The interface to the
controller will be described in section 6.3.

3.2.1 Daylighting and electric lighting model

The virtual office room is a cuboid 4.61×3.62×2.85 m3 in volume, with one side almost fully
glazed and protected with venetian blinds. Figure 3.15 shows the Radiance model of this
office room.

7http://www.jython.org/Project/index.html
8http://groovy.codehaus.org/
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Figure 3.16: Simbad electric lighting calibration. The numbers represent the lighting com-
mand in % sent to the Simbad block.

The electric lighting model consists of six 36 W fluorescent tubes (or 12.94 W/m2 installed
power density) with a 95 lm/W efficiency and a 20% time depreciation factor. The ballasts in
this model are assumed to be responsible for a 15% overconsumption (about 30 W). The office
room is 16.7 m2 in area and has an 80% utilance factor, so the electric lighting can provide
an illuminance anywhere between 0–780 lx9. This high upper limit was deliberately chosen to
see whether the controller would correctly limit the illuminance to more reasonable levels.

We have used a Python script to increase the lighting command in steps of 10%, and
read out the electric power consumption and resulting illuminance. The result is shown in
Figure 3.16.

For the daylighting model, we briefly considered a daylight coefficients approach10, whereby
we would compute the coefficients for every blinds’ position, slat angle and illuminance sensor
position combination. We would then also have had to implement a sky model in Simbad,
but because of time pressures we decided instead to precalculate every possible illuminance

96 × 36 × (1 − 0.2)/16.7 × 80% = 786 lx.
10Daylight coefficients will be discussed again together with the controller’s daylight model, and defined in

chapter 4.
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3 Monitoring and simulation of controlled office rooms

Column Units Description Example

1 NA Month (January=1) 6
2 NA Day of the month 4
3 NA Hour of the day (with fractions) 9.292 (09:17:30)
4 lx East wall illuminance 255
5 lx West wall illuminance 714
6 lx East eye-level illuminance 2584
7 lx West eye-level illuminance 3064
8 lx Workplace illuminance 1373

Table 3.5: Precalculated illuminance file format. The examples come from file il-

lum_v001_0_0_N.ill. The wall illuminances are calculated 2.1 m away from the
facade, at a height of 2.15m. The eye-level illuminances are calculated 2.1m away
from the facade, at a height of 1.2m. The workplane illuminance is calculated
2.1 m away from the facade at a height of 0.8m.

for each timestep, office room location, office room orientation and blinds’ settings.

This Radiance-based daylighting model consists of precalculated illuminances at five dif-
ferent positions in the virtual office room, for each minute of a year, with weather data files for
Brussels (Belgium, 50°52’ N 4°22’ E) and for Rome (Italy, 41°54’ N 12°27’ E). These annual
simulations were carried out for three different office orientations (south, west, and north). A
roller blind or a venetian blind was added to the simulated model, and different simulations
were made for different discrete blinds’ settings.

785 annual simulations were carried out, each yielding the five illuminances for every minute
for the 525 600 minutes in a year. Each file is 32 megabyte large, and the whole data set
represents 24 gigabytes. Jan Wienold of Fraunhofer-ISE carried out the simulations with
the Radiance-based Daysim (Reinhart, 2006) program on a cluster of more than 50 nodes.
The weather data was provided by Fraunhofer-ISE, who produced it with the Metenorm
(METEONORM-2006) program. Daysim models the sky luminance distribution from global
and direct outdoor horizontal illuminances with Perez’s all-weather sky model (Perez et al.,
1993).

Table 3.5 gives the structure of these precalculated illuminance files. A full illuminance
simulation with meteorological data thus yields a table with 535 600 rows, whose structure is
given in Table 3.6. The naming scheme for these files in given in Appendix C.2.

3.2.2 User behaviour model

The virtual user is present in the office from 8 a.m. to noon, and from 2 p.m. to 6 p.m. during
weekdays, and absent on weekends. No other holidays are modeled.

The Simbad model runs with either the simulated user controlling the blinds and the
artificial lighting, or the external controller, but not both. The user does not act on the office
room controls at all while the automatic controller runs, but follows the same occupancy
schedule.

When the user controls the blinds, an algorithm, that follows a recent state-of-the-art review
of users’ manual blinds control (Marty et al., 2003; Reinhart and Voss, 2003), determines the
blinds’ position and slat angle:
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3.2 Simbad model

Field Units Description Example

index N/A Datapoint index 300000
time POSIX time Timestep 2006-07-28 08:59:30
Eeg W/m2 Horizontal global irradiance 341
Eed W/m2 Horizontal diffuse irradiance 118
Eev W/m2 Vertical global irradiance 67.6
Ees W/m2 Direct normal irradiance 515

temperature °C Outside temperature 16.0
rightWall lx Right wall illuminance 249
leftWall lx Left wall illuminance 629
rightEye lx Right user position eye-level illuminance 2542
leftEye lx Left user position eye-level illuminance 3007
horiz lx Horizontal workplane illuminance 1398

elevation ° Solar elevation 25.7
azimuth ° Solar azimuth (0° is north, 90° is east) 91

clearness N/A Perez clearness ǫ 2.76
clearness.cat N/A Perez clearness category ǫ̃ 5

Table 3.6: Structure of the simulated data. The Perez clearness ǫ and clearness category ǫ̃
will be defined in chapter 4. The names of the fields are the same as the ones used
in the analysis code (Appendix C.1).

� At dawn and sunset, the blinds are completely up.

� If direct sun is present, the slat angle is adjusted to the cut-off angle (adding 5° if the
slat angle was less than the cut-off angle). The height is adjusted so the sun patch is at
least 50 cm away from the user.

� If the vertical illuminance on the facade is larger than 49 klx, the blinds are pulled
completely down and the slat angle is adjusted to the cut-off angle (adding 5° if the slat
angle was less than the cut-off angle).

When the user does any of these, no more actions can occur for 15 min. For these purposes,
direct sun is considered present if the ratio global/diffuse irradiance is larger than 1.25 and
the horizontal global irradiance is larger than 24 W/m2. This definition is used internally by
our BF3 sunshine sensor, and is known (Delta-T Devices Ltd, 2006) to correlate well with the
World Meteorological Organisation’s definition (beam irradiance > 120 W/m2).

The electric lighting is switched on by the user to maintain a desktop illuminance of at
least 500 lx. The user can adjust the electric lighting power in steps of 33%. The user never
decreases the electric lighting power before leaving the office (at noon or in the evening), when
the lighting is switched off.

This might sound harsh, but we have recently studied the so-called intermediate light switch-
ing probability by the LESO users, i.e. the probability as a function of indoor illuminance that
the users switch their lights off without leaving the office. That study (Lindelöf and Morel,
2006) found that whereas the intermediate switch-on probability for a 15-min timestep can be
between 1% and 3% for workplane illuminances lower than 200 lx, the switch-off probability
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Name Description Units
Inputs
T°ext Outdoor temperature °C
CMV flow A vector representing controlled mechanical

ventilation and infiltrations
H/C flux Heating/cooling loads W
Int gains Internal heat gains W
Solar flux Solar heat gains W

Outputs
Air A vector containing the characteristics of the

room’s air, including its temperature
T°w Wall temperature °C

Table 3.7: Inputs and outputs to Simbad’s thermal model.

does not depend on the illuminance and is lower than 0.2%. That study found also that most
LESO users did not bother dimming their lights but turned them either fully on of fully off.

A modeled user that never switches the lights off before leaving the office is, therefore,
not worse than the average LESO user11. Allowing the modeled user to dim the lights is,
energetically speaking, an improvement. We therefore believe that our user model is fair, or
even optimistic, and that our controller will be compared with an energy-conscious manual
behaviour, not with a hopelessly irrational and wasteful one.

3.2.3 Heating and cooling model

An 1000W electric heater was added to the office model with a simple, independent controller
that turns it on if the temperature decreases below 21° and turns it off when the temperature
increases above 23°

12. The heater’s electric consumption is separetely recorded.

A fancoil with water alimentation was also added to the model for cooling. It switches on if
the temperature goes above 26°, and increases in power according to the current temperature.
Its power consumption is also recorded.

3.2.4 Thermal model

The office room’s thermal behaviour is modeled with a Simbad two-node thermal ‘Office
room, medium inertia and high insulation’ block. One node is the indoor air temperature,
the other is the wall temperature. The inputs and outputs of this model are given in Table 3.7.

For each node, Simbad solves at each timestep the following equation:

Ci
dTi(t)

dt
= −Gi∆T (t) + qi(t) (3.1)

where Ti(t) [K] is the temperature of node i, Ci [J/K] is the heat capacity of node i, Gi [W/K]
is the heat flow conductance between the two nodes, and ∆T [K] is the temperature difference

11The average LESO user will, however, leave the office room more often than only twice a day, increasing the
probability of switching the lights off when they are not needed.

12Note that more energy-conscious values would be 19° and 21° respectively.
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3.3 Chapter summary

between the nodes. q(t) [W] is the sum of the solar or casual gains, and of the heat losses, at
node i, including any heat exchange with outdoors.

In modern building simulation software, this equation is solved for a much higher number
of thermal nodes—a common practice is to have at least three nodes per wall, one for each
surface and one in the middle. For multi-layered construction elements, the number of nodes
is even higher. The computation time being polynomial in the number of nodes, a reasonable
balance between accuracy and speed must be struck.

Our goal here is not to model the energy performance of a real office room, but rather to
compare the energy performance of a simplified room under two different control strategies.
As such, absolute accuracy is not required as much as relative accuracy. Adding more nodes
to the model would increase its absolute accuracy but is unlikely to shed more light on the
relative performance of one control strategy over another. A two-node model is, therefore,
satisfactory for our needs.

For a thorough discussion of building simulation, we recommend Clarke (2001). Ferguson
(1990) discusses also, in her thesis, the pros and cons of different thermal node placement
strategies.

3.2.5 Solar gains model

The Fraunhofer Institute for Solar Energy (ISE) has carried out calculations (Kuhn, 2006a,b)
of the total solar energy transmittance, or g-value, for different blinds used in this project.
The calculations yield the g-values as a function of the source’s azimuth and elevation (which
can be negative for ground reflections) and of the slat angle. This data was used in the
simulation to calculate the free gains due to solar gains.

The source’s azimuth was discretized between −80° and +80° in steps of 20°. Its elevation
was discretized between −85° and +85° in steps of 5°. The slat angle was discretized between
0° (horizontal slats) and 75° (closed slats) in steps of 15°.

The ISE produced one file per slat angle for each blinds. This data includes the
glazing’s g-value (75% for the simulated office room, 63% for the LESO glazings). File
epfl_genius_noval_ext_30.dat, for example, contains a 35×9 matrix with the g-values for
the Noval blinds (c.f. Figure 3.5) tilted at 30° in front of LESO’s glazing. The data in this
file is shown in Figure 3.17.

The Simbad model assumes the office room’s windows to be Pilkington insulight 4/12/4
glazings (g-value 0.75). The model includes outdoor blinds, taken to be of the same model
(and g-value) as the indoor Genius blinds fitted in LESO’s office rooms.

3.3 Chapter summary

In this chapter we have seen in what office rooms and on what hardware the control algorithm
will run. Two office rooms of the LESO building have been fitted with venetian blinds, whose
sensors and actuators have been included in the existing EIB building management system.
Each office room is fitted with three additional illuminance sensors.

The program that interfaces between the control program and the building management
system runs on its own dedicated machine, independently of the control program. Its public
interface can be implemented by a computer program simulating the dynamic behaviour of
an office room. We have built such a computer model with Simbad and given all of its
characteristics.
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Figure 3.17: g-values for outdoor Noval venetian blinds with slats tilted 30°.
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3.3 Chapter summary

Our control program was written in Java and compiled against Eibserver’s public interface
given in section 6.3—not one line of Eibserver’s code, or of any other building management
system, or of Simbad is present in our controller’s code. The ability to run our controller
indifferently against a real building or a virtual one was not planned for at the beginning of
the project—it arose spontaneously once it was realized that Eibserver’s public interface
could be separated from its implementation.

We find ourselves today in favourable conditions for the development of further control
algorithms. A careful algorithm developer will first implement it in a prototyping language
and run it against the computer simulation. After it has been shown that the implementation
is correct and produces the expected results, the algorithm can be implemented in Java,
assessed again against the simulation, and finally run against a real office room. This setup
should dramatically shorten the development time for future control algorithms on the LESO
building.
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4 Daylighting model

In this chapter we will discuss the development of a simplified daylighting model suitable for
embedded controllers.

The main purpose of this model is to provide a daylighting illuminance prediction method
for the controller described in chapter 6. As we will see, our control algorithm evaluates the
visual discomfort as a function of the illuminance observed at different points in the office
room. A daylighting model is therefore needed if we are to find blinds’ and electric lighting
settings that minimize this visual discomfort.

A model that predicts daylighting illuminances for arbitrary zones and arbitrary shading
devices is, however, also a valuable tool for many proposed control algorithms. For this reason,
we document this model independently of the visual discomfort model described in the next
chapter. The model described in this chapter could (and should) be easily implemented as an
independent software module, capable of providing a daylighting model as a service to other
software modules running on the same platform.

For these reasons, this chapter is mostly self-contained and can be read in isolation. Sec-
tion 4.1 begins with some introductory remarks. In section 4.2 we discuss the Daylight
Coefficients model, a model that would have been adopted for this project were it not for
some critical shortcomings. In 4.3 we will first verify whether commonly used daylighting
illuminance prediction methods are accurate enough for a daylighting controller. We will see
that daylit scenes where direct sun is present cannot be accurately modeled with such models.
In section 4.4 we will develop a linear daylighting model, valid for a given sun position. From
this model we will deduce a more general one, which uses the history of past illuminances
to assess the present illuminance. This model will be trained with a subset of simulated
daylighting data, and validated on the remaining subset, in section 4.5. Finally, in section
4.6, we will build a working prototype controller set to maintain the horizontal workplane
illuminance close to 500 lx and assess by simulation its performance over one year.

Glossary
Ein hor Indoor horizontal illuminance [lx]
Eg hor Outdoor global horizontal illuminance [lx]
Eg vert Outdoor vertical facade illuminance [lx]
Ig hor Outdoor global horizontal irradiance [W/m2]

Idiff hor Outdoor diffuse horizontal irradiance [W/m2]
Ibeam Direct beam irradiance [W/m2]

Idir hor Direct horizontal irradiance [W/m2]
DF Daylight factor

ǫ Perez sky clearness
ǫ̃ Perez sky clearness category
θ Sun elevation [°]
φ Sun azimuth (0° is north, 90° is east) [°]

φf Facade normal azimuth [°]
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4 Daylighting model

4.1 Model requirements

Many control algorithms that strive to maintain visual comfort while making an optimal use
of shading devices (particularly if implemented on a low-powered, embedded controller) need
a simple and reliable daylighting model of the space being controlled. How accurate does
this daylighting model need to be? Keep in mind its purpose: to help our controller predict
illuminances on selected room surfaces, and to help it achieve appropriate illuminances. The
human eye will therefore be the yardstick which will define how precise we need to be. The
relative errors due to this model (i.e. the ratio between error and real illuminance) must be
smaller than illuminance differences the human eye can perceive. We have seen in section 2.7
that this ratio lies between 20–50%, but our target precision should be closer to 5–10%. But
we have also seen that few daylighting modeling methods exist today that are both accurate
and computationally cheap enough to be used on embedded hardware.

This chapter describes such a simple daylighting model intended for embedded daylight
controllers. It provides a reasonably accurate prediction for daylighting illuminances for a
controller that monitors the indoor illuminance on one hand, and the outdoor horizontal
global and diffuse irradiance on the other hand. When asked to predict what illuminance
would result from a given blinds’ settings, the algorithm looks back in time and retrieves
illuminance measurements that have been taken when the blinds were in a similar setting
and the sun was close to its current position. This indoor illuminance is then modeled as a
linear combination of the outdoor horizontal global and diffuse irradiances, and the current
illuminance is predicted from this linear fit.

It is difficult, if not impossible, to develop, train and validate a daylighting model with
real data. Experiments involving daylight are by nature impossible to repeat, and acquiring
enough data takes far too long. We have therefore used Radiance-generated illuminances
for different locations in a virtual office for each discretized venetian blinds’ position and
slat angle and for each minute of a year. This data was described in section 3.2.1, and the
daylighting models evaluated in this chapter have, as far as possible, been validated against
this data set.

4.2 Daylight coefficients

The Daylight Coefficients (DC) method, originally introduced by Tregenza and Waters (1983),
is a method to completely characterize the illuminance response of an indoor point for an
arbitrary sky luminance distribution.

The idea is to divide the sky vault in discrete, non-overlapping sectors small enough for the
sky luminance to be considered constant across that sector. One usually follows Tregenza’s
division (Tregenza, 1987) into 145 non-overlapping circular zones between 11–12° in diameter.
The dimensionless daylight coefficient Di for sky patch i is then defined for an indoor point
by:

Di =
∆Ei

∆ΩiLi
(4.1)

where ∆Ei [lx] is the total (direct and reflected) illuminance at the point from sky patch i, Li

[cd/m2] is the luminance of the patch, and ∆Ωi [sr] is its solid angle. The product Di∆Ωi is
thus the proportionality coefficient between the illuminance at the point and the luminance
of the patch (c.f. Figure 4.1). It measures directly how much the luminance of that sky patch
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4.2 Daylight coefficients

Li ∆Ωi

∆Ei

Figure 4.1: Daylight Coefficients, from Mardaljevic (1999). The indoor illuminance ∆Ei is
the total (including reflected) illuminance from sky patch i, whose luminance is
Li and whose solid angle is ∆Ωi.

contributes to the total illuminance at the point, including outdoor and indoor reflections.

Building a daylighting model based on DCs for an embedded controller is very attractive. It
involves computing once and for all a set of DCs for each point of interest in the controlled zone,
and for each possible blinds’ positions and slat angles. DCs are, by definition, independent
of the building’s orientation (for identical outdoor obstacles) or of the sky vault’s luminance
distribution.

If there are more than one indoor point whose illuminance we want to model, let
E1, E2, . . . , Em be these m indoor illuminances to be modeled, and ∆Ω1L1, ∆Ω2L2, . . . ,∆ΩnLn

the n products between solid angle and luminance for the n sky patches. If Dij is the daylight
coefficient for the ith indoor point and the jth sky patch, then:
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(4.2)

Daylighting models based on daylight coefficients are computationally cheap, and have been
shown to be accurate enough to compete with ray-tracing methods, provided the direct sun be
treated with special care (Mardaljevic, 1999; Reinhart, 2001). The DC method assumes the
luminance variation across a sky patch to be negligible enough to be considered constant, but
this will be untrue for the patch in which the sun is. Smearing the sun across a 11° wide patch
will introduce inaccuracies, which is why these authors recommend separately calculating the
illuminance contribution from direct sunlight. Reinhart, in particular, proposes to compute a
separate set of daylight coefficients for the sun’s direct contribution since a typical Tregenza
patch is large enough to contain 631 solar discs.

Reinhart has validated the DC method, as implemented in the Daysim software (Reinhart,
2006), against other methods that simulate the hourly illuminance over a year. Daysim

was found to be the fastest of all (1.5 h on a Pentium Pro 200 MHz Linux PC) except for the
daylight factor method (6min), and was the most accurate except for the reference Radiance

simulation (12 days).

Attractive as the Daylight Coefficients method is, we could not use it in this work. Our
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4 Daylighting model

project’s vision was of a daylight controller that would require as little commissioning as
possible, and we deem the computation of 145 daylight coefficients and direct light coefficients
for each controlled office room, and for each possible position and slat angle of its venetian
blinds, to be a complicated commission. Such a computation is beyond the scope of most
installers, although it should not be beyond the skills of a good building designer.

Could DCs be measured in-situ in an office room? We have tried to answer this question
in the early stages of this project by solving Equation (4.2) in the Dij variables. We have no
definitive answer. Early results suggest that it is difficult to obtain a set of sky luminance data
that is neither singular nor “almost” singular, and standard least-squares solving techniques
will fail. This further suggests the use of the Singular Value Decomposition technique, which
we have not seriously attempted in this work.

We could not use DCs in this project, nor could we validate that method against our data
since this data was produced with Daysim itself. Therefore we will not discuss this method
further.

4.3 Daylight factor methods

In this section we will first test two simplified illuminance prediction methods, one of which
is widely used, and compare their predictions with our simulated data. We will first consider
our virtual south-facing office room in Brussels without any shading device.

4.3.1 Daylight factor

The daylight factor (DF ) method assumes the indoor illuminance at a given point to be
proportional to the outdoor, unobstructed, horizontal illuminance for a CIE overcast sky
(CIE-1970; Moon and Spencer, 1942). This definition is valid, and predicts accurate daylight
illuminances, only for CIE overcast skies whose distribution follows the Moon and Spencer
(1942) distribution. For such a sky, the indoor illuminance Ein hor is predicted by multiplying
the daylight factor by the outdoor illuminance:

Ein hor = DF × Eg hor (4.3)

where Eg hor is the outdoor global horizontal illuminance and DF is the daylight factor.
Our data does not directly provide the outdoor global horizontal illuminance but the out-

door global horizontal irradiance. Since the sky luminous efficacy is a constant 179 lm/W
in Radiance1 (Larson and Shakespeare, 2003, p. 357), this illuminance can be obtained
by multiplying the irradiance by this efficacy. When validating any daylighting model with
data generated with Radiance, we may therefore equivalently use the outdoor irradiance or
outdoor illuminance.

Figure 4.2 shows the indoor horizontal illuminance against the global horizontal irradiance
Ig hor, for different categories of Perez sky clearness. (The Perez sky clearness ǫ (Perez et al.,
1993) is a measure of the sky’s clarity and is equal to 1 for perfectly overcast skies and takes
values up to 6 and more for perfectly clear skies. The Perez sky clearness category ǫ̃ takes
discrete values between 1 and 8 according to the value of ǫ and corresponds to increasingly
clear skies.) For the cloudiest skies (ǫ̃ = 1), there is a good correlation between the horizontal

1This should not be confused with the usual daylighting value between 50–150 lm/W, depending on the type
of sky.
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Figure 4.2: Indoor horizontal illuminance v. outdoor global horizontal irradiance conditioned
on Perez’s sky clearness categories. The best-fitting linear model is shown as a
straight line in each panel. Not more than 1000 randomly chosen points are shown
on each panel.

outdoor irradiance and the indoor illuminance, but the correlation breaks down for clearer
skies.

In Figure 4.3 we plot the residuals against the fitted values of a daylight factor model,
where the daylight factor is obtained by fitting a linear model between the indoor horizontal
illuminance and the outdoor horizontal global irradiance. The high-illuminance points that
depart the most from the red line tend to increase the linear coefficient and are responsible
for the negative residuals at the other data points. They probably correspond to datapoints
where the sun was present and visible from the point whose illuminance has been computed.
This plot highlights the importance of taking the sun’s position into account when predicting
indoor illuminance, invalidating the daylight factor approach.

The daylight factor method is clearly unable to predict indoor illuminances for our test data
other than under the most cloudy conditions. They were in fact never intended as a precise
daylighting illuminance prediction method, but as a quick and easy way to verify the daylight
performance of a building. They are now part of many building construction codes, but one
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Figure 4.3: Residuals v. fitted values for the daylight factor model. The solid line is obtained
by smoothing the scatterplot.
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4.3 Daylight factor methods

should keep their original purpose in mind before using them for illuminance prediction.

Indeed, Robinson and Stone (2004) have shown that isotropic sky models (or models without
azimuthal dependence, such as the CIE overcast sky) cannot accurately predict the vertical
irradiance on a window. Such models do not take the sun’s contribution into account, and
those errors will inevitably propagate on the calculation of the indoor illuminance.

4.3.2 Vertical irradiance

Guillemin (2003) has suggested that a better correlation than daylight factors might exist
between the indoor illuminance and the outdoor vertical facade illuminance. He found exper-
imentally that for the facades of the LESO building, the indoor illuminance Ein hor could be
modeled by:

Ein hor = a exp(b · α)Eg vert (4.4)

where α (between 0 and 1) is the fraction of the window not covered by a textile blind,
Eg vert[lx] is the outdoor facade vertical illuminance, and a and b are model parameters to be
fitted. For given blinds’ settings, the indoor illuminance is therefore assumed to be propor-
tional to the outdoor vertical illuminance:

Ein hor = ζ × Eg vert = κ × Ig vert (4.5)

using again the fact that in our simulated data Eg vert is proportional to Ig vert, the outdoor
vertical irradiance. Guillemin reports that the errors of this model have a standard deviation
of 416 lx.

Assuming the diffuse irradiance to be isotropic, and neglecting ground reflections, that
irradiance is the sum of half the total diffuse horizontal irradiance and of a direct component.
It is given by:

Ig vert = Idiff hor/2 + Ibeam cos θ cos(φ − φf ) (4.6)

where θ is the sun’s elevation, φ its azimuth, and φf the azimuth of the facade’s normal,
Idiff hor [W/m2] is the outdoor horizontal diffuse irradiance and Ibeam [W/m2] is the beam
irradiance.

Figure 4.4 shows the horizontal illuminances plotted against Ig vert, conditioned on the sky
clearness category as above. However, again, no clear correlation can be discerned for any
but the cloudiest skies.

4.3.3 Fixed sun position

Figures 4.2 and 4.4 suggest that the sun’s contribution cannot be ignored. Let us therefore
redo these plots, selecting only those data points when the sun was not too far away from
a given direction. We select sun positions within a 5° angular diameter circle2 centered on
elevation θ = 30° and azimuth φ = 190°.

The two figures shown under in Figure 4.5, where different plotting symbols are used ac-
cording to the Perez clearness category of the sky, are encouraging, especially when plotting

2A short implementation note is in order here. If θ1, φ1, θ2, φ2 are the respective elevations and azimuths of
two solar positions, the angular distance between the two points is given by:

∆σ = cos−1(sin θ1 sin θ2 + cos θ1 cos θ2 cos∆φ) (4.7)
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Figure 4.4: Indoor horizontal illuminance v. outdoor vertical irradiance conditioned on Perez’s
sky clearness categories. The best-fitting linear model is shown as a straight line
in each panel. Not more than 1000 randomly chosen points are shown on each
panel.
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Figure 4.5: Indoor horizontal illuminance v. outdoor global and vertical irradiance (θ = 30°,
φ = 190°), with a second degree polynomial fit for the global irradiance and a
linear fit for the vertical irradiance.
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time Eev Eeg Eed rightEye leftEye horiz clearness

468869 2006-11-22 14:28:30 85.6 130 123 3443 1912 1685 1.07
468870 2006-11-22 14:29:30 90.5 131 123 7295 2773 3013 1.08

Table 4.1: Data points 468869 and 468870. The column names correspond to the fields defined
in Table 3.6 and to the variable names in the analysis code (Appendix C.1). The
irradiances are given in [W/m2], the illuminances in [lx].

against Ig vert. But they also indicate a problem in our data for the most cloudy skies (clearness
category ǫ̃ = 1), plotted as circles.

The Radiance extension program gendaylit is used by the Daysim program to generate
the luminance distribution of the sky for each data point. This program implements the
Perez All-Weather Sky Model (Perez et al., 1993) and takes as inputs the date, time, site
coordinates, and direct and diffuse irradiance values.

From our data, consider the two contiguous data points 468869 and 468870 given in Table
4.1. Only one minute separates these two data points and the Ig hor and Idiff hor values are
practically constant, but there is a sharp discontinuity in the modeled illuminance on all
sensor positions.

The first row is almost a sky of clearness category 1 (ǫ < 1.065), and it is conceivable that
the internal algorithm of gendaylit did classify this sky as such. If this is true, then there
could be a discontinuity in the luminance distributions given by the Perez model when moving
from a sky of clearness category ǫ̃ = 1 to ǫ̃ = 2. This would explain the sharp illuminance
increase, and the apparent anomaly of ǫ̃ = 1 skies in Figure 4.5.

When dealing with Radiance-generated data this model must therefore be fitted separately
to ǫ̃ = 1 skies and to ǫ̃ 6= 1 ones. The result for a linear model against the outdoor vertical
irradiance is shown on Figure 4.6. The correlation, in both cases, is now excellent.

4.4 Simplified daylighting model for a given sun position

In the previous section we found that for a given position of the sun (arbitrarily chosen as
θ = 30° and φ = 190°), the indoor illuminance could be reasonably well predicted as being
proportional to the vertical facade irradiance. This irradiance was expressed as a linear
combination of Idiff hor and Ibeam in Equation 4.6.

The Ibeam beam irradiance term of that equation can further be expanded to:

Ibeam = (Ig hor − Idiff hor)/ sin θ (4.9)

and Ig vert is therefore also a linear combination of Ig hor and Idiff hor. Equation 4.5 can thus

where ∆φ is the difference of the azimuths. This formula suffers however from rounding problems for small
distances and another formula, known historically as the haversine (WIKI-GCD) formula, is preferred:

∆σ = 2 sin−1

 

r

sin2
∆θ

2
+ cos θ1 cos θ2 sin2

∆φ

2

!

(4.8)

It is this latter formula that has been used throughout this work.
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Figure 4.6: Linear fit of indoor horizontal illuminance against outdoor vertical irradiance, for
ǫ̃ = 1 skies (left panel) and other skies (right panel).
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Estimate Std. Error t value Pr(>|t|)
α 79.2165 0.1056 750.12 0.0000
β −61.1011 0.2126 −287.45 0.0000

Table 4.2: Linear regression results on example data.

be generalized as:
Ein hor = α × Ig hor + β × Idiff hor (4.10)

So if Guillemin’s hypothesis is true and Ein hor is indeed equal to κ× Ig vert for a certain κ,

then by identification α = −κ cos φ
tan θ

and β = κ(1/2 + cos φ
tan θ

). When we fitted a linear model to
skies of clearness category other than 1, we found that κ = 45.01, so we expect:

Ein hor = 76.08 × Ig hor − 53.78 × Idiff hor (4.11)

But the results of fitting the model of Equation 4.10 to our simulated data, given in Ta-
ble 4.2, do not bear this out. The 95% confidence intervals for the two coefficients are:

Ein hor = (79.22 ± 0.21) × Ig hor − (61.10 ± 0.42) × Idiff hor (4.12)

which is close to, but significantly different from, the values found in Equation (4.11). The
Ein hor = κ × Eg vert hypothesis must therefore be rejected in favour of the more general
expression in Equation (4.10).

Figure 4.7 shows the relative residuals when modeling the indoor illuminance as a linear
combination of outdoor global and diffuse irradiance. The relative residuals tend to be higher
for lower illuminances, but 98% of the points are within 10% relative error and 90% are within
5%. This model give a satisfactory fit and is valid for a given sun position. It is therefore on
this model that our daylighting model will be built.

Indeed, early versions of this work were motivated by an attempt to model the indoor
illuminance Ein hor for a given scene configuration3 as a linear combination of outdoor direct
horizontal irradiance Idir hor and diffuse irradiance Idiff hor:

Ein hor = γ × Idir hor + δ × Idiff hor (4.13)

This equation assumes, perhaps naively, that all daylight in an office room comes from
only two sources—the sun and the rest of the sky vault. The latter is reduced to a single
light source, and this model has in jest been referred to as a Daylight Coefficients model with
just one sky patch instead of 145. As we shall see, the errors introduced by this simplifying
assumption turn out to be negligible, provided the constancy of the scene’s configuration
is respected. In fact, this relation is physically exact if the sky vault’s relative luminance
distribution is constant (i.e., the luminance of each point is doubled if the global diffuse
irradiance is doubled).

Many solarimeters measure Idir hor or Idiff hor, but seldom both. Idir hor is a linear combi-
nation of Ig hor and Idiff hor, which is why we may equivalently use the convention proposed

3We define a “scene configuration” as a scene where the positions of every object is fixed. In particular,
any blinds’ settings are fixed, as is the sun’s position. The outdoor direct and diffuse irradiances are free
variables.
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Figure 4.7: Relative residuals v. fitted values
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above:
Ein hor = α × Ig hor + β × Idiff hor (4.14)

This choice is arbitrary. We made it because our BF3 solarimeter (c.f. Figure 3.10), like
many solarimeters, measures global and diffuse irradiance.

What we are actually doing is fitting an overdetermined linear model. If we make N
observations for the same or similar scene configurations but different irradiance values, and
introduce an ǫ term to account for measurement and systematic errors, we can then write:

Ein hor1 = α Ig hor1 + β Idiff hor1 + ǫ1

Ein hor2 = α Ig hor2 + β Idiff hor2 + ǫ2
...

Ein horN = α Ig horN + β Idiff horN + ǫN

This can more conveniently be written in matrix form:

E = I ×ψ + ǫ

where E is the vector of illuminance observations, I is a n × 2 matrix with the Ig hor and
Idiff hor irradiance data, ψ is a 2-element vector with the fitted parameters α and β, and ǫ is
the vector of errors.

Our goal is to find the 2-element vector ψ̂ which minimizes the norm of ǫ (least-squares
solution). Assuming that the 2 × 2 matrix ETE is of full rank and therefore invertible, and
that the errors are normal, the solution is given by:

ψ̂ = (ITI)−1ITE (4.15)

which is one way that this model could be implemented in a controller. For efficiency reasons
our controller will implement this model slightly differently, as described in chapter 6.

4.5 Validation by simulation

In this section we use our simulated data to validate the model proposed above. It was shown
to yield satisfactory results for all kinds of skies with the sun in an arbitrary position. We
must now verify if it works for other directions of the sun and for different sets of data.

In section 4.5.1 we will train our model with daylighting data from the first half of the year,
and use that data to predict the daylighting illuminance during the seconf half of the year. In
section 4.5.2 we will predict the daylighting illuminance for the whole year, using only data
that is at least one week old. Finally in section 4.5.3 we will repeat the whole year illuminance
prediction but for two different scene configurations: first with a west-oriented virtual office
room with retracted blinds, second with a south-oriented office room with venetian blinds
closed and slats in a horizontal position.
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Figure 4.8: Predicted July–December hourly indoor horizontal illuminances, using only
January–June data. 1000 randomly chosen points are shown out of the 4417
simulated points. The scale is logarithmic. The line’s slope is 1 and its intercept
0. The relative residuals are histogrammed and their mean and standard deviation
are given.

4.5.1 Half-year training data

First we will predict the hourly illuminances during the months of July to December, using
only the January to June data for training. The virtual office room is south-oriented and its
venetian blinds are retracted. At each time step, we select from the first half year the data
points with a similar sun position and a similar sky clearness category. From these points, we
derive α and β for that timestep, and predict its indoor horizontal illuminance.

Figure 4.8 shows the predicted v. simulated horizontal illuminance. The correlation is
excellent (R2 = 0.98), and proves that our model is sound.
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Figure 4.9: Predicted v. simulated illuminances during progressive learning. The scale is log-
arithmic. The line’s slope is 1 and its intercept 0. The relative residuals are
histogrammed and their mean and standard deviation are given.

4.5.2 Progressive learning

How fast does the model learn? If the model is to be used in a daylighting controller at all
it must learn reasonably fast. A controller that has to wait half a year before making precise
predictions is not useful.

Therefore, here we will let the model predict the indoor horizontal illuminance every hour
for our south-oriented virtual office room with retracted blinds. At each timestep we use
training data older than at least a week. On 1 February, for example, only the data up to 21
January may be used to predict the illuminance. We should not use data younger than that,
because it would be too easy for the model to use training data from, say, the day before—the
behaviour of an office room with respect to daylight does not change that much from one day
to the other: the sun’s trajectory will be similar, and chances are good that the weather will
be similar too.

Figure 4.9 shows the predicted against simulated horizontal illuminances on a logarithmic
scale during the simulated year. The correlation is excellent (R2 = 0.99). Figure 4.10 shows
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Figure 4.11: Number of points retained for illuminance modeling over the year during pro-
gressive learning.
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4.6 Implementation in a daylighting controller and test on a virtual office room

how the relative residuals evolve over time. One would naively expect them to be greatest in
amplitude during the first months and then gradually decrease as the algorithm learns, but
instead of that they do not really improve over time. They are worst in spring and autumn,
and very good in summer and winter.

A possible explanation for this is given by Figure 4.11, where the number of datapoints
used at each timestep is plotted against time. The angular distance between two consecutive
daily solar trajectories in the sky is not constant over the year. They are closer in summer
and in winter than in spring and autumn (see Figure 4.12). Therefore, when predicting the
illuminance on a spring day, the model has more difficulties finding previous similar scene
configurations than in summer. In summer and winter, the sun’s consecutive trajectories
in the sky lie very close to one another and the model is better at finding previous similar
situations.

Note, however, that these observations hold only for the first year of operation. After a
full year of learning, this artefact will not exist any longer and the model will be even more
accurate.

4.5.3 West-facing facade and venetian blinds

In this section we will carry out the same validation as in the preceding one, but for two
different situations. First for a west-facing facade orientation with retracted blinds, and then
for a south-facing facade protected with fully lowered venetian blinds and slats in a horizontal
position.

The predicted v. simulated illuminance scatterplots are given in Figure 4.13, where they
are also compared with the plot already given in Figure 4.9. In all cases, the correlation is
excellent and the predicted values agree well with the real ones. The case with venetian blinds
performs visually the least well, probably because of the increased complexity.

Histograms of the three relative residuals are given in Figure 4.14. There is no appar-
ent difference between the three cases, the model being quite able to predict the horizontal
illuminance in all situations.

4.6 Implementation in a daylighting controller and test on a virtual
office room

We have developed a prototype daylighting controller, that implements the ideas presented
in this chapter. Its purpose was to prove that the daylighting model presented in this chapter
could be used by a simple controller, and to help in optimizing the implementation of this
model. In this section we succintly describe the elements of this prototype, many of which
were subsequently reused for the controller described in this work.

An element of this prototype is a data acquisition (DAQ) module, programmed to run
only on weekends and to stop immediately if a user is detected. After sunrise, it iterates
sequentially through the blinds’ positions and slat angles. The positions are discretized in
steps of 20% of the total window opening, and the slat angles in steps of 10%. The illuminance
sensors in the office rooms write out their measured values once about every 40 s, so the DAQ
module waits for two minutes before recording the monitored illuminance. It stops at sunset.

On each cycle, the blinds thus move through 66 different positions (6 positions Ö 11 slat
angles). A complete cycle, allowing for two minutes at each step, takes thus about two hours
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Figure 4.12: Sun positions at one-minute intervals. Sun positions closer than 1° angular dis-
tance from the 10 a.m. sun on the given dates are shown. Each trajectory cor-
responds to solar courses on consecutive days. Notice how much closer to each
others consecutive solar courses are in early June compared to early April.

80



4.6 Implementation in a daylighting controller and test on a virtual office room

Simulated illuminance [lx]

P
re

di
ct

ed
 il

lu
m

in
an

ce
 [

lx
]

102

103

104

102 103 104

R2 == 0.9925

South−facing, no blinds

R2 == 0.9916

West−facing, no blinds

102

103

104R2 == 0.9847

South−facing, venetian blinds,

horizontal slats

Figure 4.13: Predicted v. real illuminances during progressive learning for three different cases.
A line of slope 1 and intercept 0 is drawn in each panel.

81



4 Daylighting model

Relative residuals

P
er

ce
nt

 o
f 

T
ot

al

0

10

20

30

40

50

−1.0 −0.5 0.0 0.5 1.0

−0.03 ±± 0.10

South−facing, no blinds

−0.00 ±± 0.09

West−facing, no blinds

0

10

20

30

40

50

−0.03 ±± 0.12

South−facing, venetian blinds,

horizontal slats

Figure 4.14: Relative residuals for the three simulations. The mean and sample standard
deviation are given.

82



4.6 Implementation in a daylighting controller and test on a virtual office room

realtime. The initial position and slat angle at each cycle are chosen randomly to prevent
bias.

The results are stored in a text file. On each line we record the date, the time, the outdoor
global and diffuse irradiance, the blinds’ position and slat angle and the illuminances.

Another module of the prototype is responsible for predicting the horizontal illuminance
for arbitrary blinds’ settings and arbitrary outdoor global and diffuse irradiances. It does
this by following the method presented in this chapter, with some optimizations that will be
described in chapter 6.

At any timestep, the prototype identifies its model parameters from the data it was allowed
to collect during the weekends up to that timestep. It begins the year with an empty data
file, and begins collecting data on Sunday 1 January 2006.

A third module of the prototype is the optimizer. It is responsible for sending actual
commands to the blinds and to the electric lighting. Every five minutes realtime, it models
the illuminance of the office and explores the different blinds’ settings and electric lighting
power, seeking to minimize a given cost function. If a new situation can be found, whose cost
function is significantly lower than that of the current situation, then the new settings are
applied to the blinds and the electric lighting. A real controller should not annoy a user with
too frequent blinds movements, so we limit the number of blinds movements to not more than
one per 15 minutes.

Our prescription to the prototype controller will be to maintain a 500 lx horizontal work-
plane illuminance throughout the year, even at night (with electric lighting). Electric lighting
is allowed because we need to detect those situations when the controller was unable to ob-
tain 500 lx with daylight alone, e.g. during completely overcast skies in the late afternoon. By
allowing electric lighting, but strongly biasing against it, we can identify when the controller
used daylighting alone to obtain 500 lx.

The cost function will include a smooth, derivable function of Ein hor, the horizontal work-

plane illuminance, with a minimum at 500 lx. Our suggestion4 is
(

Ein hor−500
500

)2
. We want

the controller to favour daylighting over electrical lighting, so we add a small arbitrary term
proportional to P , the fraction between 0 and 1 of maximum power applied to the lighting fix-
ture. P must be multiplied by a weight, that should be large enough to prevent the controller
from using artificial lighting when daylighting is enough but small enough that the resulting
illuminance at night remains close to 500 lx (if too large, the controller will never switch the
electrical lighting on). A weight of 0.1 satisfies these conditions. The complete cost function
is:

f(Ein hor, P ) =

(

Ein hor − 500

500

)2

+ P × 0.1 (4.16)

We have let this prototype run against the same virtual office described in section 3.2, and
the resulting illuminance distribution on weekdays, when the controller believed no artificial
illuminance was needed to maintain 500 lx, is given in Figure 4.15. The distribution is clearly
centered around 500 lx, but is this attributable to the controller or is it the natural illuminance
distribution for an arbitrary blinds’ settings?

To answer this question, we give in Figure 4.16 the same illuminance distribution as in
Figure 4.15, but plotted in a logarithmic scale and compared with the illuminance distributions
over the complete year for the same points in time in the same office room with, in the

4In the final controller, a more complicated cost function will be given that takes into account the user’s
preferences.
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Figure 4.15: Illuminance distribution with daylighting controller when daylighting alone was
thought by the controller sufficient to maintain a 500 lx workplane illuminance.
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first panel, venetian blinds completely retracted, and in the second panel, venetian blinds
completely down with slats in a horizontal position.

The controller has obviously improved the illuminance distribution. The latter is much
narrower and clearly centered on 500 lx, and the two top panels are proof that this is not a
naturally occuring condition. We will give an explanation for the observed low illuminance
values towards the end of this section.

The sample standard deviation of the logarithm of the illuminance without a controller
present are 0.430 and 0.480 respectively. With the controller present, the sample standard
deviation narrows down to 0.219. Assuming for simplicity that the parent population is nor-
mally distributed (it almost certainly is not—a Shapiro-Wilk test for normality on the sample
population gives a p-value smaller than 10−20), and remembering that we took the logarithm
of the illuminance values, this means that the controller keeps the horizontal workplane il-
luminance on average at 503 lx, with 95% confidence intervals between 187–1351 lx. This is
satisfactory for most practical applications.

The last point we would like to investigate is the bin with low illuminance values on the
lower panel of Figure 4.16. It corresponds to situations where the controller was mistaken,
probably because of insufficient training data. To test this hypothesis, we show in Figure
4.17 how the daylight illuminance distribution varied over the year. The low illuminance
values correspond exclusively to situations in February and March where the controller was
mistaken. This is expected, because in early months the controller has not yet acquired
enough training data, especially in spring when the daily sun courses are far apart. They
are lacking in January because this was a month during which the controller often did not
even have enough data to model the daylight at all, in which case it was programmed to do
nothing. The controller’s performance for the rest of the year is satisfactory.

4.7 Chapter summary

In this chapter we have examined classical daylight prediction methods and found that each
had its strengths, but none fulfilled all the requirements for a self-commissioning daylighting
controller. The most promising approach, that of the Daylight Coefficients method, required
too much up-front computation to be succesfully used on typical installations.

We have proposed a learning algorithm, whereby a software module in the controller records
indoor illuminances for different outdoor global and diffuse (or equivalently, global and direct)
irradiances and for different sun positions and blinds’ positions and slat angles. When mod-
eling the illuminances for a new scene configuration, the algorithm looks up data recorded
in similar scenes and models the illuminances as a linear combination of global and diffuse
outdoor irradiances.

We have seen that this model performed satisfactorily against our synthetic data. The R2

correlation between predicted and simulated illuminances, in three different test cases, was
0.98, 0.99 and 0.99. We have built a prototype controller using this model and tested it against
our virtual office during a year of simulated operation. When daylighting alone permitted it,
the workplane illuminance was kept to an average 503 lx, 95% of the time between 187–1351 lx.
We have also described some of the software modules that will ultimately be responsible for
modeling daylight illuminances for the controller described in this work.

We have now in principle a daylighting controller capable of keeping the indoor illuminance
at any prescribed value. What this value should be will be the subject of the next chapter.
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Figure 4.16: Illuminance distribution with or without daylighting controller. From the top,
the panels show the situation with venetian blinds completely retracted, com-
pletely down but slats in a horizontal position, and with the prototype controller.
The dashed line corresponds to 500 lx. Notice the change of vertical scale on the
lower panel.
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Figure 4.17: Illuminance distribution with daylight controller, per month. The dashed line on
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While the systems were being installed a number of people who were
going to work in the buildings found themselves having conversations with
Breathe-o-Smart systems fitters which went something like this:
‘But what if we want to have the windows open?’
‘You won’t want to have the windows open with the new
Breathe-o-Smart.’
‘Yes but supposing we just wanted to have them open for a little bit?’
‘You won’t want to have them open even for a little bit. The new
Breathe-o-Smart system will see to that.’
‘Hmmm.’
‘Enjoy Breathe-o-Smart!’
‘OK, so what if the Breathe-o-Smart breaks down or goes wrong or
something?’
‘Ah! One of the smartest features of the Breathe-o-Smart is that it
cannot possibly go wrong. So. No worries on that score. Enjoy your
breathing now, and have a nice day.’

(Douglas Adams, The Hitch Hiker’s Guide to the Galaxy)

In this chapter we will discuss the Bayesian aspect of this work. The central element of our
daylighting control algorithm is an estimation of the user’s visual discomfort from a statistical
study of that user’s past behaviour. Bayes’s theorem is applied to estimate a Bayesian Visual
Discomfort Probability as a function of the illuminance distribution in the office room, and
this discomfort estimator is the main tool with which the controller maintains a visually
comfortable environment.

We begin in section 5.1 with a review of bayesian statistics and in section 5.2 we discuss
how they can be applied in our case. In section 5.3 we carry out such an estimation for all of
LESO’s building rooms on the basis of their historic recorded illuminance data. Section 5.4
will discuss our findings and includes the formula we will use to combine more than one
variable in our discomfort estimation.

5.1 Bayesian inference

Bayesian inference is what we do when we infer that A must be true because we have observed
B and that A and B usually happen together. For example, if we see a lion at a circus show
we can infer that it must be tame, because all tame lions we have seen were part of a circus
show, and we have never seen a wild lion in such a show.

There is strong evidence that the human brain functions according to bayesian inference.
Knill and Pouget (2004) review the available evidence for the so-called “Bayesian coding
hypothesis”, a school of thought that holds that the brain represents sensory information
probabilistically and makes inferences bayesian in nature. Series of experiments have succes-
fully demonstrated that the brain carries a built-in prior probability curve for different kinds
of events, which is updated as new evidence becomes available.
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Figure 5.1: Bayesian network for lung cancer. P(·) stands for Probability of ·, C for Cancer,
P for Pollution, S for Smoker, X for X-Ray diagnosis, D for Dyspnoea symptom,
H for High, L for Low, T for True, F for False and pos for Positive. Adapted with
permission from Korb and Nicholson (2003).

It was Reverend Thomas Bayes (1702–1761) who first discovered what is now known as
Bayes’s theorem: given two events, denoted by A and B, then the following holds:

Pr(A
∣

∣B) =
Pr(B

∣

∣A) Pr(A)

Pr(B)
(5.1)

where Pr(A) stands for the probability of event A and Pr(A
∣

∣B) stands for the conditional
probability of A knowing that B has happened. Pr(B) can be expanded, yielding the same
theorem in another form:

Pr(A
∣

∣B) =
Pr(B

∣

∣A) Pr(A)

Pr(B
∣

∣A) Pr(A) + Pr(B
∣

∣A) Pr(A)
(5.2)

where Pr(A) stands for the probability of A not happening.

Bayes’s theorem deals with only two events, but Bayesian networks link together an ar-
bitrary number of events believed to exert a probabilistic influence on each other. Consider
the following example, adapted from Korb and Nicholson (2003): a patient’s chances of de-
veloping lung cancer are assumed to depend exclusively on whether they live in a polluted
area, and on whether they smoke. Similarly, having cancer will determine the chances of an
X-ray test to be positive and will also affect the chances of the patient developing a breathing
condition known as dyspnoea. The probabilistic influences exerted among these events is
shown in Figure 5.1.

Here the conditional probabilities are given explicitly, and successive applications of Bayes’s
theorem allow us to determine any other probability. For example, without knowing whether
the patient exhibits dyspnoea and without the results of an X-ray test, the probability of any
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patient having cancer (with symbols as defined in Figure 5.1) is:

Pr(C = T ) = Pr(C = T
∣

∣P = H,S = T ) Pr(P = H) Pr(S = T )

+ Pr(C = T
∣

∣P = H,S = F ) Pr(P = H) Pr(S = F )

+ Pr(C = T
∣

∣P = L, S = T ) Pr(P = L) Pr(S = T )

+ Pr(C = T
∣

∣P = L, S = F ) Pr(P = L) Pr(S = F ) (5.3)

which evaluates numerically to Pr(C = T ) = 0.012.

But if the diagnostic of dyspnoea is positive, that probability increases and becomes, per
the second form of Bayes’s theorem:

Pr(C = T
∣

∣D = T ) =

Pr(D = T
∣

∣C = T ) Pr(C = T )

Pr(D = T
∣

∣C = T ) Pr(C = T ) + Pr(D = T
∣

∣C = F ) Pr(C = F )
(5.4)

which evaluates to Pr(C = T
∣

∣D = T ) = 0.025, i.e. about twice the previous probability.
(Note again that at no time did the patient suddenly develop cancer, but our degree of belief
in cancer increased after learning about the positive dyspnoea diagnostic.) A very good
tutorial on bayesian networks can be found in Heckerman (1995).

Bayesian inference has emerged in recent years as a particularly promising form of artificial
intelligence and has gained a solid foothold in the medical world, where its use is facilitated
by the existence of vast data archives, needed to derive probabilities such as the ones given
in Figure 5.1.

Furthermore, since the publication of Paul Graham’s seminal article (Graham, 2002),
bayesian classifiers, i.e. bayesian networks which yield the probability of a particular node
being true, have also become a major weapon in the fight against unsolicited junk email. The
idea is to compute, with the first form of Bayes’s theorem, the probability of an email being
spam on the basis of the words the email contains. For example, if an email contains the word
“Viagra”, then the probability of the email being spam is given by

Pr(Spam
∣

∣Viagra) =
Pr(Viagra

∣

∣Spam) Pr(Spam)

Pr(Viagra)
(5.5)

where Pr(Viagra) is the fraction of all the user’s emails that contain the word “Viagra”,
Pr(Viagra

∣

∣Spam) is the fraction of all the user’s spam that contains that word, and Pr(Spam)
is the fraction of all the user’s emails that is spam. Note that these latter quantities require
a preliminary training of the classifier by the user on a (preferably large) corpus of unfiltered
email.

Statistics-based classifiers have proven remarkably successful at classifying email on the
basis of the words the email contains, even with rather simple implementations of bayesian
networks (Androutsopoulos et al., 2000). Bayesian classifiers find applications in many fields,
including at least one fairly succesful attempt to play chess (Breyer, 2004). Sakkis (2004) and
Robinson (2003) are excellent introductory texts on this topic.

The central claim of this chapter is that if (even naive) bayesian classifiers are so good at
calculating probabilities of an email being spam, a classification hitherto believed to require
human judgement, then they should also be able to calculate the probability for a certain
visual environment of being comfortable or uncomfortable to its occupant. Such a classifier
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should base its judgement on the physical variables it measures and classify the room as
comfortable or not. In particular, this classifier will look for correlations between visual
discomfort and the illuminance distribution in the zone.

The main idea of this work is to use bayesian methods to develop a building management
system that optimizes a user’s visual comfort. More specifically, we are going to derive a user
visual discomfort probability given a set of physical variables. The task of the controller shall
then be to keep that probability as low as possible.

5.2 User visual discomfort probability

Most commercial building controllers aim at keeping one or more physical quantities as close
as possible to given setpoints. A heating controller will try to keep the room temperature as
close as possible to a given value, usually adjusted by the user or chosen in advance by the
designer or installer. An electric lighting controller will try to keep the indoor illuminance
as close to a specified value as possible. There are also blinds controllers on the market that
adjust the blinds’ position according to simple rules based on the sun’s position and/or the
facade’s vertical illuminance. These, however, take no account of individual users’ preferences.

The development of better building control algorithms is still an active field of research.
For instance, the building controller described by Guillemin (2003) keeps blinds’ positions
and electric lighting conditions close to values known to be preferred by the user, instead of
explicitly controlling the resulting illuminance. It learns these values from the user’s actions.

In our methodology we make the explicit assumption that there exists a (limited) set of
physical, measurable variables that are sufficient to characterize the user’s visual comfort.
For the bayesian classifier to be efffective, these variables must be chosen to correlate well
with visual comfort—they must change when the users act on the controls at their disposal.
Such variables can include the horizontal workplane illuminance and the vertical (pupillar)
illuminance at the user’s eye level. The latter is, indeed, an input to the glare indices reviewed
in section 2.4.3, which implies a correlation between visual discomfort caused by glare with
the vertical eye-level illuminance, either explicitly (through a Ev term in the equation) or
implicitly (through Ls terms).

The horizontal workplane illuminance is also likely to influence the user’s comfort, or at
least the user’s visual performance. The IESNA Lighting Handbook (Rea, 2000) bases its
recommendation of lighting levels in different settings principally on the horizontal workplane
illuminance. The prescription of a satisfactory horizontal workplane illuminance goes back at
least as far as Luckiesh and Moss (1937).

Additional variables can of course be added if found relevant. The identification of such
variables that correlate with user discomfort is a research project of its own—the window
luminance, in particular, might very well be one.

Of course, one must be careful not to mistake correlation for causality. Two variables might
be strongly correlated without necessarily meaning that one has any influence whatsoever on
the other. The canonical example is the prevalence of lighters in the homes of lung cancer
sufferers. The correlation is very real and expected, but is due to a third, underlying common
cause. Similarly, we must be careful when applying bayesian methods to only link together
variables that can realistically be expected to be causally connected. For reasons explained
in the text, we will assume such to be the case between the illuminance distribution and the
visual discomfort.
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Figure 5.2: Example of a bayesian network for user visual discomfort. Only three physical
variables are shown but there is no limit to how many can be taken into account.
We will mainly focus on the relationship between horizontal illuminance and vi-
sual discomfort in this chapter, but will generalize our findings to more than one
variable in section 5.4.3.

Such variables can then form a bayesian network that includes the probability that the
user’s visual environment is uncomfortable (see Figure 5.2). Also shown in this figure are
events that could be derived from this discomfort probability, such as the probability that
the user will act on the controls within the next five minutes. This topic would also deserve
a research project by itself and is beyond the scope of this work.

There are two major differences between this network and the one shown in the lung cancer
example. First, the nodes in the lung cancer example could only take discrete (boolean) values,
whereas in our case, nodes such as “horizontal illuminance” take on continuous values. We
should therefore rather speak of probability densities when dealing with continuous variables.
For the sake of simplicity, however, we will continue to use our notation as if they were
discrete.

Second, the probabilities associated with the “Cancer” node were explicitly given. They
were derived from an extensive data-mining of existing medical archives. In our case, we
must also do this statistical analysis in order to derive our user discomfort probability.

In this chapter we will first consider the case with only one physical variable, the horizon-
tal workplane illuminance, and consider the case of multiple variables in section 5.4.3. We
choose this variable instead of the eye-level illuminance (which, as argued above, correlates
better with the sensation of glare) for two reasons. First, building construction codes usually
prescribe horizontal workplane illuminances rather than eye-level illuminances, and it might
be instructive to see if the prescribed values match the values preferred by the users. Second,
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we will use historic data taken on the LESO building, in which only the horizontal workplane
illuminance was recorded.

In an ideal world we would have had the possibility of presenting a user with a wide variety
of combinations of blind positions, electric lighting intensities, and solar positions, and asking
the user whether the situation was comfortable or not. From the results of such a survey, we
would immediately obtain our desired probability of user discomfort as a function of horizontal
illuminance.

Such a survey would, however, have to be re-done for every user (since we all have different
preferences), for every room, and for every new variable under consideration. Furthermore,
we do not have full control over all variables (e.g. sun position). Neither can we be expected
to recreate in a laboratory setting the users’ office rooms and ask them to evaluate hundreds
of different situations.

Keeping in mind that we intend this method to be used by a controller in real office rooms,
is there a data pool which can tell us the opinion of the user with certainty ? There is indeed
one (probably the only one): the set of situations immediately preceding and immediately
following a user action provides us with a data pool of transitions from uncomfortable to
(presumably) comfortable situations for that user. Notice, however, that this assumption
breaks down when several users have access to the same set of controls. Simultaneous visual
comfort control for users placed at different positions with different orientations, perhaps
with different sensitivities to glare, is notoriously difficult. It is therefore unclear whether our
method is applicable to anything else than small office rooms with a single occupant.

If we denote by C the event user comfortable1, by E the horizontal workplane illuminance,
by T=True and F=False the possible values for C, and by e a possible illuminance value that
E can take, we see that an application of the second form of Bayes’s theorem (Equation 5.2)
yields:

Pr(C = F
∣

∣E = e) =

Pr(E = e
∣

∣C = F ) Pr(C = F )

Pr(E = e
∣

∣C = F ) Pr(C = F ) + Pr(E = e
∣

∣C = T ) Pr(C = T )
(5.6)

Except for Pr(C = T ) and its complement Pr(C = F ), all the right-hand terms in this ex-
pression will be known from our data mining. For example, Pr(E = e

∣

∣C = T ), the illuminance
distribution after user action, can be derived by histogramming the workplane illuminances
resulting from the user action. There are, however, better approaches that will be described
in section 5.3.

The Pr(C = F ) term, also known to bayesians as the prior, has been the cause of much
controversy in the statistical community. A couple of years ago the dust settled and the
consensus seems now to be that in the absence of any prior information it is safe in most cases
to set Pr(C = F ) = Pr(C = T ) = 0.5 (a justification for this will be given in section 5.4.2).

1To be absolutely rigorous, Pr(C = F ) stands for the probability that, presented with a given visual situation,
and explicitely asked whether that situation is judged uncomfortable, a user would answer affirmatively.
We make in this paper the assumption that this interpretation is equivalent to saying that the situation is
visually uncomfortable. Counter-intuitively, it is not the probability that the user is about to adjust the
visual environment.
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The preceding equation then simplifies to:

Pr(C = F
∣

∣E = e) =
Pr(E = e

∣

∣C = F )

Pr(E = e
∣

∣C = F ) + Pr(E = e
∣

∣C = T )
(5.7)

We shall now apply this method on data recorded on the LESO experimental building.
The data used for this preliminary study is described in section 3.1.3. We have used the data
recorded from mid-November 2002 to mid-January 2005.

5.3 Discomfort estimation on monitored data

5.3.1 User actions

A user action is defined as any action performed by the user on the blinds (raising or lowering)
or on the electric lighting (increasing or decreasing intensity). Combinations of user actions
spaced apart not more than one minute in time (such as the user fine-tuning the electric
lighting level) are considered as part of the same user action. Actions performed less than
two minutes before the user has left the office (such as switching the lights off for the day)
are excluded.

A total of 7273 such user actions have been recorded. We have reconstructed the workplane
illuminance before and after each user action. The illuminance measured by the sensors is
discretized in steps of about 15 lx, so a random jitter uniformly drawn between −8 and +8 lx
was added to the data. If the result became negative, its absolute value was taken.

5.3.2 Density estimation

We need first to determine Pr(E = e
∣

∣C = T ) and Pr(E = e
∣

∣C = F ) for each office. If E
were a discrete variable we would simply count the number of times it realized each value and
divide by the total number of events. But E is a continuous variable so it is strickly speaking
a probability density we must estimate.

John and Langley (1995) discuss the value of different methods of density estimation in
bayesian classifiers. The simplest density estimator is a classic histogram but the choice of
bin width can influence the resulting density estimate. Other density estimators assume the
data to be distributed according to some predefined models, often a gaussian.

In this work, we have no reason to impose any predefined model for either distribution.
Some authors, for instance Fischer (1970) and references therein, have let users in a controlled
laboratory setting adjust their horizontal workplane illuminance and have found the logarithm
of this illuminance to be normally distributed. It might make sense to use this model at least
for Pr(E = e

∣

∣C = T ), but for consistency and symmetry we will use the same approach for
both distributions.

We will use a non-parametric density estimator, i.e. one that makes no use of any distribu-
tion model. The classical non-parametric density estimator is based on some kernel density
estimates (Bowman and Azzalini, 1997), but even this estimator makes some assumptions
on the underlying distribution. Following a recommendation from Sardy (2005) we use the
“taut-string” non-parametric density estimator described by Davies and Kovac (2001), Davies
and Kovac (2004) and Kovac (2007). It works as follows.
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Let x1, x2, . . . , xN be N observations whose density we want to estimate. Define y(x) as
the fraction of observations smaller than x, e.g. y(−∞) = 0 and y(∞) = 1.

y(x) is a piecewise constant function. It increases by 1/N for each xi. Its rate of increase
is therefore large when the density of xi is high. If we could smoothen that function, then its
derivative would approximate that density.

To smoothen it, consider the functions yh(x) = y(x) + C and yl(x) = y(x) − C. These two
functions enclose y(x). Now imagine a string being drawn to tightness between these two
functions. For a large C, that string will be a horizontal line. The smaller C is, the closer
to y(x) that string will be. Somewhere in between, the string becomes an approximation to
y(x) whose derivative is our density estimate.

The details of this algorithm (in particular, its convergence criterion) are beyond the scope
of this work. Figure 5.3 illustrates the algorithm’s principle on an example “claw-shaped”
distribution. Figure 5.4 shows the final density estimate on that distribution.

Errors on density estimates will be evaluated as follows. The probability density of a
distribution at x, noted p(x), is proportional to the number of elements nx that would be
drawn between x and x + δx, where δx is small enough, after N draws. We have:

p(x) =
nx

δxN
(5.8)

If δx and N constant, and assuming nx follows a Poisson distribution, then the relative
error ∆p(x)/p(x) on the probability estimate will be:

∆p(x)

p(x)
=

√
nx

p(x)δxN
=

1
√

p(x)δxN
(5.9)

Intuitively, this means that the relative errors on the density estimate will be smaller when
the density itself is high or when the total number of observations is large. δx is the bin
width, that depends on the density estimation method being used. For a histogram, this bin
width is constant. For the taut-string algorithm, we make the simplifying assumption that it
too is constant, equal to an illuminance difference which does not significantly affect visual
comfort. We arbitrarily set δx = 100 lx.

The relative error on a probability Pr calculated with Bayes’s theorem, which is the ratio
between a probability density p1 and a sum of two probability densities p1 and p2, is then:

∆ Pr

Pr
= ∆

(

p1

p1 + p2

)/

p1

p1 + p2
=

√

(

∆p1

p1

)2

+

(

∆(p1 + p2)

p1 + p2

)2

=
1√
δxN

√

1

p1
+

1

p1 + p2

(5.10)

5.3.3 Single office room

It is better to give a complete, baffling description
than an incomplete, straightforward one.

(Donald E. Knuth)

We will first carry out all the analysis on one single LESO office room, and then generalize
to the other rooms. Office room 104 has had 983 user actions over the data acquisition period
and is the office with the most user actions.
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Figure 5.3: Intermediate step in the taut-string algorithm. This plot is produced by running
the R taut-string implementation in verbose mode. The claw-shaped parent dis-
tribution is a sum of five narrow normal distributions added to a wider one. The
histogram of the claw distribution, and the current density estimate, are shown
in the top plot. The lower plot shows the yh and yl functions are they are being
brought together. The red line is the current string drawn tightly from one ex-
tremity to the other. As they get even closer, finer and finer details of the density
will be revealed, such as the five fingers of the claw-shaped distribution.
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Figure 5.4: Example use of the taut-string non-parametric density estimator. The sample
distribution is the same one as in Figure 5.3. The distribution estimated by
the taut-string algorithm is shown in red. 200 data elements drawn from the
sample distribution are shown as tick marks. A classical histogram is shown for
comparison.
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Figure 5.5: Illuminance distribution, before and after user action, in office room 104. User
actions immediately followed by user exit are excluded. 200 randomly chosen
illuminance values are shown on each panel as tick marks.
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Figure 5.6: Discomfort probability as function of horizontal workplane illuminance, office
room 104, with standard error.

In Figure 5.5 we show the density estimates together with histograms of the illuminances
recorded immediately before and immediately after user actions in this office room. From these
density estimates we compute, per Equation (5.7), the discomfort probability as a function
of horizontal workplane illuminance, given in Figure 5.6.

The errors on this discomfort probability curve are small for illuminances below 1000 lx
but grow larger for higher illuminances. This is caused by the smaller number of user actions
for these higher illuminance values. Nevertheless, the general trend of this curve remains
discernable. The discomfort probability is very high for low illuminance values. It reaches a
minimum between 800–1200 lx (the zone of optimal comfort for this occupant), and increases
again but at a slower rate until 3000 lx. It is difficult to interpret the behaviour of the curve
beyond this illuminance because of the small number of user actions at these lighting levels.
Notice also the sharp increase of the density estimates, caused by a saturation at 3500 lx of
our ceiling-mounted luminance sensor from which our data comes.

Keeping in mind that we try to develop a discomfort estimator to be used in a daylight
controller, and that this controller will most likely be commissioned without any data pre-
recorded, how quickly will the discomfort estimate converge? How many user actions are

100



5.3 Discomfort estimation on monitored data

Horizontal workplane illuminance [lx]

D
is

co
m

fo
rt

 p
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

0 1000 3000

50 100

0 1000 3000

150 200

0 1000 3000

250

300 350 400 450

0.2

0.4

0.6

0.8

500

0.2

0.4

0.6

0.8

550 600 650 700 750

800

0 1000 3000

850 900

0 1000 3000

950

0.2

0.4

0.6

0.8

ALL

Figure 5.7: Evolution of discomfort probability estimate for office room 104. The number of
user actions used for the estimate is shown in each panel.

necessary to obtain a discomfort probability curve precise enough to be used by the controller?

To answer this question, we select 50 user actions at random from our data and observe how
the algorithm estimates the probability densities and the resulting user discomfort probability.
Then we add a further randomly chosen 50 user actions from the remaining ones, recompute,
then another 50 and so on until all user actions have been chosen. The resulting probability
estimates are shown in Figure 5.7.

The probability estimate is always troubled by the lack of user actions at higher illumi-
nances, but the presence of a global minimum around 1000 lx is already discernible after 150
events. Assuming an average of four user events per day, five days per week, this leads to an
optimal user adaptation based on a single variable after 7–8 weeks.

5.3.4 Remaining office rooms

We now turn to the remaining office rooms of the LESO building. We show in Figure 5.8 and
5.9 the estimated densities of the workplane illuminances before and after the user action for
all occupied offices of the LESO building. As before, the data points are represented beneath
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Figure 5.8: Density estimate of illuminance levels before user action, per office room. 100
random measurements are shown in each panels as tick marks. The numbers on
each panel are the office rooms’ identifiers.
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Figure 5.9: Density estimate of illuminance levels after user action, per office room. 100
random measurements are shown in each panels as tick marks. The numbers on
each panel are the office rooms’ identifiers.
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Figure 5.10: Density estimate of illuminance levels before and after user action, pooled data
excluding offices 003 and 004.

each density curve as small ticks.
The users are remarkably consistent in that the illuminances most often seen to trigger a

user action are either below 200 lx, or higher than 3000 lx. In other words, only very dark
or very bright lighting situations prompt user actions. The peak seen on almost all plots at
3500 lx is due to the saturation of the illuminance sensor. However, this should not mean
that most illuminance values between 200 lx and 3000 lx were optimally comfortable—users
do not necessarily continuously adjust their blinds or their electrical lighting. They tolerate
some minor discomfort that can depend on the design and placement of the controls at their
disposal.

Similarly, the distribution of illuminances resulting from user actions tend to cluster around
a value of about 400–500 lx. Again, the users are consistent among each other, with the
possible exception of office rooms 003 and 0042.

The consistency among the users allows us to lump together all the data, excluding office

2Office room 003 is the only office room at LESO with a complete anidolic mirror system (c.f. section 3.1).
Office room 004 had an indirect lighting luminaire for some years right below the ceiling-mounted luminance
sensor. These elements explain why the data from office rooms 003 and 004 show these differences.
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Figure 5.11: User discomfort probability as a function of horizontal workplane illuminance
with standard error, pooled data excluding office rooms 003 and 004. The thin
line is a approximation by the loess method (Cleveland et al., 1992).

rooms 003 and 004. The results are shown in Figure 5.10. The two curves shown on this
figure correspond to our Pr(E = e

∣

∣C = T ) and Pr(E = e
∣

∣C = F ) respectively. From these
two curves, we may now apply Bayes’s theorem (Equation 5.6) and derive Pr(C = F

∣

∣E = e),
the probability of user discomfort as a function of workplane illuminance. That function,
together with a smoothed approximation, is shown in Figure 5.11. The same curve but with
different choices for the prior is given in section 5.4.2.

5.4 Discussion of results

5.4.1 Visual discomfort probability function

Figure 5.11 features a global minimum at about 500 lx. The user discomfort probability
for lower workplane illuminances rises sharply, and would probably reach 1 were it not for
inevitable measurements errors. We interpret this as meaning that 500 lx is the optimally
comfortable workplane illuminance in LESO office rooms, which is consistent with the CIE
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recommendations (CIE, 1986).
For illuminances larger than 500 lx, the curve rises gently until about 2500 lx. It is difficult

to interpret the behaviour of the curve for higher illuminances because of the lack of user
actions at these lighting conditions, but it is resonable to assume the discomfort probability
reaches almost 1. Compare this with the simple calculation found in Michel (1999), who
finds that the maximum horizontal workplane illuminance for reading/writing tasks should
not exceed 4000 lx.

We interpret this to mean that users react strongly against too low illuminance. Once the
available lighting is sufficient, the user is relatively indifferent to the workplace illuminance
as long as no glare occurs, which is probably what happens for large workplane illuminances.

Note also that the minimum of this curve never drops below about 0.3. One would be
tempted to interpret this as meaning that it is impossible to satisfy more than about 70% of
the users. This interpretation is however incorrect for two reasons. First, we have calculated
the probability that the user would judge the visual environment as uncomfortable if prompted
to do so. This does not necessarily mean that the visual environment is so uncomfortable
that the user will manually adjust the blinds’ position. Second, remember that we compute
this probability on the sole basis of the horizontal workplane illuminance. As was the case
with the lung cancer example, a probability computed only on the basis of partial information
does not necessarily reflect the “real” probability, in the classical sense.

A visual comfort controller that attempts to balance visual comfort with energy savings can
use this probability function. It is indeed obvious from this curve that for our average user
the preferred horizontal illuminance should be kept at 500 lx, and that higher illuminances
can be tolerated (helping, for instance, the building use solar gains) until about 2500 lx, a
limit that should never be exceeded.

5.4.2 Choice of prior

We have so far applied Equation 5.6 with the simplifying assumption that the prior Pr(C = F )
is equal to 0.5. This assumption deserves some justification.

A choice of prior always reflects some information we have about a system before making
observations. For example, let us consider the toss of a coin, which might or might not be
loaded. Let us say we believe there is a 0.1 probability of the coin being loaded in such a way
that is always lands on heads.

If after the toss the coin indeed lands on heads, then our prior belief that the coin was
loaded should be reinforced. Indeed, applying Bayes’s theorem, we obtain:

Pr(Load
∣

∣Heads) =

Pr(Heads
∣

∣Load) Pr(Load)

Pr(Heads
∣

∣Load) Pr(Load) + Pr(Heads
∣

∣NoLoad) Pr(NoLoad)
(5.11)

which now evaluates numerically to 0.18 instead of 0.1.
In the case of user comfort, we should ask ourselves what is the prior probability of the user

being uncomfortable in the total absence of any information. But let us put this question
another way. Suppose you are given a coin, which might or might not be loaded, and asked to
evaluate the probability of it landing on heads on the next toss. In such a complete absence
of information, symmetry dictates that you should answer 0.53.

3The answer 0.5 is the right answer even if you are explicitly told that the coin is loaded one way or the other,
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5.4 Discussion of results

Similarly, a user placed in a completely unknown environment might or might not be
uncomfortable, and our inability to favour one answer or the other compels us to choose 0.5
as a prior. This is the choice we have made in this work.

It might be argued, however, that a building built according to sound principles will usually
ensure some degree of comfort (both visual and thermal) to its users. In these cases a choice
of a prior different from 0.5 might be justified. How do different priors affect our posterior
discomfort probability function?

Recall the expression for the discomfort probability, from Equation (5.6):

Pr(C = F
∣

∣E = e) =

Pr(E = e
∣

∣C = F ) Pr(C = F )

Pr(E = e
∣

∣C = F ) Pr(C = F ) + Pr(E = e
∣

∣C = T ) Pr(C = T )
(5.12)

For simplicity, let:

P = Pr(C = F
∣

∣E = e)

C = Pr(C = F ) = 1 − Pr(C = T )

A = Pr(E = e
∣

∣C = F )

B = Pr(E = e
∣

∣C = T )

K = B/A

We have then:

P =
A × C

A × C + B × (1 − C)
(5.13)

or equivalently:

P =
1

1 + K × 1−C
C

(5.14)

Deriving with respect to the prior C yields:

dP

dC
=

K/C2

(

1 + K × 1−C
C

)2 = K ×
(

P

C

)2

(5.15)

This shows that the derivative of the discomfort probability with respect to the prior is
always positive, which we intuitively expect: if the prior probability increases, so should the
resulting discomfort probability. It shows also that the derivative is a monotonous function
in the discomfort probability P : if P (E = e1) > P (E = e2) for two illuminance values e1 and
e2, then dP (E = e1)/dC > dP (E = e2)/dC. The larger probability will increase faster than
the smaller one when the prior increases. The ranking between two arbitrary probabilities
will always be conserved. In particular, the position of local and global minima and maxima
are independent of the choice of prior.

Figure 5.12 shows two discomfort probability functions derived in the same way as the one
in Figure 5.11, but with a prior choice of 0.9 and 0.1 respectively. Comparing these curves
with the one with prior 0.5 given in Figure 5.11, we see that a different choice of priors does
not affect the shape of the probability curve but tends to “squash” it to higher or lower values.

but without specifying which.
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Figure 5.12: User discomfort probability for three different prior choices. The thin lines are
smoothed loess approximations.

108
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In conclusion, a controller that only attempts to minimize this discomfort probability will
behave identically no matter what the choice of prior is. It is only when attempting to balance
this discomfort probability with other factors, as is done in this project, that a non-trivial
choice of prior can lead to different behaviours. It is however very unclear to us how to justify
such a non-trivial choice of prior.

5.4.3 Bayesian network with more than one variable

It would be tempting to conclude that we now know how to satisfy the user on the basis of the
horizontal workplane illuminance alone. Indeed, this was the whole point in using bayesian
statistics: to extract the maximum amount of information from the available data.

We must not forget, however, that other factors can influence user comfort than just the
horizontal workplane illuminance. The user can experience direct sunlight without the hor-
izontal illuminance being affected, for instance. Therefore it is important that we make use
of as many other indicators of visual discomfort as possible. The risk of direct sunlight, for
instance, will be greatly reduced if we derived the same probability curve for the vertical
eye-level illuminance.

We have so far considered only one physical variable, the horizontal workplane illuminance.
Indeed, it was the only variable readily available in the office rooms of the LESO building.
But a strength of bayesian networks is their ability to combine information from more than
one node, i.e. to refine the posterior probability as more information becomes available. If we
measured them, could we use the illuminances recorded in other locations in the office room,
especially if some of these locations were known to highly correlate with visual comfort?

As we discussed in section 3.1, our project has fitted two office rooms with venetian blinds
instead of textile blinds, and has replaced the ceiling-mounted luminance sensor with a cali-
brated desktop sensor. We have also added two additional sensors in each room on the walls
at eye-level in front of, and behind, the user. We thus have had two additional variables be-
lieved to be correlated with user comfort, the vertical illuminance at eye level and the vertical
illuminance in front of the user (taken to be proportional to the average luminance in the
user’s field of view).

An abundant discussion of methods to combine pieces of evidence in a Bayesian classifier
is available since Paul Graham (Graham, 2002) wrote his influential article that sparked the
advent of bayesian junk email classifiers. Here we shall describe only the simplest of them.

Elkan (1997) reviews the concept of a naive bayesian classifier, i.e. one where all pieces of
evidence are considered to be conditionally independent of each other. If Ei are k physical
variables under consideration, let piT = Pr(Ei = ei

∣

∣C = T ) and piF = Pr(Ei = ei

∣

∣C = F ) be
the probability densities for each physical variable under comfortable respectively uncomfort-
able situations.

Applying Bayes’s theorem, we see that:

p = Pr(C = F
∣

∣E1 = e1, . . . , Ek = ek) =

(

k
∏

i=1

piF

)

× Pr(C = F )/z (5.16)

and

q = Pr(C = T
∣

∣E1 = e1, . . . , Ek = ek) =

(

k
∏

i=1

piT

)

× Pr(C = T )/z (5.17)
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where z = Pr(E1 = e1, . . . , Ek = ek) is a constant. But p = 1 − q so:

p

1 − p
=

p

q
=

(

∏k
i=1 piF

)

Pr(C = F )
(

∏k
i=1 piT

)

Pr(C = T )
(5.18)

and thus:

p =
1

1 +
(

Q

k

i=1
piT )Pr(C=T )

(
Q

k

i=1
piF )Pr(C=F )

(5.19)

Or even simpler, if we assume the trivial prior Pr(C = F ) = 0.5:

p =
1

1 +
(

Q

k

i=1
piT )

(
Q

k

i=1
piF )

(5.20)

which is exactly what we are looking for, the probability after combining all available variables.

Out of curiosity we have applied this calculation to the example given in section 5.1 to
calculate the probability of a patient having cancer when smoking and living in a polluted
area. The calculation yields a result of 0.077, slightly different from the given value of 0.05.
The discrepancy comes because the numbers as given in the example are not compatible with
a conditional independence of the evidences.

This conditional independence is actually almost always violated in practice. Naive bayesian
classifiers work nevertheless surprisingly well. Domingos and Pazzani (1996) gives a number
of interesting arguments to explain why even a bayesian classifier contrived to completely
violate that independence will still perform well. For that reason, it is reasonable to use the
naive bayesian classifier to combine evidences coming from such obviously dependent variables
as illuminances measured from different points in the room. Equation 5.20 is the expression
that our controller has used.

The other LESO office rooms have never had more than one illuminance sensor, so this
method has not been validated on historical LESO data. We will instead use the results from
this project and see in section 7.2 the results of a bayesian estimation of visual discomfort
with three variables.

5.5 Chapter summary

Based on recorded user actions, we have derived the user discomfort probability function for
occupants of the LESO building on the basis of the horizontal workplane illuminance. Its
minimum lies around 500 lx, rises sharply for lower illuminance values, rises more gently for
higher values until it plateaus at about 2500 lx.

This probability curve was obtained on-site, in a real, occupied building, with no interfer-
ence with the regular workflow of its occupants. That curve has adapted itself to the users and
can be used by a user-adaptive building management system. In particular, the integration
of the discomfort estimation algorithm we have described in this chapter with our daylighting
controller will be described in chapter 6.

The advantage of the bayesian approach is that we know exactly what we are estimating.
Other visual discomfort or glare indices yield“scores”, but it is difficult to interpret such scores.
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5.5 Chapter summary

No one can know from first principles what a Unified Glare Rating of 25 means without looking
it up. A probability, on the other hand, has a meaning devoid of any ambiguity.

The complete dependency on the user’s behaviour is, in this approach, not a weakness. It
is indeed known, for instance from Foster and Oreszczyn (2001) and the references therein,
that the occupant’s use of venetian blinds is neither rational nor energetically optimal. A
control algorithms that rely too much on learning from the user’s behaviour run the risk of
learning bad control strategies. It is, however, also known (Reinhart, 2001) that most users
behave in a conscious and consistent way. In other words, it makes sense for a controller
to learn from the desired effects of the occupants’ actions, not necessarily from the actions
themselves. Users that close the blind in the morning because the sun is low on the horizon,
and leave the electric light switched on the whole day will usually (albeit not always) accept
a system that shuts the lights off and opens the blinds when the source of glare is gone, even
though they would not have bothered to do so themselves.

In our approach we seek to understand what lighting conditions are acceptable by a given
user. The controller then uses this understanding to reproduce these lighting conditions as
faithfully as possible. It is therefore quite different from the approach of Guillemin (2003),
whose control algorithm explicitly optimizes a set of rules that reproduce, within limits, the
user’s behaviour. This latter control algorithm, while minimizing the risk of user rejection,
will be more vulnerable to an irrational user’s behaviour.

This approach can be applied to any variable linked to the occupant’s comfort. Wong et al.
(2007) have proposed a very similar algorithm applied to the thermal comfort. Whenever a
user expresses a “complaint” about the indoor temperature, the temperature is logged and
used in a bayesian algorithm to determine the optimal temperature for all users.

The application of bayesian statistics on building physics problems is clearly an emergent
field, and we expect it to play an increasingly important role in the future.

111



5 Bayesian discomfort model

112



6 Controller implementation

Choose two: (A) Fast (B) Efficient (C) Stable (D) Windows 98 (counts as two)

(Anonymous)

We have built a blinds and electric lighting controller that integrates the tools described in
the preceding chapters. This controller provides an optimal visual comfort to the user while
minimizing the use of electric lighting and maximizing the use of free solar gains.

This controller has been implemented as a proof-of-concept in an office room of the LESO
building, interfacing with the existing EIB building management system. The objective was to
prove the algorithm adapts itself to the user and performs as expected. Energy consumptions
by that office have consequently been continuously monitored.

We have also run this control system against different virtual office rooms. No user adapta-
tion was possible in this case, and we have instead focused on studying the predicted energy
savings.

This chapter describes the technical implementation of the controller. We begin by review-
ing in section 6.1 the most important requirements the controller must fulfill. In section 6.2
we discuss the implementation of the most important elements of our controller, such as the
integration of the discomfort probability estimator, the choice of an optimization algorithm,
and so forth. In section 6.3 we discuss the building management system interface we have
built into Eibserver and which is also implemented by our virtual Simbad model. This
interface makes it possible to run our controller indifferently against a real or a virtual office
room. Section 6.4 describes technical design and implementation decisions.

After reading this chapter, the reader should have enough background information to under-
stand the controller’s source code (c.f. Appendix C). Some details will inevitably be skipped
for simplicity’s sake. Whenever this chapter and the source code seem to disagree, the source
code has, of course, precedence.

This chapter is very technical in nature. Sections 6.3 and 6.4, in particular, are intended for
a Java developer who needs to understand the controller’s inner workings. They document
what the reader needs to know in order to maintain and extend the existing system. A solid
grounding in object-oriented programming (OOP), and in the Unified Modeling Language
(UML), is recommended for these two sections. Meyer (1997) is one of the best texts available
on OOP, while Fowler (2003) is probably the best introduction to UML.
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6.1 Controller requirements

It must often be so, Sam, when things are in danger:
some one has to give them up, lose them, so that
others may keep them.

(J. R. R. Tolkien, The Return of the King)

In this section we will give specific requirements for the control system. Most of these are
generic and would apply to any controller, but some of them (e.g. user adaptation) are very
specific to the current project.

This section is by no means exhaustive, but enumerates the most important user-visible
requirements the controller should fulfill without loosing sight of the project’s original vision.

6.1.1 Blinds and electric lighting control

The control system shall control the position and slat angles of the office’s blinds, as well as
the electric lighting. It shall be capable of handling one or more venetian blinds.

It shall not do so in a continuous manner, which would result in constant noise from the
blinds’ motors. New positions to the blinds’ motors shall not be sent unless one of the following
conditions is satisfied:

� the user enters the office after a prolonged absence, or

� the user leaves the office, or

� at 15 min intervals, or

� if there is an immediate risk of glare.

Under no circumstance will a new command be sent to either the blinds or the electric
lighting if the last user override has happened less than one hour ago and the user is still
present.

6.1.2 Visual comfort

When the user is present, the controlled actuators shall provide an illuminance distribution in
the office room such that the estimated visual discomfort probability is kept at a minimum.

If several combinations of blinds’ positions and/or slat angles result in the same estimated
visual discomfort, the combination that maximizes the view to the outside shall be preferred.

6.1.3 User adaptation

Following the methods described in chapter 5, the controller shall keep a log of illuminance dis-
tributions monitored by the room’s sensors immediately preceding and following user actions,
unless that action occurs when the user exits the zone.

These measurements are to be analyzed by the bayesian discomfort estimation algorithm,
which will provide a estimate of the visual discomfort probability adapted to the personal
preferences of the user and specific to the controlled office room.
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6.1.4 Energy savings

The system shall use the electric lighting only when the visual discomfort probability decrease
it can provide justifies the energy cost of using it. When the illuminance provided by the
electric lighting becomes less than 25% of the total illuminance, it shall be switched completely
off. Indeed, from the discussion in sections 2.5.1 and 2.5.2, a 25% illuminance decrease is half
the smallest decrement in illuminance that results in a significant subjective effect. We deem,
therefore, such a decrease as having no harmful effect on the visual discomfort and as being
always justified if the electric lighting is thereby switched off1.

A bias towards the use of solar gains shall always be applied when the indoor temperature
risks falling below 20 °C. Conversely, a bias against solar gains shall be applied when the
indoor temperature risks rising above 26 °C. This bias shall be much stronger when the user
is absent. When the user is present, this bias shall be damped in order not to conflict with
the visual comfort requirement2.

6.1.5 Building automation response time

The system shall operate in a timely manner. This author has personally had some experience
with the popular X10 home automation system, but noticed a flaw that might limit the
system’s acceptance by certain users: there is a noticeable delay when the remote control is
used to switch on the lights.

This delay is less than one second, but people have become so accustomed to instant
response times that this delay might be considered as unacceptable by some users. There is
evidence from the literature on human-computer interaction that response times longer than
100–200 ms are perceived as bad (Jacobson, 1990).

The EIB system, however, has fast response times and no user of the LESO building has
complained about any perceived slow responsiveness. Besides, our controller does not need
to respond particularly quickly to any events, except when the user enters the room. After
an absence period, the controller must within a couple of seconds at most set the blinds and
electric lighting in an appropriate way. This is particularly important in the evening, when a
fast electric lighting switch-on time is expected.

6.1.6 Solar variability response time

The system shall be able to respond efficiently and promptly to abrupt changes in the available
daylight.

Tomson and Tamm (2006) have studied the short-term variability of solar radiation in
northern Europe. They have introduced a classification of skies as being either stable or
highly variable, depending on the fluctuation of solar irradiance over time.

For highly variable skies, they found that the period between two large increments in solar
irradiance (∆G > 150 W/m2·min) is distributed exponentially, with 80% of these periods
being shorter than 10 min and 19% of them shorter than 1 min.

1Using fluorescent tubes at very low power is particularly wasteful of energy, since their ballasts draw a
constant power that might be larger than the power effectively used for lighting.

2Early tests showed that the controller would open the blinds completely when then sun was low on the
horizon and almost perpendicular to the facade. In this situation, the solar gains completely dwarf the
user’s visual discomfort. Through trial and error, we have assigned a much smaller weight to the control’s
heating aspects when the user is present.
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During such sky conditions (such as a partially overcast sky) the controller shall therefore
respond to changes in the sky conditions that might signify a risk of glare. A change that
does not pose such a risk does not need to be reacted to.

6.2 Design notes

The controller is implemented as a program that spends most of its time listening to events on
the building’s sensors and actuators. At regular intervals, and in response to certain events,
it explores its degrees of freedom, using its daylighting model to find the set of blinds’ and
electric lighting settings that satisfies its requirements.

In this section we discuss the most important elements of such an implementation. Sec-
tions 6.3 and 6.4 will discuss its more technical aspects.

6.2.1 Integration of the visual discomfort probability

We know from chapter 5 how to derive the discomfort probability from measurements of the
horizontal workplane illuminance, possibly combined with other illuminance measurements.
We know also from chapter 4 how to predict in advance what the resulting illuminance will
be for any combination of blinds and electric lighting settings. How should we use this
information in our controller? How can these tools be combined in an integrated daylighting
and electric lighting controller?

If the task of the controller were to minimize the user’s visual discomfort probability at all
costs, it could on a regular time basis (e.g. every 5 minutes) use its internal illuminance model
to explore its degrees of freedom, before finding the blinds and electric lighting settings that
minimize the user discomfort probability.

However, in an extreme case, this might in wintertime lead to an office whose solar shadings
are completely closed to protect the user from direct glare from a low altitude sun, taking no
advantage of solar gains during a period of the year when they are most needed, and having
the electric lighting turned on at full power.

The controller should instead balance the user discomfort with the cost of a given configu-
ration in terms of energy. The easiest way to do this is to write a total cost function that the
controller should attempt to minimize. This function should be a sum of at least two terms:
one expressing the energy consumption, and the other expressing the user’s visual discomfort,
with a suitable weighting factor introduced to balance the two. The cost function used in this
project was inspired by the one described in Ferguson (1990) and takes the following form:

U = W1Pel + W2Pth + W3 Pr(C = F ) (6.1)

where Pel is the power applied to the electric lighting, Pth is the back-up power necessary to
keep the office room at a set temperature3, and Wi are suitable weighting factors4.

3This can be either power applied to heating elements, or power applied to active cooling systems. The LESO
building is passively cooled, and in these situations this term could either be left untouched, just as if a
cooling system existed, or it could be replaced with an estimation of user’s thermal discomfort resulting
from excessive solar gains.

4Several variations on this cost function have been considered for the experimental setup in the LESO building.
In particular, a “View” term has been added to take into account a positive cost when the blinds occlude
too much of the window, affecting the user’s view to the outside, and in fulfilment of requirement 6.1.2.
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6.2.2 User adaptation

The central element of the bayesian discomfort estimation described in chapter 5 is the mon-
itoring of the illuminance at several points in the controlled room before and after every user
action (except those made upon user exit).

Whenever a user action is detected by the controller, this illuminance distribution is logged
to disk along with the time of the user action. The density estimate of each set of illumi-
nances needs to be computed in order to apply Bayes’s theorem. In chapter 5 we used the R
implementation of the taut-string algorithm (Davies and Kovac, 2001).

We have not reimplemented this algorithm in Java. Instead, our controller makes calls to
an executable R script that reads in a file with illuminance data. This script returns a density
estimate for illuminances between 0–3500 lx. Density estimates beyond 3500 lx are set to zero.

When the density estimate is done for each set of illuminance data, the controller is notified
and reloads the density estimate data it needs.

Thus, user adaptation happens immediately after each user action. The external calls to
R, and the execution of the R script itself, take some seconds but are done only once for each
user action. Furthermore, the controller does not need to respond to events while overriden,
so this small delay is perfectly acceptable.

Naturally, in an embedded controller the taut-string algorithm, or any other density estima-
tion algorithm, would have to be implemented in another language than R. R is a high-level
interpreted language—just its compiled library is almost 2Mb large.

6.2.3 Daylighting model optimization

The controller includes the same DAQ program as the prototype controller developed in
section 4.6. On weekends, while the user is absent, the controller moves the blinds to n
discrete positions and to m discrete slat angles, and records the resulting illuminance on each
sensor for each setting.

Let us introduce some notation. We shall denote blinds 100 × X% open and with slats
100 × Y % open as being in a (X, Y ) setting. Thus, a blind 40% open and with slats 50%
open is in a (0.4, 0.5) setting. X = 0 corresponds to having the blinds completely closed and
X = 1 to having them fully retracted. Y = 0 corresponds to having the slats in a vertical
(closed) position, Y = 1 to having them in a horizontal (open) position.

The settings for two venetian blinds (as on the LESO building) will be noted [(X, Y ), (Z,Q)].
The first setting will be the lower blinds and the second will be the upper blinds. On the
LESO building, the DAQ program sets the blinds’ position to 0, 20, . . . , 100%, i.e. n = 6
discrete positions. The slat angle is set to 0, 10, . . . , 100%, i.e. m = 11 discrete steps.

Our implementation uses the fact that the daylighting flux is additive. It is not necessary
for the DAQ program to explore all n × m × n × m possibilities. Instead, the DAQ program
will keep one of the blinds completely closed while the other explores its n × m settings.
When finished, the latter blind will close and the former one will begin exploring its degrees
of freedom.

When asked to predict the resulting daylighting illuminance from two venetian blinds, the
daylighting module will first model A, the illuminance that would result if the lower blinds
were completely closed, then B, the illuminance that would result if the lower blinds were
opened again but the upper blinds closed. The sum A+B is the illuminance from both blinds
but includes stray illuminance from the windows whose blinds are completely closed. This is
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why we also model C, the illuminance that would result if both blinds were closed. The total
illuminance will be A + B − C (c.f. Figure 6.1).

If the blind, whose illuminance contribution we want to model, is in one of the discrete
states recorded by the DAQ program, then the algorithm described in chapter 4 is followed.
If it is not, the following procedure, illustrated in Figure 6.2, is followed.

First the four discrete blinds settings enclosing (X, Y ) are found, denoted by (⌊X⌋, ⌊Y ⌋)
and so on. Their associated illuminances are computed through our algorithm. For example,
if the blinds are in a (0.55, 0.47) settings, then the illuminance contribution from the blinds
in the (0.4, 0.4), (0.4, 0.5), (0.6, 0.4) and (0.6, 0.5) settings are computed. This operation
is computationally expensive, but the illuminances for these discrete values are likely to be
requested several times until the next irradiance sensor event. Therefore they are cached.

Then the intermediate illuminance values for (X, ⌊Y ⌋) and (X, ⌈Y ⌉) are linearly interpolated
from the illuminances previously computed. These illuminances correspond to having the
blinds’ position kept in a X position but whose slat angles are rounded down, respectively
up, to a discrete value. In our example, we would compute the illuminance contribution from
a blind in the (0.55, 0.4) and (0.55, 0.5) settings.

Finally, the desired illuminance for the blinds’ setting (X, Y ) is linearly interpolated from
these two latest values.

6.2.4 Solar vector computation

Our controller needs an accurate, computationally light algorithm for computing the solar
vector, i.e. the sun’s elevation and azimuth. Its accuracy needs to be such that negligible
errors are made by the controller’s daylighting model. Given the sensitivity of venetian blinds
to the sun’s height, especially when close to the cut-off angle, an accuracy better than the
angular width of the solar disc (about 32′′) is required.

Blanco-Muriel et al. (2001) have reviewed seven algorithms for computing the solar vector
with a sufficient accuracy to be used in high-concentration solar thermal systems. Of these
seven, only four yield the true horizontal coordinates of the sun. They have evaluated the
errors of these algorithms and found the Astronomical Almanac’s algorithm, described and im-
plemented in Fortran by Michalsky (1988), to have the smallest average error on zenith angle
(−0.121′′), azimuth (−0.042′′) and smallest average sun vector deviation (0.207′′). Michal-
sky’s algorithm is accurate between 1950–2050. Blanco-Muriel et al. further decribe their
own proposed algorithm which is even more accurate. In this work, however, we have im-
plemented Michalsky’s algorithm, which is accurate enough for our application, simple (an R
implementation needs about 55 lines of non-comment code) and computationally light5. Its
R source code is given in Appendix C.3.

6.2.5 Optimization algorithm

The controller’s main loop consists in minimizing a cost function with one parameter per
degree of freedom to control. In our case, we have two venetian blinds with two degrees

5One line in Michalsky’s Fortran implementation is wrong. The line that reads eclong = mnlong +

1.915*(mnanom) + 0.20*sin(2.*mnanom) should read instead eclong = mnlong + 1.915*sin(mnanom) +

0.02*sin(2.*mnanom). The paper’s main text is correct and follows the source of the original algorithm
(Seidelmann, 1992).

118



6.2 Design notes

+
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=

Figure 6.1: Daylighting flux additivity.
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(⌊X⌋, ⌊Y ⌋)

320 lx

(⌈X⌉, ⌊Y ⌋)

430 lx

(⌊X⌋, ⌈Y ⌉)

400 lx

(⌈X⌉, ⌈Y ⌉)

550 lx

(X, ⌊Y ⌋)

383 lx

(X, ⌈Y ⌉)

486 lx

(X, Y )445 lx

Figure 6.2: Daylighting model for non-discrete blinds settings. This diagram shows how the
illuminance from a blinds’ arbitrary (X, Y ) setting is interpolated from the illumi-
nances recorded in the discrete settings (solid squares) set by the DAQ program.
Intermediate illuminances are first computed for the blinds settings shown as dia-
monds, from which the final illuminance is interpolated. In this diagram the ratio
(X − ⌊X⌋)/(⌈X⌉ − ⌊X⌋) = 0.575, and the ratio (Y − ⌊Y ⌋)/(⌈Y ⌉ − ⌊Y ⌋) = 0.6.
Example illuminances are shown.

of freedom each, and the power applied to the electric lighting, yielding a function of five
continuous parameters.

A brute-force search for a global minimum, although possible in principle, is unacceptable
on the LESO offices. Even if we restricted ourselves to the 6 discrete values of the blind’s
positions and the 11 values for the slat angle, and 11 settings for the electrical lighting, we
would have 6× 11× 6× 11× 11 = 47 916 points to evaluate. This is far too costly and would
not yield a responsive controller.

We need an algorithm for minimizing a multivariate function, and we do not expect the
latter to be particularly “misbehaved”. Control settings close to one another should yield cost
functions close to one another. One possible exception is when the slat angles are close to the
cut-off angle, and a small change in slat angle can dramatically affect the indoor illuminances,
and hence the user discomfort. But in general, the cost function will be continuously derivable,
and have several local minima.

The literature has many multidimensional function optimization routines. Press et al.
(2002), in their classic work, describe and implement four of the more traditional methods.
Less traditional methods based on genetic algorithms or simulated annealing have recently
gained much favor, especially in the building control algorithm community where the functions
to optimize are often discontinuous.

Wetter and Wright (2004) have reviewed the performance of twelve different algorithms
on optimization problems likely to be met by building simulation professionals. The best
algorithm was a combination between a particle swarm optimization (PSO) and the Hookes-
Jeeves algorithm.

In PSO algorithms, an initial population of candidate solutions (called particles) is ran-
domly created. Each iteration of this algorithm models this population as a flock of birds or
a school of fish:
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6.2 Design notes

Each particle attempts to change its location to a point where it had a lower cost
function value at previous iterations, which models cognitive behaviour, and in
a direction where other particles had a lower cost function value, which models
social behaviour.

The Hooke-Jeeves algorithm searches for a solution on a discrete mesh, looking for the
point on that mesh that has the lowest cost function value. The algorithm refines the mesh
as it progresses, making progressively larger steps in the direction that has reduced the cost
in previous iterations.

A hybrid PSO and Hookes-Jeeves algorithm begins with a PSO on a mesh, then switches
over to a Hookes-Jeeves algorithm using for the initial iterate the mesh point that attained
the lowest cost function value.

Genetic algorithms are, however, also a good choice at the price of a slight decrease in
accuracy. Two algorithms perform so badly that the authors explicitly recommend against
using them: the Nelder-Mead and the discrete Armijo gradient algorithms.

Before we choose one algorithm or another, however, several points must be kept in mind.
First, we want the optimization routine to be fast, yielding solutions in less than a couple of
seconds as argued in section 6.1.5. Second, we do not expect discontinuities in the function to
optimize. Third, the function has only five parameters, whereas cost functions encountered
in building design problems may have up to 10–20 parameters (one of the two optimization
problems used by Wetter and Wright had thirteen).

Fourth, and this is an essential point, we do not necessarily ask for a global minimum.
When different combinations of blinds’ positions and slat angles yield the same user comfort
we want the algorithm to select an acceptable solution that is close to the current settings, in
order to keep the distance moved by the blinds to a minimum. Too many large movements
will inevitably annoy the user and wear the blinds’ motors out. Therefore, even algorithms
known to be vulnerable to local minima should not be excluded and might, for our purposes,
be actually the right choice.

These reasons suggest that the warnings given by Wetter and Wright do not apply in our
case, and we have chosen the Nelder-Mead algorithm for its speed and simplicity.

This algorithm starts out with N + 1 initial points, where N is the number of dimensions.
These points define a geometrical figure called a simplex : in three dimensions, the simplex is
a tetrahedron. The simplex then takes a series of steps, most of which consist in reflecting the
highest point through the opposite face of the simplex to a lower point. Other rules are also
tried, illustrated in Figure 6.3. The behaviour of the simplex mimicks that of some intelligent
jelly that oozes down a N +1 dimensional surface: in two dimensions, the simplex is a triangle
that oozes down along a three-dimensional surface, the altitude of each point being given by
the cost function value at that point.

The main body of our controller’s Amoeba class is our translation in Java of the C++
implementation given in Press et al. (2002, p. 413–417)6.

6.2.6 Alternatives to a cost function

Several stakeholders in this project required different goals to be met by the control algorithm,
and the cost function discussed in section 6.2.1 was proposed as a compromise. In this section

6We have however made minor modifications to that implementation so the function’s variables would remain
bounded.
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simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

(a)

(b)

(c)

(d)

high
low

Figure 6.3: Rules followed by a simplex in its search for a minimum, from Press et al. (2002).
The top figure shows the simplex at the beginning of each iteration step. From
there, it can either a) reflect the high point through the opposite surface; b)
reflect and stretch further away from the high point; c) contract away from the
high point; and d) contract along all dimensions towards the low point.
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we will discuss alternative possibilities that could be explored in future projects.

Our optimization problem is complicated by seeking to optimize two quantities at the same
time: the user comfort and the energy savings. A cost function was chosen that balances the
two terms, partly inspired by the function proposed by Ferguson (1990).

Other approaches are possible. Wright et al. (2002) discuss the problem of a so-called
multi-criterion optimization problem and how they solve it through a multi-objective genetic
algorithm. The advantage of their approach is that the optimization does not need any
relative weights to assign to any criterion. The algorithm yields a family of optimal solutions,
and the algorithm user selects then the solution that best accounts for the relative merits
of the different criteria. In this case, however, a decision must still be made on the relative
importance of the different criteria. The difference with our approach is that this decision is
made after the optimization instead of before.

Perhaps the idea of a central cost function is not the best one either. The difficulty with any
integrated controller is, by definition, to integrate many different and interrelated aspects of
building control. But the control strategy for one category of building services can be strongly
influenced by the controllability of other building services. For example, a building whose
heating can be controlled will not use solar gains in the same way that our controller does:
the latter must keep the indoor temperature at a given level at all times (c.f. section 6.1.4),
whereas the former knows that heat is not necessary when the user is absent. And its seems
very clumsy to this author to have to redefine a new cost function for each particular kind of
controller.

Nevertheless, the central idea of this work was to provide building controllers with a tool
that estimates the user’s visual discomfort from a statistical analysis of the user’s behaviour.
The controller we have built is meant as a proof-of-concept implementation, not as a reference
example of how this tool should be used.

6.3 Building bus interface

Eibserver was originally designed to communicate with a control algorithm implemented
and running in Matlab on another computer.

The de facto standard way for a Java program to communicate with other processes, possi-
bly running on other machines, is the RMI (Remote Method Invocation) library. This library
defines a java.rmi.Remote interface that a class must implement in order to make its methods
transparently7 available to the other process.

The architect of any RMI-based distributed application faces a dilemma. Imagine we are
to design software for automated telling machines. These machines must be able to invoke
remote procedures on a server running at the bank that manages the customer’s accounts.
But should there be one big remote server process representing the bank, or should there be
many small servers processes each representing a customer’s account? The pros and cons of
either approach are discussed by Grosso (2001).

Early versions of Eibserver implemented the first solution, i.e. a huge EibRmiServer class
that provided remote methods such as getBlindPosition(String roomNumber,

String blindName). Such methods served as middle-men between the controller process

7With some exceptions, inevitable in distributed computing. Besides obvious lag problems and loss of con-
nectivity, all remote methods are declared to throw java.rmi.RemoteExceptions which must be checked
by the caller.
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<< interface >>

Controller

+ handleDeviceEvent (device :Device ):void

<< interface >>

VenetianBlind
<< interface >>

Lighting

<< interface >>

TemperatureSensor

<< interface >>

SkyLuxmeter
<< interface >>

CalibratedSensor

<< interface >>

OccupancySensor

<< interface >>

Device

+ getName ():String
+ addController (controller :Controller ):void
+ removeController (controller :Controller ):boolean

java.rmi.Remote

cd: Eibserver remote interface

Figure 6.4: Eibserver remote interface class diagram.

and the Eibserver objects. The method above would, for instance, forward a request to the
Blind.getPosition() method on the correct object.

This design had its flaws. Any modification in Eibserver, such as the addition of new
classes representing new building services, required the developer to remember adding the
corresponding methods to EibRmiServer. And there was no way a controller process could
dynamically query Eibserver and ask for a list of available methods or devices.

When we took over the maintenance of Eibserver we tried to improve on this design.
Instead of having one single object doing all the RMI communication, all device interfaces now
extend a common Device interface, that itself extends the java.rmi.Remote interface, and
each class’s constructor exports the object upon instantiation. Thus all classes representing
actuators or sensors implement the corresponding interface Lighting, Temperature and so
on, each of which extends the Device interface, as shown in Figure 6.4. The public interface
specific to each kind of device is shown in Figure 6.5. This public interface is accessible to
any external process through RMI.

Eibserver also defines a Controller interface that a class must implement in order to
subscribe to device events. The subscription is done by passing itself as argument to the
Device.addController() method. Thereafter, any change of status will cause a call to
Controller.handleDeviceEvent(), with the changed device being passed as argument.

To conclude this section, we give below a final sample script that will list all devices available
from Eibserver’s RMI server (only the first five items are shown, corresponding to a window
opening sensor, two venetian blinds, and two lighting actuators). The device names are always
given as //lesopc7:1099/light_202 where lesopc7 is the name of the machine on which
Eibserver runs, 1099 is the port number used by RMI, and light_202 is the RMI identifier
of the object:

1 [lindelof@lesopriv3 eccobuild]$ jython

2 Jython 2.2a0 on java1.4.2_05 (JIT: null)

3 Type "copyright", "credits" or "license" for more information.

4 >>> from java.rmi import Naming

5 >>> list = Naming.list("//lesopc7")
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All interfaces on this diagram
extend the Device interface

Used for outdoor temperatureActuators

Sensors

<< interface >>

Temperature

+ getTemperature ():double

<< interface >>

SkyLuxmeter

+ getLuminosity ():double

<< interface >>

TemperatureSensor

+ getIndoorTemperature ():double

<< interface >>

Lighting

+ getIntensity ():double
+ setIntensity (intensity :double ):boolean

<< interface >>

VenetianBlind

+ getPosition ():double
+ getSlatAngle ():double
+ setPosition (position :double ):boolean
+ setSlatAngle (slatAngle :double ):boolean

<< interface >>

CalibratedSensor

+ getValue ():double

<< interface >>

OccupancySensor

+ getOccupancy ():boolean

cd: Device interfaces

Figure 6.5: Eibserver sensors and actuators interfaces.

6 >>> for item in list:

7 ... print item

8 ...

9 //lesopc7:1099/win-N_107

10 //lesopc7:1099/bldV-up_201

11 //lesopc7:1099/bldV-up_202

12 //lesopc7:1099/light_201

13 //lesopc7:1099/light_202

14 [lindelof@lesopriv3 eccobuild]$

6.4 Design decisions

With design I can think very fast, but my thinking is
full of little holes.

(Martin Fowler)

6.4.1 Overall controller structure

The controller is implemented as a Java package, released as a Java executable eccobuild.jar
jarfile. Figure 6.6 shows the deployment diagram of the controller on the LESO building. Fig-
ure 6.7 likewise shows the deployment diagram when running against the building simulation
model. These figures show no difference as far as the control PC is concerned, and the same
executable is run against the real and virtual building.

The class diagram shown in Figure 6.8 shows the main classes that make up the controller’s
implementation. The central class is EccobuildController, of which only one instance will
exist per controlled room. That class implements the Controller interface, allowing it to reg-
ister for event notification with the controlled Devices, as previously discussed in section 6.3.

As we will see shortly, our controller has state and needs to track that state through two
enumeration classes, PresenceStatus and ControllerStatus. We will defer the discussion
of these states until after we have described the main event loop.
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<< device >>

EIB network

Database PC

MySQL database

Eibserver PC

<< artifact >>

eibserver.jar

Control PC

<< artifact >>

eccobuild.jar

dd: Ecco−build deployment

Java RMI / LAN

LAN

Serial port

Figure 6.6: Controller deployment diagram. The control PC runs the executable
eccobuild.jar file and communicates via Java RMI with the PC where Eib-

server runs. This latter PC communicates via a serial port with the EIB net-
work. This diagram also shows the separate PC on which a MySQL database
runs and on in which all events are logged. <<artifact>> is the common UML
term for physical manifestation of software, such as files. <<device>> denotes
hardware, in this case the EIB.
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Simulation PC

<< executionEnvironment >>

Matlab

<< artifact >>

SIMBAD model

dd: SIMBAD deployment

Control PC

<< artifact >>

eccobuild.jar

Java RMI / LAN

Figure 6.7: Deployment diagram when running against a simulation. The simulation PC runs
the Simbad simulator under the Matlab execution environment.
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java.util.Collection

Devices

<< enumeration >>

PresenceStatus

<< enumeration >>

ControllerStatus

ArtificialLightingModel

DaylightDataEntry

DaylightData

GValuesDaylightModel

ComfortVariable

+ getComfortDensity (variable :double ):double
+ getDiscomfortDensity (variable :double ):double

<< interface >>

Function

+ valueAt (argument :double[] ):double

Amoeba

+ amoeba (function :Function ):double[][]

<< interface >>

Device

RoomModel

java.rmi.Remote

EccobuildController

cd: Eccobuild controller

<< interface >>

Controller

+ handleDeviceEvent (device :Device ):void

*

*

3

2

*

Figure 6.8: Controller class diagram. See the text for the description of each element. The
arrows’ exact meanings are defined by the UML standard, but always imply some
sort of dependency of one class on the other.
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EccobuildController receives event notifications from the remote devices and sends its
own commands to them, but the software representation of the controlled zone is the respon-
sibility of the RoomModel class. The instance of this class is a virtual model of the controlled
room, whose devices our controller can experiment with until it finds the set of optimal
commands.

RoomModel uses three instances of the ComfortVariable class, one for each variable that will
enter the bayesian discomfort estimator whose equation was given by Equation (5.20). This
latter class must therefore provide the density estimates of that variable for uncomfortable
respectively comfortable situations. It does this through the getDiscomfortDensity() and
getComfortDensity() functions. We have discussed in section 6.2.2 where these objects get
their density estimates from.

RoomModel further uses an ArtificialLightingModel class for modeling the electric light-
ing (using the calibration curves mentioned in section 3.2.1), a DaylightModel class for mod-
eling daylighting, and one instance of a GValues class per venetian blinds for modeling the
solar gains, using the g-value data files described in section 3.2.5. We have discussed the
implementation of the DaylightModel in section 6.2.3.

The optimization routine is implemented as a static amoeba() method of a Amoeba class,
so called because of the optimization algorithm chosen for this work, and discussed in sec-
tion 6.2.5. The main argument to this method is an object that implements the Function

interface, the standard way of passing function-like arguments in Java.

The whole system is initialized when EccobuildController asks the singleton8 Devices

class for an enumeration of all available remote devices. Devices is responsible for establishing
the initial RMI communication with the remote computer and for retrieving a list of all devices,
their types and their names.

6.4.2 System initialization and typical event loop

The sequence diagram of Figure 6.9 shows how the controller initializes itself. It asks first
for the (unique) instance of the Devices class. If this class has not been instantiated yet
(as it never is before our controller initializes itself) it will use the java.rmi.Naming class to
enumerate all available remote devices, and add a reference to each of them to a collection.
Devices implements the Collection interface, so our controller next asks for an iterator over
this collection of remote devices.

Each device is inspected in turn, and the controller subscribes to events on devices that are
in the controlled room, or that monitor outdoor conditions.

Once the controller has finished registering on all devices it waits for events. It should
not repeatedly query the remote devices for new events—this would be a waste of CPU
time and network bandwidth. Instead, Eibserver provides a mechanism whereby remote
objects can register to be notified of new events9. Our controller uses this mechanism. It
registers for event notification through the Device.addController() method, passing a ref-
erence to itself as argument. When a sensor or actuator senses a change of state, is calls the
Controller.handleDeviceEvent() method on the controller, passing itself back as argu-
ment. Our controller then dispatches the event to an appropriate handler method according
to the type of the originating device10.

8I.e., only one instance of that class can exist (Gamma et al., 1995, Singleton pattern).
9Also known as the Observer design pattern (Gamma et al., 1995, p. 293)

10This is done asynchronously, i.e. the handleDeviceEvent() method returns immediately after the event has

129



6 Controller implementation

device :Device :java.rmi.Naming :Devicescontroller :EccobuildController

sd: Controller initialization

 

1) .getInstance ():devices

1) getInstance

2) .list ()

2) list

3) .lookup ()

3) lookup

loop ()

[for each device ]

4) .iterator ():devices

4) iterator

5) .addController (this )

5) addController

loop ()

[for each device in zone ]

Figure 6.9: Controller initialization sequence diagram.

130



6.4 Design decisions

Thus, a new thread is created in the controller for each event, and is destroyed once the
controller has finished handling this event. Between two events, the controller sits idle.

The BF3 sunshine sensor has been programmed to send an event at least once per minute,
which regularly “wakes up” the system. The BFS sensor was chosen because variations in the
outdoor irradiance are, together with changes in the room’s occupancy, the events to which
the controller must respond in a timely manner. We will now walk through such an event.

The sequence diagram on Figure 6.10 shows what happens when the controller receives an
event on the sunshine sensor. First the handleDeviceEvent() method dispatches the event
to the handleSunChange() method. The room model is updated with this new information.
Then the controller enters its checkForAction() method, which contains all the logic neces-
sary to decide whether to send new commands or not. It sets the room model to the current
control values and asks the room model to evaluate the cost function’s current value. If the
user is present, the room model needs to know the illuminance distribution to answer that
query. Let’s assume the user is present.

We won’t show on this diagram the details of the cost() method, but the general idea is
the following. Since this is a new situation, no illuminances have been cached yet and the
room model must ask the daylighting model to model the indoor daylighting illuminance. The
room model also adds to this illuminance the contribution from the electric lighting. Then
the three instances of the ComfortVariable class provide the density estimates necessary
for computing the bayesian discomfort estimation. Finally, the energy cost for the electric
lighting, and the thermal one associated with the solar gains are added.

The controller then asks the room model to try and find a set of control values that mini-
mizes the cost function. The room model delegates the minimization algorithm itself to the
Amoeba class and provides it with a reference to the cost function. Amoeba repeatedly eval-
uates the cost function for different control values, each of which necessitates a call to the
daylighting and the electric lighting models.

When the algorithm has converged, the best control values and their corresponding cost
function value are returned to the controller, who then filters these values through an output
filter to prevent unnecessarily small blinds movements. After passing through the filter, the
sendValues() method is called to send the control values to each corresponding device.

6.4.3 Controller states

The controller must not send commands too often, in order not to annoy the user. It must also
recognize when the user overrides the controls and not intervene. In parallel, the controller
must also track the user’s presence status. It cannot blindly rely on the occupancy sensor,
and for two reasons. First, some presence sensors incorrectly record as absent a user that sits
very still, for instance while reading. Second, users that briefly exit the zone, for instance to
refresh themselves, should not be considered by the controller as absent.

These requirements are solved by having the controller track two orthogonal states: the
controller state, and the user presence state. Figure 6.11 shows the controller’s state diagram.
The most common state for the controller is the Automatic state, in which the controller
listens to device events. After the controller sends a set of commands, it enters a Sleep state

been dispatched to a handler method. This handler method runs in its own thread. Otherwise, Eibserver

would have to wait for our controller to finish processing each event before sending new ones. When
running against the simulator, however, events are handled synchronously because our controller must

finish processing each event before new ones arrive.
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daylightModel :DaylightModelroomModel :RoomModelcontroller :EccobuildControllerEeg:SkyLuxmeter

sd: Solar event

 

1) .handleDeviceEvent (Eeg)

1) handleDeviceEvent

2) .handleSunChange (Eeg)

2) handleSunChange

3) .setEeg(newEeg)

3) setEeg

4) .checkForAction ()

4) checkForAction

5) .setValues (currentValues )

5) setValues

6) .cost ():currentCost

6) cost

8) .amoebaOptimize ():bestValues

8) amoebaOptimize

10) .cost ():bestCost

10) cost

7) .predict ():predictedIlluminance

7) predict

9) .predict ():attempt

9) predict

loop ()

[until algorithm converges ]

Figure 6.10: BF3 sunshine sensor event sequence diagram.
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User absent

SleepAutomatic command sent

timeout expired

User present or just left

SleepAutomatic timeout expired

command sent

Overriden

override

timeout expired

override

User just leftUser present occupancy sensor off

occupancy sensor on

sm: Ecco−build state

no presence for 15 minoccupancy sensor on

Figure 6.11: Controller state diagram.
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and does not issue any other commands for 15 min, after which it returns to Automatic. If at
any time the user overrides the controls, the controller enters the Overriden state and remains
there for one hour or until the user is absent, whichever comes first.

Under exceptional conditions, the controller can send commands even when in the Sleep
state. If, while sleeping, the controller detects that the situation can be significantly improved
by lowering the blinds, then it will do so because this is interpreted as a significant glare risk
that must be acted upon before waiting for the timeout to expire.

The user presence status is Present when the occupancy sensor detects the user as present.
When the sensor does not detect the user anymore, the presence status enters a temporary
Just Left state. If after 15 min the user has still not been detected, the presence status becomes
Absent. While the user is absent the controller continues commuting between Automatic and
Sleep states, but obviously cannot enter the Overriden state.

6.5 Chapter summary

In this chapter we have described the design of our controller and how it satisfies the con-
troller’s requirements. We have discussed how the control algorithm integrates the bayesian
discomfort estimation algorithm and our simplified daylighting model, that together are the
core of this work.

Besides the overall design, we have also focused on more detailed non-trivial design deci-
sions, and briefly discussed alternative possible uses of the core tools developed in this work.
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If the goal is to show the data, then show the data.

(William S. Cleveland)

In this chapter we present the results obtained from running our controller on-site on a real,
occupied office room on one hand, and by computer simulation on several different virtual
office rooms on the other hand.

The final version of our controller drives the venetian blinds and the electric lighting in an
office room of the LESO building (room 201) since January 2007. We have also let it run
against the different virtual office rooms described in section 3.2. We have analyzed the data
acquired on these real and virtual office rooms and verified that our controller fulfills our
requirements.

In section 7.1 we review the simulation runs that have been carried out within this thesis.
In section 7.2 we examine first how the controller has adapted itself to the visual preferences
of the occupant in office room 201. The parameters of this user-adaptation have been used
when controlling the virtual office rooms, and we show how this adaptation has affected the
illuminance distribution when our controller runs in these rooms.

In section 7.3 we analyze the energy demands in office room 201 and in the computer-
simulated virtual office rooms, and examine the energy savings made possible with our con-
troller.

7.1 Control runs on virtual and real office rooms

Most of the controller development happened in 2005 and 2006, and was much helped by
the availability of the Simbad simulation model (c.f. section 3.2). Preliminary releases of
the controller software ran intermittently in early 2006 on office rooms 201 and 202 but were
interrupted between July and early 2007. A far improved version was then launched on office
room 201 (office room 202 is now used for another project).

Several simulation runs were carried out during the controller’s development, each of which
helped identify and fix trouble areas. A comprehensive list of all simulations is given in
Table 7.1. Only when the controller was running according to its requirements did we carry
out a computer simulation for each combination of office room location (Rome or Brussels),
orientation (north, west or south), and mode of operation (manual or controller). These full
simulations are the last thirteen rows of Table 7.1.

We monitored the progress of the controller’s quality by keeping track of open, closed and
total number of issues (or “bugs”, but an issue can also mean an efficiency improvement).
The evolution of open and total number of issues since December 2005, when issue tracking
started, is shown in Figure 7.1. The interruption of the software’s development in the second
half of 2006 is evident. It resumed in early 2007, aided by the simulation model. No more
issues have been opened since April 2007, and we therefore believe the controller software is
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Figure 7.1: Total (open + closed) and closed controller software issues over time.

now free of any obvious errors1.

7.2 User visual comfort

7.2.1 Adaptation to a real user

The sole occupant of LESO office room 201 adjusted either the blinds or the electric lighting of
his office room 551 times since the controller began monitoring the three illuminance sensors.
Of these, 434 happened in the first half of 2006, or an average of 2.40 per day (or 16.69 per
week). The controller was not running for the second half of 2006 and resumed in 2007, during
which time 117 user actions (in three months) were recorded.

These records are the basis on which the controller adapts to the user. The illuminance
distribution before and after user action and for each sensor location is shown on Figure 7.2.

1The user has reported a tendency by the controller to leave the blinds uncompletely open during overcast
skies, about 80–90 % open. We believe these situations correspond to“shallow”minima of the cost function,
i.e. the small potential improvement of the cost function does not warrant moving the blinds. We could
have added a special rule for these situations, but deem such a measure to be clumsy. We believe that
alternatives to a cost function should be explored instead, and do not consider this as a controller “bug”.
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7 Controller tests
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Figure 7.2: Illuminance distribution before and after user action in office room 201. The
dashed line is at 500 lx.

The range of illuminances that trigger an user action is very wide, whereas the resulting ones
are concentrated in a narrower range, bearing out the hypothesis that the illuminances at
these sensor locations correlate with visual discomfort.

It is, however, difficult to assess the illuminance density distribution from this figure. Fig-
ure 7.3 remedies this by computing the taut-string density estimate of each distribution. These
plots confirm that the range of post-action illuminances is much narrower than for pre-action
ones, and that their location is shifted.

These density estimates are those we need in order to apply the bayesian discomfort esti-
mation from Equation (5.20). From our data, we first derive the discomfort probability as a
function of each of the three illuminance measurements alone. These probability estimates are
shown in Figure 7.4. These curves show that a global minimum of the estimated discomfort
probability is reached close to 500 lx for both the wall- and eye-level sensors, and perhaps
slightly lower for the horizontal workplane sensor.

The density estimates shown in Figure 7.3, however, allow us also to compute the total
bayesian discomfort probability through Equation (5.20). This equation computes the prob-
ability as a function of three illuminances—a better estimate of the user’s visual discomfort
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7.2 User visual comfort
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Figure 7.3: Density estimates of pre- and post-action illuminances in office room 201. Post-
action illuminances are shown in red. 2 × 50 randomly chosen illuminance values
are shown as ticks on each panel. The dashed line is at 500 lx.
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Figure 7.4: Discomfort probability estimates on office room 201, for individual illuminance
sensors. The dashed line is at 500 lx.
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Figure 7.5: Discomfort probability estimates from pairs of comfort variables. The first variable
in the strip is on the vertical axis, the second on the hozirontal one.

than if we had only one of the individual curves shown in Figure 7.4.

This probability is a function of three variables. Before we attempt to visualize it we show
first in Figure 7.5 the estimated discomfort probabilities obtained from taking the illuminances
values in pairs, i.e. the results of applying Equation (5.20) with only two comfort variables.
These plots show that the eye-level illuminance has the largest influence on visual discomfort:
the rate of probability variation is highest when it is the eye-level illuminance that varies.
This was already suggested by Figure 7.4. The wall illuminance has the least influence on
visual discomfort. These plots suggest also that the minimum visual discomfort would be
obtained in situations whose resulting horizontal illuminance is between 250–500 lx and the
eye-level illuminance close to 500 lx. The resulting wall illuminance should not be higher than
1000 lx nor lower than about 150 lx.

We finally show in Figure 7.6 slices taken at 50 lx intervals along the wall illuminance
dimension in the three-dimensional matrix that holds the probability estimates for each triplet
of illuminances. The global minimum, 0.0320, is found for an eye-level illuminance of 500 lx,
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Figure 7.6: Discomfort probability estimate as a function of eye-level, horizontal and wall
illuminance. Each panel is a constant wall illuminance slice in a three-dimensional
matrix that holds the probability estimate for each triplet of illuminances. The
wall illuminance is given in each panel. The horizontal and eye-level range of
illuminance is 0–2000 lx.
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7.2 User visual comfort

an horizontal illuminance of 250 lx, and a wall illuminance of 450 lx2. If we fix arbitrary limits
to the visual discomfort probability at 0.5, this plot suggests that in office room 201, the
wall illuminance should not exceed 1200–1300 lx, the eye-level illuminance should not exceed
700–800 lx, and the horizontal illuminance should not exceed 1000 lx.

Taken together, these results illustrate how on the basis of recorded user actions alone our
algorithm computes the estimated visual discomfort as a function of the illuminance measured
on three points in the office room. It is this function that is used internally by the algorithm
when it explores the blinds’ settings and tries to optimize the cost function.

To conclude this section, we test now whether the number of user overrides has significantly
changed from 2006 to 2007, from manual to controller mode.

Between 1 February and 1 May 2006, there were 233 user actions. In 2007 there were 91.
The user was present in his office 390.60 hours during these three months in 2006, and 321.34
hours in 2007. The number of user actions in 2007, normalized to the user occupancy in 2006,
is thus 110.61.

Let A and B be the number of user actions in 2006 and 2007 respectively. If the controller
has no effect on the number of user actions, then A and B will be drawn from the same
Poisson distribution and A−B√

A+B
will be normally distributed with mean 0 and variance 1.

There is thus a 99% probability of finding this value in the range [−2.57; 2.57].

But here, A−B√
A+B

= −6.64, and the hypothesis is thus rejected. We conclude that our

controller has had a significant effect on the number of user interactions, which have been
reduced almost by half.

7.2.2 Estimated visual discomfort in virtual office rooms

The horizontal illuminance distribution during the controller’s first year of operation in the
south-oriented Brussels virtual office room, without initial daylighting training data, is given
in Figure 7.7. Timesteps when the electric illuminance was more than 10 lx have been filtered
out in order to concentrate on daylighting illuminance alone. This figure shows also the
illuminance distribution at the same timesteps in manual mode. These plots make it clear
that even with no initial training data, the resulting illuminance distribution given by the
controller is comparable to the one in manual mode (the user’s behaviour model was described
in section 3.2.2), strongly suggesting that the visual discomfort is minimized. The illuminance
distribution after one year of training data is shown for comparison.

We examine now the illuminance provided in all virtual office rooms by the controller after
one year of training data taken on weekends, and compare it with the illuminance chosen by
our modeled user. The density estimates of the horizontal workplane illuminance distributions
when the user is present are given in Figure 7.8. The illuminance distribution in manual mode
is generally shifted to higher values, and the sharp density increase close to 500 lx corresponds
to the point when the user switches on the electric lighting, according to our user model.

As we will see in section 7.3.2, the largest relative energy savings are achieved by our
controller on the electric lighting, so it is surprising to see that our controller turns it on much
more aggressively than the user: the illuminance is sometimes as low as the first reference
line on Figure 7.8 (corresponding to 33% power, or 260 lx), whereas in manual mode it never

2From Figure 7.4, the minimum discomfort probability for each variable is about 0.25, implying a ratio of
density estimates between pre- and post-action illuminances of about 1/0.25 − 1 = 3 (c.f. Equation (5.7).
The combined discomfort probability is given by Equation (5.20): p = 1/(1 + 33), or approximately 0.036,
which is close to our actual result.
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Horizontal workplace illuminance [lx]
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Figure 7.7: Horizontal daylight-only illuminance distribution in manual mode, in controller
mode without initial learning, and in controller mode after one year of learning.
The thin dashed line corresponds to 500 lx. Illuminances of zero lx have been
binned in the first bin.
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Horizontal workplane illuminance [lx]
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Figure 7.8: Horizontal workplane illuminance distribution in user presence. The electric light-
ing provided at 33%, 66% and 100% of full power (260, 520 and 780 lx) are shown
as dashed lines. 2× 50 randomly chosen illuminances are shown on each panel as
tick marks.

goes below the 66% limit. This suggests that the controller begins to use the electric lighting
at lower power than the user—and presumably more effectively.

From the wall, eye-level and horizontal workplane illuminances given by our simulation
runs, we can now derive a bayesian discomfort estimate for an arbitrary user. We will do that
for each timestep of each simulation run, using the data recorded on a real user in section 7.2.1.

Figure 7.9 shows how the bayesian discomfort estimates are distributed. Each panel shows
the distributions for manual mode and controller mode for a given combination of office room
location and location. The interquartile range in controller mode is in all cases much reduced,
and the median is always lower than in manual mode. In controller mode, there are almost
always many outliers but this is expected when there are so many data points (2080 hours of
user presence per year). Note, however, that the whiskers of the controller mode’s boxplots
never extend to the full data range (except for Rome West), whereas they always do for the
manual mode.

This does not necessarily suggest that the controller provides a more comfortable environ-
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Figure 7.9: Bayesian discomfort estimate distribution in all virtual office rooms.
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Figure 7.10: Average estimated visual discomfort in controller and manual mode, virtual of-
fices.
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Df Sum Sq Mean Sq F value Pr(>F)

Location 1 0.01 0.01 7.41 0.0297
Orientation 2 0.03 0.02 19.71 0.0013
Mode 1 0.04 0.04 45.06 0.0003
Residuals 7 0.01 0.00

Table 7.2: Average yearly discomfort analysis of variance table.

ment than the real user could have provided. It merely suggests that the controller provides
a more comfortable environment than would be obtained by an automatic controller pro-
grammed to behave as our simulated user.

We show in Figure 7.10 the average bayesian discomfort estimate for the virtual office
rooms, in controller and manual modes. The average estimates are decreased by about 0.1
in every situation when using the controller. Ignoring any possible interaction between the
variables (we do not have enough data to detect any such interaction), we can model the
average discomfort estimate as a linear combination of the ‘location’, ‘orientation’ and ‘mode’
discrete variables (or factors). The best-fit coefficient of the ‘mode’ factor is then 0.11.
In other words, switching from manual to controller mode decreases the visual discomfort
probability on average by 0.11. It is the factor with the most influence among the three.

Table 7.2 gives the analysis of variance table for the average estimated discomfort. This
analysis shows that location, orientation and mode all significantly affect the visual discomfort
(their p-value is lower than 5%), but the single most significant factor remains the presence
of our bayesian controller.

This study should not be taken to mean that the controller will satisfy 11 more users out
of 100 than if we left them manage their environment manually. What is does mean is that
our controller will decrease our user’s average discomfort probability by 0.11, reducing it from
0.44 in manual mode to 0.33 in controller mode.

7.3 Energy performance

7.3.1 LESO office rooms 201 and 202

We show in Figure 7.11 the instantaneous power measured on the appliance3 and heating
meters in LESO office rooms 201 and 202. The appliance power is regular in both rooms.
There is clearly a regular demand for about 50W in room 201, likely for the user’s laptop
and monitor. An extra demand for about 150 W is periodically added to this base demand,
which corresponds probably to the room’s electric lighting.

Something in office room 201 draws about 10 W continuously and is recorded on the ap-
pliance meter. It was switched off between the third week of November 2006 and the second
week of January 2007. Figure 7.12 shows how the power demand in office room 201 evolved
during that time.

The appliance power in office room 202 is less predictable. There is a base power demand
of almost 50W corresponding to the office room’s computer, but that computer is less often
used than in office room 201. Indeed, that room is very irregularly occupied, but on those
occasions its user seemed to systematically leave the computer switched on for days. Notice in

3The lighting power demand is measured on the same meter as the other appliances.
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Figure 7.12: Lighting and appliance power demand in office room 201, end 2006 and beginning
of 2007.
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Figure 7.13: Cumulative power demand in office rooms 201 and 202. The relative uncertainty
on the power demand is estimated at 8% for the heating and at 2% for the
appliances.

particular the pattern that began in August 2006, when a base consumption of almost 50 W
is almost continuously present.

The heating power demand in office room 201 is null outside of the coldest winter months.
That office room’s user is indeed known to keep the office room’s thermostat to the absolute
minimum (16 °C), and the power pattern we observe is not surprising.

That of office room 202 is much more erratic. The heating demands in June, August and
September 2005 are difficult to understand, and the uninterrupted heating that lasted a week
in early December 2005 baffles us. We have no explanation for these episodes—perhaps some
other experiment was being carried out during these months in that room.

The cumulative energy consumptions of both office rooms are shown in Figure 7.13. The
appliance consumption in office room 201 is very regular, about 800MJ/year, and does not
seem to have changed by the introduction of our controller. The removal of the 10 W device
at the end of 2006 is just detectable. Notice, also, the dramatic difference in heating demand
between the 2005–2006 and 2006–2007 winter seasons, attributable to the much milder 2006–
2007 winter.
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Figure 7.14: Cumulative demand difference between offices 201 and 202. Negative values mean
office room 202 consumes more energy. The relative uncertainty on the power
demand is estimated at 8% for the heating and at 2% for the appliances.

We do not know for sure why the heating demand of office room 202 is lower than that of of-
fice room 201 during the 2006–2007 winter, but perhaps the increase in appliance
consumption—such as the PC being left on for days—contributes to enough internal heat
gains to void the need for additional heating.

Finally, notice the lack of data between approximately 22 January and 6 February 2007, a
period when Eibserver lost its EIB connection and stopped recording data.

Figure 7.14 shows the cumulative difference between both offices power demands. Office
room 202’s heating demand has been almost 2000MJ higher than that of office room 201, but
most of it is due to the unexplained demand in early December. Office room 202 has also the
overall higher appliance demand, but between November 2005 and March 2006 that demand
was lower than that of office room 201. In 2006, office room 202 consumed about 750 MJ
more energy for lighting and office room equipment than office room 201.

Office room 201 has a full-time occupant, whereas office room 202 is used on an irregular
basis by one and occasionally two persons. The lighting equipment of office room 201 is an
indirect luminaire (144 W installed power) whereas office room 202 is fitted with three ceiling-
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mounted fluorescent lights (110 W installed power). The user of office room 201 works on his
laptop, while those of office room 202 work with desktops. The occupant of office room 201
sets his thermostat to the lowest possible setpoint (16 °C), whereas the occupants of office
room 202 choose intermediate settings (usually 20 °C).

These factors explain why the power demands of both office rooms are so different, although
they are fitted with the same shading devices. It will therefore not be possible to make a
meaningful comparison between these office rooms.

Figure 7.15 shows the distribution of office room 201’s lighting and appliance power demand
according to the day of the week and the hour of the day. The patterns for the week’s working
days are similar: background demand of about 10 W between midnight and 9 a.m.; the laptop
or the lighting is switched on between 9 and 10, and most of the power demand happens
between 10 and 18. There is often late-night activity on Tuesday evenings, almost no demand
on Saturdays and some regular demand on Sundays between 14 and 17. The extremely low
(below 0.1 W) demands occured between 14 and 16 January 2006 and are artefacts caused by
an interruption of the Eibserver program.

It is almost possible to determine the individual power consumption of each appliance in
office room 201. Figure 7.16 shows the spectral density of office room 201’s power demand.
Each peak corresponds likely to the maximum power demand of one electrical appliance, or
to a combination of these appliances—but this is out of the scope of this project.

We now examine how the electrical consumption in office room 201 changed between 2006
and 2007, between February and May of these years. The controller was working in 2007 but
not in 2006. We will, however, not attempt the comparison of the heating consumption. The
heating consumption in 2007 was zero by the end of January, but this is almost certainly due
to the much milder winter we had that year and cannot be attributed to the controller alone.

Figure 7.17 shows the cumulative demand difference on the lighting and appliance meter
between 2006 and 2007, for the months of February to May. This plot suggests that energy
savings of about 12 MJ were achieved in three months compared with the previous year, or
6% savings if one assumes a normal constant yearly consumption of 800MJ. We caution,
however, against drawing any conclusions from this short, single-office study—room 201 was
occupied between February and May 2006 for 390.60 hours, but only 321.34 hours in 2007.
It is, therefore, impossible to credit our controller alone with these energy savings. They
could just as well be due to the shorter total occupancy in 2007 compared to 2006, or even to
climate differences. Clearly, more extensive field studies would be necessary to validate the
energy savings that can be achieved on real office rooms with our controller.

7.3.2 Simulation runs

When assessing the energy performance of our controller on virtual office rooms, we shall
always compare it with the energy performance of the same virtual room running in manual
mode (as defined in section 3.2.2). The manual mode will be the baseline against which energy
savings and visual discomfort improvements will be evaluated.

We do not expect the controller’s performance to be immediately satisfactory upon com-
missioning. Indeed, as we have seen, its daylighting model needs to acquire training data
during weekends. But during the early months of operation, as we have also seen, the data
is not always sufficient to guarantee its performance. We cannot, therefore, be sure that the
energy savings during the first year will be comparable to those of following years.

We are interested in the long term energy savings possible with an integrated daylighting
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Figure 7.15: Lighting and appliance power pattern in office room 201. 50 points have been
randomly sampled for each boxplot.
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Figure 7.18: Energy demands for the first year of controller operation.

and electric lighting controller. Therefore, unless otherwise noted, all simulation runs will
begin with initial daylighting training data corresponding to one year of data acquired during
weekends.

One run, however, was started with no initial daylighting data (run 2007-04-12T0900),
to see how the controller behaves during its first year of operation. The energy demand for
that office room with and without our controller are shown in Figure 7.18. The controller did
surprisingly well, even without initial daylighting data. The energy savings achieved during
the first year are comparable to those achieved with initial training data, as we will shortly
see, suggesting that the controller adapts itself to the room’s daylighting response in not more
than a matter of weeks.

The total energy performance of the virtual office rooms in manual or automatic mode after
the first year are given in Figure 7.19. The differences in energy demands between manual and
controller mode are given in Figures 7.20 and 7.21. These plots show that the total yearly
electrical consumption is always reduced in automatic mode, but the energy savings differ
according to office room orientation and location.

The total energy savings are smallest when the office room is oriented north, and are almost
zero in Brussels. Indeed, the energy demand is even higher for the first part of the year in
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Brussels and Rome when the office room is oriented north. We believe this is because the
controller cannot use enough solar gains in the absence of the user, hence the higher heating
costs during winter.

The heating/cooling costs are slightly higher in controller mode than in manual for an office
room oriented north and for the west-oriented Brussels office room. They are only marginally
lower for the west-oriented Rome office room. Again, the controller does not have in these
cases enough solar gains in this orientation to substantially reduce these heating costs.

On the other hand, the heating/cooling costs are reduced for south-oriented offices—by
9.21% in Brussels and by 35.01% in Rome for the overall year. The savings are much more
pronounced in Rome because of the much higher potential solar gains.

In every case, having an automatic controller reduces the electric lighting energy demand.
The mean and standard deviation of the relative savings on lighting are 61.3± 11.2%. As we
have seen in section 7.2.2, these energy savings do not compromise the visual comfort and even
accompany an improvement of it. The relative energy savings do not depend significantly on
the office room’s location nor on its orientation.

We give in Table 7.3 the final yearly energy demands for all combinations of office room
orientation, location and mode of operation, for the lighting, heating/cooling and total elec-
trical consumptions. Tables 7.4, 7.5 and 7.6 give the analysis of variance tables for the total,
heating/cooling and lighting yearly energy demands as functions of orientation, location and
mode. These tables show that the controller has a significant impact on the total and lighting
energy demands, whereas the office room location has a significant impact on the total and
heating/cooling energy demands. The office room orientation has no statistically significant
influence on any energy demand.

The values reported in Table 7.3 suggest that the energy savings achieved with our con-
troller depend on the office room’s location and orientation. In statistical terms, the mode,
orientation and location factors interact with each others. On a large enough data set it is in
principle possible to detect such interactions with an analysis of variance, but not when—as
in our case—we have only one observation per factor combination. We leave, therefore, this
question open to further research.

7.4 Chapter summary

We have tested our controller on-site on a real, occupied office room of the LESO building and
monitored that office room’s energy consumption. Preliminary results suggest that effective
energy savings were indeed achieved on that office room’s appliance consumption. We have
also progressively trained our controller on that office room’s user’s preferences and shown that
the adaptation is effective. The number of user interactions between 2006 and 2007, controlling
for the user’s total occupancy during the monitored period, has been almost reduced in half,

Those user preferences have been used to control a virtual office room in two geographical
locations and three different orientations. We have shown that the visual comfort improves
when running with our controller, reducing the average yearly discomfort probability from
0.44 in manual mode to 0.33 in controller mode.

The savings on lighting energy are comparable for all virtual office rooms. Their mean and
standard deviation are 61.3±11.2%. We have seen that this is likely thanks to a more efficient
use of the electric lighting at lower power by the controller.

The heating/cooling energy demand of those office rooms that are not oriented south,
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7.4 Chapter summary

Df Sum Sq Mean Sq F value Pr(>F)

Orientation 2 14642.46 7321.23 2.87 0.1228
Location 1 679439.66 679439.66 266.52 0.0000
Mode 1 49592.48 49592.48 19.45 0.0031
Residuals 7 17844.88 2549.27

Table 7.4: Total electrical demand analysis of variance table.

Df Sum Sq Mean Sq F value Pr(>F)

Orientation 2 9566.52 4783.26 1.55 0.2777
Location 1 602421.44 602421.44 194.86 0.0000
Mode 1 2037.71 2037.71 0.66 0.4436
Residuals 7 21640.58 3091.51

Table 7.5: Heating/cooling electrical demand analysis of variance table.

however, remained either unchanged or slightly higher, but never annulled the savings on
lighting energy. The strongest energy savings on heating/cooling were always achieved for
south-facing offices, thanks to a more efficient use of free solar gains: 9% in Brussels and 35%
in Rome.

The total savings on energy are comparable for south- and west-oriented office rooms,
reaching 10–17% in Brussels and 27–40% in Rome, most of which is attributable to sav-
ings on heating/cooling energy. The total savings for north-oriented offices are much less
satisfactory—but then again, north-oriented offices are not usually plagued by visual dis-
comfort problems, and are thus less likely to need an automatic blinds and electric lighting
controller.

Df Sum Sq Mean Sq F value Pr(>F)

Orientation 2 646.26 323.13 0.76 0.5040
Location 1 2315.84 2315.84 5.42 0.0527
Mode 1 31524.96 31524.96 73.83 0.0001
Residuals 7 2988.79 426.97

Table 7.6: Lighting electrical demand analysis of variance table.
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8 Concluding remarks and recommended
follow-up

Une multitude de sages est le salut du monde

(Sagesse 6:24)

Political will is a renewable resource.

(Al Gore)

In this work we have described the implementation of a venetian blinds and electric lighting
control algorithm in the Java programming language. That prototype runs on its dedicated
control PC and communicates to the building’s management system through a helper pro-
gram, running itself on its own dedicated PC.

We have seen how our controller has learned the individual preferences with respect to visual
comfort of the occupant in the controlled office room. We have also shown through computer
simulations that a controller running according to those individual preferences achieves effec-
tive energy savings on office rooms, provided direct solar radiation is available to complement
or replace backup heating energy. The visual comfort is, in all cases, improved compared to a
non-adaptive controller running according to state-of-the-art principles. The most important
numerical results achieved on the computer simulations are summarized in Table 8.1.

In this chapter we suggest some steps that will in our opinion make these energy savings a
reality.

8.1 Comprehensive field tests

In spite of the numerous computer simulations that have been carried out in this work, it
is evident that more extensive field tests would have been desirable. Indeed, the project’s
original scope called for prototype installations in Sønderborg, Denmark; in Freiburg im
Breisgau, Germany; and in Lyon, France. Time pressure prevented us from realizing these
installations, although much infrastructure is already in place. It would not require much
work to have copies of our controller running at these locations.

Neither do we know how the algorithm presented in this work would behave in an office
room occupied by more than one person. Will the actions of one person conflict with those
of the other, or will they complement themselves? This is an important question that must
be answered before this system can be implemented commercially.

It is still too early to claim our controller can achieve visual comfort and energy savings
in general conditions. We have, in this work, showed that it achieved visual comfort for one
office room and energy savings in six different virtual office rooms. Our controller works
satisfactorily for N = 7 different conditions, which is an encouragingly good start. After all,
Euclides himself, who did not know induction, never proved his theorems up to N = ∞ but
only up to N = 3 (Knuth, 1999, p. 336).
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Mode Location Orientation Total [MJ] H/C [MJ] Light [MJ] Est. disc. [0–1]

Manual Brussels South 3792 3130 662 0.432 ± 0.354
Manual Brussels West 3698 3021 678 0.444 ± 0.361
Manual Brussels North 3775 3129 646 0.366 ± 0.311
Manual Rome South 2202 1781 421 0.513 ± 0.361
Manual Rome West 2067 1439 628 0.528 ± 0.398
Manual Rome North 2144 1579 565 0.375 ± 0.326
Controller Brussels South 3126 (−18%) 2841 (−9%) 285 (−57%) 0.367 ± 0.292
Controller Brussels West 3303 (−11%) 3143 (+4%) 160 (−76%) 0.323 ± 0.215
Controller Brussels North 3735 (−1%) 3373 (+8%) 362 (−44%) 0.262 ± 0.167
Controller Rome South 1326 (−40%) 1158 (−35%) 168 (−60%) 0.367 ± 0.280
Controller Rome West 1497 (−28%) 1308 (−9%) 189 (−70%) 0.421 ± 0.315
Controller Rome North 1914 (−11%) 1692 (+7%) 222 (−61%) 0.258 ± 0.129

Table 8.1: Yearly total, heating/cooling, and lighting energy demands in all simulated cases.
The number in parenthesis are the energy savings achieved by our controller (posi-
tive numbers meaning our controller causes more energy demand). The last column
gives the average estimated visual discomfort probability. See also Figures 7.9, 7.10,
7.19, 7.20 and 7.21.

8.2 Further improvement towards a commercial controller

Our software was written in Java, a programming language already used in industrial em-
bedded controllers. What steps remain to be taken until it our controller can run on such
hardware?

We believe there are three areas where the current implementation must still be refined
before it can run on a “real” embedded controller.

First, some elements of the current controller have beeen implemented in the R language.
In particular, the density estimator uses the R taut-string algorithm implementation. Such
elements must, obviously, be translated in Java, or even implemented as native code for
efficiency and speed.

Second, the memory usage could still be improved. At the time of writing, the controller
running on LESO office room 201 uses about 100 Mb of memory, which is far too much for
an embedded controller. But the current implementation of the daylighting model is very
wasteful of memory space (all DAQ measurements are held in memory—144 860 records at
the time of writing), and could be much improved.

In particular, the α and β daylighting parameters in Equation 4.15 are determined through
a least-squares solution, requiring the controller to keep in memory all the daylighting data.
But the recurrent least-squares method (Longchamp, 2006) allows one to update the values
of α and β as new data becomes available, without requiring old data to be kept. We have
not explored this method in this work, but believe it could help keep the controller’s memory
requirements low.

Third, the components that make up our controller—the daylighting model and the user
visual discomfort model, in particular—should be made available as separate software mod-
ules. Instead of releasing the whole controller as a single eccobuild.jar executable file, it
would be wiser to release it as a series of smaller jarfiles, each providing a well-defined service
to the others. The current model for such an architecture of small, independent Java modules
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that provide services to each others is the OSGi1 platform definition of bundles—an archi-
tecture accepted by the Java Community Process Executive Commitee as a Java standard2

only days before this manuscript went to press. Our controller should, therefore, be split into
constituent OSGi bundles, each of which could then be made available to the industry.

8.3 Latent variables discovery

In this work we have modeled the user’s visual discomfort probability as a node in a very
simplified bayesian network. There is no reason why more nodes could not be added to this
network, providing a better understanding of the comfort the building provides.

In an utopic situation, a computer program could automatically detect the sensors and
actuators in the building, and build up by itself the corresponding bayesian network by looking
for relationships in the monitored data. But this kind of system remains, for the moment, a
dream. A system that discovers the structure of a bayesian network from monitored data is
difficult to build and is an active topic of research.

We do propose, however, to research the existence and discoverability of latent variables
in bayesian networks that describe buildings. A latent variable (see e.g. Bartholomew and
Knott, 1999) is a variable that is not directly measurable but that is causally connected to
other variables. For example, a room occupancy is a latent variable causally connected to
the occupancy sensor output. This distinction is important, because occupancy sensors can
malfunction or mistakenly detect a user as absent when they are sitting very still.

Dodier et al. (2006) have built a bayesian network between several occupancy sensors in the
same room and the“real”manually recorded occupancy. They show how this bayesian network
can be used to improve the accuracy in occupancy detection, even though the accuracy of the
sensors is not perfect.

But the weakness in their approach is the reliance on the manual recording of the real
occupancy, necessary to build the relationships in the bayesian network. Instead, we propose
to research the possibility to detect the state of such latent variables automatically, without
human intervention.

Besides the room’s real occupancy, most aspects of environmental comfort could be modeled
as latent variables. The thermal comfort, the visual comfort and the air quality are all
variables that are causally connected to the user’s behaviour, and that could be discovered
in this manner. There is in principle no limit to the number of nodes that could be added to
our humble initial sketch—each one improving the acceptance by building users of automatic
control systems.

1http://www.osgi.org
2Java Specification Request 291: Dynamic Component Support for Java SE, http://jcp.org/en/jsr/

detail?id=291
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In this appendix we develop further the idea of a standardized interface for building manage-
ment systems. As we have seen in chapter 6, the Eibserver program exposes such a remote
interface through the Java RMI protocol for the control of building sensors and actuators. We
will also discuss how such an interface can be made to work independently of the underlying
physical hardware.

It is difficult for smart building control algorithms developed by the academia to find their
way in commercial BMS. Building physicists often develop highly advanced, self-commissioning,
user-adaptive, energy-saving systems that unfortunately operate only on hardware specifically
designed and built for the purpose of their projects. Few control systems developers master the
programming skills necessary to “port” their algorithms to commercial systems. Even when
commercial hardware is used, it is difficult to field-test the systems on building installations
that do not use exactly the same hardware.

This often leads to much code rewriting and great costs in terms of time spent managing
the extra complexity. We propose here a “middleware” program between the higher-level
development of smart control algorithms and the lower-level physical hardware. Depending
on the specific BMS being used, the program either discovers by itself the available actuators
and sensors or reads in their definitions from a configuration file. The corresponding set of
objects is then made available to the algorithm developer. The main advantage for the latter
is that the algorithm needs have no knowledge of what kind of BMS is used, whether it is
a home-grown one or a commercial system—indeed, it does not even need to know whether
a building exists at all, since the control program can be plugged into a building simulator
exposing an identical interface without seeing any difference.

The algorithm implementer is thus presented with a uniform set of interfaces representing
the different controllable actuators in the building and the available sensors. For instance, the
system provides a well-defined and well-documented Blind interface with obviously required
methods such as Blind::getPosition() or Blind::setPosition(double). Sensor inter-
faces are also defined, such as for instance Sun, with methods such as
Sun::globalIrradiation().

The price to pay for this simplicity is the effort required to write a very limited number
of drivers for elementary operations on the BMS—essentially, programs that know how to
read/write boolean/analog values from/to the BMS. Smart building control algorithm devel-
opers would benefit the most from this middleware program as it will help them concentrate
on their field of expertise, namely the specification of the behaviour of building elements as
a function of available sensors and of their values. It keeps their minds free from worries
about the specific implementation of the control system, which needs not be decided before
the design of the control system is finished. Commercial BMS experts should implement or
help implement the necessary drivers specific to their systems until drivers are available for
the major commercial BMS in use today.

The simplicity of the program is achieved by two means. First, by the application of
object-oriented design principles to the problem of building control, and the identification of
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view. 

 
Figure 1: Implementation example of the Bridge design pattern in order to have a Presence 

Figure A.1: Implementation example of the Bridge design pattern in order to have an occu-
pancy sensor that can at run-time be attached to an EIB system or a ZigBee
system. The control algorithm writer never sees these implementation details
and has only access to the PresenceSensor interface. The BinaryInputEIB and
BinaryInputZB drivers use libraries developed by Adhoco AG to communicate
with the respective BMS.

elementary classes. From this analysis it emerged that a device such as a blind actuator can
be modeled either as a blind (the algorithm’s point of view), or as an object that sends and
receives analog values on a BMS (the BMS’s point of view).

Second, by the application of the design pattern known in the object-oriented community
as a “Bridge” (Gamma et al., 1995), separating the implementation of a class representing,
for instance, a presence sensor from the abstract class responsible for reading a boolean value
from the BMS. The concrete classes inheriting from the latter abstract class are what we call
the drivers for the different BMS. An example is given in Figure A.1 for a presence sensor that
will at run-time be attached to an EIB sensor or to a sensor communicating with the ZigBee1

standard, the low-bandwidth wireless communication and control standard. A presence sensor
and an alarm system thus both use the same class responsible for reading boolean values from
the system, promoting code reuse and keeping the program simple, but both remain distinct
objects from the algorithm’s point of view.

This program has been developed in Java in a joint collaboration between LESO-PB and the
Winterthur-based Adhoco AG2 firm. It is currently being used as middleware for algorithms
developed by LESO-PB, and is also used by Adhoco AG for the development of their own
proprietary smart building control algorithms.

1http://www.zigbee.org
2http://www.adhoco.com
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In this appendix we give a succint overview of the statistical methods used in this work.
In no way is this appendix a supplement for a statistics textbook—the interested reader is
urged to consult such a work for a more rigorous derivation of these results. Morgenthaler
(2001) is a very good introductory text for engineers and researchers. Davison (2003) and
Venables and Ripley (2002) are more advanced texts, the latter being particularly geared
towards R/S-PLUS users.

We illustrate this appendix with example code in R, where appropriate.

B.1 Analysis of variance in R

Physical experiments usually consist in repeating a measurement, each time varying one or
a combination of variables. In a designed experiment, some of these variables will take on
values from a finite set of levels designed by the experimenter, usually termed factors.

Consider the following example, taken from Cleveland et al. (1992). We examine the
effect on the yield of some process from two different catalysts A and B, at two different
concentrations and two different temperatures.

> catalyst <- data.frame(Temp = as.factor(rep(c(160, 180), 4)),

+ Conc = as.factor(rep(c(20, 40), 2, each = 2)), Cat = as.factor(rep(c("A",

+ "B"), each = 4)), Yield = c(60, 72, 54, 68, 52, 83, 45,

+ 80))

> catalyst

Temp Conc Cat Yield

1 160 20 A 60

2 180 20 A 72

3 160 40 A 54

4 180 40 A 68

5 160 20 B 52

6 180 20 B 83

7 160 40 B 45

8 180 40 B 80

An analysis of variance is the preferred tool to understand which factors influence the
outcome of the experiment, and whether their influence is statistically significant.

The outcome of such an experiment is often modeled as an additive model in all the factors.
R has a rich syntax for describing statistical models, and the syntax for modeling Yield as
an additive model in the other factors is Yield ~ Temp + Conc + Cat. This can also be
expressed as the shorthand Yield ~ . where the dot refers to all the other factors in the
data.

Running an analysis of variance in R yields the best-fitting coefficients of each factor:
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> cat.aov <- aov(Yield ~ ., catalyst)

> coef(cat.aov)

(Intercept) Temp180 Conc40 CatB

54.5 23.0 -5.0 1.5

For the temperature factor, for instance, this tells us that increasing the temperature from
160 °C to 180 °C increases the yield on average by 23.0.

R also provides a summary output for analysis of variance objects:

> summary(cat.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Temp 1 1058.00 1058.00 20.6439 0.01047 *

Conc 1 50.00 50.00 0.9756 0.37920

Cat 1 4.50 4.50 0.0878 0.78173

Residuals 4 205.00 51.25

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This summary output tells us which factors contribute significantly to the linear model,
and the number of stars after each row indicates the level of statistical significance. The
important value to the experimenter is the F value column. If the factor does not contribute
to the linear model, the value in that column should be drawn from an F distribution with
parameters p− q and n− p− 1, where p is the number of factors, q is the degrees of freedom
associated with that factor (given in the first column), and n is the number of experiments.

The Pr(>F) column gives the probability that an F distribution with these parameters
should yield a value at least as large as that given in the F value column. A factor is said to
be statistically significant if this probability is lower than a given threshold, usually 5%.

B.2 Linear models

R provides the lm command for fitting linear models. We illustrate it with a simple linear
y = 20 × x model, with random noise added to the y variable. Let’s generate this fake data:

> x <- 0:20

> y <- 20 * x + rnorm(21, sd = 20)

> dummy <- data.frame(x = x, y = y)

Here the variable x is a vector of integers between 0 and 20, and y holds 20*x plus random
noise.

The best-fitting linear model is shown in Figure B.1. The parameters of the fit are obtained
with this command:

> dummy.fit <- lm(y ~ x, dummy)

> summary(dummy.fit)
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Figure B.1: Best-fitting linear model for dummy data.
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Call:

lm(formula = y ~ x, data = dummy)

Residuals:

Min 1Q Median 3Q Max

-37.60 -12.41 5.52 11.19 23.59

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.4709 7.5648 0.459 0.652

x 20.0323 0.6471 30.958 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.96 on 19 degrees of freedom

Multiple R-Squared: 0.9806, Adjusted R-squared: 0.9795

F-statistic: 958.4 on 1 and 19 DF, p-value: < 2.2e-16

From this output we have the estimates of the intercept and the slope of the linear model,
and the errors on these estimates.

The t value field is the ratio between the estimate and the error, and this ratio should
be compared to a Student distribution. The last field, Pr(>|t|), gives the probability that a
sample from this Student distribution should give a value at least as large as the one given in
the t value field. A coefficient is said to be significantly different from zero if this probability
is lower than a threshold, usually 5%.
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C.1 Companion website

All the material, including original data, that has been used in this work can be found on its
companion website:

http://visnet.ch/smartbuildings/bayesian-controller/

The eccobuild.tar.gz file contains all the source code of the controller itself, mostly
written in Java but with some elements in R. It can be built by following the instructions
given in the README file.

The thesis.tar.gz file contains all the sources and data files used in the production of this
manuscript. All figures and a PDF of the thesis can be re-built by executing the command
make.

The scripts directory in the thesis distribution contains some scripts programs used in
this work. In particular, it contains the eibmon.pl Perl script used to convert the text data
produced by Eibserver into MySQL data.

The files for the Simbad could not be made publicly available. Simbad’s licence does not
allow it, and the illuminance data files are too voluminous, even compressed. Contact the
author directly for information.

Not all results of the simulation runs could be made available either, but only those directly
used in this work (and necessary for generating this manuscript).

C.2 Precalculated illuminance files naming convention

The precalculated illuminance files are given names that, for venetian blinds, will match
the following regular expression: p^illum_(v\d{3})_(\d+)_(\d+)_N\.ill$y where the first
group refers to an entry in Table C.1. The second group refers to the blinds’ position (0 is
closed, 90 is 90% open) and the third group refers to the blinds’ slat angle (0 is horizontal, 66
is closed, in steps of 6°). For example, file illum_v001_0_0_N.ill refers to the south-oriented
room in Brussels with completely closed venetian blinds.

C.3 Astronomical Almanac algorithm R implementation

Here we give our translation in R of Michalsky’s Fortran implementation of the Astronomical
Almanac algorithm for calculating the sun’s position. Seidelmann (1992) should be consulted
for the details of this algorithm.

1 sunPosition <- function(year, month, day, hour=12, min=0, sec=0,

2 lat=46.5, long=6.5) {

3 twopi <- 2 * pi
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Variant number Blinds Window orientation City

v001 Venetian South Brussels
v002 Venetian West Brussels
v003 Venetian North Brussels
v004 Venetian South Rome
v005 Venetian West Rome
v006 Venetian North Rome
v007 Roller South Brussels
v008 Roller North Brussels
v009 Roller West Brussels
v010 Roller South Rome
v011 Roller North Rome
v012 Roller West Rome

Table C.1: Office variant numbers.

4 deg2rad <- pi / 180

5

6 # Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years

7 month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30)

8 day <- day + cumsum(month.days)[month]

9 leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) &

10 day >= 60

11 day[leapdays] <- day[leapdays] + 1

12

13 # Get Julian date - 2400000

14 hour <- hour + min / 60 + sec / 3600 # hour plus fraction

15 delta <- year - 1949

16 leap <- trunc(delta / 4) # former leapyears

17 jd <- 32916.5 + delta * 365 + leap + day + hour / 24

18 # The input to the Atronomer's almanach is the difference between

19 # the Julian date and JD 2451545.0 (noon, 1 January 2000)

20 time <- jd - 51545.

21

22 # Ecliptic coordinates

23 # Mean longitude

24 mnlong <- 280.460 + .9856474 * time

25 mnlong <- mnlong %% 360

26 mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360

27 # Mean anomaly

28 mnanom <- 357.528 + .9856003 * time

29 mnanom <- mnanom %% 360

30 mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360

31 mnanom <- mnanom * deg2rad

32 # Ecliptic longitude and obliquity of ecliptic

33 eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)

34 eclong <- eclong %% 360
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35 eclong[eclong < 0] <- eclong[eclong < 0] + 360

36 oblqec <- 23.429 - 0.0000004 * time

37 eclong <- eclong * deg2rad

38 oblqec <- oblqec * deg2rad

39

40 # Celestial coordinates

41 # Right ascension and declination

42 num <- cos(oblqec) * sin(eclong)

43 den <- cos(eclong)

44 ra <- atan(num / den)

45 ra[den < 0] <- ra[den < 0] + pi

46 ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi

47 dec <- asin(sin(oblqec) * sin(eclong))

48

49 # Local coordinates

50 # Greenwich mean sidereal time

51 gmst <- 6.697375 + .0657098242 * time + hour

52 gmst <- gmst %% 24

53 gmst[gmst < 0] <- gmst[gmst < 0] + 24.

54

55 # Local mean sidereal time

56 lmst <- gmst + long / 15.

57 lmst <- lmst %% 24.

58 lmst[lmst < 0] <- lmst[lmst < 0] + 24.

59 lmst <- lmst * 15. * deg2rad

60

61 # Hour angle

62 ha <- lmst - ra

63 ha[ha < -pi] <- ha[ha < -pi] + twopi

64 ha[ha > pi] <- ha[ha > pi] - twopi

65

66 # Latitude to radians

67 lat <- lat * deg2rad

68

69 # Azimuth and elevation

70 el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))

71 az <- asin(-cos(dec) * sin(ha) / cos(el))

72 elc <- asin(sin(dec) / sin(lat))

73 az[el >= elc] <- pi - az[el >= elc]

74 az[el <= elc & ha > 0] <- az[el <= elc & ha > 0] + twopi

75

76 el <- el / deg2rad

77 az <- az / deg2rad

78 lat <- lat / deg2rad

79

80 return(list(elevation=el, azimuth=az))

81 }
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C.4 Machine synchronization

All PCs used in this project are kept synchronized by placing the following sync-root script
in their /etc/cron.hourly/ directory. It will run the ntpdate command about once an hour,
synchronizing with a Network Time Protocol server in Zürich.

1 #!/bin/sh

2 #

3 # $Id: sync-clock,v 1.6 2003/09/23 21:39:29 jmates Exp $

4 #

5 # Use ntpdate to get rough clock sync.

6

7 NTPDATE=/usr/sbin/ntpdate

8 SERVER="swisstime.ethz.ch"

9

10 # if running from cron (no tty available), sleep a bit to space

11 # out update requests to avoid slamming a server at a particular time

12 if ! test -t 0; then

13 MYRAND=$RANDOM

14 MYRAND=${MYRAND:=$$}

15

16 if [ $MYRAND -gt 9 ]; then

17 sleep `echo $MYRAND | sed 's/.*\(..\)$/\1/' | sed 's/^0//'`

18 fi

19 fi

20

21 $NTPDATE -su $SERVER

22

23 # update hardware clock on Linux (RedHat?) systems

24 if [ -f /sbin/hwclock ]; then

25 /sbin/hwclock --systohc

26 fi
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