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Abstract
This paper summarizes two novel ways to extend brain–computer interface (BCI) systems.
One way involves hybrid BCIs. A hybrid BCI is a system that combines a BCI with another
device to help people send information. Different types of hybrid BCIs are discussed, along
with challenges and issues. BCIs are also being extended through intelligent systems.
Software that allows high-level control, incorporates context and the environment and/or uses
virtual reality can substantially improve BCI systems. Throughout the paper, we critically
address the real benefits of these improvements relative to existing technology and practices.
We also present new challenges that are likely to emerge as these novel BCI directions become
more widespread.

1. Introduction and scope

Until a few years ago, most brain–computer interface
(BCI) systems only accepted input from one type of
electroencephalogram (EEG) signal (such as P300 or steady-
state visual evoked potential (SSVEP)), and only allowed
simple and inflexible messages or commands (such as spelling
or moving a wheelchair forward). Recently, many articles
have presented two different ways to make BCI systems
more intelligent. First, BCIs can be combined with another
communication device. These hybrid BCIs accept input from
different signals and/or signal combinations. Second, BCIs
can be combined with more intelligent, context aware software
that helps users execute desired goals in changing realworld
environments.

2. Hybrid BCIs

2.1. Introducing the hybrid BCI

Recently, several groups have validated a novel approach
toward BCI design called a hybrid BCI [1]. After a brief

review of different definitions, we recognized that there are
some inconsistencies among published BCI definitions, and we
agreed on the following definitions of a hybrid BCI and some
relevant terms. A hybrid BCI is a BCI combined with at least
one other system or device to help people send information.
This second communication system or device might be

(i) another BCI (called a pure hybrid);
(ii) a device based on other physiological signals (called a

physiological hybrid), such as the electromyogram (EMG,
associated with muscle movements), electrooculogram
(EOG, associated with eye movements) or heart rate; or

(iii) another communication device (called a mixed hybrid),
which could be an assistive technology meant for disabled
users or a conventional input such as a keyboard or mouse.

A hybrid BCI can work simultaneously and/or
sequentially. In a simultaneous hybrid, the user can operate the
BCI and other system(s) at the same time. In a sequential (or
interleaved) hybrid, the user might instead choose to engage
one of the communication systems only part of the time,
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such as when the user is (or is not) fatigued, or to reduce
annoyance and/or improve usability. The secondary system
could supplement the primary system in many ways, such as
turning it on or off, confirming selections, correcting errors,
facilitating immersion, increasing bandwidth, improving
training, modifying commands or providing communication
options better suited to specific tasks or applications.

2.2. New work with hybrid BCIs

Physiological hybrid BCIs were introduced fairly early, but
have also been explored recently. Kennedy and colleagues
developed a cone electrode that was used in an early hybrid BCI
that combined EMG with invasively recorded brain signals
[2]. Combinations of EEG and EMG signals for control
applications were presented in Junker et al [3], Nelson et al
[4, 5] and Leeb et al [6]. Scherer et al used the heart rate to
switch a BCI system on and off [7]. Danóczy et al presented a
grasping robot arm controlled by gaze and asynchronous EEG
BCI [8]. Asynchronous BCIs, unlike synchronous BCIs, allow
users to send information at their own pace, without following
cues or prompts from the system. Zander et al combined
gaze-based input with an asynchronous ERD (event-related
desynchronization) based BCI for solving the Midas Touch
problem [9, 10] of a touchless human–computer interaction
(HCI) [11]. The Midas Touch problem occurs when a BCI
sends a message or command when the user did not intend to
communicate at all. Finally, Usakli et al introduced a hybrid
spelling platform based on EOG and EEG measurements [12].

While some early work presented the idea of pure
hybrid BCIs [13, 14], they have only recently been validated
[1, 15–25]. Hybrid systems that combine BCIs and more
mainstream interfaces have not been well explored, but this is
likely to change in the near future. Some European and other
research efforts (e.g. the EU FP7 TOBI project5) explicitly
aim to combine BCIs with conventional interfaces (such as
keyboards, mice or joysticks) and assistive technologies (ATs)
(such as systems based on limited residual movement) [26].

Thus, a hybrid BCI is not a specific type of novel
BCI, but an entirely new approach to thinking about BCIs.
Until recently, BCIs were typically viewed as stand-alone
communication systems. Developing a hybrid BCI requires
more effort than a conventional simple BCI, and some
researchers considered a hybrid BCI impossible because it
would be too difficult to focus on multiple tasks.

2.3. Emerging challenges

Indeed, a major issue with any hybrid BCI is the seamless
integration of different input mechanisms and mental tasks. A
BCI based on visual attention may be hard to integrate with
other tasks or interfaces that require visual attention. However,
BCIs that combine visual attention and imagined movement
are possible [15, 16]. A related challenge is ensuring that
the two interfaces complement each other well. Two different
interfaces that both allow users to move the same cursor in
the same direction at the same time would seem redundant.
5 http://www.tobi-project.org/

The secondary system should compensate for some weakness
in the principal interface. For example, an SSVEP BCI
was recently developed to control an orthosis. Results were
promising except for one weakness: a high false positive rate
[17]. Therefore, a type of ERD BCI with a very low false
positive rate was introduced as a switch to toggle the SSVEP
BCI on and off [17]. Similar work validated a hybrid BCI in
which users could instead turn an SSVEP BCI on and off using
a near-infrared spectroscopy BCI [1].

Another challenge is feedback. In a hybrid BCI, users
may need feedback that reflects the efficacy of different input
methods. For example, if users try to move a cursor left by
simultaneously imagining left hand movement and focusing on
a left LED, how can they know whether imagined movement
(ERD) or visual attention (SSVEP) played a larger role in the
success or failure of the cursor movement [18]? Users might
need different feedback bars to present the strength of different
input signals. Alternately, the BCI might be designed so that
the feedback is more intuitive. For example, if the user moves
in one dimension with SSVEP activity, and another dimension
with ERD, then the subject could easily adjust mental strategies
to improve control as needed [25]. Feedback may be easier
with interleaved hybrid BCIs, in which each interface controls
different functions or is only active at certain times [22, 27].

A hybrid BCI could also include feedback from the user
to the BCI. Error potentials (ErrPs) occur shortly after a user
realizes that he or she made an error [28], and ErrPs could
provide a feedback signal to improve the effectiveness of BCIs
[29–31]. Later research showed that ErrPs occur when a user
realizes that the BCI made a mistake, and that ErrPs can be
detected in single trials [32, 33]. ErrPs could be used as part
of a hybrid BCI system in a few ways. ErrPs could prevent
the BCI from implementing a command, reverse or modify
a previously sent command, inform a listener or device that
an error occurred or contribute to a reinforcement learning
mechanism to improve the BCI’s classifier. ErrP activity could
also be combined with conventional interfaces. While users
can convey that an error was made by hitting the backspace
key or back button, ErrP activity could provide a signal more
quickly and unobtrusively [34].

2.4. Making hybrid BCIs practical—bringing BCIs to the
patient

While all of these challenges are important, getting hybrid
(and other) BCIs to the people who need them is always
crucial as well. Despite the considerable progress in BCI
research recently, and the availability of many improved BCI
systems, their communication and control capabilities are still
very limited compared to natural communication or existing
ATs. Practical brain–computer interfaces for disabled people
should allow them to use all their remaining abilities as control
possibilities. Sometimes users have residual muscle activity,
typically in the morning when they are not exhausted. With
a hybrid BCI, patients could use this muscular activity when
possible and switch to a BCI when fatigued. In such a hybrid
BCI, conventional ATs (operated using some residual muscular
functionality) are enhanced by BCI technology.
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Millán et al reviewed the state of the art and challenges
in combining BCI and AT [27]. This paper identified the
following directions and issues for a new generation of hybrid
BCI assistive technology for people with physical disabilities.

(i) Conventional AT will be enhanced by BCI technology:
by adding an additional degree of freedom, by enhancing
the robustness of the control signals (combining EEG
and other AT) or by improved interaction. BCIs will
expand the range of opportunities available to AT teams
worldwide for building flexible and personalized solutions
for their clients’ needs.

(ii) Equipping BCI-assistive devices with novel self-adaptive
capabilities: e.g. by incorporating fusion techniques for
the combination of EEG with other signals, automatic
selection of EEG phenomena, on-line adaptation to EEG
changes, using modern HCI principles for shaping the
interaction and recognizing mental states and cognitive
processes.

(iii) BCI will become more robust: combining EEG with other
signals will allow users to become more autonomous and
interact over long periods of time.

(iv) BCI will increase its performance and reliability
significantly: modern HCI and shared autonomy
principles will make it possible.

(v) BCI will reduce cognitive effort: this will be possible
because of modern HCI and the recognition of the user’s
mental states and cognitive processes.

(vi) BCI will be easier: the design of efficient training
protocols will accelerate, improve and make more
intuitive each user’s mastering of the BCI assistive
technology; also, the development of new electrodes
and aesthetic helmets will facilitate operation of BCI by
laypeople.

(vii) Novel BCI designs will ensure that outcomes follow
standard BCI assistive technology: lack of coordination
in BCI research has thus far impeded the creation of a
shared model and standards among BCI groups.

3. Shared control and intelligent tools

Current BCI systems are unreliable, and may not perform well
even under optimal conditions. Modern BCIs are characterized
by noisy and low bit rate outputs and by the limited range of
possible commands. Early BCIs simply acted on a subject’s
brain activity regardless of the context. More recent work
developed more intelligent systems by introducing high level
(or goal-oriented) behavior, incorporating context, such as the
state of the system, surrounding environment or mental state
of the user.

3.1. Goal versus process control

Since (at least) non-invasive BCIs are low-bandwidth systems,
users who must painstakingly communicate all details of
messages or commands may need a long time. Specifying
the details of hand movements needed to get a glass of
water, or the individual movements to navigate through a
house, would be impractical. In a goal-oriented approach,

the user produces high-level commands or intentions, but is
freed from the burden of the low-level and demanding high-
speed interactions. Two interacting agents, the BCI system
and the intelligent device, are sharing the task. Shared control
has been prominent in recent work regarding neuroprostheses
such as robots and wheelchairs [35–40], as well as other
intelligent systems such as smart virtual keyboards [41] or
virtual helicopters [42].

For example, a user who is writing a novel such as ‘The
Diving Bell and the Butterfly’ could write more quickly with
intelligent tools that can predict letters, complete words or
automatically correct errors. Consider a user who wishes to
move a wheelchair, robot or virtual avatar to a new location.
Instead of specifying each movement, a user could simply
select a destination and leave the rest of the work to the system.
This remaining work is not trivial. For example, the system
must determine a path to the new location. It must avoid
obstacles, which may be new (such as a toy that was just
placed in the path of a wheelchair). Thus, it needs a sensing
mechanism to detect obstacles, and software to develop and
implement new paths accordingly, which must function in
realtime.

Shared autonomy frameworks such as these aim to
integrate the user’s mental commands with the contextual
information gathered by the intelligent device (such as a
language model based on written characters or obstacles
perceived by the robot sensors) to help the user to reach
the target/goal more quickly and reliably. Shared control
can make goal-oriented control easier, avoid pointless mental
commands, and can help determine meaningful motion
sequences (e.g. for a neuroprosthesis). Furthermore, shared
autonomy will be a key component of future hybrid BCIs, since
shared autonomy can help shape the closed-loop dynamics
between the user and the brain-actuated device to perform
tasks as easily as possible.

An important challenge will be providing users with both
high-level and low-level control, as well as an easy way to
switch between them. While a system that allows only low-
level commands could be slow and frustrating, a system that
allows only high-level commands could also be problematic.
A user who cannot specify a new message or destination would
be limited to some preprogrammed high-level commands, and
might require technical support to make even minor changes.

Therefore, shared control should keep the user in the loop
to avoid becoming a fully autonomous or stand-alone system.
For example, if the user indicates with a high-level command
to go to a new location, he still can influence the path or
change the target location en route. Consider a situation in
which the user wants to go to the kitchen to see his wife and
selects an icon for ‘go to the kitchen’ using his BCI. While he
is passing by the corridor, he sees her in the bedroom, so he
must have some way to intervene and avoid an unnecessary
trip. Furthermore, the system should ask the user for new
directions or help if he reaches an unknown point where new
input is required. Hence, shared control certainly does not
refer to a fully autonomous or stand-alone system. Shared
control involves close interaction between the system and the
user.
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Recent work [43] compared high-level (or goal oriented)
control to the activity of the cortex and other brain areas, and
low-level (or process oriented) control to the activity of lower
nervous systems and muscles. In a healthy person, goals
are decided by the brain, and most details of the execution
are mediated unconsciously by lower areas. People who move
from one room to another do not think about all of the muscle
activities needed to get there. Similarly, users should have the
option of conveying only their goals, while the BCI handles
other details.

3.2. System and environment

Two closely related issues are the system and environment.
A BCI system could use information about its own state in
different ways. For example, if a door is open or a light is on,
then a smart home system should not present BCI users with
these possible commands. Perhaps the icons reflecting these
commands could be grayed out. This intelligent control can
also be used to provide inference-based technology to further
help users. If a user launches a movie with his BCI, the system
might infer that the user would like the room dark, and will
turn off any lights. If a user activates a security camera or
tries to move toward a room, the BCI system might activate
lights in that room. ‘Ambient intelligence’ could also involve
intelligent personalization so that inferences are unique to each
person’s preferences [44]6.

BCIs can incorporate information about the environment
as well. In Millán et al [45], a mobile robot moved according
to both the user’s mental command and the robot’s location
relative to obstacles. Thus, if a user thought about a mental
task the robot might turn left or follow a wall to the left based
on environmental cues such as the presence of a wall to the
left. There are various ways that intelligent systems could
further utilize environmental information, such as data about
external lighting, temperature, sonic or electrical noise (which
could affect the tasks involved in BCIs or signal quality), or
availability of resources (so a user cannot try to pour juice
from an empty juice bottle).

Contextual information could lead to a ‘semi-
synchronous’ BCI that overcomes drawbacks of synchronous
and asynchronous BCIs. Synchronous BCIs require users
to coordinate their mental activities with specific cues.
Asynchronous BCIs do not have this drawback; users may
communicate whenever they wish. However, because they
are always on, asynchronous BCIs risk a high false positive
rate, and hence may employ means to confirm selections. In
a semi-synchronous BCI, users could send signals whenever
they want. The system uses the context to infer whether signals
are false positives or really reflect user intent (and perhaps
which intent). Consider an example of a BCI-based soccer
game. If a user thinks about moving his feet when there is no
ball nearby, then he runs. If there is a ball nearby, then the
imagined foot movement causes the avatar to run with the ball.
If the user is also focusing attention on a virtual teammate, then
the same mental activity will cause the avatar to kick the ball
to the teammate. If the user thinks about moving his feet

6 http://www.brainable.org/

during a break in gameplay, then the system assumes it is a
false positive.

A similar example is being pursued in the EU FP7
TREMOR project7. This project presents a system that
can detect imagined movements from brain activity. If
the user imagines movement and then tries to move the
hand, then the movement occurs normally. However, if no
imagined movement precedes a hand movement, then the
hand movement is suppressed with a functional electrical
stimulation (FES) system. This device could prevent
involuntary tremors, which often affect persons who have
had a stroke. This is a different perspective toward a ‘semi-
synchronous’ BCI. The BCI element of the system is the
opposite of a normal BCI: the device only takes action if the
user does not think of movement. Still, this is a novel BCI
system that combines a BCI with a new type of contextual
information (the presence of EMG activity that reflects arm
movement).

3.3. Novel BCI applications using virtual reality techniques

Because BCIs are closed-loop systems, feedback is an
important component of them. Various methods of providing
feedback can inform the participant about success or failure of
an intended act. Thus, feedback either supports reinforcement
during the learning/training process or in controlling the
application. In particular, virtual reality (VR) has been
proven to be an interesting and promising way to realize such
feedback. Several prototypes have enabled users to navigate
in virtual scenes solely by means of their oscillatory cerebral
activity, recorded on the scalp via EEG electrodes. Healthy
participants explored virtual spaces [46–49] and manipulated
virtual objects [50]. A spinal-cord injured patient controlled a
wheelchair through a virtual street [51]. Additionally, evoked
potentials (P300) [52] and SSVEPs [53, 54] have been used
to control VR feedback and augmented reality [55]. The BCI
users who use immersive virtual environments (VEs) made
fewer errors, reported that BCIs were easier to learn and use,
and stated that they enjoy BCI use more [46, 48, 56]. These
benefits may occur because VEs enhance vividness and mental
effort, which may lead to more distinct brain patterns and
improve pattern recognition performance. VR technologies
provide motivating, safe and controlled conditions that could
facilitate both BCI learning and research into the brain
responses and neural processes involved.

Figure 1 presents different VR environments controlled by
different BCI approaches. The BCI system in panels (a) and
(b) allows users to navigate via imagined movement. Users
can move forward by imagining foot movement, and can move
left or right by imagining left or right hand movement. Panel
(c) shows an even newer BCI system in which users navigate
through visual attention. The avatar is surrounded by three red
boxes, which each oscillate at different frequencies. Users can
move left, right, or forward by focusing on the corresponding
box.

A more recent BCI allows users to move in a VE and
also send context-dependent commands. We developed a BCI

7 http://www.iai.csic.es/tremor/
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(a) (b) (c)

Figure 1. Two different ways to use a BCI to navigate through a virtual apartment in VR. Panel (a) presents an overview of a virtual
apartment and (b) shows an image of a subject navigating through that virtual apartment with motor imagery [46]. Panel (c) shows an
SSVEP BCI that can allow an avatar to move through an apartment or other environment [53].

(This figure is in colour only in the electronic version)

system that allows users to control the popular online game
World of Warcraft based on ERD activity associated with
imagination of left hand, right hand or feet movement [57].
In some environments, these commands cause the avatar to
rotate left or right or move forward. However, when the avatar
is talking to a game-generated character to obtain or redeem
a quest, movement is not needed, and so the three commands
produce other effects. The context-dependent BCI also allows
different commands when the avatar is in combat or collecting
loot. Further directions may explore hybridizing this system
with SSVEP measures, other brain signals or conventional
manual commands.

4. Summary

In summary, extending BCIs by combining them with
other communication devices and intelligent systems could
substantially improve BCIs in many ways. Hybrid BCIs
represent a fundamentally different view of the ‘input’ side of
BCIs, allowing users to communicate via whatever signal(s) or
combinations work best different times, situations and goals.
Similarly, shared control is a new perspective on the ‘output’
side of BCIs. Users could accomplish goals more quickly and
intuitively without unnecessary effort. These developments
could make BCI systems more reliable, flexible, usable and
powerful.
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and Gräser A 2008 Non-invasive brain–computer interfaces
for semi-autonomous assistive devices Robust Intelligent
Systems (London: Springer) pp 113–37

[39] Tonin L, Leeb R, Tavella M, Perdikis S and Millán J del R
2010 The role of shared-control in BCI-based telepresence
Proc. 2010 IEEE Int. Conf. on Systems, Man and
Cybernetics pp 1462–6

[40] Rebsamen B, Guan C, Zhang H, Wang C, Teo C, Ang M H
and Burdet E 2010 A brain-controlled wheelchair to
navigate in familiar environments IEEE Trans. Neural Syst.
Rehabil. Eng. 18 590–8

[41] Williamson J, Murray-Smith R, Blankertz B, Krauledat M
and Müller K R 2009 Designing for uncertain, asymmetric
control: interaction design for brain–computer interfaces
Int. J. Human Comput. Stud. 67 827–41

[42] Royer A S, Doud A J, Rose M L and He B 2010 EEG control
of a virtual helicopter in 3-dimensional space using
intelligent control strategies IEEE Trans. Neural Syst.
Rehabil. Eng. 18 581–9

[43] Wolpaw J R 2007 Brain–computer interfaces as new brain
output pathways J. Physiol. 579 613–9

[44] Navarro N A, Ceccaroni L, Velickovski F, Torrellas S, Miralles
F, Allison B Z, Scherer R and Faller J 2011 Context
awareness as an enhancement of brain–computer interfaces
Int. Workshop on Ambient Assisted Living (Malaga, Spain)
pp 216–23

[45] Millán J del R, Renkens F, Mouriño J and Gerstner W 2004
Noninvasive brain-actuated control of a mobile robot by
human EEG IEEE Trans. Biomed. Eng. 51 1026–33

[46] Leeb R, Lee F, Keinrath C, Scherer R, Bischof H
and Pfurtscheller G 2007 Brain–computer communication:
motivation, aim and impact of exploring a virtual apartment
IEEE Trans. Neural Syst. Rehabil. Eng. 15 473–82

[47] Leeb R, Settgast V, Fellner D W and Pfurtscheller G 2007
Self-paced exploring of the Austrian National Library
through thoughts Int. J. Bioelectromagnetism
9 237–44

6

http://dx.doi.org/10.1016/S1388-2457(02)00057-3
http://dx.doi.org/10.1088/1741-2560/7/2/026007
http://dx.doi.org/10.1016/j.jneumeth.2010.02.002
http://dx.doi.org/10.1109/TNSRE.2010.2040837
http://dx.doi.org/10.1088/1741-2560/8/2/025010
http://dx.doi.org/10.1109/TBME.2010.2055564
http://dx.doi.org/10.1631/jzus.C1000208
http://dx.doi.org/10.1109/TBME.2011.2116018
http://dx.doi.org/10.1037/0033-295X.109.4.679
http://dx.doi.org/10.1016/S1388-2457(00)00457-0
http://dx.doi.org/10.1109/TNSRE.2003.814456
http://dx.doi.org/10.1109/TNSRE.2003.814446
http://dx.doi.org/10.1109/TNSRE.2006.875555
http://dx.doi.org/10.1109/TBME.2007.908083
http://dx.doi.org/10.1109/MIS.2008.41
http://dx.doi.org/10.1088/1741-2560/5/2/012
http://dx.doi.org/10.1007/s10514-008-9102-y
http://dx.doi.org/10.1016/j.clinph.2008.06.001
http://dx.doi.org/10.1109/TNSRE.2010.2049862
http://dx.doi.org/10.1016/j.ijhcs.2009.05.009
http://dx.doi.org/10.1109/TNSRE.2010.2077654
http://dx.doi.org/10.1113/jphysiol.2006.125948
http://dx.doi.org/10.1109/TBME.2004.827086
http://dx.doi.org/10.1109/TNSRE.2007.906956


J. Neural Eng. 9 (2012) 013001 B Z Allison et al

[48] Ron-Angevin R, Diaz-Estrella A and Velasco-Alvarez F
2009 A two-class brain–computer interface to freely
navigate through virtual worlds Biomed. Tech.
54 126–33

[49] Scherer R, Lee F, Schlögl A, Leeb R, Bischof H
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