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Abstract—Radio communications terminals and infrastructure 
tend to support an increasing range of algorithms and radio 
access technologies. Flexible processing platforms are therefore 
needed for supporting multi-standard or heterogeneous radios. 
Channel decoding is one of the most computing demanding 
digital signal processing blocks of a radio transceiver. At the 
same time, it provides a high degree of implementation 
flexibility as well as facilitates dynamic parameter 
adjustments. This paper presents a flexible LDPC decoder 
implemented on an FPGA device following the ALOE 
middleware design paradigm. We analyse the middleware 
efficiency in terms of flexibility versus resource requirements. 
The results show a relative middleware area overhead of 32 %. 

ALOE middleware, flexible LDPC, reconfigurable logic, 
SDR 

I. INTRODUCTION  
The continuous improvements in the micro-electronic 
technology have made conceivable the integration on the 
same Integrated Circuit (IC) millions of MOS transistors 
and logic gates. This makes possible the design of novel 
integrated architecture with enhanced capabilities. These 
augmented possibilities require novel design paradigms in 
order to catch all of them, particularly the resorting to 
flexible architectures able to easily adapt to different 
applications and algorithms [1]. This evolution of digital 
processing architectures in the direction of an increasing 
level of flexibility is particularly evident in the field of 
wireless communication systems. Since the number of radio 
standards is growing very fast and the diversity among the 
standards is also increasing, there is a need for a processing 
solution capable of handling as many standards as possible. 
In particular, the idea of software-defined radio (SDR) 
implies the implementation, in the future, of flexible multi-
standard radios, supporting all these different standards, 
with no degradation in terms of achievable data rate or 
transmission reliability. Flexible platforms are necessary to 
this purpose. 
In this context, Multi-Processor System-on-Chip (MP-SoC) 
architectures are being widely investigated these last years 
in order to accommodate the increasing throughput and 

flexibility requirements of emerging wireless 
communication standards. 
Among the several functionalities specified in wireless 
communication standards, one of the most demanding 
operations is channel decoding, which contributes at least 40 
% to the total computational complexity of the physical 
layer of a wireless system. Each new wireless standard 
typically increases the data rate, while keeping low the 
occurrence of errors in the transmissions. Moreover, 
depending on some external conditions, each standard 
provides different profiles. Thus, an integrated circuit 
designed for telecommunication purposes has to exploit a 
certain degree of flexibility in order to tackle all these 
profiles. More flexible architectures can have also support 
for future out-coming standards. 
In this context, the present work proposes and evaluates a 
new fully flexible solution for the implementation of multi-
standard and multi-mode channel iterative decoder 
supporting generic Low-Density-Parity-Check (LDPC) 
codes [2]. These codes are able to achieve high 
performances in terms of bit error rate (BER) although they 
have very high computing requirements at the receiver side. 
At present, several applications, such as the digital satellite 
broadcasting system (DVB-S2), Wireless Local Area 
Network (IEEE 802.11n) and Metropolitan Area Network 
(802.16e) incorporated them.  
In MP-SoC architectures for iterative decoders, several 
independent data blocks can be simultaneously decoded on 
different processors. In addition to node computational 
capabilities, an interconnect structure is necessary to support 
the iterative message exchange among variable and check 
nodes. In this context, Network-on-Chip (NoC) has recently 
emerged as a new paradigm [3] allowing coping with these 
major design issues, and more particularly with the on-chip 
interconnection needs. Efficient MP-SoC architectures 
assume heterogeneous processing elements (PE). Therefore 
it is necessary to define an optimum mapping of tasks to the 
set of PE maximizing computation efficiency [4]. Moreover, 
decoder throughput can be adapted in time balancing the 
total amount of resources assigned to it. Due to the ability of 
the decoder algorithm to be parallelized, the more PEs 
assigned to it, the higher performance.  
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In addition, future flexible radios based on large MP-SoC 
architectures must embrace platform-independent 
component-based designs in order to maintain profitable 
production costs. Operating Environments and Middleware 
for SDR applications envisages as an efficient solution to 
achieve the aforementioned run-time and design-time 
flexibility. 
The Abstraction Layer and Operating Environment (ALOE) 
is an open source SDR framework with real-time computing 
resource management capabilities [5]. The middleware 
supports GPPs and DSPs through a lightweight static 
memory implementation in C. A reduced version of ALOE 
is also available in VHDL, supporting some of the 
middleware services, and currently targeted for Virtex-5 
FPGA devices. Therefore, ALOE provides a single interface 
to manage processors and reconfigurable logic. The 
middleware is capable to map waveform components to 
processing devices on-line, as a function of real-time 
deadlines [4]. 
This paper presents a flexible LDPC decoder architecture 
based on the ALOE middleware for FPGAs. The decoder 
exploits flexibility at all levels: design-time, as the 
processing devices are designed without any target platform 
knowledge; and run-time, because the decoder is able to 
change the code without need to redesign the processing 
devices or the interconnection network. The aim of the 
project was never the performance or energy efficiency. 
Conversely, it tries to prove the suitability of middleware to 
increase global efficiency as well as to analyse its impact in 
the performance, energy and area consumption. The 
organization of the paper is as follows: next section presents 
related work in flexible LDPC decoders; Section III presents 
our decoder architecture based on the ALOE middleware; 
Section IV explains how the system has been validated at 
behavioural simulation level whereas Section V presents 
area occupation and performance results. The paper ends 
with some conclusions on the costs and benefits of 
introducing ALOE in hardware devices. 

II. RELATED WORK ON LDPC DECODERS 
An LDPC code is a linear block code characterized by a 
very sparse parity check matrix, H. From the behavioural 
point of view, the decoding process can be divided in two 
sets of tasks, associated to the N Variable Nodes (VNs) 
related with the rows, which handle the codewords, and 
M=N-K Check Nodes (CNs) (where K is the information 
word size) , which implement the parity-check constraints, 
that are related to the columns of the H matrix. Multiple 
processing elements are normally allocated to execute these 
node tasks. 
LDPC codes can be represented in term of a bipartite graph, 
called Tanner Graph. Such representation of error correcting 
codes is very useful since their decoding algorithms can be 
explained by the exchange of information along the edges of 
these graphs. The VNs receive the intrinsic information λi 
from the channel and update them depending on the results 

of the parity check equations computed at the CNs; this 
process is iterated several times until a converge criterion is 
met. This algorithm is known as "Two Phase Message 
Passing" (TPMP) or Belief Propagation Algorithm (BPA). 

Usually, the more architecture flexibility the less 
performance it can achieve, as internal structures are not 
optimized to any specific application. A straightforward 
approach to the implementation of a decoder for a single 
LDPC code is to instantiate all nodes of the Tanner graph: a 
fully parallel architecture is obtained, with the potential for 
very high throughput [7], however routing congestions and 
the lack of flexibility make this approach impractical. In 
partially parallel architectures [8], the nodes of the Tanner’s 
graph are processed in time multiplexed way by means of a 
number of processing elements lower than the check or 
variable nodes. The original two phase decoding has now 
given way to the so called layered or shuffled decoding [9] 
[10], which results in approximately two times faster 
convergence of the algorithm. As partially parallel 
architectures introduce a problem of conflicting accesses to 
the memories containing the exchanged messages, a proper 
network is required to connect processing elements and 
memories. The complexity of this network basically 
depends on the structure of the H matrix. Different 
approaches have been investigated in [11], [12], [13] among 
others.    

 The requirements of very low error rate, very high 
throughput and increased flexibility of the implementation, 
can be better achieved by means of multiprocessor 
architectures, or Multi-Processor System-on-Chip (MP-SoC) 
architectures, the inherent parallelism of the iterative LDPC 
decoding algorithms is exploited to efficiently partition the 
decoding task. Application Specific Instruction set 
Processors (ASIP) recently emerged as a promising solution 
for the implementation of flexible decoders, capable to 
greatly improve programmability, while still allowing high 
throughput and efficiency, thanks to specialised processing 
units. A recent example is given by the multi-mode decoder 
architecture for convolutional and structured LDPC codes 
presented in [14]. Another ASIP designed to decode 
convolutional, turbo and LDPC codes is presented in [15]. 

Also for the MP-SoC implementation approach, a 
network has to support the communication demands of the 
different processors without degrading the throughput of the 
overall system. Conventional on-chip buses become 
inefficient in large systems and the nanotechnology 
integration issues (propagation delay, crosstalk, etc.) make 
their use impractical. In this context, Network-on-Chip 
(NoC) has emerged as a new paradigm allowing coping with 
these design issues. A NoC solves the problem of scalability, 
facilitating the on-chip integration of several hundreds of 
processing components.  

A first attempt to design a NoC based LDPC decoder is 
described in [16], which presents an architecture that 
supports LDPC codes up to the size of 1024 variable nodes 
at the cost of a high area occupation and power consumption. 



Two NoCs for the decoding of generic LDPC codes are 
discussed in [17], where a binary de Bruijn NoC with on-
line dynamic routing is presented and compared to a 
communication structure called Zero-Overhead NoC with 
offline static routing. This approach allows full flexibility, 
optimises the FIFO sizes, and minimizes the network 
latency.  

III. DECODER ARCHITECTURE 
The middleware based decoder proposed in this paper 

accesses middleware services through an ALOE controller. 
This controller corresponds to an Application Programming 
Interface (API) of common operating systems: a standard 
interface hides device-specific peculiarities. Therefore, 
components can be ported from one device to another (or 
from one memory section to another) without redesigning 
them. The computing resource manager, the time reference 
and the execution control management is centralized by the 
ALOE managers. These elements, however, are executed 
more efficiently on general-purpose processors; ALOE 
permits to run managers in a Linux-PC.  

For simplicity reasons current decoding processing 
elements (PEs) incorporated, both, CNs and VNs processing 
nodes building a homogeneous array of PEs. Nevertheless, 
next step can potentially improve efficiency by 
differentiating the PEs carrying out CN and VNs nodes, 
setting up then a heterogeneous MP-SoC. Additionally, in 
current version, control and management tasks are assigned 
to the GPP (Linux) what in some sense assume the 
emulation of a heterogeneous MP-SoC environment mixing 
ASIPs, GPP and logic. The middleware offers the designer a 
single interface to manage all kinds of PE.  
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Fig. 1. LDPC ALOE based Decoder  

Since the aim of the work is not achieving certain 
throughput, it is not necessary to compute the number of 
required PE or the degree of parallelism attaining that 
threshold. One ALOE controller is needed for each PE; 
therefore, the degree of concurrency is irrelevant to the 
relative overhead analysis. However, it is interesting to 
prove the validity of the middleware in a relatively complex 
scenario, hence we chose four concurrent PE.  Fig. 1 depicts 

the architecture of the decoder. It consists of four processing 
elements (PEs), four ALOE controllers and one Linux-PC 
running the software-based ALOE managers. Although the 
network topology in the figure uses one interface for each 
remote processor, ALOE abstracts the network topology and, 
thus, supports any kind of network topology, for example, 
shared channels.  

A. Node Processor 
A general distributed LDPC decoder assigns CN and VN 

nodes to a set of processors. The throughput scales with the 
number of processors (parallelism), in general. Our 
architecture uses an Application-Specific Instruction-Set 
Processor (ASIP) for the node processing. Typically, ASIPs 
combine a general-purpose with an application-specific 
instruction set. Therefore, although tailored for LDPC 
decoding, other processing tasks can be accomplished. If the 
ASIP is underutilized, the resource manager can map tasks 
to it making a better use of the resource. Our 
implementation, however, provides only a specific 
instruction-set for LDPC decoding. 
Several logic nodes (CNs and VNs) are assigned to each 
physical processor. They receive messages from other 
nodes, perform computations and send messages back. As 
the decoder is not designed for a specific H matrix, each 
message must carry the destination node index within the 
data. The node’s physical location is not known to the 
sender node; ALOE manages the routing of messages 
through physical channels.  
Besides the program memory, the processor accesses a set 
of other data memory banks dedicated to several purposes. 
The data in the memory defines the interconnection of CN 
and VN nodes and hence specifies the LDPC code. During 
the initialization phase, the ASIP retrieves from the ALOE 
manager the contents of these memories determining the 
operating code. The following memory banks are defined: 
• VNi_mem contains the connections between each VN 

node and the CN nodes and the data processed by the 
VN. Each memory position, 32-bit wide, indicates the 
pair of nodes (VN and CN, 12-bit each), the 
information data (6-bit width) and the interface towards 
the destination node PE (2-bit).  

• CNi_mem is basically organized like VNi_mem, except 
for the field order. (It contains the connections between 
each CN node and the VN nodes with the R messages.) 
The data field is filled with the R message produced by 
CN to the VN.  

• VN_to_CN_mem has the same format of VNi_mem. It 
contains the Q messages received by the VNs from 
other PEs to the CNs in the local PE.  

• CN_to_VN_mem has the same format as CNi_mem but 
containing the R messages.  

• Input memory contains the input LLR data of VN nodes 
(b-bits).  

• Output memory contains the output LLR representing 
the decoded data.  



The purpose of having different memory banks instead of a 
single one is because of the algorithm’s concurrent memory 
accesses. Instead of accessing multiple offsets in sequential 
cycles, the node computation is performed in a single cycle 
and the data is concurrently read from multiple buses.  
Regarding the processing logic, four specific instructions 
are available: 
• Create_VN performs the VN node computations. It 

reads R messages from the CN_to_VN_mem and stores 
Q messages in the VNi_mem; 

• Send_VN delivers Q messages stored in the VNi_mem 
to the network or, in case that the remote CN is in the 
same PE, to the VN_to_CN_mem; 

• Create_CN performs the CN node computations. It 
reads Q messages from the VN_to_CN_mem and stores 
R messages in the CNi_mem; 

• Send_CN delivers R messages stored at the CNi_mem 
to the network or, in the case where the remote VN is in 
the same PE, to the CN_to_VN_mem.  

B. ALOE Controller 
Each ALOE controller can manage one or more waveform 
components. A controller is necessary when an interface or 
service needs to be abstracted. For example, one controller 
suffices if the device has only one external interface. 
Nevertheless, components can exploit NoC efficient routing, 
placing an ALOE controller before each network node. Fig.  
depicts the latter concept: several types of processing 
devices coexist in the same environment─in this case, the 
environment is a single silicon die. Processors with an 
operating system run ALOE services as background tasks. 
Conversely, single-threaded devices e.g. ASIPs without an 
operating system or Dynamically Reconfigurable Areas 
(DRA) interface ALOE through a parallel logic block.  Note 
how platform services─the NoC, converters, RF front-ends 
and external interfaces─are abstracted by the middleware 
and therefore accessible by the waveform components. 
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Fig. 2. ALOE Abstraction Architecture 

 
The integrated ALOE computing resource manager enables 
to automatically map application tasks to a set of PEs using 
the tw-mapping algorithm [4]. The algorithm does not 
address loops and is, thus, inappropriate for Tanner Graphs. 
The code selection is performed offline, whereas the node 
mapping and routing is computed with the algorithm 
presented in [17]. ALOE controls the synchronization and 
scheduling of components following a specific execution 
pattern: computing resource time is split in discrete slots 
where each component (ASIP) is executed once; a message 
produced by one component at slot n cannot be read by 
destination component until slot n+1 (pipeline). Besides 
synchronizing components, the pipeline exploits 
concurrency at the cost of additional delay. The component 
designer is not aware of the network latency between 
processors and, therefore, does not need to define any 
scheduling or synchronization mechanisms. These issues are 
automatically controlled by ALOE pipelined execution 
pattern. 

The ALOE controller has been designed to be modular, 
scalable and portable. Device-specific services or functions 
are implemented in the platform-dependant part, the HW 
API. For instance: FIFO internal interfaces, external signals, 
timers, memories and so forth. The rest of the part is 
organized in components, each with a different set of 
functions (Fig. 3): 

- FRONT-END: routes control packets. Accesses the 
external control interfaces through the HWAPI. At 
boot registers to the ALOE managers obtaining a 
unique Id. 

- EXEC: Controls the execution status of the 
components and monitors real-time operation. 

- STATS: Requests initialization configuration to the 
manager.  

- SWLOAD: Allocates component resources and 
configures internal and external interfaces. 

- SYNC: Synchronizes local time with master 
reference 

- BRIDGE: Route data packets. Accesses external data 
signals through the HWAPI. At boot, sends own 
identification to neighbours to automatically discover 
network topology. 

- SWAPI: The fixed interface to the components. 
The last part, the SWAPI, is the only part the application 

component designer has to take into account. The interface 
provides the following signals: 

- A set of input/output data FIFO-like interfaces.  
- A unique time reference for all application 

components in all processors (synchronized by 
SYNC). 

- Two status signals to control component execution. 
One to set the status to INIT, RUN, PAUSE or STOP 
and another to check a successful status change. 

 



H
W

A
PI

Ex
te

rn
al

I/O
(c

on
tr

ol
, 

da
ta

, t
im

e)

SW
A

PI

C
om

po
ne

nt

Data

FRONT-END
Control Routing

BRIDGE
Data Routing

(external)

SWLOAD
Data Routing

(internal)

EXEC
Execution Control

SYNC
Synchronization

SW
IT

C
H

Exec Status

Time

Timer

M
E

M
Status Ok

STATS
Parameter Initialization

SW
A

PI

C
om

po
ne

nt

Data

Exec Status

Time

Status Ok

 
Fig. 2. LDPC ALOE based Decoder  

C. Network Abstraction 
In order to increase the communications efficiency, the 

signals between components are shared in common channels. 
Typically, the NoC is dimensioned as a function of the 
expected link loads for a certain application (e.g. LDPC 
code). Conversely, a platform-independent design cannot 
make such a consideration, achieving higher flexibility at 
the cost of lower efficiency. Given certain network topology 
and link bandwidths, efficiency is obtained through the 
process of task mapping. For reconfigurable devices the 
NoC is assumed to be static as it, generally, exhibits the 
maximum contribution to the energy consumption. A static 
interface from the reconfigurable component to the NoC is, 
therefore, necessary. Interfacing only with the ALOE 
SWAPI enables to increase the design reutilization as the 
NoC router improvements will not force a component 
redesign.  

The ALOE framework is not limited to any specific NoC 
topology or architecture. ALOE enables the application to 
take benefit of the NoC, if any, hiding its internal 
mechanisms.  

IV. SIMULATIONS 
The correct behaviour of the system has been tested 

through behavioural simulation. Timing simulations and 

implementation verifications have not been realized. The 
simulation scenario presents some challenges. It is 
impossible to verify the functionality of the ALOE 
controller without the interface to the Linux ALOE host. A 
dynamic testbench needs to write to the model signals the 
bits of the received packet. In addition, ASIPs are simulated 
with the CoWare Processor Designer Debugger [18], which 
is incompatible with other VHDL simulation tools.  

Therefore, a C-VHDL interface is required (VPI 
interface). The GHDL simulator [19] is a GNU behavioural 
simulator with VPI support. This interface communicates C 
programs with the signals of the VHDL models. We 
developed two components for integrating the whole 
scenario: one from the model signals to the TCP/IP ALOE 
interfaces and one towards the CoWare debugger. The 
model generates a periodic wait event which, when 
simulated with GHDL, calls our bridging custom function. 
The function receives TCP/IP packets and writes the data to 
the model input ports. The data generated at the output ports 
of the ASIP is written to the model input ports it is 
connected to. Then a model cycle is simulated. When it 
finishes, model output ports data is written either to the 
ASIP input ports or to the TCP/IP sockets.  

Due to licensing limitations, each CoWare simulator must 
run in a separate PC. Fig. 4 depicts the complete scenario 
where, for simplicity, only two PC are shown. The 
simulation is performed as follows:  
1. we start ALOE managers in one computer;  
2. we start the GHDL-CoWare simulators on four other 

computers;  
3. the ALOE FRONT-END in each controller registers to 

the ALOE Linux manager;  
4. the ALOE BRIDGE in each controller identifies data 

interfaces towards its neighbours;  
5. the ALOE Linux manager generates the processor 

interconnection matrix [4] with the data collected from 
the BRIDGE in each PE. Note that this step proves that 
in a reconfigurable logic scenario the system is able to 
dynamically detect changes in the number and 
interconnection topology of PEs;  

6. we use tool in [17] to compute CN and VN routing and 
node assignation for PE network architecture and save 
result in a configuration file; 

7. we use the ALOE Linux interface to set the application 
status to INIT. Components request configuration to the 
ALOE STATS who requests to the Linux manager who 
reads the previously produced file. Now CN and VN 
node assignation and routing is performed, thus code is 
selected; 

8. we use the ALOE Linux interface to set the application 
status to RUN; 

9. we use the ALOE Linux interface to set the application 
to STOP. We repeat step 7 and 8 with another code. 
Thus we are able to dynamically change the LDPC 
code at run-time. 
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Fig. 4. Simulation Scenario 

V. RESULTS 
The decoder has been synthetised for a Xilinx Virtex-5 

FX70 FPGA. Table I shows the resource occupation for the 
ASIP component, optimized for speed.  

TABLE I.  ASIP RESOURCE OCCUPATION 

Slice Registers 1892 
Slice LUTs 3360 
Memory (Kbits) 1120 

 
The ASIP’s VHDL code was automatically generated by the 
CoWare Processor Generator from the SystemC model. The 
processor uses 7 memories in total: 
• the ROM containing the program code uses 4 Kbytes of 

memory; 
• 2 RAMs of 4 Kbytes for the input and output memories 

(input_mem and output_mem); 
• 4 RAMs of 32 Kbytes the VNi_mem, CNi_mem, 

VN_to_CN_mem and CN_to_VN_mem memories. 
Clearly, the amount of memory used by the ASIP is 
significant. However, and as stated previously, optimization 
was not the aim of the project. Table II shows the resource 
occupation for a single ALOE controller, which was 
optimized for area in this case. The controller and the PE 
can operate synchronously since the maximum achievable 
frequency of the former is greater than the frequency of the 
latter. 

TABLE II.  ALOE CONTROLLER RESOURCE OCCUPATION 

Slice Registers 756 
Slice LUTs 1748 
Memory (Kbits) 768 

 
Considering the entire decoder contribution without the 
NoC, four ASIPs and four 4 ALOE controllers, the total 
decoder resource utilization can be computed as in Table III. 
Table IV depicts the relative overhead of ALOE. 

TABLE III.  DECODER RESOURCE OCCUPATION (4 ASIP AND 4 ALOE) 

Slice Registers 10592 
Slice LUTs 20432 
Memory (Kbits) 7552 

TABLE IV.  ALOE RELATIVE OVERHEAD 

Slice Registers 28 % 
Slice LUTs 34 % 

  
The relative overhead for this implementation is 
considerable. Before optimizing the design, we should 
mention that the flexibility obtained by the management 
elements increases if the PE size increases. Then, the 
relative overhead of ALOE would be lower, since additional 
tasks can be assigned to the same PE. In these situations the 
resources spent for implementing the resource managers 
have even more sense, because the coordination of the 
available computing resources is more complex. Relative 
overhead can also be reduced if the same ALOE controller 
manages several PE. In this case, however, the NoC 
efficiency can not be exploited since ALOE has to route 
signals between PE.  

VI. CONCLUSIONS 
Future user terminals or base stations will require higher 
levels of flexibility. Consider an MP-SoC dimensioned for 
wideband channel decoding that is sporadically used to 
decode multiple narrowband channels. Since throughput 
requirements will be lower, all CN and VN nodes can be 
assigned to a single PE being able to operate other channels 
simultaneously on the remaining PEs. Furthermore if the 
supporting hardware is also flexible, e.g. dynamically 
reconfigurable circuits, the range of possibilities increases 
the management complexity. The system thus needs 
computing resource awareness and management support 
while providing tools to dynamically synchronize and 
schedule the execution of components. In this paper we 
have proven that ALOE is capable to automatically detect 
the number and network topology of PEs in a reconfigurable 
logic device. 
It is important to recognize that the increasing flexibility of 
channel decoders increases the area and energy 
consumption, as shown in this paper. A flexible decoder 
compromises modifications of code or coding schemes. 
Some allow only offline modifications (at design time), 
whereas others also facilitate runtime modifications. The 
ALOE provides a set of tools for centralizing the 
management of runtime decoder parameterization. This 
flexibility comes at the price of resource overhead. 
Although our design has not been optimized, the 
incorporation of the ALOE middleware will always incur in 
more area occupation. Nevertheless, future flexible 
terminals can overcome these additional resource overheads 
using reconfigurable logic and shared resource 
infrastructure. 
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