
0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS March–April 2005 85

AT TIMES, it appears that the many definitions of con-

figurable computing are every bit as configurable as the

technology itself. For example, Wikipedia—the free,

online, user-editable encyclopedia—defines configurable

computing (or, synonymously, reconfigurable comput-

ing) as “ … computer processing with highly flexible com-

puting fabrics. The principal difference when compared

to using ordinary microprocessors is the ability to make

substantial changes to the data path itself in addition to

the control flow” (http://en.wikipedia.org/wiki/

Configurable_computing).

Apparently, the original idea might be attributable

to Gerald Estrin, who, in a paper published in 1960,

described how to use a computer to control an array

of reconfigurable hardware.1 This might be an accept-

able working definition, but compare it to the propos-

al by DeHon and Wawrzynek, which defines

reconfigurable computing as “computing via a post-

fabrication and spatially programmed connection of

processing elements.”2

Although it’s arguable that neither definition is entire-

ly complete, the latter clearly emphasizes two of the key

components of reconfigurable computing:

■ The architecture used in the computation is deter-

mined postfabrication and can therefore adapt to

the characteristics of the executed algorithms.

■ The computation is spatial, in contrast to the more

temporal style associated with microprocessors.

The technology to realize Estrin’s reconfigurable com-

puter did not exist in 1960, but the vision survived intact

and has become possible with the development of

FPGA technology.

FPGAs
Almost two decades ago, the embryonic FPGA indus-

try emerged. Its central value proposition was a new type

of programmable-logic architecture predicated on the

observation that silicon is free. It did not matter that mak-

ing a single logic gate required as many as 100 transistors.

What did matter were the convenience and time-to-mar-

ket advantages that reconfigurable FPGAs offered.

The initial glue logic components were considered

low-capacity, low-speed, high-cost parts, characteristics

that limited them to prototype development and low-vol-

ume production runs. Today, FPGAs are large and fast

enough for use in multimillion-gate designs running at

hundreds of megahertz. According to independent

industry analysts such as Dataquest, FPGAs now exceed

the capacity and speed requirements of the vast majori-

ty of ASIC design starts. The cost per FPGA gate has, as

expected, continuously eroded over time. Meanwhile,

the total design cost, including nonrecurring engineer-

ing charges and design tool costs, has escalated for

ASICs. The result is that FPGAs are now sufficiently com-

petitive for designers to use them in high-volume designs

that ship in hundreds of thousands of units per year.

FPGAs have established themselves as the third pro-

grammable platform after microprocessors and DSPs.

They have ridden Moore’s law relentlessly, even emerg-

ing as the process drivers of choice for some of the

world’s leading fabrication plants. Entering the era of

the billion-transistor FPGA, it is clear that the premise at

the foundation of FPGAs—that silicon is free—has been

vindicated.

It is well understood, of course, that silicon is never

really free—simply looking at the cost of today’s large

chips will confirm this understanding. The intent of the

Guest Editors’ Introduction:
Advances in Configurable
Computing
Patrick Lysaght
Xilinx Research Laboratories

P.A. Subrahmanyam
CyberKnowledge

slogan is to emphasize a style of microarchitectural

design that rejects the once predominant philosophy of

optimizing for minimum silicon area at all costs.

Instead, area is, relatively speaking, freely tradable for

other advantages, as FPGA architectures exemplify.

Configurable computing
As FPGAs matured, researchers were quick to rec-

ognize the potential of the third programmable plat-

form. Indeed, in many ways, the term configurable

computing is synonymous with a set of expanded expec-

tations and opportunities that extend the role of FPGAs

beyond that of traditional programmable-logic devices.

The pioneers of configurable computing envisaged a

new class of application-specific computing that com-

bined the programmability of microprocessors and the

implementation efficiencies of hardware. These com-

puters were customizable after fabrication to solve any

problem; they would include microprocessors and

reconfigurable-logic arrays. Consider this excerpt from

Estrin’s original paper describing the goals of his work:

… to permit computations which are beyond the

capabilities of present systems by providing an

inventory of high speed substructures and rules for

interconnecting them such that the entire system

may be temporarily distorted into a problem ori-

ented special purpose computer.3

We can appreciate just how much the emergence of

FPGAs contributed to revitalizing these ideas.

Motivation
Configurable computing achieves superior compu-

tation density by transforming problems from the tem-

poral programming domain to spatially programmed

implementations. The benefits are now widely report-

ed for applications in disciplines as diverse as water-

marking in image processing and gene sequencing in

bioinformatics.2,4

Several factors contribute to the overall speedup. In

many cases, configurable computing requires the com-

plete reformulation of algorithms, transforming them

from the original sequential encoding in a high-level lan-

guage to a much more concurrent representation. The

new algorithms are then mapped to the FPGA with high-

ly specialized data paths, customized memory inter-

faces, and optimized interconnection topology.

Extensive pipelining and retiming of circuits, to mini-

mize the delays inherent in programmable intercon-

nect, further enhance the resulting concurrency and

parallelism.

A recent example demonstrates how to easily assem-

ble an ad hoc configurable computer and deploy the

resulting compute performance with impressive effect.

A group of researchers at Johns Hopkins University and

RSA Laboratories broke the encryption used in Texas

Instruments’ digital signature transponder (DST) prod-

uct.5 The product is a radio-frequency identification

(RFID) device that is common in many automotive

immobilization systems.

These researchers first tried to crack the encryption

using hand-optimized software running on a 3.4-GHz

Pentium workstation. This implementation computed

fewer than 200,000 encryptions per second. With a clus-

ter of 10 computers, they estimated that it would take

over two weeks to crack a single key.

Next, the researchers assembled a configurable com-

puter from 16 commercially available boards, each of

which featured one Xilinx XC3S1000 FPGA. Altogether,

the configurable computer hardware costs approximate-

ly the same as a high-performance PC. In this implemen-

tation, each FPGA computed nearly 16 million

encryptions per second—approximately two orders of

magnitude faster than the software implementation.

Therefore, one FPGA could crack a single key in less than

21 hours. Using their inexpensive configurable comput-

er, the team succeeded in cracking five keys in less than

two hours. It is worth emphasizing that this configurable

computer was an ad hoc configuration, so the researchers

spent little time optimizing these results.

High-performance computing
The computational power of custom computing is

attracting interest from mainstream companies in high-

performance computing. Cray has announced that it

has incorporated the custom computing technology

that it acquired in purchasing OctigaBay into its latest,

entry-level XD1 supercomputer.6 The XD1 combines

AMD Opteron processors with FPGAs for compute

acceleration in a Linux environment. This configurable

supercomputer has achieved orders-of-magnitude

speedups in benchmarks from cipher breaking and

elliptic-curve cryptography to vehicular-traffic simula-

tion. Cray has adopted a library-based approach for

hardware-accelerated routines.

Meanwhile, Silicon Graphics also exploits FPGAs as

part of its multiparadigm computing strategy for what

the company calls reconfigurable application-specific

computing.7 The company is targeting applications in

Configurable Computing: Fabrics and Systems

86 IEEE Design & Test of Computers

areas such as genomics; audio, video, and image signal

processing; format translation; encoding and decoding;

compression; database searching; the digital water-

marking of video; and vibration/seismic analysis.

Programming paradigms and design tools
One key element of the configurable computing

vision is that it does not involve the traditional logic

design process of design entry with VHDL or Verilog fol-

lowed by synthesis, and place and route. Instead, it

envisages that users will code their applications within

familiar software development design environments

using high-level design abstractions, and conventional

programming languages such as C.

The development of effective programming abstrac-

tions for this new spatial-computing paradigm is prov-

ing to be a stubborn research challenge. This is not

altogether surprising considering how many genera-

tions of computer architectures became obsolete

before compiler technology and computers could

coexist synergistically and efficiently. Hennessy and

Patterson8 note that the compilers produced for Fortran

in the late 1960s and 1970s were of very high quality.

However, almost two decades passed before optimiz-

ing compiler technology and reduced-instruction-set

computer (RISC) architectures intersected to provide

the highly efficient platforms in use today. Current

research into configurable computing architectures

and compilers aims to achieve the same type of ease-

of-programming and efficiency for the new spatial com-

puting paradigm.

Special issue
The three articles we selected for this special issue

are quite diverse and offer significantly different per-

spectives on configurable-computing research. The cov-

ered topics include new architectures for embedded

reconfigurable devices; new programming models for

integrating processors and reconfigurable accelerators;

and designing high-performance reconfigurable super-

computers. What these articles share is a common

vision about the importance of reconfigurable com-

puting, the need for new programming abstractions,

and some very exciting directions for future work.

In the first article, Mei et al. present a flexible archi-

tectural template called architecture for dynamically

reconfigurable embedded systems (Adres). Adres is an

integrated hardware-software framework for the sys-

tematic architectural exploration of a class of coarse-

grained arrays that are tightly coupled to a very long

instruction word (VLIW) processor. Adres presents two

complementary functional views of a unified architec-

ture that overlap in their use of physical resources: first,

the VLIW with its row of functional units and multiport

register files; and second, the array processor, which

includes all of the functional units and register files,

including those of the VLIW row. Access to external

data memory is available via load/store operations on

a subset of the functional units in the VLIW row.

Adres targets the ultra-low-power embedded systems

in multifunction, portable terminals that are typical of

today’s consumer convergence products. The recon-

figurable array of functional units operates at word or

subword granularity and efficiently executes only com-

putationally intensive kernels. The authors want to trade

flexibility to reduce delay, area, power, and configura-

tion time compared with that of FPGAs. The intention

is to reconfigure the array to adapt to the varying needs

of the instantaneous compute load.

In addition to the VLIW/array template, Adres

includes a retargetable simulator and compiler to

enable the systematic evaluation of different template

instances with respect to performance, energy efficien-

cy, area, and flexibility. The dynamically reconfigurable

embedded system compiler (Dresc) makes applications

programmable in C. The key to the Dresc framework is

a software pipelining technique called modulo sched-

uling that simultaneously solves the placement, routing,

and scheduling problems for coarse-grained arrays. This

technique helps investigate different array topologies

and various dimensions of functional units and register

files by exercising them with compute-intensive kernels

from a representative subset of multimedia and

telecommunications applications. At present, the results

are essentially comparative. Further work is necessary

to establish robust performance figures derived from

comprehensive silicon estimates.

The second article, by Vuletic, Pozzi, and Ienne,

describes the development of a general, parallel-pro-

gramming paradigm for reconfigurable SoCs (RSoCs).

Their reconfigurable computing environment is an

Altera Excalibur device consisting of a hard-core ARM

microprocessor and an Altera FPGA. The authors envis-

age the FPGA operating as a reconfigurable hardware

accelerator for the processor. They seek to support this

use model with a unified and transparent programming

model that deemphasizes the differences between soft-

ware and hardware development.

Their abstraction presents a unified virtual-memory

image for the application’s software and hardware com-

87March–April 2005

ponents. A standard multithreaded programming model

makes this possible—multiple software threads execute

within the context of a common process, relying on the

thread library and operating system support for

interthread communication. The authors extend thread

support to the tasks being accelerated in hardware (and

coded in a hardware description language) by devel-

oping a virtualization layer. It consists of a software part

(virtual window manager) that provides standardized

operating system services to the user space libraries and

applications, and a hardware part (window manage-

ment unit) that provides a standardized hardware inter-

face to the hardware accelerators.

Whatever the task, communication and synchro-

nization exploit the same primitives so software threads

are oblivious to the fact that they might be communi-

cating with other nonsoftware threads. This enhances

ease of programming as well as code portability

(achieved via recompilation and resynthesis) across sys-

tems supporting similar operating system and acceler-

ator configurations. The authors evaluate their extended

thread abstractions using the benchmarks for the

International Data Encryption Algorithm and adaptive

differential pulse code modulation (for voice decod-

ing). The results indicate that integrating the window

management unit with the processor block, rather than

implementing it in FPGA fabric, could significantly

reduce the time and area overheads while preserving

the ease-of-programming and portability advantages.

The final article in this special issue comes from

Chang, Wawrzynek, and Brodersen of the University of

California, Berkeley. It describes, from a practical per-

spective, the design of a second-generation, high-end

reconfigurable computer consisting of commercial-off-

the-shelf components, such as DRAM modules and stan-

dard network interfaces. However, it relies exclusively

on FPGAs as the processing elements. Called the

Berkeley Emulation Engine 2 (BEE2) project, it suc-

ceeds the Berkeley Wireless Research Center’s original

emulation engine (BEE).

The BEE2 project aims to create a universal recon-

figurable computing system that can target a wide range

of application domains, from high-performance digital

signal processing (where FPGAs are already successful)

to scientific computing (where the use of FPGAs is less

mature). The project goals include

■ designing a processing module as the building block

for a family of high-end reconfigurable computers;

■ developing several programming models; and

■ demonstrating the machine’s efficiency in applica-

tions such as high-performance digital signal pro-

cessing, communication systems, and traditional

scientific computing.

BEE2 targets applications such as the design of novel

wireless communications systems, high-performance

real-time digital signal processing, real-time scientific

computation and simulation, and the acceleration of

CAD tools. The first deployment of BEE2 is in radio

astronomy for beamforming, spatial correlation, and

wide-band fine-resolution spectroscopy. The latter is

necessary for large radio telescope antenna arrays such

as the Allen telescope array used in the Search for Extra-

Terrestrial Intelligence (SETI) project. Researchers have

deployed FPGA solutions in related applications for

many years. The BEE2 system aims to go beyond these

attempts by providing a generic, cost-effective solution

that is sufficiently scalable to address a range of high-

performance radio telescope DSP applications.

The authors report that the BEE2 system currently

uses a synchronous dataflow model to program the

reconfigurable fabric and the microprocessors. The pro-

gramming environment is based on the Mathworks

Simulink and Xilinx System Generator tools. The authors

and others at the Berkeley Wireless Research Center

have augmented these commercial tools with home-

grown tools to provide automatic mapping from high-

level block diagrams and state machine specifications

for FPGA configurations.

Given the spectrum of potential applications for the

BEE2, additional domain-specific programming models

are under investigation. One candidate is the Message-

Passing Interface standard. Because of its popularity

with existing microprocessor-based supercomputers,

Chang, Wawrzynek, and Brodersen anticipate that an

MPI library for the BEE2 would make it much easier to

port applications from conventional supercomputers to

the BEE2.

AS THE CONSUMERIZATION of electronics continues,

the need to incorporate the benefits of reconfigurable

computing in consumer devices becomes more appar-

ent. The compute density and the postfabrication cus-

tomization advantages are especially relevant for

increasingly complex products with extremely short

time-to-market windows and very flexible product

requirement definitions. However, the cost and power

consumption of FPGAs currently prevent their use in

Configurable Computing: Fabrics and Systems

88 IEEE Design & Test of Computers

ultra-low-power products such as mobile phones. The

Holy Grail, then, is a stand-alone, extremely-low-cost,

ultra-low-power reconfigurable compute fabric.

Intermediate steps toward this end include ASIC plat-

forms that can incorporate such a fabric in varying

amounts as dictated by the particular applications.

Further, this fabric must be programmable in a manner

that is natural for the application domain.

One very recent response to the programmability

challenge is the generalized open source programma-

ble logic (Gospl) platform from STMicroelectronics

(http://www.gospl.org/fpl/static/aboutgospl.jsp). The

Gospl initiative is the world’s first open source platform

for FPGAs. It seeks to create a community of open source

developers who will mimic the Linux community in

developing open source platforms and tools for recon-

figurable computing based on programmable logic. To

kick-start the initiative, STMicroelectronics is proposing

to release the source code for its internally developed

FPGA architecture and its software design tool suite. This

purportedly consists of a million lines of code repre-

senting a $50 million investment. It is unclear (at the time

of this writing) how this effort will proceed. Certainly, an

open source effort of this particular type and scale in the

context of configurable fabrics is unprecedented. ■

Acknowledgments
We thank the many people who contributed to

making this special issue possible. These include the

authors who submitted articles, the reviewers, the edi-

tor in chief, and the editorial and production staff at

the IEEE Computer Society.

References
1. G. Estrin, “Reconfigurable Computer Origins: The UCLA

Fixed-Plus-Variable (F+V) Structure Computer,” IEEE

Annals History of Computing, vol. 24, no. 4, Oct.-Dec.

2002, pp. 3-9.

2. A. DeHon and J. Wawrzynek, “Reconfigurable Comput-

ing: What, Why, and Implications for Design

Automation,” Proc. 37th Design Automation Conf. (DAC

99), ACM Press, 1999, pp. 610-615.

3. G. Estrin, “Organization of Computer Systems—The

Fixed Plus Variable Structure Computer,” Proc. Western

Joint Computer Conf., 1960, pp. 33-40.

4. A. DeHon, “The Density Advantage of Configurable Com-

puting,” Computer, vol. 33, no. 4, Apr. 2000, pp. 41-49.

5. S. Bono et al., “Security Analysis of a Cryptographically-

Enabled RFID Device,” 28 Jan. 2005;

http://www.rfidanalysis.org/DSTbreak.pdf.

6. “Cray XD1 Brings High-Bandwidth Supercomputing to the

Mid-Market,” D.H. Brown Associates, 2004; http://www.

cray.com/downloads/dhbrown_crayxd1_oct2004.pdf.

7. “Extraordinary Acceleration of Workflows with Reconfig-

urable Application-specific Computing from SGI,” Silicon

Graphics Inc., 2004; http://www.sgi.com/pdfs/3721.pdf.

8. J. Hennessy and D. Patterson, Computer Architecture: A

Quantitative Approach, 1st ed., Morgan Kaufmann,

1990, pp. 127-130.

Patrick Lysaght is a senior direc-
tor at Xilinx Research Laboratories.
His research interests include recon-
figurable computing, embedded sys-
tems, system-level modeling, and

emerging design technologies for FPGAs. Lysaght has
a BSc in electronic systems from the University of Lim-
erick, Ireland, and an MSc in digital techniques from
Heriot-Watt University in Edinburgh, Scotland. He has
coauthored more than 40 technical papers and coedit-
ed two books on programmable logic, and is chair of
the steering committee for the International Confer-
ence on Field-Programmable Logic and Its Applica-
tions (FPL 2005). He is a member of the IEEE.

P.A. Subrahmanyam is chairman
of CyberKnowledge and a consulting
professor in the Department of Electri-
cal Engineering at Stanford Universi-
ty. His research interests include

configurable computing systems and applications;
wireless/sensor networks and security; embedded
systems; and design technology. Subrahmanyam has
an MSc and an MTech in physics and computer sci-
ence from the Indian Institute of Technology, and a
PhD in computer science from the State University of
New York at Stony Brook. He is the author of more than
150 technical papers, has coedited five books, has
nine awarded or pending international patents, and
was the founding editor in chief of Formal Methods in
System Design. He is a member of the IFIP Working
Group 10.2/10.5; a cochair of the Commercial Hand-
set/Modeling/Communication Architecture working
group of the Software Defined Radio Forum; a found-
ing member of the IEEE Communications Design and
Development Committee; and a Fellow of the IEEE.

Direct questions and comments about this special
issue to P.A. Subrahmanyam, 45110 Pawnee Drive,
Fremont, CA 94539; psubra@ieee.org.

89March–April 2005

