
Multigrid methods are among the
most important algorithms for
computational scientists because
they’re the most efficient solvers for

a wide range of problems. The modern era of multi-
grid methods began more than 30 years ago with
the publication of Achi Brandt’s seminal papers.1,2

Although it was originally successful for solving
elliptic partial differential equations (PDEs) and the
linear systems that arise when they’re discretized,
the basic multigrid principle of coupling multiple
scales has much wider applicability.

Why a Special Issue?
At first glance, it might seem strange that such a fun-
damental task as the solution of linear systems is still
worth a special issue in a computational science
magazine in 2006. In fact, the solution algorithms
for linear systems are usually hidden from the com-
putational scientist—say, behind Matlab’s backslash
operator or within state-of-the art commercial finite
element packages or computational fluid dynamics
tools. Ideally, computational scientists shouldn’t have
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to worry how a linear system is being solved, so why,
then, did we bring together a special issue on it? 

The answer is that the linear solver is still the
computational bottleneck in terms of complexity for
many mesh-based numerical simulations. Although
we can usually perform data pre- and postprocess-
ing linearly in the number of mesh points and then
parallelize it with standard partitioning techniques,
the complexity of most linear system solvers—direct
or iterative—is worse than linear. Multigrid meth-
ods are among the few exceptions. In practice, the
solver’s complexity might not dominate small- or
moderate-sized problems, but using multigrid meth-
ods can offer tremendous gains in efficiency for
large-scale computing. One more aspect to the com-
plexity argument concerns asymptotically optimal
solvers—their overall cost is linear or close to linear
in the number of unknowns. A classical example is a
fast Fourier transform- (FFT-) based algorithm with
NlogN complexity. 

An important issue is the constant in the com-
plexity estimates because it ultimately decides
which algorithm is best. Although much of the
mathematical analysis involved doesn’t exhibit
these constants, we can get a solution for simple
enough problems by using multigrid methods with
fewer than 30 elementary arithmetic operations per
unknown. A well-implemented multigrid algo-
rithm is thus likely to be more competitive in time
to solution, the ultimate metric for a computational
scientist. Furthermore, unlike FFT-based methods,
we can generalize multigrid methods to more com-
plex domains, boundary conditions, differential op-
erators, and so on. 

But if multigrid methods are so good, why
doesn’t Matlab’s backslash simply run a multigrid
solver? Unfortunately, the multigrid algorithm
draws its strength from exploiting the underlying
differential equation’s structure. Thus, we can’t eas-
ily use it as a generic linear solver—rather, we often
have to customize it for each individual problem.

Moreover, multigrid algorithms can’t solve all
linear systems efficiently (probably not even all
sparse systems), so we can’t easily connect them to
standard linear algebra interfaces. Multigrid algo-
rithms are unforgiving in the sense that optimality
immediately disappears if the developer makes a
single mistake, whether a coding error or a mis-
conception (for example, how a fine-scale feature
in the problem is transferred to the coarser resolu-
tions). Developing a truly efficient multigrid
method for a given problem is far from trivial.

The Articles
Irad Yavneh presents a basic introduction to multi-

grid methods that illustrates the fundamental prin-
ciples in a very readable way. The article is well
suited as basic material both for teaching multigrid
methods and for nonspecialists in engineering or
science classes that deal with numerical methods. 

Robert Falgout describes the basics of algebraic
multigrid (AMG) solvers, a variant of multigrid
methods that attempts to reconstruct a grid-like hi-
erarchy when given only the linear system. Because
AMG tries to make multigrid usable via the usual
linear algebra interfaces, this development has high
practical relevance. Indeed, most multigrid users are
likely to employ some form of an algebraic multigrid
method eventually. 

The three other articles in the issue explore com-
mon extensions of multigrid methods: a discussion
of multigrid methods for systems by Cornelis  Oost-
erlee and Francisco José Gaspar Lorenz; an excur-
sion into multigrid-based adaptive finite element
methods by Peter Bastian and Christian Wieners;
and an article on very large-scale computing by
Benjamin Bergen, Tobias Gradl, Frank Hülsemann,
and Ulrich Rüde.

Computational scientists who must solve
very large problems might have to un-
derstand multigrid methods; in some
cases, they might even have to develop

their own multigrid solvers. This special issue
should help CiSE readers understand the potential
of multigrid methods and start multigrid develop-
ments of their own.
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