
Modern HPC cluster virtualization

using KVM and Palacios

Alexander Kudryavtsev, Vladimir Koshelev and Arutyun Avetisyan

Institute for System Programming, Russian Academy of Sciences

109004, Moscow, Alexander Solzhenitsyn st., 25, Russian Federation

{alexk,vedun,arut}@ispras.ru

Abstract—In this paper we explore the potential of virtual-
ization being applied to High Performance Computing (HPC).
We demonstrate the importance of proper NUMA architecture
emulation when running HPC task inside virtual machines on
multiple NUMA hosts. We assess KVM/QEMU and Palacios
hypervisors and, with proper tuning of hypervisor (including
NUMA emulation), we reduce the performance degradation from
10-60% to 1-5% on many tests from HPC Challenge and NAS
Parallel Benchmark suites. All tests are performed on modern
HPC cluster with high-speed Infiniband interconnect. The cluster
nodes are 2-socket 12-core systems, up to 8 nodes were used for
computation.

Comparing KVM/QEMU and Palacios hypervisors, we con-
clude that in general the results with NUMA emulation enabled
are similar, with KVM providing more stable and predictable
results while Palacios being much better on fine-grained tests at
a large scale, but showing abnormal performance degradation
on a few tests. We believe that the main advantage of Palacios
with respect to performance is the reduced amount of noise
generated by the virtualization system. This advantage is getting
more important when the scale of the system grows.

I. INTRODUCTION

Virtualization technologies are getting more mature and

their capabilities have grown rapidly in the last few years. Con-

tainer-based and hardware-assisted virtualization technologies

are getting capable of providing near-native performance for

some classes of applications. As a result, researchers started

to investigate the capabilities and limitations of virtualization

when applied to High Performance Computing (HPC) tasks.

Benefits of applying virtualization into HPC area are being

widely discussed [1], [2]. Fault tolerance, compatibility and

flexibility are among them. Another idea is to employ cloud

concept for building HPC clouds which provide scalability,

cost effectiveness and ease of access. Recent research shows

that HPC virtualization is feasible for at least some classes

of applications [1]. Nevertheless, serious lack of experimental

data still exists. Different applications have to be tested on

different hardware using a variety of hypervisors to fully

understand the limitations of existing virtualization technolo-

gies. Modern multi-socket hardware provide additional re-

quirements to virtualization software, including Non-Uniform

Memory Access (NUMA) emulation in guest system. Proper

NUMA emulation is really important for VM performance

The work was supported by The Ministry of education and science of Russia
under the contract No. 07.524.11.4018.

when running on multi-socket NUMA hardware because of

different memory access latencies for CPU accessing its local

memory and other CPUs’ memory.

In this work we try to achieve maximum performance

of virtualized HPC application compared to the native case.

Our primary goal is to evaluate full-system virtualization

overhead, to understand the reasons of this overhead, and to

minimize it if possible. We assess Kernel Virtual Machine

(KVM) [3] and Palacios hypervisor [4], which was developed

specially for HPC systems. It should be noted that we used

a modified version of Palacios since the original version does

not yet supports many features required to launch it on our

test hardware. The changes we made to Palacios are briefly

described in the following sections.

To achieve maximum performance compared to the native

case, we allocate virtual machines (VMs) as much resources

as possible, including all processor cores, and pass high-speed

interconnect device into VM using Intel VT-d in KVM and

paravirtualization in Palacios. Also we expose an emulated

NUMA architecture into the VM and set it up to reflect the

real NUMA configuration of our test hardware.

We use HPC Challenge (HPCC) benchmark [5] and NAS

Parallel Benchmarks (NPB) [6] as a test suite since these

benchmarks are widely used as HPC system performance

indicators and HPCC is the basis for building Top 500 Su-

percomputers list.

Performance tests were made on a modern HPC cluster

containing 8 Intel Xeon nodes (96 total processor cores)

connected to a 40 Gb/s Infiniband network. Many previous

results were gathered on single node systems, which does

not fully evaluate virtualization overhead, especially for large-

scale parallel applications.

Our main contributions are the following:

• We describe and evaluate some basic but effective ways

for tuning KVM/QEMU when running HPC applications.

We highlight the importance of NUMA emulation inside

VM corresponding to the real NUMA configuration.

• We provide virtualization overhead test results for modern

HPC cluster with high-speed Infiniband interconnect.

Cluster nodes are 2-socket 12-core NUMA servers, up

to 8 nodes are used.

• We compare the performance of Kitten HPC OS +

specially crafted HPC hypervisor Palacios and Linux +

978-1-4673-2371-0/12/$31.00 ©2012 IEEE

KVM/QEMU hypervisor. We show that KVM/QEMU

provides more stable and predictable results, while Pala-

cios is much better on fine-grained tests, especially at

large scale.

• We examine gathered test data and investigate the rea-

sons of observed overhead caused by virtualization. In

particular, we explore the importance of communication

granularity and interrupt rate for overhead.

The remainder of this document is organized as follows.

In the next section, the related work is discussed. Section

III describes hypervisor systems which we use and some

basic methods for performance optimization are considered.

Section IV describes performance evaluation methodology

and provides test results together with discussion. Section V

contains conclusions.

II. RELATED WORK

A thorough analysis of present work in the area of HPC

virtualization research is done in the paper by Andrew J.

Younge et al. [1]. The authors note that current performance

test results available in articles are sometimes conflicting

with each other, and try to perform unbiased assessment of

modern virtualization technologies, including Xen [7], KVM,

VirtualBox [8]. Available features, usability and performance

are compared. The authors used HPCC and SPEC OpenMP

benchmark suites, performance loss for High Performance

Linpack (HPL) compared to native run is about 30% on 8-

core system. Other test results show overhead varying from a

few percent to 50%. As our research shows, this overhead can

be mostly eliminated. The authors note that Xen performance

is unstable, which greatly decreases scalability of parallel ap-

plications. Our preliminary experiments with Xen also showed

that it is not well-suited for HPC tasks, at least, without tuning.

It should be noted that the authors performed all tests on a

single node system, which does not allow one to evaluate

performance loss while scaling number of nodes. Scaling of

some HPC application may degrade due to the increased noise

of virtualized system.

The authors of [1] point out that virtualization is feasible

for at least some HPC applications and choose KVM as

well-suited hypervisor for such tasks. From our experience,

KVM is becoming one of the most full-featured open source

hypervisor. When compared to Xen, KVM is much easier to

manage and understand since it is built into mainline Linux

kernel. In general, KVM seems to be more promising, that’s

why we decided to use it as a basis in our research. On the

other side, we cannot claim that Xen has worse performance

than KVM. The problem is that every hypervisor together with

host OS must be tuned to run HPC application, and we did

not perform such tuning for Xen.

Regola and Ducom evaluate the I/O performance of KVM,

Xen, OpenVZ [9] and Amazon’s EC2 ”Cluster Compute

Node” [10]. The authors note that CPU virtualization perfor-

mance is already studied well and that different virtualiza-

tion approaches provide near-native CPU performance when

running CPU-intensive task. On the other hand, I/O virtual-

ization should be studied more thoroughly and in the paper

the performance of disk and network I/O is evaluated. Also

additional overhead of Intel’s VT-d when passing Infiniband

Host Channel Adapter (HCA) into VM is evaluated for the first

time. NAS Parallel Benchmark MPI results gathered on 4-node

32-core system with Xeon E5520 CPUs and Infiniband HCAs

passed into VM show that the worst overhead for KVM is 30

times compared to the native case, for Xen — 50%. It seems

that the authors used some outdated version of KVM/QEMU,

or it has evolved significantly since 2010, because our results

are much more optimistic.

OpenVZ I/O performance with Infiniband was not tested

since it does not have Infiniband driver, but the authors claim

that it has near-native I/O performance in almost all cases. We

tend to agree with that, since container-based virtualization

is much more lightweight than full-system virtualization, but

we believe that hardware-assisted virtualization technologies

will evolve together with software to provide near-native I/O

performance.

For example, as Lange et al. note [4], the main reason

for performance overhead of device passed inside VM is the

interrupt overhead. On every interrupt, CPU has to transfer

control from VM to the hypervisor, which passes control to the

host OS, which determines that this interrupt belongs to VM

and passes it back to the hypervisor. When the guest finishes

interrupt handling, the end of interrupt signal is also handled

by the hypervisor. This chain may significantly delay interrupt

delivery, and it increases the latency. Gordon et al. proved

this assumption in their Exit-Less Interrupt (ELI) system [11],

which allows to pass interrupts inside VM without exit to

the hypervisor and the host OS. The authors’ experimental

results show that ELI can decrease performance overhead of

KVM/QEMU from 40 to 1-2% when running one core VM

with Netperf, Apache and Memcached applications used as a

benchmark. This performance overhead is caused by a huge

number of interrupts issued by passed inside VM 10 Gbit

Ethernet card. With ELI, number of VM exits per second

decreases at 100 times on average.

Recent studies show that a virtual machine running over

NUMA architecture has significant performance degradation

[12] (about 50% on NPB workload B and C class). The

NUMA support in current virtualization solutions is incom-

plete, thus a guest OS can’t provide data locality when

running on multi-socket hardware. Moreover, NUMA support

in hypervisor have a little potential to improve guest data

locality. To solve the problem of performance degradation

the authors proposed to use paravirtualization. In particular,

the authors added new bit transport protocol called ”bypass”

into OpenMPI implementation. The ”bypass” protocol allows

communication between VMs using shared memory, visible

by participating VMs. When running one VM per one socket,

the authors have obtained results which are comparable with

UMA systems (5-7% performance degradation). In our work,

we performed tests on two-socket 12-core NUMA systems,

but our results show that overhead is much less than 50%.

In case of HPC virtualization, hypervisor can emulate NUMA

hardware and it will eliminate the NUMA problem since we

give all available resources to VM and the VM itself will be

responsible for NUMA-aware memory management.

Virtualization of a large scale supercomputer was studied

by Lange et al. [4] for the first time using a specially crafted

Palacios hypervisor together with Kitten HPC OS [13] used

as a host OS. Palacios hypervisor is developed as a part of the

V3VEE project [14]. The authors gathered test results for a list

of HPC applications and benchmarks, and the virtualization

overhead was less than 5% with node count up to 4096

nodes. However it should be noted that these results were

gathered with only one virtual CPU per one 4-core node. As

our research shows, modern multi-socket systems provide new

challenges for hypervisors, including correct NUMA support

inside the VM. The authors also investigate different paging

modes, including shadow paging and hardware-assisted nested

paging. It turns out that nested paging behaves better on

workloads with extensive page table exchanges, such as Linux.

In our work we also prefer to use nested paging since we run

Linux as a guest OS.

The authors of Palacios also note the importance of OS

noise problem. The impact of OS noise on parallel appli-

cations is being widely studied [15], [16]. In general, the

noise impact is highly dependent on application computation-

communication ratio, communication granularity, process grid

characteristics, and for some applications even minor noise

can lead to significant performance and scalability degradation.

Thus, when virtualizing an HPC system, particularly a large

scale one, the host OS noise problem should be taken into

account. From this point of view, Kitten OS should perform

better as a host OS than Linux since it was designed specially

for HPC applications.

III. VIRTUALIZATION SYSTEMS UNDER CONSIDERATION

The most widespread virtualization systems, in general, pro-

vide almost the same functionality. Such systems implement

most of the hardware-assisted virtualization extensions. Xen

and KVM seem to be the most popular hypervisors (among

open source solutions) which are heavily used in production.

As it was noted before, we decided to investigate KVM as a

hypervisor for HPC applications, since we believe that KVM

is more promising and it is much simpler to use. It requires

much more time to install Xen and to evaluate it since there are

a lot of versions and distributions of Xen. In the future work

we hope to find enough time to evaluate Xen too. Also we

studied the Palacios hypervisor, which is created specially for

computer architecture research and use in high performance

computing.

KVM/QEMU

KVM hypervisor is a full virtualization solution for Linux

on x86 64 architecture which supports hardware-assisted vir-

tualization extensions (Intel VT-x and AMD-V). KVM consists

of several loadable kernel modules and provides special device

file for VM management, which can be accessed with ioctl

system call.

KVM provides only hardware-virtualized CPUs. The rest of

the VM is usually implemented by QEMU emulator. QEMU

manages resources and implements virtual devices. QEMU can

run VMs using hardware-assisted virtualization (provided by

KVM) or binary translation technique.

KVM/QEMU together with Linux allows real devices to be

assigned to (or passed into) the VM. To support direct device

assignment, the host hardware must contain IOMMU (I/O

Memory Management Unit) — either Intel’s VT-d or AMD’s

IOMMU. The main goal of the IOMMU is to map the real

device address space into guest physical address space using

hardware page tables. Without such a device, guest OS should

be aware of its placement in real physical memory to issue

correct Direct Memory Access requests to assigned devices.

To allow guest system to use high-speed interconnect, we

pass real Infiniband HCA into VM using Intel’s VT-d. It should

be noted that assigned device may perform worse than it

performs on the host system. As described earlier in section

II, this can be caused by interrupt handling overhead. We

elaborate on this problem in section IV. Also we faced the

problem associated with virtual BIOS. With Infiniband device

passed into VM, at some moment BIOS stops booting the

system. To solve this problem, we used the hotplug mechanism

and added the device using QEMU CLI after the guest OS had

booted.

Use of large pages: The x86 64 virtual memory system has

support for different page sizes, including 4KB, 2MB and 1GB

pages. Linux kernel uses 4KB pages by default and contains

feature called HugeTLB to provide larger pages (or huge

pages) on demand. Huge pages may be used to decrease both

the number of memory accesses required for guest physical

address (PA) to host PA translation and the number of TLB

misses when using nested paging.

The Linux kernel supports two ways of using HugeTLB:

Transparent Hugepages and HugeTLBfs. The Transparent

Hugepages mechanism allows the kernel to allocate anony-

mous memory using huge pages without the need to modify

the application if the requested memory size is page size

aligned. Unlike Transparent Hugepages, HugeTLBfs uses re-

served huge pages. HugeTLBfs is a special file system. Any

file in HugeTLBfs uses huge pages. Custom programs can map

files (using mmap system call) from HugeTLBfs and these

mappings will be backed by huge pages.

The version of QEMU which we use (1.0) allocates memory

for VM via the call to posix_memalign with 2MB align-

ment, thus Transparent Hugepages mechanism should work by

default.

Expose the real NUMA topology to VM: A virtual SMP

system running on top of a real NUMA system may suffer

from serious performance degradation. Each NUMA node has

its own CPU set and memory ranges and access from one

node’s CPU to other node’s memory requires more time than

access to the same node’s memory. QEMU already has support

for NUMA system emulation, but emulated structure does

not correspond to the real hardware topology. To solve this

problem we patched QEMU. Firstly, we pin virtual CPUs to

distinct physical cores to disallow QEMU’s threads migration

between cores. Secondly, we used mbind system call to be

sure that selected memory ranges of VM memory will be

allocated at corresponding nodes. We found that mbind ruins

Transparent Hugepages allocation, so we allocate memory di-

rectly from HugeTLBfs using QEMU’s -mempath parameter.

HugeTLBfs has some problems with security and scalability

[17], but it is not significant in our case.

Palacios

The Palacios hypervisor [4] was developed with the goal

to effectively virtualize HPC applications. The 1.0 release

became available at 2008, and the latest 1.3 release appeared

at November, 2011. The distinguishing feature of Palacios

is its embeddable nature achieved using a set of unified

host OS interfaces. These interfaces could be implemented in

the host OS, and together with Palacios binary they provide

hypervisor functionality to the host OS user. Initially Palacios

was embedded into Kitten HPC OS, but in the latest 1.3 release

Linux support is implemented too. Another important feature

of Palacios is the possibility to configure it in a lot of ways

at compile time, to include or exclude different modules in

the resulting binary. This feature allows for simple creation

of a set of hypervisors suitable for different needs, including

experimental use.

We decided to experiment with Palacios since we believe it

is a promising direction. We use Kitten OS as a host OS since

this system should generate much less noise when compared

to Linux — this advantage is the most interesting for our

experiments.

Palacios supports nested paging and a number of shadow

paging techniques. For our tests, we used nested paging with

2MB pages since it is the best choice for the Linux guest [4].

Device assignment technique: The authors of Palacios note

that the real high-speed communication device should be

passed into VM to achieve performance which is compara-

ble to the native run. To make device assignment possible,

special paravirtual interface is used (the whole interaction

between guest system and hypervisor is called Symbiotic

Virtualization). The memory for guest system is allocated in

one physically contiguous range. The guest system can use

hypercall to get its physical memory offset in the real physical

memory. Using this offset, guest OS can patch addresses

for DMA transactions of selected devices with simple offset

addition. In fact, changes required in guest OS to implement

this interface are relatively simple. We created our own patch

initially for 2.6.18 Linux kernel and then ported it to the newer

kernel versions.

Since Kitten OS does not provide drivers for the most

hardware, we had to pass some devices among Infiniband HCA

inside the VM, namely SATA hard disk controller and Ethernet

card.

Problems with Palacios: As soon as we started our experi-

ments with Palacios release 1.2, we faced a lot of difficulties

caused by its immaturity. They include incomplete device

assignment support (PCI Capabilities were not passed into

VM, causing MSI, MSI-X interrupts not to work), incomplete

Intel VT-x support, maximum ∼ 3.5GB of virtual RAM, no

NUMA support and a lot of small bugs. We created our local

branch and implemented these features which were required

to launch VM on our test hardware1.

One serious problem that was not solved at all is the

problem with timing in the guest system due to the poor

timer implementation in Palacios. Currently the guest clock is

inaccurate, in our case clock skew was about 30-40 minutes

per one day. To check the time skew when running tests, we

used NTP time synchronization and checked that the time

offset is not too large.

IV. PERFORMANCE EVALUATION AND DISCUSSION

We tried to cover a wide range of HPC applications using

two popular benchmark suites — HPCC and NPB — in

different configurations. The following subsections describe

our experimental setup, testing methodology and results. At

the end of this section, we analyze and discuss the reasons for

performance overhead in different cases.

Experimental setup

We used an HP cluster as a testbed. Cluster consists of 8

HP ProLiant BL2x220c G7 blades, each blade combines two

server nodes. For tests we used up to 8 nodes. Each node

contains 2 Intel Xeon X5670 2.93GHz CPUs (6 cores per

CPU) and 24GB of RAM. Hyperthreading was disabled on

all nodes. Nodes communicate via 1Gbit/s. service Ethernet

network, and 40Gbit/s. Infiniband network used for computing.

The system used for native tests and as a

guest system is Linux CentOS 6.0 with kernel

2.6.32-71.29.1.el6.x86_64. The kernel is modified

to support Palacios device assignment. MPI library is

OpenMPI 1.4.3, GNU Compiler Collection version used to

build test suites is 4.4.4. Infiniband stack is provided by

Mellanox OpenFabrics Enterprise Distribution for Linux,

version 1.5.3-1.0.0-rhel6-x86_64.

The system used as a KVM/QEMU host is Linux CentOS

6.2 with kernel 2.6.32-220.2.1.el6.x86_64. QEMU

version is qemu-kvm-1.0 with our modifications which

were described earlier. Palacios version is based on our own

local branch, our changes are described in section III. The

Kitten OS version is 1.2.0 with modifications required to

support device assignment in Palacios’ guests.

The guest system is configured with 16GB of RAM, 12 pro-

cessor cores, with or without NUMA architecture emulation.

Infiniband HCA is passed inside VM as mentioned earlier. For

Palacios, we also pass Ethernet card and SATA controller.

1We contributed our code to the V3VEE project, some of our patches could
be found at the V3VEE project Web site [14] and some are already integrated
into the development branch.

 0

 10

 20

 30

 40

 50

 60

 70

 B
T 16

 B
T 36

 B
T 64

 C
G

 16

 C
G

 32

 C
G

 64

 EP 24

 EP 48

 EP 96

 FT 16

 FT 32

 FT 64

 IS 16

 IS 32

 IS 64

 LU
 24

 LU
 48

 LU
 96

 M
G

 16

 M
G

 32

 M
G

 64

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

KVM, HugeTLBfs
KVM, vCPU pin

 0

 10

 20

 30

 40

 50

 60

 70

 B
T 16

 B
T 36

 B
T 64

 C
G

 16

 C
G

 32

 C
G

 64

 EP 24

 EP 48

 EP 96

 FT 16

 FT 32

 FT 64

 IS 16

 IS 32

 IS 64

 LU
 24

 LU
 48

 LU
 96

 M
G

 16

 M
G

 32

 M
G

 64

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

KVM, HugeTLBfs
KVM, vCPU pin

Fig. 1. Initial NPB results for KVM/QEMU.

-50

-40

-30

-20

-10

 0

STR
EA

M
 S

. 1
2

STR
EA

M
 E

P 1
2

R
. A

C
C
. S

. 1
2

R
. A

C
C
. E

P 1
2

R
. A

C
C
. M

PI 1
2

R
. A

C
C
. M

PI 2
4

R
. A

C
C
. M

PI 4
8

R
. A

C
C
. M

PI 7
2

R
. A

C
C
. M

PI 9
6

H
PL 1

2

H
PL 2

4

H
PL 4

8

H
PL 7

2

H
PL 9

6

D
el

ta
 p

er
ce

n
t

fr
o

m
 N

at
iv

e
m

ea
n

Native
KVM

KVM, 2MB pages
KVM, 2MB pages, vCPU pin

-50

-40

-30

-20

-10

 0

STR
EA

M
 S

. 1
2

STR
EA

M
 E

P 1
2

R
. A

C
C
. S

. 1
2

R
. A

C
C
. E

P 1
2

R
. A

C
C
. M

PI 1
2

R
. A

C
C
. M

PI 2
4

R
. A

C
C
. M

PI 4
8

R
. A

C
C
. M

PI 7
2

R
. A

C
C
. M

PI 9
6

H
PL 1

2

H
PL 2

4

H
PL 4

8

H
PL 7

2

H
PL 9

6

D
el

ta
 p

er
ce

n
t

fr
o

m
 N

at
iv

e
m

ea
n

Native
KVM

KVM, 2MB pages
KVM, 2MB pages, vCPU pin

Fig. 2. Initial HPCC results for KVM/QEMU.

Benchmarks: To measure the performance we use HPC

Challenge and NAS Parallel Benchmark suites. We run each

benchmark on 2, 4 and 8 nodes. NPB version is 3.3.1 for MPI

(NPB3.3-MPI). From NPB suite we employ IS, EP, CG, MG,

FT, BT and LU tests with the problem class C.

IS stands for Integer Sorting, and performs a lot of commu-

nication and random memory accesses. EP is Embarrassingly

Parallel Gaussian random variates generator. CG is a program

using Conjugate Gradient method, with irregular memory ac-

cesses and communication. MG (MultiGrid) approximates the

solution to discrete Poisson equation, provides long and short-

distance communication, memory intensive. FT is discrete 3D

fast Fourier Transform with all-to-all communication. The

BT and LU are solvers for systems of partial differential

equations using Block Tri-diagonal and Lower-Upper Gauss-

Seidel solvers.

For IS, CG, FT and MG tests we run 8 processes per node

(number of processes must be a power of two), for EP and

LU we run 12 processes per node (no restrictions), for BT run

use 8, 9 and 8 processes per node (number of processes must

be square). NPB benchmark is also executed on 1 node with

9 processes for BT, 12 for EP and LU and 8 for other tests.

The results of NPB suite tests are expressed in seconds.

HPCC version is 1.4.1 with ATLAS 3.8.4. Tests from HPCC

suite are executed using 12 processes per node. We assess

the results of STREAM, RandomAccess and HPL tests from

HPCC package. The PTRANS test uses too small amount of

time (0.1-0.5 sec. on average) and it belongs to the same class

of problems as the STREAM benchmark. We also exclude

DGEMM, Bandwidth/Latency, FFT benchmarks’ results due

to the space limitations. Please email us to get the full test

results. Selected tests from HPCC suite have the following

characteristics:

• STREAM. Measures sustainable memory bandwidth for

four vector kernels (Copy, Scale, Add, Triad), we assess

Triad results (in Gbytes/sec.). We use data from Single

(single process is computing) and EP (Embarrassingly

Parallel — all processes compute the same thing indepen-

dently) versions of this test when running on one node.

• RandomAccess. Measures the rate of integer updates

to random memory areas in GigaUpdates per second

(GUP/s). This test is known to be very challenging for

virtualization since it provides huge TLB pressure. We

use MPI, Single and EP versions.

• HPL (High Performance Linpack). Measures the rate

of solving for linear system of equations. Results are

provided in GFlops. For HPL we use the following

parameters: matrix size is 30000, block size is 150,

computation grid is square when it is possible.

 0

 10

 20

 30

 40

 50

 60

 70

 C
G

 8

 C
G

 16

 C
G

 32

 C
G

 64

 FT 8

 FT 16

 FT 32

 FT 64

 IS 8

 IS 16

 IS 32

 IS 64

 M
G

 8

 M
G

 16

 M
G

 32

 M
G

 64

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

K.-NUMA
Palacios

P.-NUMA

 0

 10

 20

 30

 40

 50

 60

 70

 C
G

 8

 C
G

 16

 C
G

 32

 C
G

 64

 FT 8

 FT 16

 FT 32

 FT 64

 IS 8

 IS 16

 IS 32

 IS 64

 M
G

 8

 M
G

 16

 M
G

 32

 M
G

 64

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

K.-NUMA
Palacios

P.-NUMA

Fig. 3. KVM/QEMU and Palacios results for NPB CG, FT, MG, IS tests.

Virtual machines are known to have problems with timing.

Hypervisor and host OS provide additional noise source and

cause guest timers to be less precise. As a result, run times

in virtual environment tend to be more scattered. To make

our results more precise, we perform most of NPB runs 50

times and HPCC runs 20 times. We report the estimate of

the mean together with 97% confidence interval for the mean

value calculated using Student’s t distribution to understand

the reliability of gathered data. Though consequent test runs

cannot be independent, confidence interval could help us to

estimate the influence of different measurement error sources

and to be sure that we did enough consequent runs.

Results

We started our testing with the ”default” QEMU configura-

tion, using 12 virtual CPUs per VM and default memory allo-

cation mechanism. Initial results for NAS Parallel Benchmarks

are presented in Figure 1, with ”KVM” meaning the default

configuration and error bars denoting 97% confidence interval

for each test mean. Data is plotted in relation to the Native

case which has the value of zero in each bar group. Key under

each bar group consists of the corresponding test name and

process count used for computation. As the Figure shows, in

the ”KVM” configuration performance overhead ranges from

2-4% on EP test to 32% on MG test for 64 processes.

Next we assumed that QEMU virtual CPU threads migra-

tion between physical CPU cores is crucial for virtualization

overhead. To disallow threads migration, we set the affinity for

each of QEMU’s CPU threads to the corresponding physical

core, one virtual CPU per physical core. Also we checked

that HugeTLBfs mechanism provides the same overhead as

Transparent Hugepages. The NPB results for KVM with these

changes are provided in Figure 1, bars named ”KVM, vCPU

pin” and ”KVM, HugeTLBfs”. Note that these two groups of

tests were performed only 10 times due to the time constraints.

As the Figure shows, we got the same or even much greater

performance overhead after these changes, with vCPU pin case

having more unstable results on BT, CG and FT tests. It could

be caused by non-local memory access overheads, when CPU

from one node makes accesses to memory from another node.

Also note the huge unstability of HugeTLBfs case on the LU

test with 96 processes. It seems that some unaccounted factor

influenced this case a lot.

Initial KVM/QEMU results for HPCC benchmark are pro-

vided in Figure 2. In this case, we assess configurations

with HugeTLBfs and virtual CPU pinning together with

HugeTLBfs. ”R. ACC.” stands for Random Access, ”S.” is a

Single version of the test. Note that the delta percent from

Native mean is negative since in this case the results are

in Gbytes/sec. (STREAM), GUP/sec. (Random Access) and

Gflops (HPL), so the overhead causes these values to decrease.

Stream Single and EP overhead is around 20% except vCPU

pin case, where we get only 10% on EP. Random Access

shows noticeable overhead for Single and EP versions — from

20 to 45 %, and again, vCPU pin case is the best on EP

with 20% overhead. Random Access MPI version results are

unstable and overhead is less than 7% when running on up

to 72 processes, but for 96 processes the picture drastically

changes — we see persistent overhead of about 34%. It is

possible that communication becomes the bottleneck on 96

processes and as a result overhead grows, but we did not

explore this issue in details.

Finally we figured out that the reason for most overhead is

the NUMA architecture of our test hardware. QEMU emulates

an SMP system by default, which causes performance penal-

ties when some virtual CPU accesses non-local memory. The

next step was to provide the NUMA architecture to virtual

machines corresponding to the real NUMA configuration. It

was performed using QEMU NUMA emulation support, as

described in the previous section.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 B
T 9

 B
T 16

 B
T 36

 B
T 64

 EP 12

 EP 24

 EP 48

 EP 96

 LU
 12

 LU
 24

 LU
 48

 LU
 96

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

K.-NUMA
Palacios

P.-NUMA

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 B
T 9

 B
T 16

 B
T 36

 B
T 64

 EP 12

 EP 24

 EP 48

 EP 96

 LU
 12

 LU
 24

 LU
 48

 LU
 96

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

K.-NUMA
Palacios

P.-NUMA

Fig. 4. KVM/QEMU and Palacios results for NPB BT, EP, LU tests.

For Kitten/Palacios system we tested two configurations

— with and without NUMA support. In both cases 2MB

nested pages were used for the guest memory. Overall NPB

results comparing two configurations (default and NUMA) of

KVM/QEMU and Palacios are provided in figures 3 and 4.

Results for HPCC suite are in Figure 5.

The first obvious conclusion for NPB suite results is

that NUMA-awareness matters. Without NUMA Palacios and

KVM show more than 60% and 40% overheads on MG 8

test, but with NUMA this huge overhead disappears. The

same situation is true for the most other tests. Another fact

concerning NUMA is that for almost all tests without NUMA,

overhead decreases while the number of processes grows (the

difference for one test could be 30% and more, see IS and

MG tests). At the same time, for NUMA emulation case in

many tests overhead varies slightly.

For HPCC tests, NUMA emulation improves performance

results for STREAM and Random Access Single and EP

versions. For Random Access EP, NUMA-enabled guest al-

most eliminates 45-50% overhead of the non-NUMA guest.

For MPI Random Access, the situation is not so definite —

NUMA-enabled guest may perform better or worse. KVM

behaves better when running test on 24, 48, 72 processes,

while Palacios is better on 96 processes.

The next thing we can conclude is that Palacios implemen-

tation has some drawbacks when compared to KVM — it

can be seen when comparing results without NUMA support

for almost all NPB tests and HPCC Random Access test

with 24, 48 and 72 processes. The maximum difference is

about 24% on LU 12 test. Also Palacios shows strange results

for EP 96 test. The case with this test is really unexpected

since it only depends on CPU performance. HPL results

are strange too — on 24, 48 and 72 processes Palacios

without NUMA emulation shows the best result, but with

NUMA emulation enabled overhead increases a few times. Our

hypothesis is that KVM/QEMU has an important advantage —

Linux host kernel automatically arranges memory and CPUs in

the ”default” QEMU configuration, while Palacios’s VM has

predefined virtual CPU to physical core mapping and memory

ranges. This hypothesis is partially confirmed by the fact

that both vCPU pinning and use of HugeTLBfs decrease the

performance breaking the default Linux process and memory

management mechanisms as Figure 1 shows.

We can also see that sometimes the results inside VM with

NUMA support are better than native. For example, look at

tests CG 8, MG 8, MG 16, where KVM with NUMA behaves

better than native, and BT 16, where Palacios with NUMA is

better than native. Probably the reason for this behavior is that

some unaccounted and persistent factors were present during

these runs, but more thorough investigation is required.

Finally, the CG, FT and IS test results with 64 processes

and Random Access MPI results with 96 processes show the

advantage of Kitten with Palacios over KVM/QEMU in the

NUMA case. This advantage ranges from 3.5 to 21% (IS 64

case). Probably this advantage is associated with the decreased

noise of Kitten OS when compared to Linux, especially for

fine-grained IS test. We also investigate the granularity of

communications in NPB tests by evaluating the interrupt rate,

see the next subsection.

If we compare NUMA results of KVM/QEMU with Pala-

cios and use 3% difference as a threshold, we find that KVM

is better in 11 cases, Palacios is better in 9 cases, and results

are almost the same in 22 remaining cases. With 5% difference

used as a threshold, KVM is better in 8 cases while Palacios

only in 4 cases. In general, KVM provides more stable and

predictable results, while Palacios is much better on fine-

grained tests like IS (especially with large process count).

At the same time, Palacios shows abnormal performance

degradation on some tests.

-60

-50

-40

-30

-20

-10

 0

 10
STR

EA
M

 S
. 1

2

STR
EA

M
 E

P 1
2

R
. A

C
C
. S

. 1
2

R
. A

C
C
. E

P 1
2

R
. A

C
C
. M

PI 1
2

R
. A

C
C
. M

PI 2
4

R
. A

C
C
. M

PI 4
8

R
. A

C
C
. M

PI 7
2

R
. A

C
C
. M

PI 9
6

H
PL 1

2

H
PL 2

4

H
PL 4

8

H
PL 7

2

H
PL 9

6

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

K.-NUMA
Palacios

P.-NUMA
-60

-50

-40

-30

-20

-10

 0

 10
STR

EA
M

 S
. 1

2

STR
EA

M
 E

P 1
2

R
. A

C
C
. S

. 1
2

R
. A

C
C
. E

P 1
2

R
. A

C
C
. M

PI 1
2

R
. A

C
C
. M

PI 2
4

R
. A

C
C
. M

PI 4
8

R
. A

C
C
. M

PI 7
2

R
. A

C
C
. M

PI 9
6

H
PL 1

2

H
PL 2

4

H
PL 4

8

H
PL 7

2

H
PL 9

6

D
el

ta
 p

er
ce

n
t

fr
o
m

 N
at

iv
e

m
ea

n

Native
KVM

K.-NUMA
Palacios

P.-NUMA

Fig. 5. KVM/QEMU and Palacios results for HPCC suite.

Interrupt rate influence: Interrupt virtualization could cause

huge performance overhead when using assigned devices [11].

To check this theory in our case, we measure the Infiniband

interrupt rate during the execution of NPB tests. The results

are presented in Figure 6. There are two data series combined:

overhead percent relative to the native case is in red and

average interrupts per second (IPS) count for Infiniband device

is in green.

Maximum interrupt rate is almost 11000 IPS, meaning

at least 11000 VM exits per second which should cause

noticeable performance overhead. Though in the paper [11]

interrupt rate was higher (40000-60000 IPS in baseline case),

we believe that in our case at least some part of present 20%

overhead on IS test is due to the high interrupt rate. To prove

this assumption, we should run tests with some analog of

ExitLess Interrupt system enabled.

High interrupt rate for IS test with 32 and 64 processes

used also reflects the granularity of communications, in this

case the communication seems to be fine-grained. Figure 3

shows that Palacios’ overhead is 20% smaller than KVM’s.

As it was noted before, this difference may be associated with

the decreased noise of the Kitten OS.

V. CONCLUSION

Our primary contribution has been to demonstrate the

importance of NUMA architecture emulation according to

the real configuration when running HPC task inside virtual

machines on multiple NUMA hosts. In particular, we explored

KVM/QEMU and Palacios hypervisors. KVM is widely used

in industry while Palacios is a young project targeted at HPC

virtualization. We patched QEMU and Palacios to make the

real NUMA topology available in the guest system. By using

proper NUMA emulation, we reduced the performance degra-

dation from 10-60% to 1-5% on many tests from HPCC and

NPB suites. The only tests which caused problems are Random

 0

 5

 10

 15

 20

 B
T

 1
6

 B
T

 3
6

 B
T

 6
4

 C
G

 1
6

 C
G

 3
2

 C
G

 6
4

 E
P

 2
4

 E
P

 4
8

 E
P

 9
6

 F
T

 1
6

 F
T

 3
2

 F
T

 6
4

 I
S

 1
6

 I
S

 3
2

 I
S

 6
4

 L
U

 2
4

 L
U

 4
8

 L
U

 9
6

 M
G

 1
6

 M
G

 3
2

 M
G

 6
4

 3000

 6000

 9000

11000
O

v
er

h
ea

d
 p

er
ce

n
t

v
s.

 N
at

iv
e

In
te

rr
u
p
ts

 p
er

 s
ec

o
n
d

Overhead percent
Interrupts/sec.

Fig. 6. NPB Overhead vs. Interrupts per sec. for KVM-NUMA case.

Access and HPL tests from HPCC suite, with performance

overhead up to 30% for the former and 15% for the latter.

All tests were performed on modern HPC cluster with

high-speed Infiniband interconnect. Up to 96 processor cores

were used for computation. Gathered test results allowed to

evaluate both CPU and communication overheads caused by

virtualization. We also explored the correlation of communica-

tion device interrupt rate and virtualization overhead; for our

Infiniband device, maximum interrupt rate was almost 11000

interrupts per second on IS test from NPB suite running on 64

processes and corresponding overhead for KVM/QEMU was

around 20%. Though we cannot claim that the overhead is

caused only by this interrupt rate, it can be considered as an

evidence of IS test being fine-grained.

Concerning KVM/QEMU and Palacios comparison, we

conclude that in general their results with NUMA emulation

enabled are similar, with KVM providing more stable and

predictable results and Palacios being much better on fine-

grained tests at large scale, but showing abnormal performance

degradation on some other tests. The noise of the host OS is

really important for fine-grained tests scalability and in this

respect Kitten behaves better than Linux resulting in better

scaling for tests running inside Palacios’ virtual machines.

We believe that the noise amount generated by virtualization

system will become crucial for successfull virtualization of

large-scale multi-core, multi-socket HPC systems.

REFERENCES

[1] A. J. Younge, R. Henschel, J. Brown, G. von Laszewski, J. Qiu, and
G. C. Fox, “Analysis of Virtualization Technologies for High Perfor-
mance Computing Environments,” in The 4th International Conference

on Cloud Computing (IEEE CLOUD 2011), July 2011.
[2] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, V. Gupta, R. Nathuji,

R. Niranjan, A. Ranadive, and P. Saraiya, “Abstract High-Performance
Hypervisor Architectures: Virtualization in HPC Systems,” in 1st Work-

shop on System-level Virtualization for High Performance Computing

(HPCVirt), in conjunction with EuroSys 2007, 2007.
[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the

Linux virtual machine monitor,” in OLS ’07: The 2007 Ottawa Linux

Symposium, Jul. 2007, pp. 225–230.
[4] J. R. Lange, K. Pedretti, P. Dinda, P. G. Bridges, C. Bae, P. Soltero,

and A. Merritt, “Minimal-overhead virtualization of a large scale
supercomputer,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, ser. VEE
’11. New York, NY, USA: ACM, 2011, pp. 169–180. [Online].
Available: http://doi.acm.org/10.1145/1952682.1952705

[5] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE conference

on Supercomputing, ser. SC ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1188455.1188677

[6] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and
M. Yarrow, “The NAS parallel benchmarks 2.0. Technical Report NAS-
95-020, NASA Ames Research Center,” December 1995.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 164–177, Oct.
2003. [Online]. Available: http://doi.acm.org/10.1145/1165389.945462

[8] J. Watson, “VirtualBox: bits and bytes masquerading
as machines,” Linux J., Feb. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1344209.1344210

[9] OpenVZ: container-based virtualization for Linux, http://openvz.org/.
[10] N. Regola and J.-C. Ducom, “Recommendations for virtualization

technologies in high performance computing,” in Proceedings of the

2010 IEEE Second International Conference on Cloud Computing

Technology and Science, ser. CLOUDCOM ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 409–416. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2010.71

[11] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir, “ELI: Bare-Metal Performance for I/O Virtual-
ization,” in Proceedings of the Seventeenth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS 2012), 2012 (to appear).
[12] K. Z. Ibrahim, S. Hofmeyr, and C. Iancu, “Characterizing the

performance of parallel applications on multi-socket virtual machines,”
in Proceedings of the 2011 11th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing, ser. CCGRID ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1109/CCGrid.2011.50

[13] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell, “Palacios
and Kitten: New high performance operating systems for scalable
virtualized and native supercomputing,” in 2010 IEEE International

Symposium on Parallel Distributed Processing (IPDPS), April 2010,
pp. 1 –12.

[14] “V3VEE: An Open Source Virtual Machine Monitor Framework For
Modern Architectures, http://v3vee.org/.”

[15] K. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to OS interference using kernel-level noise injection,” in
International Conference for High Performance Computing, Networking,

Storage and Analysis, 2008., November 2008, pp. 1 –12.
[16] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing

Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q,” in 2003 ACM/IEEE Conference on

Supercomputing, November 2003, p. 55.
[17] A. Arcangeli, “Transparent Hugepage Support, http://www.linux-

kvm.org/wiki/images/9/9e/2010-forum-thp.pdf,” KVM Forum 2010,
2010.

