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Abstract. This paper presents a software tool suitable for dynamic system modelling. The models generated by
this tool are modular neural networks, see [1]. Each module behaves like a functional block and is connected to the
other modules like in classical block diagrams. This tool allows the inclusion of a priori knowledge and, furthermore,
to extract physical information from the models, once the system has learned. The modelling tool is capable of
automatic model generation, parameter estimation and model validation.
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1. Introduction

The identification of linear systems has a well-
established theory and a wide range of efficient math-
ematical tools, including a variety of parameter es-
timation techniques, which provide a good basis for
system analysis and controller design. This is not the
case, however, for nonlinear systems. Since no gen-
erally applicable techniques exist for the analysis of
these systems, the identification and controller design
are usually performed on a case-by-case basis. The
main available techniques for nonlinear modelling can
be classified [2, 3] into three categories: functional se-

∗This paper is a revised and extended version of one originally pre-
sented at IFAC Symposium on Computer Aided Control Systems
Design—CACSD 2000.

ries methods, block oriented methods and black box
methods.

Artificial Neural Networks (ANN) modelling tech-
niques belong to the class of black box methods. Neural
networks are structures used for knowledge synthe-
sis by applying the learning-by-example paradigm.
Different ANN structures have been used for system
identification, e.g. [4]. The most commonly used neu-
ral architectures are feedforward networks with the
backpropagation learning rule and recurrent networks
with learning algorithms such as the real-time re-
current learning or the backpropagation-through-time
algorithms.

One of the most frequent problems in using neural
networks as black boxes is that the number of neurones
increases rapidly with the order of the system and the
learning process needs more time for each training
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pattern, and more training patterns, to be able to learn.
When such problems arise in applied and theoretical
sciences, the classical solution is to partition the
problem: the divide and conquer approach. However,
the ANN research community has carried out very
little remarkable studies in this direction. Modular
Artificial Neural Networks (MANN) are popular, in
spite of this, in applications in which task subdivision
can be made beforehand. A network is trained for each
task and then the resulting nets are all combined to
give the desired result, e.g. [5, 6].

Two important studies on the design and training
of modular neural networks are those by Jacobs and
Jordan [7] and Happel and Murre [9]. The former de-
scribes an ensemble architecture composed of expert
and gating networks. Expert networks compete to learn
a certain aspect of the behaviour of a dynamic system
while the gating network (or networks) decides which
of the experts will contribute in the output. The work
by Happel and Murre is based on a model of the cere-
bellar microcolumn. They call it CALM (Categorising
Adaptive Learning Module) and it gives successful re-
sults in classification tasks when interconnected in a
MANN fashion.

1.1. Neural Modules

The building blocks used here are called Neural Mod-
ules (NM). A neural module is a new concept in the
area of ANN, developed by Morcego et al. [9].

A neural module is a neural network that, due to
structural constraints, behaves inherently like a spec-
ified function (or set of functions). The procedure to
tune one specific behaviour within the family of func-
tions structurally represented by the NM is the learn-
ing mechanism, which only concerns a subset of the
weights, while the others are forced to remain con-
stant. For example, a NM can be designed to represent
the input-output mapping of a typical nonlinearity in
systems theory, like the saturation, the backlash, etc.

Neural modules will be described in more detail in
Section 4. They can be thought of as models of simple
functions (dynamic or static) with as many parameters
as the function they model. The learning algorithm ad-
justs those parameters, which match biunivocally the
parameters of the modelled function.

1.2. Model Structure

The tool described in this paper was conceived for mod-
elling nonlinear systems (see [10]) and, more precisely,

Figure 1. Block diagram of the model structure.

for those systems whose dynamics are essentially lin-
ear but some of its components display nonlinearities
(usually hard nonlinearities like saturation, dead zone,
backlash, etc.) Many physical systems can be arranged
in such a way, being the nonlinear block a combination
(series, parallel or mixed) of simple hard nonlinear-
ities. Figure 1 shows a block diagram of the system
suitable for modelling within the framework presented
in this paper. The blocks labelled N represent a nonlin-
ear function (dynamic or static) and the blocks labelled
L represent a linear system.

The models generated by the tool described in this
paper are modular neural networks. They consist of
simpler ANN that behave like functional blocks, each
of which is a neural module. Those modules are con-
nected to one another in a classical block diagram fash-
ion. Each module has a very easy interpretation.

A neural module MANN is a standard ANN in a
broad sense. Its neurones are linear or sigmoidal, pat-
terns are fed in a discrete-time fashion and it uses stan-
dard learning algorithms. The main difference between
a typical three-layered network and a NM is that the
connectivity pattern is not restricted in any way. An-
other difference is that the weights of a NM may take
constant values, not modifiable by the learning algo-
rithm. With this approach it is possible to force a par-
ticular behaviour in each functional block and, conse-
quently, in the model.

This model structure was selected to benefit from the
known advantages of neural networks in dynamic sys-
tem identification and control while trying to minimise
their inconveniences.

2. Top-Down Description of the Modelling Tool

The modelling tool described in this paper, calledmiga,
is capable of automatic model generation, parameter
estimation and model validation.

This tool integrates two paradigms of current search
methods, namely Evolutionary Programming (EP) and
neural learning algorithms. Both paradigms share here
the common goal of modelling dynamic systems.
Miga is a software tool programmed in C and Matlab.

The former is used for efficient neural learning and the
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latter is used for model creation, model evolution and
for user interaction.

This tool is intended for single-input-single-output
system modelling. The resulting models are modular
neural networks, representing nonlinear discrete time
dynamic systems. The modules of the network are im-
mediately interpretable as known static or dynamic
functions, e.g. saturation, first order system, viscous
friction.

2.1. Top-Down Structure of miga

The main operation diagram of miga is shown in Fig. 2.
It consists in two cooperative procedures, the evolution-
ary programming algorithm and the neural simulator.

The EP algorithm is used for model creation and for
parameter estimation. The neural simulator is used for
model parameter fine-tuning (training phase) and for
model evaluation (test phase).

The EP algorithm deals with sets of candidate so-
lutions (populations of solutions, in the evolutionary
techniques’ jargon). Each solution represents a mod-
ular neural network, but is implemented as an acyclic
directed graph. Therefore, the EP algorithm evolves
graphs. The nodes of those graphs contain the essential
information to transform each node into a neural mod-
ule, particularly the name of the function approximated
by the module and its parameters. The adjacency ma-
trix of the graph gives the appropriate correspondence
between a graph’s connections and the connections be-
tween modules in the network.

The neural simulator is special for two reasons:
first, it must be capable of efficiently training and

Figure 2. Operation diagram of the modelling tool.

testing large modular neural networks and second, it
must carry out the transformation between EP can-
didate solutions, graphs, and neural networks and
viceversa.

2.2. EP Algorithm

The EP algorithm follows the classical outline given
by Fogel [11]. It is, however, adapted to the evolution
of neural networks as in Angeline [12], that is:

Pop := Create initial population at random
Evaluate each individual (x ∈ Pop, f)
while end condition �= FALSE do

NewPop := mutation (Pop)
Evaluate each individual (x∈ NewPop, f)
Pop := selection (Pop, NewPop)
Evaluate end condition

end

The initial population is a set of N graphs. The nodes
in those graphs are chosen according to their a pri-
ori probabilities and their parameters are set following
a uniform distribution centred at default values. The
number of individuals, N , the maximum initial num-
ber of nodes in each individual and the maximum pa-
rameter deviation are user defined parameters. Those
parameters are usually set at 15, 3 and 0.7 × default
value, respectively.

Individual evaluation is carried out by the neural sim-
ulator and considered in the following subsection.

The mutation operator is an important function in
EP because it is the only function to explore the search
space. Other evolutionary techniques rely on operators,
such as crossover, to explore the search space, but EP
algorithms must include a powerful mutation operator
in order to maximise the probability of success.

In this case, mutation is capable of structural and
parametric changes. The following list shows the types
of mutations implemented in miga, sorted by severity:

– Node function parameter change: a parameter is
given its value following a uniform distribution cen-
tred at its actual value.

– Node insertion: it is a structural mutation. The in-
serted node is a unitary static gain. See Figs. 3 and
4 for examples of allowed and illegal insertions.

– Node function change: a new function is chosen for
a node according to the a priori probabilities of the
available functions.
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Figure 3. Three examples of allowed structural mutations. The first
one corresponds to a node insertion; the second one is a node sup-
pression and the last one is a connection suppression.

Figure 4. Three examples of illegal structural mutations. The first
one is a node insertion; the second one is a node suppression and the
last one is a connection suppression.

– Node or connection suppression: it is a structural
mutation that can alter the model’s behaviour con-
siderably. See Figs. 3 and 4 for examples of allowed
and illegal suppressions.

The probability of each type of mutation is a user de-
fined parameter, usually set at 0.25, 0.1, 0.4 and 0.25,
respectively. The maximum function parameter devia-
tion is usually set at 0.7 × actual value.

The selection phase consists in choosing a new popu-
lation of N individuals from two evaluated populations.
The two classical methods of selection are elitist and
competitive selection. In elitist selection the 2 · N indi-
viduals are sorted by their fitness value and the first N
are chosen. Competitive selection is based on ‘tourna-
ments’ between sets of individuals. Each tournament
compares the fitness of individuals chosen at random
from the set of 2 · N candidates. The winner is selected
for the following generation. Here it is used the compet-

itive selection, with 3 candidate solutions competing in
each tournament.

2.3. Neural Simulator

As earlier stated, the neural simulator is used for model
parameter fine-tuning and for model evaluation.

The neural simulator receives graphs from the EP
algorithm and data corresponding to the training and
test sequences. For each graph the neural simulator per-
forms the following tasks:

– Transforms the graph into a modular neural network.
– Trains each MANN for a short number of epochs to

fine-tune its parameters.
– Tests each MANN to assign it a fitness value.
– Transforms back the MANN into a graph with, pos-

sibly, different parameters in each node.

The neural simulator differs from other standard sim-
ulators (SNNS, Aspirin/MIGRAINES, PlaNet, etc.) in
its special ability to handle modular neural networks.
Other simulators do not explicitly support training of
MANN. The user must create a single large network
from the smaller modules and train it with a recur-
rent learning algorithm in case any of the modules is
recurrent.

Training in modular neural networks can be accom-
plished in a sequential or a cooperative fashion. Se-
quential learning consists in training each module sep-
arately. When all the modules behave as expected they
are connected appropriately and the network is ready
for the recognition phase. Cooperative learning con-
sists in training the network as a whole, in such a way
that each module learns its corresponding subtask.

In our case, sequential learning is not possible be-
cause the structure of the network is unknown before-
hand and, consequently, intermediate signals are not
available. On the other hand, cooperative learning is
more complex because the modules in the network need
not be of the same type and combining different learn-
ing algorithms is rather laborious.

Most cooperative algorithms are strongly condi-
tioned by the structure of the MANN, see [13] and
[14]. There are algorithms, though, that allow arbitrary
structures but are computationally expensive or diffi-
cult to implement for arbitrary modular structures, see
[15] and [16].

The neural simulator implemented within miga
is Modular BackPropagation (MBP), a learning al-
gorithm developed in [17]. MBP is a learning
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management algorithm. Its main distinctive feature is
the local use of standard learning algorithms, e.g. back-
propagation or backpropagation through time, in each
module. MBP handles the information flow between
modules. The MANN is considered as a typical neural
network being trained with backpropagation, but here
the modules correspond to the neurones of the simple
network.

MBP is computationally more efficient, see [17],
than standard learning algorithms when applied to
modular neural networks, specially when the MANN is
a combination of feedforward and recurrent modules.

3. Modelling Process with miga

The typical modelling procedure is usually described
as a sequence of five steps, eventually looping between
them. Those steps are:

– Data collection and analysis
– Model structure selection
– Experiment design and execution
– Validation and analysis of results
– Model refinement

The modelling tool described in this paper is designed
to aid the user in the three middle steps. The follow-
ing subsections outline the process of dynamic system
modelling with miga.

3.1. Data Collection and Analysis

Miga is fed with two types of input data. On the one
hand, it needs significant input-output sequences from
the system to be modelled. Those sequences must be
classified into training, test and validation data. On the
other hand, miga accepts a priori knowledge about the
system.

Input-output sequences are usually obtained from
experimental measurements. The procedures to obtain
significant data go beyond the scope of this paper, al-
though it is usually useful enough to apply band limited
white noise to the plant. The resulting data is divided
into 60% for training purposes (identification), 30% for
test and the remaining 10% for the validation process.
It is always desirable to have more data for validation,
but it is also necessary to consider the computational
cost of managing longer sequences which may not give
any additional information about the system.

A priori knowledge allows biasing the search, which
is partially stochastic. This information is represented

by a set of functions (neural modules) and their asso-
ciated probabilities of belonging to the solution. Miga
provides a user interface to set the a priori probabilities
of the module in the library of neural modules. This
library is described in Section 4.

3.2. Experiment Design and Execution

The next step in the modelling process would be the
selection of the model structure. In this case, the model
is always a modular neural network and its internal
structure will be obtained as a result.

The design and execution of a modelling-
identification experiment is very much dependent on
its aim. For instance, one may want to obtain the best
model using certain a priori knowledge or minimising
a specific error criterion. This tool allows the user to
set experiments with different modelling objectives:

– A priori knowledge used. It is possible to use any
subset of the neural module library with associated
user modifiable probabilities.

– Error criterions. It is possible to search for models
that minimise the Sum of Squared Errors, the Final
Prediction Error criterion, the Minimum Description
Length criterion or the Akaike’s Information Crite-
rion.

– Tool parameters. The modelling tool can also be pa-
rameterised in different ways, e.g. the stop fitness
value, the maximum number of iterations, all the pa-
rameters explained in the previous section.

Once the user has selected all the necessary parameters
the experiment is run.

3.3. Validation and Analysis of Results

Model validation is an important feature of miga be-
cause all the models generated by the tool are poten-
tially interesting. This phase is semi-automated as far
as it often depends on the user’s subjective criterion.

The first step towards finding the final solution is
to choose a reduced set of models to apply the valida-
tion data to. Miga helps the user with plots of model
test error versus complexity (see Fig. 5). Complexity is
characterised as the number of modifiable parameters
of the model.

After the user has selected some models, it is pos-
sible to proceed with the validation. In this phase, it
is possible to apply fresh data (validation sequence) to
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Figure 5. Plot and selection sample of the best 40 models in a run.

each chosen model and compare their error and output
sequences. It is also possible to perform correlation
tests to check the independence between input data and
model residuals. Finally, it is also possible to apply an
intensive neural learning phase to adjust the parameters
of the model, in case it should be necessary.

4. Neural Module Library

The neural module library is described in detail in [17].
It contains nine nonlinear functions and the linear SISO
systems. The nonlinear functions are: two-state thresh-
old, two-state hysteresis, saturation, dead zone, abso-
lute value, friction, backlash, mechanical stop and rate
limiter.

For the sake of simplicity, only a brief example will
be given. The reader is referred to the previous refer-
ence if interested in the design of other types of neural
modules.

The two-state hysteresis neural module is examined
next. The two-state hysteresis is a dynamic nonlinearity
with its outputs restricted to 1 and −1. Figure 6 depicts
its input-output representation.

The neural module that approximates this function
is represented in Fig. 7. This module has 3 sigmoidal
neurones and 7 weights. The two leftmost neurones
play the role of detecting the interval the input lies
in. For instance, if the input is smaller than α1 both
neurones will fire low. Therefore, no matter what the
previous output was, the actual output will be low, too.

Figure 6. Ideal two-state hysteresis.

Figure 7. Neural module that approximates the threshold function
with hysteresis. The values wd and ws force the expected behaviour
and the values α1ws and α2ws correspond to the function’s parame-
ters.

The weights labelled wd and ws are not learnable
and their values provide a means to control the interval
discrimination sensitivity and output activation steep-
ness, respectively. The weights labelled −α1 · wd and
−α2 · wd are adjusted by the learning algorithm us-
ing input-output examples. Those weights determine
the parameters of the specific hysteresis function being
approximated.

5. Application Example

In this example a modular model is obtained, using
miga, for a simulated experiment. This experiment re-
produces the behaviour of a dc motor. The input is the
voltage applied to the armature of the motor and the
output corresponds to rotation speed.

The behaviour of the motor is modelled as a first
order system with two nonlinear functions at its input.
Those functions are the saturation and the dead zone.
See Fig. 8 for block layout and details.

Data sequences, generated using Simulink, are 601
samples long (12 s at 0.02 sampling rate). Input val-
ues are obtained from two white noise generators, cho-
sen at random to produce about 40% saturated outputs,
40% in the dead zone and the rest in between those
two regions. The output is perturbed by a band-limited
white noise of about ±1.5% of the output. There is one
sequence for each modelling phase: training, test and
validation. Figure 9 shows an example sequence.

Figure 8. Original block diagram of the dc motor experiment. The
first block is a saturation function of unitary slope and limits at
±8 V. The second block is a dead zone function of amplitude 1.5 V.
The third block models the dynamics of the system.
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Figure 9. Sample input and output data sequences.

Figure 10. Partial output sequences of test and model output data
(left) and their difference (right). The error lies in the 5% band.

The a priori knowledge codified into this experiment
is: equal probability for static nonlinear functions; zero
probability for dynamic nonlinear functions; similar
linear systems of first, second and third order, with
unitary gain and time constant between 0.1 and 0.4 s.

It is impossible to give a comprehensive list of the re-
sults obtained. Only the final model will be described.
This model uses 17 modules and 19 parameters. It pro-
duces a test error of 2.7 ·10−3 (ISE criterion). Figure 10
shows part of the test and error sequences.

A very interesting quality of this model, observed in
many of the dismissed ones, is its great generalising ca-
pacity. There is no qualitative difference between test
and validation errors. Figure 11 shows partial views of
the performance of the final model with three differ-
ent validation sequences. One can easily see the error
sequences are very similar to those on Fig. 10.

This model was compared with a classical tapped-
delay three-layered neural network. The best network
has eleven neurones in the middle layer and two tapped-
delayed inputs and outputs. After a long training phase
(1000 epochs), with the same data used to obtain the
modular model, the test error reached 5.56 · 10−3. Val-
idation errors are larger and lie in the 10% band. This
model has 78 parameters.

Figure 11. Partial output sequences of validation and model output
data (left) and their difference (right). The error is similar to that on
Fig. 10.

Figure 12. Block diagram of the post-processed final model. It has
seven modules.

The most interesting feature of miga is that the final
model is easy to analyse. In this case, the model was
transformed to Simulink format and its internal signals
were analysed. An equivalent model with only seven
modules was obtained (see Fig. 12). This model makes
explicit two features of the original system: a saturation
function in the input path and a linear system of 0.15 s
time constant (the module before the output).

All this information may be extremely useful to un-
derstand the behaviour of the original system.

6. Conclusions

This paper presents a software tool, called miga, useful
for nonlinear system modelling with modular neural
networks.

This tool does not rely entirely on neural learning to
find a suitable model. It allows the inclusion of a priori
structural knowledge about the relationship between
the physical system and the model components. Fur-
thermore, as far as highly structured networks are being
used it is easier to extract information from the model,
once the system has learned. It is naturally amenable to
the representation and adaptive identification of control
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systems because of the adaptativity properties of ANN.
Additionally, the resulting system’s properties are easy
to study because the neural network parameters are
meaningful. Furthermore, the MANN approach over-
comes, to a great extent, the problem of “explosion”
in the number of neurones and, hence, in the learning
time.

This architecture attempts to combine the ability of
ANN to approximate any nonlinear function, with the
clarity of information in block-oriented methodologies
for system identification.
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