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As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture
component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of
the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component
parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and LambertW function.
Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture
weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged
into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning
algorithm is superior to the typical pruning algorithm based on thresholds.

1. Introduction

The objective of multitarget tracking is to estimate target
number and target states from a sequence of noisy and
cluttered measurement sets. The tracked target is generally
simplified as a point [1–3]. Most of the existing point target
tracking algorithms are based on data association where the
correspondence of measurements to targets has to be set
up. The simplest data association algorithm is the nearest-
neighbour algorithm in which the measurement closest
in statistical distance to predicted state is used to update
target state estimate. Probabilistic data association is another
typical algorithm in which all the measurements close to
the predicted state are used to update target state estimate
[4]. Joint probabilistic data association is a generalization
of probabilistic data association for multiple target tracking
in which association probabilities of all the targets and
measurements are described by confirmed matrices [5, 6].
Multitarget tracking algorithms based on data association
are in individual view, where the problem of multitarget
tracking is converted into the multiple problems of single
target tracking. In the multitarget tracking, both the mea-
surements and the estimations are gained in the set form.
Thus, multitarget tracking is naturally a class of set-valued

estimation problems. The probability hypothesis density
(PHD) filter derived by Mahler based on random finite
sets statistics theory is an elegant and tractable approximate
solution to the multitarget tracking problem [7, 8]. Another
interpretation of the PHD in bin-occupancy view is presented
in [9]. By now, there have been two implementations of
PHD filter, Gaussian mixture implementation [10, 11] and
sequential Monte Carlo implementation [12–16], which are
suitable for linear Gaussian dynamics and nonlinear non-
Gaussian dynamics. The convergence of Gaussian mixture
implementation is discussed in [17] and the convergence
of sequential Monte Carlo implementation in [15, 18, 19].
The cardinalized PHD (CPHD) filter propagating both the
PHD and the distribution of target number is developed to
improve the performance of the PHD filter [20]. Generally,
the CPHD filter is computationally less tractable compared
to the PHD filter. There have been the Gaussian mixture
implementation of CPHD filter under multitarget linear
Gaussian assumptions [21] and the sequential Monte Carlo
implementation [22]. As promising and unified methodolo-
gies, the PHD and CPHD filters have been widely applied
in many fields, such as maneuvering target tracking [23, 24],
sonar tracking [25, 26], and visual tracking [27–29]. As the
sensor resolution is greatly improved, target tracking should
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be formulated as extended object tracking [30]. Extended
object PHD filter is also derived byMahler in [31].There have
been some implementations of extended object probability
hypothesis density filter by now [32–36]. The convergence
of the Gaussian mixture implementation of extended object
probability hypothesis density filter is discussed in [37].
When the Gaussian mixture model is applied in set-valued
multitarget tracking, the Gaussian mixture reduction is an
important topic [10, 38].The earlier work inGaussianmixture
reduction for target tracking has been done in [39, 40]. As
the Gaussian mixture reduction is implemented, there are
several criterions such asmaximum similarity [41], Euclidean
distance [42–44], and Kullback-Leibler divergence measure
[45]. The concentrations of this paper are on the Gaussian
mixture reduction of the Gaussian mixture implementation
of PHD filter.

As far as the Gaussian mixture implementation of the
PHD filter is concerned, it approximates the PHD by the
summation of weighted Gaussian components under the
multitarget linear Gaussian assumptions [10]. In theGaussian
mixture PHD filter, the PHD is presented by a large number
of weighted Gaussian components that are propagated over
time. The sum of the weights of Gaussian components is the
expected target number since the integral of the PHD over
the state space is the expected target number. The output
of Gaussian mixture PHD filter is weighted Gaussian com-
ponents. However, the Gaussian mixture PHD filter suffers
from computation problems associated with the increasing
number of Gaussian components as time progresses, since
mixture component number increases both at prediction step
and at update step. In fact, component number increases
without bound. Thus, the Gaussian mixture PHD filter is
infeasible without component pruning operation. The goal
of this paper is to prune the Gaussian components to make
theGaussianmixture PHDfilter feasible. An iterativemixture
component pruning algorithm is proposed for the Gaussian
mixture PHD filter. The pruning operation of mixture com-
ponents is done by setting mixture weights to zeros during
the iteration procedure.

The remaining parts of this paper are organized as follows.
Section 2 describes the component increasing problem in
Gaussian mixture PHD filter. The iterative mixture compo-
nent pruning algorithm is derived in Section 3. Section 4 is
devoted to the simulation study. Conclusion is provided in
Section 5.

2. Problem Description

The predictor and connector of PHD filter [7, 8] are

V𝑘|𝑘−1 (𝑥) = ∫𝑝𝑆,𝑘 (𝜁) 𝑓𝑘|𝑘−1 (𝑥 | 𝜁) V𝑘−1 (𝜁) 𝑑𝜁

+ ∫𝛽𝑘|𝑘−1 (𝑥 | 𝜁) V𝑘−1 (𝜁) 𝑑𝜁 + 𝛾𝑘 (𝑥) ,

(1)

V𝑘 (𝑥) = [1 − 𝑝𝐷,𝑘 (𝑥)] V𝑘|𝑘−1 (𝑥)

+ ∑
𝑧∈𝑍𝑘

𝜑𝑧,𝑘 (𝑥) V𝑘|𝑘−1 (𝑥)
𝜅𝑘 (𝑧) + ∫𝜑𝑧,𝑘 (𝜉) V𝑘|𝑘−1 (𝜉) 𝑑𝜉

,
(2)

respectively, where V(⋅) is the PHD, 𝛾𝑘(𝑥) is the birth PHD
at time step 𝑘, 𝛽𝑘|𝑘−1(⋅ | 𝜁) is the spawned PHD from 𝜁 at
time step 𝑘−1, 𝜅𝑘(𝑧) is the clutter PHD, 𝑝𝑆,𝑘(𝜁) is the survival
probability, 𝑝𝐷,𝑘(𝑥) is the detection probability, 𝜑𝑧,𝑘(𝑥) =

𝑝𝐷,𝑘(𝑥)𝑔𝑘(𝑧 | 𝑥), 𝑔𝑘(𝑧 | 𝑥) is the single target likelihood, and
𝑍𝑘 is the measurements at time step 𝑘.

Under the linear Gaussian assumptions, the Gaussian
mixture PHD filter is derived in [10]. The main steps of the
Gaussian mixture PHD filter are summarized as follows. If
the PHD at time step 𝑘− 1 is in the form of Gaussian mixture

V𝑘−1 (𝑥) =

𝐽𝑘−1

∑
𝑖=1

𝑤
(𝑖)

𝑘−1
N (𝑥;𝑚

(𝑖)

𝑘−1
, 𝑃
(𝑖)

𝑘−1
) , (3)

where 𝑤 is the mixture weight, N(⋅) is the Gaussian dis-
tribution, 𝑚 is the mean, 𝑃 is the covariance, and 𝐽 is the
component number, then the predicted PHD for time step
𝑘 is given by

V𝑘|𝑘−1 (𝑥) = V𝑆,𝑘|𝑘−1 (𝑥) + V𝛽,𝑘|𝑘−1 (𝑥) + 𝛾𝑘 (𝑥) , (4)

where 𝛾𝑘 is the birth PHD

𝛾𝑘 (𝑥) =

𝐽𝛾,𝑘

∑
𝑖=1

𝑤
(𝑖)

𝛾,𝑘
N (𝑥;𝑚

(𝑖)

𝛾,𝑘
, 𝑃
(𝑖)

𝛾,𝑘
) , (5)

V𝑆,𝑘|𝑘−1 is the survival PHD

V𝑆,𝑘|𝑘−1 (𝑥) = 𝑝𝑆,𝑘

𝐽𝑘−1

∑
𝑗=1

𝑤
(𝑗)

𝑘−1
N (𝑥;𝑚

(𝑗)

𝑆,𝑘|𝑘−1
, 𝑃
(𝑗)

𝑆,𝑘|𝑘−1
) , (6)

𝑚
(𝑗)

𝑆,𝑘|𝑘−1
is the predicted mean of the Gaussian component

𝑚
(𝑗)

𝑆,𝑘|𝑘−1
= 𝐹𝑘−1𝑚

(𝑗)

𝑘−1
, (7)

𝑃
(𝑗)

𝑆,𝑘|𝑘−1
is the predicted covariance of the Gaussian compo-

nent

𝑃
(𝑗)

𝑆,𝑘|𝑘−1
= 𝑄𝑘−1 + 𝐹𝑘−1𝑃

(𝑗)

𝑘−1
𝐹
𝑇

𝑘−1
, (8)

V𝛽,𝑘|𝑘−1 is the spawned PHD

V𝛽,𝑘|𝑘−1 (𝑥) =

𝐽𝑘−1

∑
𝑗=1

𝐽𝛽,𝑘

∑
𝑙=1

𝑤
(𝑗)

𝑘−1
𝑤
(𝑙)

𝛽,𝑘
N (𝑥;𝑚

(𝑗,𝑙)

𝛽
, 𝑃
(𝑗,𝑙)

𝛽
) , (9)

𝑚
(𝑗,𝑙)

𝛽
is the spawned mean of the Gaussian component

𝑚
(𝑗,𝑙)

𝛽
= 𝐹
(𝑙)

𝛽,𝑘−1
𝑚
(𝑗)

𝑘−1
+ 𝑑
(𝑙)

𝛽,𝑘−1
, (10)

and 𝑃
(𝑗,𝑙)

𝛽
is the spawned covariance of the Gaussian compo-

nent

𝑃
(𝑗,𝑙)

𝛽
= 𝑄
(𝑙)

𝛽,𝑘−1
+ 𝐹
(𝑙)

𝛽,𝑘−1
𝑃
(𝑗)

𝛽,𝑘−1
(𝐹
(𝑙)

𝛽,𝑘−1
)
𝑇

. (11)
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If formula (4) is rewritten in the simple form of the Gaussian
mixture

V𝑘|𝑘−1 (𝑥) =

𝐽𝑘|𝑘−1

∑
𝑖=1

𝑤
(𝑖)

𝑘|𝑘−1
N (𝑥;𝑚

(𝑖)

𝑘|𝑘−1
, 𝑃
(𝑖)

𝑘|𝑘−1
) , (12)

then the posterior PHD at time step 𝑘 is

V𝑘 (𝑥) = (1 − 𝑝𝐷,𝑘) V𝑘|𝑘−1 (𝑥) + ∑
𝑧∈𝑍𝑘

V𝐷,𝑘 (𝑥; 𝑧) , (13)

where V𝐷,𝑘 is the detected PHD

V𝐷,𝑘 (𝑥; 𝑧) =

𝐽𝑘|𝑘−1

∑
𝑗=1

𝑤
(𝑗)

𝑘
(𝑧)N (𝑥;𝑚

(𝑗)

𝑘|𝑘
(𝑧) , 𝑃

(𝑗)

𝑘|𝑘
) , (14)

𝑤
(𝑗)

𝑘
is the updated weight

𝑤
(𝑗)

𝑘
(𝑧) =

𝑝𝐷,𝑘𝑤
(𝑗)

𝑘|𝑘−1
𝑞
(𝑗)

𝑘
(𝑧)

𝜅𝑘 (𝑧) + 𝑝𝐷,𝑘∑
𝐽𝑘|𝑘−1

𝑙=1
𝑤
(𝑙)

𝑘|𝑘−1
𝑞
(𝑙)

𝑘
(𝑧)

, (15)

𝑚
(𝑗)

𝑘|𝑘
(𝑧) is the updated mean

𝑚
(𝑗)

𝑘|𝑘
(𝑧) = 𝑚

(𝑗)

𝑘|𝑘−1
+ 𝐾
(𝑗)

𝑘
(𝑧 − 𝐻𝑘𝑚

(𝑗)

𝑘|𝑘−1
) , (16)

𝑃
(𝑗)

𝑘|𝑘
is the updated covariance

𝑃
(𝑗)

𝑘|𝑘
= [𝐼 − 𝐾

(𝑗)

𝑘
𝐻𝑘] 𝑃

(𝑗)

𝑘|𝑘−1
, (17)

and 𝐾
(𝑗)

𝑘
is the gain

𝐾
(𝑗)

𝑘
= 𝑃
(𝑗)

𝑘|𝑘−1
𝐻
𝑇

𝑘
(𝐻𝑘𝑃

(𝑗)

𝑘|𝑘−1
𝐻
𝑇

𝑘
+ 𝑅𝑘)

−1

. (18)

It can be seen from formula (4) that component number
increases from 𝐽𝑘−1 to 𝐽𝑘|𝑘−1 by 𝐽𝑘−1 ⋅𝐽𝛽,𝑘+𝐽𝛾,𝑘 at the prediction
step. It is obvious in formula (13) that component number
increases from 𝐽𝑘|𝑘−1 to 𝐽𝑘 by 𝐽𝑘|𝑘−1 ⋅ |𝑍𝑘| at the update step.
Hence, the number of Gaussian components 𝐽𝑘 representing
PHD V𝑘 at time step 𝑘 in Gaussian mixture PHD filter is

𝐽𝑘 = (𝐽𝑘−1 (1 + 𝐽𝛽,𝑘−1) + 𝐽𝛾,𝑘) (1 +
󵄨󵄨󵄨󵄨𝑍𝑘

󵄨󵄨󵄨󵄨) , (19)

where 𝐽𝑘−1 is the number of components of the PHD V𝑘−1
at time step 𝑘 − 1. In formula (19), the component num-
ber increases in O(𝐽𝑘−1|𝑍𝑘|). In particular, the component
number mostly increases in (𝐽𝑘−1(1 + 𝐽𝛽,𝑘) + 𝐽𝛾,𝑘)|𝑍𝑘| at the
update step. Indeed, the number of Gaussian components
increases without bound so that the computation of the
Gaussian mixture PHD filter is intractable after several
time steps. Therefore, it is necessary to reduce the number
of components to make the Gaussian mixture PHD filter
feasible. The goal of this paper is to prune the Gaussian mix-
ture components to reduce component number in Gaussian
mixture PHD filter.

3. Iterative Pruning Algorithm

For simplicity, the time index 𝑘 is neglected and let 𝑀 = 𝐽𝑘|𝑘
represent component number.𝑤𝑆 is the sum of the weights of
the Gaussian components:

𝑤𝑆 =

𝑀

∑
𝑗=1

𝑤𝑗. (20)

In the iterative pruning algorithm, the weights of Gaussian
components are normalized by {𝑤1/𝑤𝑆, . . . , 𝑤𝑀/𝑤𝑆} at first
so that

𝑀

∑
𝑗=1

𝑤𝑗 = 1. (21)

Let 𝜃𝑗 = {𝑚(𝑗), 𝑃(𝑗)} represent the parameters of the 𝑗th
Gaussian component, where 𝑚

(𝑗) and 𝑃
(𝑗) are the mean and

covariance, respectively. Then, the whole parameter set of 𝑀
Gaussian components is 𝜃 = {𝑤1, . . . , 𝑤𝑀, 𝜃1, . . . , 𝜃𝑀}.

The entropy distribution of the mixture weights is
adopted as the prior of 𝜃:

𝑝 (𝜃) ∝ exp (−𝐻 (𝑤1, . . . , 𝑤𝑀)) , (22)

where 𝐻(𝑤1, . . . , 𝑤𝑀) = −∑
𝑀

𝑗=1
𝑤𝑗 log𝑤𝑗 is the entropy

measure [46, 47].The goal of this choice of prior distribution,
which depends only on the mixture weights, is to reduce
mixture components by the adjustment of mixture weights
during the iteration procedure. If we define the log-likelihood
of the measurements 𝑍 = {𝑧1, . . . , 𝑧𝑛} given the mixture
parameters as

log𝑝 (𝑍 | 𝜃) =

𝑛

∑
𝑖=1

log
𝑀

∑
𝑗=1

𝑤𝑗𝑔 (𝑧𝑖 | 𝜃𝑗) , (23)

where 𝑔(𝑧 | 𝜃𝑗) is the single target likelihood in 𝑗th
component, then the MAP estimate of 𝜃 is

𝜃 = argmax
𝜃

{log𝑝 (𝑍 | 𝜃) + log𝑝 (𝜃)} . (24)

For the mixture weight 𝑤𝑗, the MAP estimate can be com-
puted by setting the derivative of the log-posterior to zero:

𝜕

𝜕𝑤𝑗
(log𝑝 (𝑍 | 𝜃) + log𝑝 (𝜃)) = 0. (25)

TheMAPestimate of𝑤𝑗 is computed bymaximizing log𝑝(𝑍 |

𝜃) + log𝑝(𝜃) under the constraint (21):

𝜕

𝜕𝑤𝑗
(log𝑝 (𝑍 | 𝜃) + log𝑝 (𝜃) + 𝜆(

𝑀

∑
𝑗=1

𝑤𝑗 − 1)) = 0,

(26)

where 𝜆 is Lagrange multiplier. Substituting formulas (22)
and (23) into formula (26) gives

∑
𝑛

𝑖=1
𝜔𝑗 (𝑧𝑖)

𝑤𝑗
+ log𝑤𝑗 + 𝜆 + 1 = 0, (27)
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where 𝜔𝑗(𝑧) represents the membership that 𝑧 is from the 𝑗th
mixture component:

𝜔𝑗 (𝑧) =
𝑤𝑗𝑔 (𝑧 | 𝜃𝑗)

∑
𝑀

𝑙=1
𝑤𝑙𝑔 (𝑧 | 𝜃𝑙)

. (28)

Formula (27) is a simultaneous transcendental equation.
We solve it for the 𝑤𝑗 using the Lambert 𝑊 function [48],
an inverse mapping satisfying 𝑊(𝑦)𝑒𝑊(𝑦) = 𝑦, and therefore
log𝑊(𝑦) + 𝑊(𝑦) = log𝑦. The Lambert 𝑊 function of
complex 𝑦 is defined as𝑊(𝑦), which is a set of functions.The
complex 𝑦 can be computed by the equation 𝑊(𝑦)𝑒𝑊(𝑦) = 𝑦,
where 𝑒𝑊(𝑦) is the exponential function. Lambert𝑊 function
𝑊(𝑦) is a multivalued function defined in general for 𝑦

complex and assumed 𝑊(𝑦) complex. If 𝑦 is real and 𝑦 <

−1/𝑒, then 𝑊(𝑦) is multivalued complex. If 𝑦 is real and
−1/𝑒 ≤ 𝑦 < 0, 𝑊(𝑦) has two possible real values. If 𝑦 is real
and 𝑦 > 0,𝑊(𝑦) has one real value.Then, for the Lambert𝑊
function 𝑊(𝑦),

−𝑊(𝑦) − log𝑊(𝑦) + log𝑦 = 0. (29)

Setting 𝑦 = 𝑒
𝑥, formula (29) can be rewritten as

−𝑊(𝑒
𝑥
) − log𝑊(𝑒

𝑥
) + 𝑥 = 0. (30)

In formula (27), it is assumed that

𝜔𝑗 =

𝑛

∑
𝑖=1

𝜔𝑗 (𝑧𝑖) . (31)

Consequently, formula (30) is

𝜔𝑗

−𝜔𝑗/𝑊 (𝑒𝑥)
+ log(

−𝜔𝑗

𝑊(𝑒𝑥)
) + 𝑥 − log (−𝜔𝑗) = 0. (32)

Comparing the Lambert𝑊 function (32) to formula (27), (32)
can be reduced to (27) by setting 𝑥 = 1 + 𝜆 + log(−𝜔𝑗):

𝜔𝑗

−𝜔𝑗/𝑊 (𝑒𝑥)
+ log(

−𝜔𝑗

𝑊(𝑒𝑥)
) + 1 + 𝜆 = 0. (33)

Consequently,

𝑤𝑗 =
−𝜔𝑗

𝑊(𝑒1+𝜆+log(−𝜔𝑗))
=

−𝜔𝑗

𝑊(−𝜔𝑗𝑒
1+𝜆)

. (34)

Formula (27) and formula (34) constitute an iterative
procedure for theMAP estimates of {𝑤1, . . . , 𝑤𝑀}: (1) given 𝜆,
{𝑤1, . . . , 𝑤𝑀} are calculated by formula (34); (2) {𝑤1, . . . , 𝑤𝑀}
are normalized; (3) given normalized {𝑤1, . . . , 𝑤𝑀}, 𝜆 is
computed by formula (27). The iteration procedure stops
when the difference rate of log-posterior is smaller than the
given threshold.

At the normalization step of the iteration procedure,
if a mixture weight becomes negative, the corresponding
component is removed from the mixture components by
setting its weight to zero. The removed mixture component
will not be considered when the log-posterior is computed

in the following iterations. The mixing weights of survival
mixture components are normalized at the end of this step.

The effect of entropy distribution of mixing weights is
taken during the iterative procedure. The mixture weights
of components negligible to the PHD become smaller and
smaller iteration by iteration, since the parameter estimates
are driven into low-entropy direction by entropy distribution.
The low-entropy tendency can also promote competition
among the mixture components with similar parameters
which can then be merged into one mixture component with
larger weight.

For the mean𝑚
(𝑗) and covariance 𝑃

(𝑗) of mixture compo-
nent with nonzero weight 𝑤𝑗, they are updated by

𝑚
(𝑗)

= (𝜔𝑗)
−1
𝑛

∑
𝑖=1

𝑧𝑖𝜔𝑗 (𝑧𝑖) , (35)

𝑃
(𝑗)

= (𝜔𝑗)
−1
𝑛

∑
𝑖=1

(𝑧𝑖 − 𝑚
(𝑗)

) (𝑧𝑖 − 𝑚
(𝑗)

)
𝑇

𝜔𝑗 (𝑧𝑖) . (36)

The main steps of iterative mixture component pruning
algorithm are summarized in Algorithm 1.

4. Simulation Study

A two-dimensional scenariowith unknown and time-varying
target number is considered to test the proposed iterative
mixture component pruning algorithm. The surveillance
region is [−1000, 1000] × [−1000, 1000] (in meter). The
target state consists of position and velocity, while target
measurement is the position. Each target moves according to
the following dynamics:

𝑥𝑘 =
[
[
[

[

1 0 𝑇 0

0 1 0 𝑇

0 0 1 0

0 0 0 1

]
]
]

]

𝑥𝑘−1 +

[
[
[
[
[
[

[

𝑇
2

2
0

0
𝑇
2

2
𝑇 0

0 𝑇

]
]
]
]
]
]

]

[
V1,𝑘
V2,𝑘

] , (37)

where 𝑥𝑘 = [𝑥1,𝑘, 𝑥2,𝑘, 𝑥3,𝑘, 𝑥4,𝑘]
T is the target state,

[𝑥1,𝑘, 𝑥2,𝑘]
T is the target position, and [𝑥3,𝑘, 𝑥4,𝑘]

T is the target
velocity at time step 𝑘. The process noises are a zero-mean
Gaussian white noise with standard deviations 𝜎V1 = 𝜎V2 =

5 (m/s2). The survival probability is 𝑝𝑆,𝑘 = 0.99. The number
of targets is unknown and variable over all scans. New targets
appear spontaneously according to a Poisson point process
with PHD function 𝛾𝑘 = 0.2N(⋅; 𝑥, 𝑄), where

𝑥 =
[
[
[

[

−400

−400

0

0

]
]
]

]

, 𝑄 =
[
[
[

[

100 0 0 0

0 100 0 0

0 0 25 0

0 0 0 25

]
]
]

]

. (38)

N(⋅; 𝑥, 𝑄) is the Gaussian component with mean 𝑥 and
covariance 𝑄. The spawned PHD is 𝛽𝑘|𝑘−1(𝑥 | 𝜁) = 0.05N

(𝑥; 𝜁, 𝑄𝛽), where 𝑄𝛽 = diag([100, 100, 400, 400]T).
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(1) normalize 𝑤1, . . . , 𝑤𝑀 by formula (20).
(2) 𝑡 = 0.
(3) 𝑡 = 𝑡 + 1.
(4) for 𝑖 = 1, . . . , 𝑛 do
(5) for 𝑗 = 1, . . . ,𝑀 do
(6) compute 𝜔𝑗 (𝑧𝑖) by formula (28).
(7) end for
(8) end for
(9) for 𝑗 = 1, . . . ,𝑀 do
(10) compute 𝜔𝑗 by formula (31).
(11) end for
(12) for 𝑗 = 1, . . . ,𝑀 do
(13) compute 𝑤𝑗 by formula (34).
(14) end for
(15) for 𝑗 = 1, . . . ,𝑀 do
(16) if 𝑤𝑗 < 0 do
(17) for 𝑙 = 𝑗, . . . ,𝑀 − 1 do
(18) 𝑤𝑙 = 𝑤𝑙+1.
(19) 𝑚(𝑙) = 𝑚(𝑙+1).
(20) 𝑃(𝑙) = 𝑃(𝑙+1).
(21) end for
(22) 𝑗 = 𝑗 − 1.
(23) 𝑀 = 𝑀 − 1.
(24) else do
(25) compute 𝑚

(𝑗) by formula (35).
(26) compute 𝑃(𝑗) by formula (36).
(27) end if
(28) end for
(29) normalize 𝑤1, . . . , 𝑤𝑀;
(30) compute 𝜆 by formula (27);
(31) if log𝑝 (𝜃 (𝑡) | 𝑍) − log𝑝 (𝜃 (𝑡 − 1) | 𝑍) > 𝜀 ⋅ log𝑝 (𝜃 (𝑡 − 1) | 𝑍) do
(32) goto step 3;
(33) end if.

Algorithm 1: Iterative pruning algorithm.

Each target is detected with probability 𝑝𝐷,𝑘 = 0.98. The
target-originated measurement model is

𝑦𝑘 = [
1 0 0 0

0 1 0 0
] 𝑥𝑘 + [

𝑤1,𝑘
𝑤2,𝑘

] , (39)

where the measurement noise is a zero-mean Gaussian white
noise with standard deviation 𝜎𝑤1 = 𝜎𝑤2 = 10 (m). Clutter is
modelled as a Poisson random finite set with intensity

𝜅𝑘 (𝑧𝑘) = 𝜆𝑐 ⋅ 𝑐𝑘 (𝑧𝑘) , (40)

where 𝜆𝑐 is the average number of clutter measurements per
scan and 𝑐(𝑧) is the probability distribution over surveillance
region. Here 𝑐(𝑧) is a uniform distribution and 𝜆𝑐 is assumed
to be 50.

The means of the Gaussian mixture components with
mixing weights greater than 0.5 are chosen as the estimates
of multitarget states after the mixture reduction.

The tracking results in one Monte Carlo trial are pre-
sented in Figures 1 and 2. It can be seen from Figures 1 and
2 that the Gaussian mixture PHD filter with the proposed
iterative mixture component pruning algorithm is able to

detect the spontaneous and spawned targets and estimate the
multiple target states.

Themixture components with weights larger than 0.0005
at the 86th time step before pruning operation in the above
Monte Carlo simulation trial are presented in Figure 3. The
mixture components with weights larger than 0.01 after prun-
ing operation are presented in Figure 4. It is obvious that the
mixture components with similar parameters describing the
same PHD peak can bemerged into onemixture component.

The typical mixture component pruning algorithm based
on thresholds in [10] is adopted as the comparison algorithm.
The thresholds in typical mixture component pruning algo-
rithm areweight pruning threshold 10

−5, mixture component
merging threshold 4, and maximum allowable mixture com-
ponent number 100.We evaluate the tracking performance of
proposed algorithm against the typical algorithm by Wasser-
stein distance [49]. TheWasserstein distance is defined as

𝑑𝑝 (𝑋,𝑋) = min
𝐶

𝑝√
|𝑋̂|

∑
𝑖=1

|𝑋|

∑
𝑗=1

𝐶𝑖𝑗
󵄩󵄩󵄩󵄩𝑥
𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩
𝑝
, (41)
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Figure 1: True traces and estimates of 𝑋 coordinates.
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Figure 2: True traces and estimates of 𝑌 coordinate.

where 𝑋 is the estimate of multitarget state set and 𝑋 is the
true multitarget state set. The minimum is taken over the set
of all transportation matrices 𝐶 (a transportation matrix 𝐶 is
one whose entries 𝐶

𝑖𝑗 satisfy 𝐶𝑖𝑗 ≥ 0, ∑|𝑋|
𝑗=1

𝐶𝑖𝑗 = 1/|𝑋|, and

∑
|𝑋̂|

𝑖=1
𝐶𝑖𝑗 = 1/|𝑋|).This distance is not defined if either𝑋 or𝑋

is not defined. Figure 5 shows themeanWasserstein distances
of two algorithms over 100 simulation trials. Process noise,
measurement noise, and clutter are independently generated
at each trial. It can be seen from Figure 5 that the proposed
iterative mixture component pruning algorithm is superior
to the typical algorithm at most time steps. The proposed
iterativemixture component pruning algorithm is worse than
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Figure 3: Components before pruning operation.
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Figure 4: Components after pruning operation.

typical algorithm when spawned target is generated and two
or more targets are close to each other. Two PHD peaks of
two close targets may be regarded as one PHD peak in the
proposed algorithm as a result of low-entropy tendency of
entropy distribution. Then, some targets are not detected.

Figure 6 shows the estimates of target numbers of two
algorithms. It is obvious that the estimates of target number
of proposed algorithm are closer to the ground truth than
typical algorithm at most time steps.

Figure 7 shows the mean component numbers of two
algorithms after component pruning operations over 100
simulation trials. The component numbers of proposed
algorithm are smaller than typical algorithm.

The case of low signal-to-noise rate (SNR) is yet con-
sidered for the further comparison of two algorithms. 𝜆𝑐
is assumed 80 in this low SNR case. The corresponding
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Figure 5: The averaged Wasserstein distances.
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Figure 6: Estimates of target numbers.

Wasserstein distances, target number estimates, and compo-
nent numbers are presented in Figures 8, 9, and 10. It can be
seen that the proposed iterative mixture component pruning
algorithm is also superior to the typical mixture component
pruning algorithm based on thresholds in low SNR case.

5. Conclusion

An iterative mixture component pruning algorithm is pro-
posed for the Gaussian mixture PHD filter. The entropy
distribution of the mixture weights is used as the prior
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Figure 7: The averaged component numbers.
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Figure 8: The averaged Wasserstein distances under low SNR.

distribution of mixture parameters. The update formula of
the mixture weight is derived by Lagrange multiplier and
Lambert 𝑊 function. When the mixture weight becomes
negative during the iteration procedure, the corresponding
mixture component is pruned by setting the weight to zero.
Simulation results show that the proposed iterative mixture
component pruning algorithm is superior to the typical
mixture component pruning algorithm based on thresholds
at most time steps.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.



8 Mathematical Problems in Engineering

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

Ta
rg

et
 n

um
be

r

Typical algorithm
Proposed algorithm
Ground truth

Figure 9: Estimates of target numbers under low SNR.
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Figure 10: The averaged component numbers under low SNR.
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