
Systematic Testing for Resource Leaks in Android
Applications

Dacong Yan Shengqian Yang Atanas Rountev
Ohio State University

Abstract—The use of mobile devices and the complexity of
their software continue to grow rapidly. This growth presents
significant challenges for software correctness and performance.
In addition to traditional defects, a key consideration are defects
related to the limited resources available on these devices. Re-
source leaks in an application, due to improper management
of resources, can lead to slowdowns, crashes, and negative
user experience. Despite a large body of existing work on
leak detection, testing for resource leaks remains a challenging
problem. We propose a novel and comprehensive approach for
systematic testing for resource leaks in Android software. Similar
to existing testing techniques, the approach is based on a GUI
model, but is focused specifically on coverage criteria aimed at
resource leak defects. These criteria are based on neutral cycles:
sequences of GUI events that should have a “neutral” effect and
should not lead to increases in resource usage. Several important
categories of neutral cycles are considered in the proposed test
coverage criteria. Experimental evaluation and case studies were
performed on eight Android applications. The approach exposed
18 resource leak defects, 12 of which were previously unknown.
These results provide motivation for future work on analysis,
testing, and prevention of resource leaks in Android software.

I. INTRODUCTION

Android devices currently lead the smartphone market-
place in the United States [1] and similar trends can be
seen in other countries. Android also has significant presence
in one of the fastest-growing segments of the computing
landscape: tablets (e.g., Google Nexus 7/10, Samsung Galaxy
Tab/Note) and media-delivery devices (e.g., Amazon Kindle
Fire, Barnes & Noble Nook HD). The widespread use of
these mobile devices poses great demands on software quality.
However, meeting these demands is very challenging. Both
the software platforms and the accumulated developer ex-
pertise are immature compared to older areas of computing
(e.g., desktop applications and server software). The available
research expertise and automated tool support are also very
limited. It is critical for software engineering researchers to
contribute both foundational approaches and practical tools
toward higher-quality software for mobile devices.

A. Resource Leaks in Android Applications

The features of Android devices and the complexity of their
software continue to grow rapidly. This growth presents signif-
icant challenges for software correctness and performance. In
addition to traditional defects, a key consideration are defects
related to the limited resources available on these devices.
One such resource is the memory. In Android’s Dalvik Java
virtual machine (VM) the available heap memory typically
ranges from 16 MB to 64 MB. In contrast, in a desktop/laptop
VM there are many hundreds of MB available in the heap.
Examples of other limited resources include threads, binders
(used for Android’s inter-process communication), file handles,

and bitmaps. An application that consumes too many resources
can lead to slowdowns, crashes, and negative user experience.

Resource management is challenging and developers are
made aware of this problem in basic Android training materials
[2] and through best-practice guidelines (e.g., [3]), with the
goal of avoiding common pitfalls related to resource usage. A
typical example of such a problem is a resource leak, where
the application does not release some resource appropriately.

Examples. We studied a version of ConnectBot [4], an
SSH client with more than a million installs according to
the Google app store. The code contains a leak: when the
application repeatedly connects with a server and subsequently
disconnects from it, bitmaps are leaked, which eventually leads
to a crash. As another example, we studied a version of the
APV PDF viewer [5] (which also has more than a million
installs) and discovered a leak, occurring when a PDF file
is opened and then later the BACK button is pressed to close
the file. In our experience, leak defects are related to diverse
categories of events such as screen rotation, switching between
applications, pressing the BACK button, opening and closing
of files, and database accesses. If application users observe
crashes and slowdowns due to such leaks, they may uninstall
the application and submit a negative review/rating in the
application marketplace.

Challenges. Even though resource leaks can significantly
affect software reliability and user experience, there does not
exist a comprehensive and principled approach for testing
for such leaks. The large body of work on dynamic analysis
of memory leaks (e.g., [6]–[13]) has the following purposes:
(1) observe run-time symptoms that indicate a potential leak,
and (2) provide information to diagnose the root cause of the
defect (e.g., by identifying fast-growing object subgraphs on
the heap). However, all these approaches fail to address one
crucial question: how can we generate the test data that triggers
the leaking behavior? Answering this question for arbitrary
applications is difficult, because leaks may be related to a wide
variety of program functionality. However, as discussed later,
a key insight of our approach is that leaks in Android appli-
cations often follow a small number of behavioral patterns,
which makes it possible to perform systematic, targeted, and
effective generation of test cases to expose such leaks.

Each Android application is centered around a graphical
user interface (GUI), defined and managed through standard
mechanisms provided by the Android platform. Some leak pat-
terns are directly related to aspects of these mechanisms—for
example, the management of the lifetime for an activity [14],
which is an application component that interacts with the user.
Such leaks cannot be exposed through unit testing because of
the complex execution context managed by the platform (e.g.,
lifetime and internal state of GUI widgets, persistent state,
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etc.), as well as the complicated interactions due to callbacks
from the platform to the application. It is essential to develop
a system-level GUI-centric approach for testing for Android
leaks, with sequences of GUI events being triggered to exhibit
the leak symptoms. At present, no such approach exists.

B. Our Proposal

We propose a novel and comprehensive approach for
testing for resource leaks in Android software. This leak testing
is similar to traditional GUI-model-based testing. Finite state
machines and other related GUI models have been used in a
number of testing techniques (e.g., [15]–[20]), including recent
work on testing for Android software [21]–[25]. Given a GUI
model, test cases can be generated based on various coverage
criteria (e.g., [16]). As with these existing approaches, we
consider GUI-model-based testing, but focused specifically
on coverage criteria aimed at resource leaks. We define the
approach based on a GUI model in which nodes represent
Android activities and edges correspond to user-generated and
framework-generated events. The same approach can be used
with other GUI models for Android (e.g., event-flow graphs
[18], [26]) in which paths in the model correspond to event
sequences.

The proposed coverage criteria are based on the notion of
neutral cycles. A neutral cycle is a sequence of GUI events
that should have a “neutral” effect—that is, it should not lead
to increases in resource usage. Such sequences correspond to
certain cycles in the GUI model. Through multiple traversals
of a neutral cycle (e.g., rotating the screen multiple times; re-
peated switching between apps; repeatedly opening and closing
a file), a test case aims to expose leaks. This approach directly
targets several common leak patterns in Android applications,
and successfully uncovers 18 resource leak defects in a set of
eight open-source Android applications used in our studies.

Contributions. The contributions of this work are:

• Test coverage criteria: We define several test coverage
criteria based on different categories of neutral cycles in
the GUI model. This approach is informed by knowledge
of typical causes of resource leaks in Android software.

• Test generation and execution: We describe LEAKDROID,
a tool that generates test cases to trigger repeated execu-
tion of neutral cycles. When the test cases are executed,
resource usage is monitored for suspicious behaviors.

• Evaluation: We evaluate the approach on several Android
applications. The evaluation demonstrates that the pro-
posed test generation effectively uncovers a variety of
resource leaks.

• Case studies: We present case studies of leak defects
exposed by the approach. This provides insights into the
root causes of these leaks, which may be useful for future
work on testing and debugging of Android software.

These contributions are in the emerging and important area
of software testing for mobile devices. The proposed testing
approach adds to a growing body of research on improving
the reliability and performance of Android applications. The
experimental evaluation and case studies contribute to better
understanding of certain classes of defects in such applications,
and highlight open problems for future investigations.
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Fig. 1. Activity lifecycle.

II. BACKGROUND

A. Android Activities

An Android activity is an application component that
manages a hierarchy of GUI widgets and uses them to interact
with the user. An activity has a well-defined lifecycle, and
developers can define callback methods to handle different
stages of this lifecycle (Figure 1). When an activity is started,
onCreate is called on it by the Android runtime. The activity
becomes ready to terminate after onDestroy is called on
it. The loop defined by onStart and onStop is the visi-
ble lifetime. Between calls to these two callback methods,
the activity is visible to users. Finally, the innermost loop
onResume/onPause defines the foreground lifetime, in which
the activity is on the foreground and can interact with the
user. A resource leak can be introduced if a certain resource
is allocated at the beginning of a lifetime (e.g., in onCreate)
but not reclaimed at the end (e.g., in onDestroy). Thus, one
desirable property of a test generation strategy is to cover these
three pairs of lifecycle callback methods, especially because
prior studies of Android applications [27] indicate that defects
are often caused by incorrect handling of the activity lifecycle.
An application usually has several activities, and transitions
between them are triggered through GUI events. When an
application is launched, a start activity is first displayed.

Example. Figure 2(a) shows ChooseFileActivity in the
APV PDF viewer application [5], displayed when the applica-
tion is launched. The activity shows a list of files and folders.
A PDF file can be selected by tapping on the corresponding
list item, and the file is displayed in OpenFileActivity as
shown in Figure 2(b). These two activities correspond to two
different states of the application; each has its own visible
GUI elements and allowed GUI events. The reverse transition
occurs through the hardware BACK button. This transition
closes the file and returns to the previous screen. The sequence
of operations that opens a file and then closes it is expected to
have a “neutral” effect on resource usage, and is an example
of a neutral cycle. Repeated execution of this cycle normally
should not lead to a sustained pattern of resource usage growth.

When executing an automated test case that repeatedly
exercises these two transitions (selecting a file and then press-
ing the BACK button), we observed that the native memory
usage increases significantly and ultimately leads to a crash.
After examining the application code, we determined that
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(a) (b) (c)

Fig. 2. APV application: (a) ChooseFileActivity lists files and folders. (b) OpenFileActivity displays the selected PDF file. (c) Native
memory usage before and after fixing the leak.

certain amount of native memory is allocated during the
initialization of OpenFileActivity and freed when the PDF
file is closed, via a call to a native method freeMemory.
However, freeMemory does not free all allocated memory,
which results in a memory leak. In fact, in a later version
of the application, the developers checked in a fix for this
issue. The native memory consumption before and after this
fix are shown in Figure 2(c); the x-axis shows the number of
repetitions of the neutral cycle.

B. Leak Testing with a GUI Model

Following a large body of work on GUI-model-based
testing [15]–[25], the starting point of our approach is a model
of the Android application’s GUI. To focus the presentation,
we discuss one particular kind of model. However, the notion
of neutral cycles and the coverage criteria based on them
should be easily applicable to other GUI models (e.g., [18],
[26]), where there is a natural correspondence between paths
in the model and sequences of events. A partial GUI model for
APV is shown in Figure 3. The figure shows only a subset of
GUI states and transitions, as needed for explanation purposes.

The models we discuss are directed graphs, with one node
per activity, and with edges representing transitions triggered
by GUI events. The set of nodes is defined by the set of
application classes that subclass (directly or transitively) class
android.app.Activity: each such class is a node in the
model. In addition to traditional events, the model should cap-
ture Android-specific events. For example, a user can press the
hardware MENU button and then select a menu item from a list
specific to the current activity. In Figure 3, edges labeled with
MENU: represent such events; for example, MENU:About
corresponds to choosing the “About” menu item. As another
example, the hardware BACK button can be used to destroy the
current activity and to transition to another one. (Although the
programmer can choose to override this BACK button behavior
with application-specific logic.) In addition to such application-
specific events, several important GUI events are defined by
the platform and not by the application:

ROTATE events. When the user rotates the screen, the cur-
rent activity is recreated with a different orientation. In the
model this event is represented by a self-transition labeled

n1: ChooseFileActivity

POWER

HOME

ROTATE

 Select Folder 

n2: OpenFileActivity

Select File

n3: AboutPDFViewActivity

MENU:About

BACK

 Zoom In  Zoom Out  Fit Width 

MENU:About

BACK

BACK

Fig. 3. A subset of the GUI model for APV.

with ROTATE. A rotation event is important for testing be-
cause it covers the onCreate/onDestroy pair in the activ-
ity lifecycle from Figure 1. It is well known that repeated
execution of this pair of methods can leak activity objects
(instances of android.app.Activity), GUI widget objects
(instances of android.view.View), visual resources (in-
stances of android.graphics.drawable.Drawable) such
as bitmaps, and other categories of resources [2], [3]. To
simplify Figure 3, only the ROTATE edge for n1 is shown;
both n2 and n3 have similar edges.

HOME events. When the user presses the hardware HOME
button, the application is hidden. The launcher, a special
application to allow the user to launch any application, is
then brought to the foreground. For testing purposes, we
are interested in the scenario where the original application
is immediately selected to be reactivated. Edge HOME in
Figure 3 represents pressing HOME and then going back to
the same application. (A similar self-edge exists for each other
node in the model.) Another situation with behavior equivalent
to a HOME event is when the user receives a phone call while
the application is active; once the phone call is completed, the
application is reactivated. A HOME transition corresponds to
the onStart/onStop loop in Figure 1 and could be considered
for coverage during testing.

POWER events. The hardware POWER button puts the
device in a low-power state. In this case, onPause is called
on the current activity. When the button is pressed again
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and the screen is unlocked, the activity becomes active and
its onResume method is called. Edge POWER in Figure 3
represents this sequence of operations. The same behavior and
callbacks are observed in other scenarios unrelated to power
usage—e.g., when an activity is partially blocked by a popup
dialog. A testing strategy could consider coverage of POWER
transitions.

Sensor events. The platform can generate other events due
to user actions. For example, an accelerometer can trigger
events because of shaking or tilting motions. More generally,
acceleration forces and rotational forces can be sensed by ac-
celerometers, gravity sensors, gyroscopes, and rotational vector
sensors [28]. These sensor events are GUI events triggered
by the user, and they can activate interesting behaviors. Our
current approach does not include these events, but can be
easily extended to consider them as well.

C. Obtaining GUI Models

Various reverse-engineering techniques (e.g., [17], [20],
[24], [25], [29]) can be used to automatically construct GUI
models. A recent example is AndroidRipper [22], [23], [30],
a tool to perform GUI reverse engineering for Android appli-
cations. Its implementation uses the Robotium testing frame-
work [31] to systematically explore the GUI. At each GUI
state, the tool examines the run-time GUI widgets and the
events that can be fired upon them. The models produced by
the tool are very detailed. For example, a MENU transition
is represented by two edges, one for pressing the hardware
MENU button and another for choosing a menu item (e.g.,
“About”). As another illustration of this level of detail, the
same activity may be represented by many states in the model.
For example, there are many possible lists of files/folders that
can be displayed by activity ChooseFileActivity shown in
Figure 2(a), by following the “parent folder” list item (labeled
with “..” in the figure), or another list item representing a sub-
folder. Each such file/folder list would be represented by a
different state, resulting in a very large model.

To reduce model size and the number of generated test
cases, we chose to use an abstracted model with one-to-
one correspondence between activities and model states. For
our experiments these models were created manually after
examining the output of AndroidRipper and the source code
of the application. We also added HOME and POWER tran-
sitions, which were not captured by AndroidRipper. It was an
intentional decision not to focus on fully automating the model
construction, but instead focus on evaluating the model-based
coverage criteria and showing that they are indeed useful for
exposing leak defects.

III. GENERATION AND EXECUTION OF TEST CASES

The testing approach is based on a set of test coverage
criteria. Each criterion is aimed at a particular category of
neutral cycles in the model of the application’s GUI. Note that
we expect this kind of leak testing to be performed after—
and be complementary to—traditional functional testing during
which high block/branch coverage is achieved. Thus, we focus
specifically on coverage of repeated behavior that may be
related to leaks.

A. Test Coverage Criteria

To illustrate a coverage criterion, consider the ROTATE
transition shown in Figure 3. In general, for each state ni in
the model, there is a self-transition representing a ROTATE
event. We can define the following coverage criterion: for
each state ni, execute at least one test case that corresponds
to a path (s, . . . , ni, ni, . . . , ni). Here s is the start state,
prefix (s, . . . , ni) represents a cycle-free path, and suffix
(ni, ni, . . . , ni) contains only ROTATE transitions. This suffix
corresponds to k repetitions of the neutral cycle ni → ni. The
motivation for this coverage is clear: resource usage should
not increase when the screen is rotated repeatedly [3], even
for large k. Executions of this cycle will trigger repeated
onCreate/onDestroy lifecycle callbacks (recall Figure 1).
As mentioned earlier, resource leaks often occur because of
defects related to lifecycle management. We have seen a
number of examples of this pattern in our studies.

Application-independent cycles. One category of cycles to be
covered are those defined by ROTATE, HOME, and POWER
events—i.e., events defined by the platform, not by the appli-
cation. An example of a ROTATE-based coverage was given
above. Similar coverage can be defined for HOME cycles
(to trigger repeated onStart/onStop) and POWER cycles
(for repeated onPause/onResume). Note that even though
repeated ROTATE events also result in repeated start/stop and
pause/resume, they do not necessarily expose leaks related to
stopping or pausing an activity: because ROTATE destroys the
activity, it may release resources that are leaked by onStop
or onPause. We have observed this situation in our studies.

Cycles with BACK transitions. The coverage criteria de-
scribed above target only the activity that is currently inter-
acting with the user. Cycles involving the hardware BACK
button involve multiple activities, and present another target for
coverage. For each BACK transition ni → nj , we can execute
a path (s, . . . , (nj , . . . , ni)k, nj). Here the k transitions from
ni to nj are done with the BACK button, and the shortest
path from nj to ni is taken each time to reach the BACK
edge. In our experience, cycle (nj , . . . , ni, nj) is invariably a
neutral cycle: resource usage growth over multiple repetitions
is unexpected and suspicious. Coverage of cycles involving
BACK edges may expose leaks that depend on the interplay
among several activities. For example, we have observed cases
where coverage of single-activity cycles (e.g., ROTATE cycles)
does not expose a leak, but coverage of cycles with BACK
transitions triggers the leaking behavior.

Application-specific neutral operations. We also consider
cycles involving pairs of operations that “neutralize” each
other. For example, node n2 in Figure 3 has two self-transitions
“zoom in” and “zoom out”, triggered by two of the buttons
shown at the bottom of Figure 2(b). The zooming-in operation,
followed by the zooming-out one, should have a neutral effect,
and a neutral cycle can be defined with these two operations.
Other examples include connecting to/disconnecting from a
server, opening/closing a file, adding an email account and
then deleting it, etc. In addition, a single operation that only
refreshes the GUI state of an activity (e.g., refreshing a list of
email messages) should have neutral effect on resource usage.

Test case context. For a neutral cycle (ni, . . . , ni), any
executable test case must contain a prefix path (s, . . . , ni)
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1 // @PreCondition
2 // A PDF file at position 3 of list
3 void test_n3_BACK_n2() {
4 robotium.clickInList(3); // n1 -> n2
5 // Cycle: n2 -> n3 -> n2 -> ...
6 for (int i = 0; i < k; i++) {
7 robotium.clickOnMenuItem("About");
8 robotium.goBack();
9 }
10 }

Fig. 4. An example of a generated test case.

where s is the start state. How should this prefix be chosen?
In our current approach, we choose the shortest path from s
to ni. However, context-sensitive variations of the coverage
could also be defined, where different execution contexts for
the neutral cycle (i.e., different prefix paths leading to ni) need
to be covered. Making such choices is very similar to defining
different calling contexts for functions in code analysis and
testing, and presents interesting opportunities for future work.

B. Test Generation and Execution

Given a GUI model and a coverage goal, test generation
can be achieved by traversing paths in the model. We have de-
veloped LEAKDROID, a tool that implements this approach. In
the generated test cases GUI events are triggered with the help
of the Robotium testing framework [31]. A test case is shown
in Figure 4. It corresponds to a path (s = n1, (n2, n3)k, n2)
in the GUI model from Figure 3, and covers the BACK edge
from n3 to n2. The start state is n1. Line 4 makes an API call
to select the third list item, assuming that the item represents a
PDF file, and makes the transition to state n2. The loop at lines
6–9 executes k repetitions of a neutral cycle that involves the
BACK edge n3 → n2. The call at line 7 selects a menu item,
and the call at line 8 presses the BACK button. The API calls
for GUI events are generated automatically by LEAKDROID
based on the given model and the coverage goal. The tool
input also includes information about application-specific pairs
of operations with neutral effects (e.g., open/close) and single
neutral operations (e.g., refresh). Data-specific elements (e.g.,
choosing the third list item at line 4) are subsequently provided
by the tester. We found that the manual effort for this is
trivial—once the Robotium calls are generated automatically,
test setup (e.g., setting up an SSH host name at a specific
position in the host list, or a file name at a certain position in
the file list) is very easy.

During test case execution, various resources can be mon-
itored. Currently we collect the following measurements.

Java heap memory. This is the memory space used to store
Java objects. Existing memory leak detection techniques for
Java typically focus on leaks in this memory space. The space
is automatically managed by the garbage collector, so there
can be leaks only when unused objects are unnecessarily
referenced. Note that some resource leaks (e.g., leaking of
database Cursor objects) also exhibit usage growth in this
memory space.

Native memory. This memory space is used by native code,
and is made accessible to Java code via JNI (Java Native
Interface) calls. It requires explicit memory management by
the developers as in programs written in non-garbage-collected

languages such as C/C++, and thus could suffer from all
well-known memory-related defects in those languages (e.g.,
dangling pointers, double-free errors). For example, the native
recycle method of the Bitmap class has to be explicitly
called to prevent leaking of native bitmap objects. This mem-
ory space is particularly important to monitor as many Android
applications make heavy use of native code and thus native
memory.

Binders. Binders provide an efficient inter-process communi-
cation mechanism in Android. In essence, a binder is the core
component of a high-performance remote procedure call (RPC)
mechanism directly supported by the underlying Linux kernel
in the Android operating system. Usage of binders requires
creation of global JNI references, and these references are
made visible to the garbage collector. Unnecessarily keeping
these references could lead to leaking of other potentially large
Java objects. The global JNI references are deleted in native
methods called by the finalizer of android.os.Binder, so
the number of Binder instances is a good indicator of whether
unnecessary JNI references are kept. There is likely to be an
underlying software defect if this number grows significantly,
and we collect measurements of it to identify binder leaks.
Such leaks are distinguished from memory leaks because they
are related to an Android-specific feature and behavior, which
allows more precise diagnosis of the root problem.

Threads. Threads are usually created to perform time-
consuming operations in a GUI application to maintain good
responsiveness. For example, the e-book reader VuDroid [32]
creates new threads to compute rendering data for requested
files. A buggy implementation could hang thread execution,
while new threads are being created. A sustained growth in
the number of active threads in an application is an indication
of software defects, and thus the proposed testing approach
collects measurements of the number of active threads.

All of the discussed measurements can be easily collected
via system services provided by the Android platform, and
does not require any code changes or system modifications.
To reduce the running time for test execution, we stop a test
case early if it does not exhibit a pattern of growth. Various
techniques can be used to decide whether a test case should be
stopped. Currently we use a technique which monitors resource
usage for 500 repetitions of the neutral cycle, performs linear
regression on the measurements, and stops the test case if
the rate of growth is below a certain threshold (e.g., less
than 5% memory growth per hour). Although simple, this
technique stops early the majority of test cases (76% in our
experiments), allowing testing resources to be focused on a
smaller set of test cases with non-trivial growth in resource
usage. Each such “suspicious” test case is executed until it
fails or until a predefined limit on the number of neutral cycle
repetitions is reached. An interesting observation is that some
non-failing test cases exhibit slow-leak behavior: there is a
pattern of slow growth that may indicate an underlying defect.
Our current reporting and evaluation focus only on failing test
cases, in which a defect is clearly manifested; slow leaks will
be investigated in future work.

C. Diagnosis of Failing Test Cases

When a test case fails, various techniques can be used to
diagnose the root cause. For example, heap snapshots and
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object reference graphs derived from them are available in
a number of tools (e.g., [6]). Information derived from such
graphs is often analyzed manually to understand memory usage
and diagnose memory leaks in Android applications [33].
Various automated analyses of heap graphs have also been
proposed (e.g., [8], [10]). Such analyses can potentially be
extended to reflect the structure of the generated test cases.
For example, a crashing test case that exhibits memory growth
can be re-executed with a small number n of repetitions of the
neutral cycle. As the test case is running, a heap snapshot
is taken after each cycle repetition. After re-execution, n
heap snapshots H1, H2, . . . ,Hn are available, and n− 1 heap
differences ∆i = Hi+1 −Hi can be computed and analyzed.
Our initial experience with manually applying this approach
was very promising, and helped to identify the causes of all
memory-growth test cases we observed. The diagnosis was
performed with the help of the MAT memory analysis tool [6]
(which is commonly used by Android developers [3]), followed
by code inspection. An interesting question for future work
is how to apply this approach to automated heap-differencing
techniques (e.g., [8], [10]) and how to generalize it for analysis
of native memory and resources other than memory.

IV. EVALUATION

We evaluated the proposed testing approach on eight open-
source Android applications. The test cases were generated
with our LEAKDROID tool. We debugged all failing test
cases and identified the underlying defects. All experiments
were performed in the standard Android emulator from the
Android SDK. The experimental subjects, their GUI models,
the test cases, the description of identified defects, and the
source code of LEAKDROID are all publicly available at
www.cse.ohio-state.edu/presto/software.

A. Study Subjects

We used search engines to establish a set of potential study
subjects. The subjects were restricted to open-source Android
applications; however, the proposed approach can be easily
applied to applications without publicly accessible source code.
Applications that were less popular (e.g., with only a few
installs) or not well-maintained (e.g., applications without a
bug database, with only a few commits) were excluded from
consideration. For an initial set of candidate applications, we
searched their bug databases and code commit log messages.
Search terms such as “leaks” and “out of memory error” were
used to identify application versions that may contain leak
defects. During or after this process, we did not examine
carefully the bug reports and code commits, in order to ensure
that the test cases generated by our approach were not biased
toward any particular existing faults.

Characteristics of the study subjects are shown in the first
five columns of Table I. The number of application classes
that subclass android.app.Activity is shown in column
“Activities/States”. Even for applications with only a few activ-
ities (e.g., APV), there could be several dozen other application
classes to provide supporting functionality for the activities,
which can lead to complicated run-time behavior. Each activity
shown in “Activities/States” corresponds to a state in the GUI
model. Column “Transitions” shows the number of edges in

the model. This number does not include implicit application-
independent self-transitions (that is, ROTATE, HOME, and
POWER transitions). The applications represent a variety of
domains: e-book/PDF readers (APV, FBReader, VuDroid), to-
do list management tool (astrid), email client (K9), SSH
client (ConnectBot), password manager (KeePassDroid),
and multimedia player (VLC).

B. Experimental Methodology

For each application, test cases were generated (as de-
scribed in Section III-B) to achieve complete coverage with
respect to the test coverage criteria defined earlier. Since
ROTATE/HOME/POWER transitions exist for each state in the
GUI model, the test cases are guaranteed to cover each activity
in the application. Next, all generated test cases were executed
as described in Section III-B. During execution, usage mea-
surements for various resources were collected for detection of
growth patterns. When a test case fails, these measurements
provide some initial clues as to what type of resource is leaking
and what could be the underlying defect. For each failing test
case, we investigated the application (using code inspection
and a memory analysis tool) to determine the root cause of the
failure and whether this cause was indeed related to resource
leaks. Details of this investigation are presented in Section V.

On average the execution time for a failing test case is
less than two hours, with the majority of test cases failing
in less than an hour. These times are artificially inflated due
to a particular deficiency of our initial implementation. When
firing an event through a Robotium call (recall Figure 4), it is
necessary to wait until the effects of the event are processed by
the application and shown in the GUI, so that the next event
can be fired on the updated GUI. In our current prototype
implementation we automatically introduce a large delay after
each event in the test case. It is an interesting open problem
how to automatically fine-tune the durations of these delays in
order to reduce test execution time; we plan to investigate this
problem in the near future.

C. Detection of Leak Defects

The rest of Table I shows measurements to demonstrate the
effectiveness of the coverage criteria in detecting leak-related
defects. Shown in order are the number of generated test cases,
the number of failing test cases due to memory leaks, the
number of failing test cases due to thread leaks, the number of
failing test cases due to binder leaks, and the number of unique
leak defects exposed by these failing tests (and confirmed by
us through investigation of the source code).

Column “Test Cases” shows how many test cases were
generated based on the coverage criteria described earlier. The
test cases tend to be relatively small: on average, the number
of Robotium calls per test case (i.e., the number of events
fired) was 4.04. As discussed in Section III-B, some of these
test cases were filtered out early in their execution: we used
a filtering approach to detect growth patterns and stop test
cases that are not likely to cause sustained growth in resource
usage. This approach was quite effective, and only 24% of the
generated test cases needed to be executed further after the
filtering step. Test cases that cover the POWER events are not
included in these measurements, because we did not observe
any resource usage growth related to these events.
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TABLE I. CHARACTERISTICS OF STUDY SUBJECTS, AND EXPERIMENTAL RESULTS.

Application Version Activities/ Transitions Classes Test Memory Thread Binder Unique
States Cases Leaks Leaks Leaks Defects

APV r131 4 16 56 22 1 0 0 1
astrid cb66457 11 27 481 40 3 0 0 1

ConnectBot e63ffdd 9 27 301 32 3 0 10 3
FBReader a53ed81 22 31 757 30 6 0 0 2

KeePassDroid 085f2d8 7 30 126 33 4 0 1 4
K9 v0.114 15 45 418 57 4 0 16 4

VLC dd3d61f 8 22 176 32 4 0 0 2
VuDroid r51 3 11 67 17 0 2 0 1

A test case is included in column “Memory Leaks” when
a crash is caused by a memory leak that leads to an out-of-
memory error. It can be a memory leak in either the managed
heap or the native heap. These memory leaks could have
various underlying reasons, and some of them are related to
inappropriate management of resources—for example, leaking
of bitmap objects, database cursors, and event listeners. Some
of these resources have memory budgets (e.g., bitmaps). Ex-
ceeding the budget limit will immediately lead to an out-of-
memory error, although there could still be sufficient memory
space left in the heap. Thus, it is important to force immediate
reclamation of such resources when they are no longer needed.

“Thread Leaks” refers to the test cases that have a large
number (100 in our experiments) of simultaneously active
threads. It is our experience that an application exhibiting
such behavior is very likely to have a thread leak problem,
and it is unnecessary to wait until it exceeds the system-wide
limit on the number of threads, which is usually even larger
(4096 for Android). In fact, such test cases could crash very
quickly when the amount of memory reachable from each
newly-spawned thread is substantial.

In the Android emulator, there is a system-wide limit on
the maximum number of global JNI references. When an
application exceeds this limit, the emulator crashes. Although
this limit by default is not enabled on real Android devices,
exceeding it is still an indication of software defects. As
discussed earlier (Section III-B), usage of binders requires
creation of global JNI references. So, there will be a crash
when an application keeps creating new binder objects and
maintains references to them. Column “Binder Leaks” counts
the number of failing test cases that fall into this category.

The last column in the table shows the number of defects
that are responsible for the failing test cases. Details on some
of these problems are presented shortly. Among the 18 defects
discovered, only 6 could be connected to existing bug reports
and code commit logs; the remaining 12 were previously
unknown. For the 6 defects related to existing reports/commits,
this relationship was established (by examining bug reports
and commit logs) only after the defects were uncovered by
the generated test cases and confirmed by code examination.
The 18 discovered defects were exposed using only a system-
atic model-based test generation approach, without any prior
knowledge of their symptoms and root causes.

Note that it is impossible to ascertain how many leak
defects actually exist in the studied applications. The vast
majority of bug reports are vague and do not provide enough
information to construct an actual test case to reproduce the
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Fig. 5. Failing test cases for each category of neutral cycles.

failure, or to identify its root cause. Similarly, code commits
typically have short and uninformative commit messages, again
without details on how to reproduce the incorrect behavior
being fixed. Only after generating our model-based test cases
and debugging the failing ones, we have been able to determine
that some existing bug reports and code commits are referring
to the same defects.

D. Defect Detection for Coverage Criteria

We have defined and used several coverage criteria to
target various types of neutral cycles. To understand the
leak detection capabilities of each kind of neutral cycle, we
categorized failing test cases based on the type of cycles they
exercise. Figure 5 provides a summary of this study. The
chart shows the numbers of failing test cases that exercise a
neutral cycle to cover ROTATE transitions, HOME transitions,
BACK transitions, and application-specific operations (a single
neutral operation or a pair of neutralizing operations). The
last two categories of neutral cycles exhibit the best ability to
uncover leak defects. These cycles often involve both resource
allocation and reclamation (reclamation could be missing if
the application has a leak defect). Application-independent
cycles (i.e., cycles defined by ROTATE, HOME, and POWER
transitions) have weaker leak detection capabilities. As men-
tioned earlier, test cases that exercise POWER transitions were
excluded from the presented measurements because they do not
exhibit leaking behavior in any of the applications we studied.
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V. CASE STUDIES

This section presents several case studies to demonstrate
the resource leak problems we found in the studied appli-
cations. The leak problems were confirmed by code fixes
written either by the application developers or by the authors.
The detailed description of these defects can provide insights
into possible new approaches for detection, diagnosis, and
prevention of leaks in Android applications.

APV. As discussed earlier, there is a leak in native memory
for APV. The application crashes with a large native memory
footprint due to incorrect implementation in native memory
reclamation. This crash is triggered by the neutral cycle n1 →
n2 → n1 in Figure 3. This defect cannot be easily discovered:
examining the Java source code alone, the resource seems to
be properly managed. It is also not easy to fix this problem due
to lack of heap profiling tools for the native memory. In fact,
after we discovered this defect during testing, we examined the
code repository and observed that it took the developers several
revisions to fix this problem. As native code and native mem-
ory are more heavily used in Android applications, compared
to traditional server and desktop Java applications, new testing
and diagnostic tools/techniques specifically targeting the usage
of native memory are greatly needed for the Android platform.

ConnectBot. SSH client ConnectBot has a defect related to
leaking of event listener objects. TerminalView represents
the graphical interface of an SSH session, and it is a listener
for font size changes. When onStart of ConsoleActivity
is called, a new TerminalView is created and added to a
container of listeners. However, it is never removed from the
container. When onStart is called multiple times on the same
ConsoleActivity object, TerminalView is leaked. One
way to trigger this behavior is to start ConsoleActivity first,
and then repeatedly go to the HOME screen and go back. Note
that this leak cannot be triggered by rotation events, because a
new ConsoleActivity is created whenever rotation occurs.
This is an example showing why both ROTATE and HOME
events should be considered for test coverage.

KeePassDroid. This password management tool saves user-
provided login credentials in a password-protected database
file, so that users can access them with one master pass-
word. Multiple database files can be maintained. When the
application is first launched, it displays a list of database
files in FileSelectActivity for the user to choose. When
a database file is selected, a query is launched to retrieve
the information in the file, and the result can be accessed
through a Cursor object. The Cursor is remembered in a
container so that it can be synchronized with the activity
(i.e., it has the same lifecycle as the activity). The Cursor
object is automatically cleaned up when its managing activity
is destroyed. However, when we keep the same instance of
FileSelectActivity alive, and come back to the selection
list to select database files repeatedly, multiple Cursor objects
would be saved in FileSelectActivity. Several crashing
test cases are caused by this problem. A whole hierarchy of ob-
jects representing the query results are reachable from Cursor
objects, leading to fast growth in memory consumption. A sim-
ilar problem was also found in the astrid application. This is
an important pattern to consider, because Android applications
often interact with the built-in SQLite database, and Cursor
objects are used to access the results of SQL queries. Testing

the interactions between the application and the database is an
important consideration for Android software development.

K9. In K9, a popular email client, a leak was discovered
when rotating the screen after an email message is selected
for display. Since it crashes after only a few repetitions of the
ROTATE neutral cycle, this is an example of a leak that can
be easily observed and thus cause negative user perception of
the application. Heap snapshots suggest that a large number of
objects are kept alive through a few Thread objects. The only
code that creates threads is in MessageView, an activity that
displays individual email messages. The threads are executed
with the help of a thread pool executor, and because of this
they are not explicitly started by calling start on them. In
the standard library used by Android, a thread whose start
method is never called is guaranteed to be leaking due to
complex interplay between threads and thread groups. Since
a leaking thread keep references to MessageView, a whole
hierarchy of GUI objects are kept alive, leading to a quick
crash. A simple fix is to create a Runnable object rather than
a Thread object. Our understanding of the behavior of Thread
and ThreadGroup was also confirmed by Android platform
developers.1 This is an example where a seemingly-innocent
mistake (using Thread instead of Runnable), together with
the unexpected behavior of the platform code, lead to problem-
atic behavior. In fact, we have seen other leaks in the platform’s
management of resources (e.g., binders), in which case the
application code does not have any defects, but still crashes.
These observations highlight the need to repeatedly exercise
resource-management code during testing, in order to expose
unexpected interactions with the Android platform.

VLC. VLC is a popular cross-platform multimedia player. A
leak was exposed when screen rotation is performed multiple
times on its AboutActivity. This activity is implemented as
a FragmentActivity, a new feature introduced in Android
4.0 and ported back to earlier versions. A fragment activity can
manage Fragments, more flexible containers of GUI com-
ponents. Fragment objects are created in AboutActivity
and registered with the platform. Heap snapshots indicate that
many fragments are kept alive. By default, the state of a
FragmentActivity is (silently) saved and restored by the
platform. In particular, all registered fragments are saved in
memory before the activity is destroyed, and then restored
from memory before it is recreated. Because of this behavior,
Fragment objects created inside AboutActivity can never
be garbage collected. For the developers this is an unexpected
change to the management of an activity’s lifetime, caused
by this new Android feature. Subsequently we discovered that
a later version of VLC disabled this default save/restore (by
overriding relevant callback methods), which fixed the leak.
This defect illustrates how new features introduced in the still-
evolving Android platform can lead to defects due to poor
understanding, which in turn motivates the need for regression
testing and comprehensive strategies for test generation.

Application-specific neutral operations. We observed several
examples where a leak is triggered by a neutral cycle with an
application-specific functionality. For example, in the astrid
task management application, database cursors are leaked

1groups.google.com/d/topic/android-platform/
y3G7v_U-hvA/discussion
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when the user changes the sort order of tasks, and then reverts
back to the original order. Similarly, adding and then removing
a task causes a cursor leak. The application-specific neutral
cycles we consider for coverage are rather simple: they either
involve a pair of neutralizing operations (e.g., add/remove,
open/close) or a single operation that updates the displayed
content (e.g., to refresh the current, unchanged list of email
messages in K9). Currently, these cycles are provided as input
to LEAKDROID. Automatic identification of such cycles, and
perhaps even static analysis of their correctness with respect
to leaks, are interesting problems for future work.

A. Discussion

Among the exposed defects, a diversity of resources are
involved. Examples include not only traditional leaks such
as memory leaks and thread leaks, but also Android-specific
leaks such as binder leaks. Even for defects that exhibit the
same “out-of-memory error” symptom, the underlying relevant
resources could be different. Bitmaps, database cursors, and
event listeners are some examples that fall into this category.
Leaks caused by defects inside the Android platform and
the standard library were also uncovered. This experience
suggests that the proposed testing approach can effectively
expose diverse resource leaks across a variety of applications.

Our experiments and case studies indicate that systematic
model-based testing for resource leaks in Android software can
be done effectively. They also point to interesting directions
for future work. First, leak patterns based on neutral cycles
can be leveraged to develop automated leak diagnosis tools.
Based on our experience, we believe that a substantial part
of the diagnosis process can be automated. It is particularly
useful to identify strong correlations between the number of
executed repetitions and the growth in the number of instances
of certain classes. Allocation of and references to instances
of classes that exhibit such correlations are usually related
to the leak defects. Second, it is beneficial for understanding
of resource usage/leaks to have analysis techniques that can
automatically identify methods related to resource manipula-
tion (e.g., allocation and reclamation). To achieve this goal,
both static and dynamic analyses techniques may have to be
developed. Finally, it is important to consider new mechanisms
for prevention of resource leaks, with the help of better
software abstractions and patterns for resource management.

VI. RELATED WORK

Memory leak detection and diagnosis. There exists a body of
work on static analyses for memory leak detection. Typically
these approaches target unmanaged languages such as C and
C++. The few existing static leak detectors for Java can be very
expensive, their false positive rates are not well understood,
and it is unclear how to apply them to Android. There is also
work (e.g., [34]) on static detection of resource leaks. These
analyses typically require specification of resource manage-
ment contracts/patterns; at present, it is an open question how
they can be effectively used for Android software.

A practical alternative are dynamic analyses of memory
leaks, both for managed (e.g., [7]–[11], [13]) and unmanaged
languages (e.g., [12]). These approaches do not answer a key
question: how can the leaking behavior be triggered during

testing? An important contribution of our work is the insight
that resource leaks in Android applications are often based on
a few behavioral patterns, which allows targeted generation of
tests to expose leaks of memory and other resources.

For memory leak debugging for Java, existing tools (e.g.,
[6]) can visualize and summarize object reference graphs
from heap snapshots to help find unnecessary references.
DePauw and Sevitsky [7] propose visualization for a period
of time when temporary objects are expected to be created
and released. LeakBot [8] formulates structural and tempo-
ral properties of reference graphs to detect memory leaks.
Sleigh [9] encodes allocation/access sites in a single bit per
object to enable low-overhead staleness detection. Cork [10]
uses heap summarization to identify sustained growth of object
instances. Leaks caused by unnecessary references stored in
containers have been targeted through container profiling [11].
Xu et al. [13] target leaks due to repeated transactions, and
use object lifetime assertions to identify leaking objects and
their reference paths.

The proposed test generation strategy, based on coverage
of various categories of neutral cycles, provides an effective
mechanism for triggering the leak symptoms analyzed by all
these diagnosis approaches. As discussed in Section III-C, the
repetitive nature of the generated test cases presents inter-
esting possibilities for custom variations of heap-differencing
techniques (e.g., [8], [10]) and transaction-based leak diag-
nosis [13]. Future work may also consider generalizations of
these approaches for analysis of native memory and resources
other than memory.

Model-based GUI testing. Finite state machines and similar
models for GUI testing have been used by a number of
researchers (e.g., [15]–[25]). Given a GUI model, test cases
can be generated based on various coverage criteria (e.g.,
[16]). In these approaches the focus is typically on functional
correctness and the coverage criteria reflect this. In contrast, we
are interested in non-functional properties, and the coverage
categories we define explore specialized paths in the model
(with multiple repetitions of a neutral cycle) in order to target
common leak patterns. An alternative to model-based testing
is random testing. For example, Hu and Neamtiu [27] use
the Monkey tool [35] to randomly insert GUI events into a
running Android application, and then analyze the execution
log to detect faults. Random testing is highly unlikely to trigger
the repeated behavior needed to observe sustained growth in
resource usage.

Reverse engineering of GUI models has been studied by
others (e.g., [17], [20], [29]) and has been applied to Android
applications (e.g., [22]–[26], [30], [36]). Several techniques
have been proposed to improve the precision of models and
the test cases generated from them (e.g., [37]–[39]).

Testing and static checking for Android. Prior work has
considered the use of concolic execution to generate sequences
of events for testing of Android applications [40], [41]. Zhang
and Elbaum [42] focus on testing of exception-handling code
when applications are accessing unreliable resources. As an
alternative to testing, static checking can identify various
defects including invalid thread accesses [43], energy-related
defects [44], and security vulnerabilities [45].
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VII. CONCLUSIONS AND FUTURE WORK

We propose a systematic and effective technique for testing
of resource leaks in Android applications. Neutral cycles—
sequences of GUI events that should not lead to increases
in resource usage—are used to define test coverage criteria.
Evaluation of this approach indicates that complicated and
diverse resource leaks can be exposed by the generated test
cases. These promising initial results suggest that such a
testing technique is feasible and effective for detection of
resource leak defects. Our investigation also points to several
important directions for future work, including additional cov-
erage criteria; better diagnosis techniques (e.g., by correlating
repeated behavior with heap growth); increased focus on
analysis of native memory as well as analysis of specific
resources (e.g., database cursors, bitmaps); automated static or
dynamic discovery/analysis of code that allocates and reclaims
important resources; improved resource management through
new software abstractions and patterns.
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