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INTRODUCTION 

The SYMBOL system is the result of a major develop­
mental effort to increase the functional capability of 
hardware. Part of the charter of the broad based proj­
ect was to reexamine the traditional division between 
hardware and software, to reexamine the respective 
roles of program instruction and data storage, and to 
reduce the overall complexity and cost of computing.! 
In order to adequately evaluate the concepts that had 
been developed it was concluded that an experimental, 
usable, real system must be built. The SYMBOL sys­
tem, now operational, is the embodiment of this effort. 

The system was developed in an environment with 
hardware and software design considered in common. 
Virtually no one associated with the project could refer 
to himself as a hardware or software specialist exclu­
sively. As an example, the logic design of the field 
process units was done by an individual with a basic 
programming background.2 The wire routing automa­
tion was developed by an engineer who Was formerly a 
pure logic design specialist. 

Even before the system became operational much 
had been learned about the practical aspects of building 
highly capable hardware. No claim is made that 
SYMBOL represents an optimum general purpose, 
time-sharing, multiprocessing system. In contrast, 
numerous simplifying assumptions were made in the 
system where they did not serve the goals of the proj­
ect. Certain modularity restrictions are examples of 
this. It is claimed that SYMBOL represents a signifi­
cant advance in systems technology and provides the 
foundation for a significant reduction in the cost of 
computing. As the system moves into an intensive 
evaluation phase it should prove to be a real asset for 
advanced systems research. 
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This paper represents an overview of the SYMBOL 
organization. An attempt is made to give simplified 
examples of various key features in contrast to a broad 
brush treatment of many topics. 

GROSS ORGANIZATION 

The system has eight specialized processors that 
operate as autonomous units. Each functional unit is 
linked to the system by the Main Bus. See Figure 1. 
Consider some of the features of the system and their 
relationship to the gross processor organization as out­
lined in the following sections. 

Dynamic memory management 

Direct hardware memory management is perhaps the 
most unique feature of the SYMBOL system. The 
memory management centers around a special purpose 
processor called the Memory Controller (MC). The 
MC effectively isolates the main memory from the 
main bus and the other processors and in turn provides 
a more sophisticated storage function for the various 
processors. In contrast to simple read/write memory 
operations the MC has a set of fifteen operations that 
are available to the other processors of the system. 
The Me is a special purpose processor that allocates 
memory space on demand, performs address arithmetic, 
and manages the associative memory needed for paging. 
The Memory Reclaimer (MR) supports the MC by 
reprocessing used space to make it available for subse­
quent reuse. It is a separate unit to allow the task to 
be performed using a low priority access to the memory. 
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Figure 1-Gross block diagram of the SYMBOL system 

Direct compilation 

The Translator (TR) accepts the high level SYMBOL 
language3 as input and produces a reverse Polish object 
string and name table suitable for processing by the 
Central Processor (CP). The TR performs the direct 
hardware compilation using only a small table of about 
100 words stored in main memory. 

Dynamic variable field length 

Within the Central Processor all field processing is 
done with dynamically variable field lengths. All alpha­
numeric string processing is done by the Format 
Processor (FP) while all numeric processing is done by 
the Arithmetic Processor (AP). The resources of the 
MC are used extensively by the CP in handling the 
storage of data. 

Dynamically variable data structures 

Complete variability of data structures is allowed. 
They can change size, shape, and depth during process­
ing. Within the CP the Reference Processor (RP) 
manages the storage and referencing of all data arrays 
and structure. The M C functions are used extensively 
by the RP. 

Time-sharing supervision 

The System Supervisor (SS) is the task scheduler for 
the system. All transitions from one processing mode to 
another are handled by the SS. Queues are maintained 
for all of the time-shared processors. The SS executes 
two important hardware algorithms, job task schedul­
ing and paging management. A real-time clock is used 
in the process of rationing out critical resources such as 
central processor time. The SS also performs key in­
formation transfers needed to tie hardware algorithms 
into software system management procedures. 

Direct text editing 

The Interface Processor (IP) and Channel Controller 
(CC) perform the input/output tasks of the system. 
The IP has ability to handle general text editing in 
support of interactive communication via a special 
terminal. Input/output and text editing do not use the 
CP resources. 

Virtual memory management 

When the M C detects that a page is not in main 
memory it notifies the requesting processor and the 
system supervisor. The SS then utilizes a paging algo­
rithm to supply the appropriate disk transfer commands 
to the Disk Controller (DC). Each user of memory 
must, upon receiving a page-out response, be able to 
shut down and save its current state and status and 
restart after paging is complete. 

Figure 2-Breakdown of the SYMBOL hardware showing the 
relative sizes of the various processors 
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SYSTEM CONFIGURATION 

The system has a small complement of peripheral 
and storage equipment associated with the main frame. 
This complement of equipment has proven sufficient 
for the experimental purposes of the system. The main 
memory is an 8K word X 64 bit/word core memory 
with a cycle time of 2.5 microsec. It is organized into 32 
pages with 256 words/page. The main paging memory 
is a small Burroughs head-per-track disk divided into 
800 pages. The bulk paging memory is a Data Products 
Disk-file organized into 50,000 pages. 

The Channel Controller is designed to handle up to 
31 channels. This low limit was deemed sufficient for 
evaluation of the experimental system. As of this writ­
ing one high ~peed (100,000 bits/sec. effective data 
rate) channel and three phone line (up to 2400 baud) 
channels have been implemented. More can be added 
during the evaluation phase. 

The main frame contains about 18,000 dual in-line 
CT.uL components. Its physical properties are described 
in other papers.4, 5 In order to get a relative measure 
of the size of the various autonomous processors a 
chart is given in Figure 2. 

SYSTEM COMMUNICATION 

The main bus of the system is a time-shared, global 
communication path. It uses the special properties of 

Fi~ure 3-Use of the main bus for control exchange cycles 
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the CT.uL family in its implementation.4,5 The bus 
contains 111 parallel lines. They are distributed as 
follows: 

Data Bus 64 
Address Bus 24 
Operation Code Bus 6 
Terminal Identification Bus 5 
Priority Bus 10 
System Clock 1 
System Clear 1 

Four types of bus usage are available. They are: 

Processor to M C transfers 
M C to Processor transfers 
Processor to Processor transfers 
Control exchange cycles 

The basic information transfers are priority se­
quenced. The priority bus indicates the desired bus 
usage for the following cycle; if a unit desires to use the 
bus it raises its priority line and then checks the pri­
ority bus to see if there are any higher priority requests. 
If not it uses the bus on the following cycle. 

Control exchange cycles are used to communicate 
control information between the SS and the various 
processors over the data and address buses. See Figure 
3. During a control cycle the data and address bus lines 
have preassigned uses. Certain lines are used to start 
the CP. Others indicate the completion mode for the 
TR. During a given cycle any combination of the paths 
can be used. The SS has autonomous interface control 
functions that are used to communicate with the pro­
cessors during control cycles so that more than one 
control signal can be transmitted during a given cycle. 

MEMORY ORGANIZATION 

Virtual memory 

The SYMBOL memory is organized as a simple two­
level, fixed page size virtual memory.6 The page has 
256 words with each word having 64 bits. Virtual 
memory is accessed by a 24 bit address with 16 bits 
used to select the page and 8 bits to select a particular 
word within a page. See Figure 4. 

The main memory for the experimental system is 
logically divided into 32 pages. The relative portion of 
the address is used directly while the page number 
accesses an associative memory which in turn supplies 
the current page address in main memory. 

The associative memory has one cell for each page 
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Figure 4-The simple two level addressing structure for the 
virtual memory 

in the main memory. By providing an associative mem­
ory tied to the main memory the individual processors 
need not be concerned with the location association 
process. This provides a significant reduction in the 
logical complexity of the processors even though it may 
lead to slightly more overall electronics. 

The paging disk memory has fixed assignment of 
page locations. See Figure 5. A page is brought into an 
available location in main memory upon demand. When 
it is purged back to disk it is transferred back to the 
same location on disk. (The return transfer is omitted 
if the page was not changed in main memory.) 

The main memory organization is shown in Figure 6. 
The first page is used for system tables. This includes a 
reserved word table for the translator, a software call 
table, and the control words for memory allocation and 
queuing. The next set of pages are used for storing the 
control words of the various terminals or users on the 
system. Each active terminal has 24 words of control 
information in low core. Much of the control informa­
tion could have been placed in virtual memory as 
would certainly be required for a system with a larger 
channel capacity. As a simplifying restriction for SYM­
BoL all channel tables were placed in main memory. 

The input/output buffers for the various active 
channels are also held in core. The buffers require 16 
words per active channel. Variable buffer sizes although 
possible were not implemented. 

The remainder of main memory is available for 
virtual memory buffering. Paging is managed by the 
hardware with the page selection for purging under the 
control of the system supervisor. The algorithm is a 
very flexible parameterized process that allows most of 

the conventional paging algorithms to be executed. The 
parameters are maintained for each terminal so that 
the paging dynamics can be tailored on a terminal by 
terminal basis. 

The virtual memory organization is quite simple for 
SYMBOL in contrast to the more common segmenta­
tion schemes.7,8 The primary difference that allows the 
simplified approach to be taken in SYMBOL is that 
contiguous addressing above the page level is not 
needed. All users and channels share the same virtual 
memory space. The 24 bit address space is thoroughly 
used. With space allocated only upon demand and with 
no restriction on a scrambled assignment of pages to 
users it is anticipated that 24 bits will be sufficient for 
many more than the 31 possible terminals. If file space 
is needed beyond the 24 bits of address space it can be 
addressed via special block input/output transfers. 

Page lists 

Pages are associated together with the use of linked 
page lists. Pages available for assignment are main-

Main Memory 

AsSOCiative 
--~ Memory 

Paging Memory 

Figure 5-Virtual memory organization showing the fixed location 
of pages in the paging memory 

From the collection of the Computer History Museum (www.computerhistory.org)



tained on an available page list. As each user needs 
space a user page list is started by transferring a page 
from the available page list to the particular user. A 
control word is established at this time as a focal point 
for all future page list management for the user. As 
more space is needed pages are added to form a variable 
length storage area for general purpose usage. See 
Figure 7. 

A given user may have more than one page list. 
Typical page list usage for a terminal would be one 
page list for program source text, another for the com­
piled object program, and a third for data variable 
storage. Other page lists are used for long or short 
term file storage. 

SYSTEM SUPER-
VISOR TABLES 

1 Page 

TERMINAL 
CONTROL 3 Pages 
TABLES 

INPUT/OUTPUT 
BUFFERS 

1-2 Pages 

+ 
t 

VIRTUAL 
MEMORY 

PAGING SPACE 

,,~ "I" 

Figure 6-Layout of main memory 
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Figure 7-Simplified page list structure within the 
virtual memory 

Page lists grow monotonically as space is needed. 
When an entire list is no longer needed it is given back 
to the system by returning it to the available page list. 

Page organization 

In order to handle non-contiguous address space a 
certain amount of the storage space must be devoted to 
linking or association data overhead. In SYMBOL 
about 11 percent of the storage space is for overhead 
bookkeeping. 

Pages have three distinct information regions as 
shown in Figure 8. The first region called the page 
header is used to maintain the page lists and manage 
the space within the page. The second region is a set of 
28 words. The third region is a set of 28 groups with 
each group containing eight words. Each group has a 
corresponding group link word associated by a simple 
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Figure 8-Page organization showing group and link word layout 
where addresses are given in HEX notation 
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Figure 9-Structure of a variable length string 

address mapping. Consider in Figure 8 word 5 and the 
corresponding group 5. Data is stored in words 28 
through 2F. This eight word group is the fundamental 
quantum of space allocation. It is the smallest amount 
of memory space that is assignable to a given purpose. 

When data is needed for some purpose groups are 
assigned. For example, if six words were needed to 
store a data vector one group would be assigned. If 
space for a vector of 14 one word items were needed 
two groups would be assigned. Variable length informa­
tion areas are developed by chaining together these 
basic units of storage. 

I nf ormation strings 

Variable length lists of storage locations are used for 
general information storage in SYMBOL. They are 
logically contiguous memory cells but not necessarily 
physically contiguous cells. 

Consider a typical variable length information string 
in Figure 9. Data space for 24 words of information is 
tied together by way of the associated group link words. 
If access to the start of the string is known it is possible 
to follow the entire string by accessing the correspond­
ing group link word each time the end of a group is 
encountered. It is also possible to traverse the string 
backwards by using the back links also stored in the 
group link word. 

Each processor uses the variable length storage serv­
ice of the memory controller CIVIC) without cognizance 
of the address sequence that is involved. For example, 
when a processor needs space to store a vector of data 
fields an Assign Group (AG) command is sent to the 
M C along with a tag specifying a page list With which 
the string is to be associated. The MC then selects an 
available group from the page list and returns the- ad­
dress of the first word of the group to the requesting 

processor. When the processor is ready to store a word 
it transmits the data and the address previously as­
signed to the M C along with the command Store and 
Assign (SA). The MC stores the word and generates 
the address of the next available word. When the end 
of the group or string is encountered the MC assigns 
another group and links it into the string. 

In the string storing process the requesting processor 
receives addresses from the MC and resubmits them 
to the MC at a later time for future extension of the 
string. All address arithmetic is done by the Me. Con­
sider the example in Table 1. The first five commands 
result in the words A, B, C, and D being stored in a 
string beginning with word A. 

To reaccess the string the original start address A is 
submitted to the MC with the Fetch and Follow (FF) 
command. The data in cell A is returned along with the 
next address in the logical sequence. When the string 
is no longer needed a Delete String (DS) command 
along with the string starting address is submitted to 
the MC. The entire string is then placed on a space 
reclamation list. The Memory Reclaimer processor 
scans the space reclamation lists of the various page 
lists during idle memory time and makes the groups of 
the deleted strings reassignable. 

The basic memory usage process deals with variations 
of the AG, SA, FF, and DS operations. Eleven other 
memory commands are available to give a full memory 
service complement. 

Space utilization efficiency was an important aspect 
of the SYMBOL memory design. Studies have been 
made into the optimum size of the space .allocation 
group.9 The trade-offs center on balancing the linking 
overhead cost and the unused group fragments cost. 
The overhead cost is compensated by the allocation on 

TABLE I -Simplified example of a memory usage sequence 

SIMPLIFIED EXAJoFlE OF A MEKIRY USAGE SEQUENCE 

ADDRESS RETURN DATA TO RETURN 
~EIOiIC OPERATIOO TO Me ADDRESS Me DATA 

___ ~§ _____ ~~!9!L§!'Q!!I! __________ =____ _ ____ ! __________ = ________ = ___ _ 
___ ~~ _____ ~!Q~_!_~~!9!L ______ !____ _ ____ ~ __________ ~ ________ = ___ _ 
___ ~~ _____ gQ~_!_~~!9'L _______ ~____ _ ____ !: __________ ~ ________ = ____ _ 
___ ~~ _____ g~!!_!_~~~!9!! ________ £____ _ ____ ~ __________ ~ ________ = ____ _ 
___ ~~ _____ g~!!_!_~~!!1!! ________ ~____ _ ____ !L _________ ~ ________ = ____ _ 
___ fL ____ f~!£~_!_f~!1~ ________ !____ _ ____ ~ __________ = ________ ~ ___ _ 

___ fL ____ f~!~_!_fQ!1~ ________ ~____ _ ____ !: __________ = ________ ~ ___ _ 

___ EE___ _E~~£~_!_E~!!~ ________ £ __________ ~ __________ = ________ L __ _ 
___ EL __ .t-_f~!£~_!_E~!1~ ________ ~ __________ = __________ = ________ ~ ___ _ 

OS Delete Strinq a 
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demand approach. In most machines, fixed size data 
arrays are allocated to their maximum needed size. 
When the average array usage is considered a sub­
stantial amount of demand allocation overhead can be 
afforded before approaching the normal excess fixed 
allocation space usage. 

INFORMATION FORMS 

Data fields 

Two basic data types are defined in the system, 
namely string and numeric fields. The string field is 
characterized by a special String Start (SS) character 
followed by a variable length set of ASCII alpha­
numeric characters terminated by a special String End 
(SE) character. This illustrates perhaps the most sig­
nificant aspect of all SYJVIBOL data representations. 
The type and length of the datum is carried with the 
datum. The instruction code is independent of the 
dynamic attributes of the data. 

The second data type is a variable length, packed 
decimal, floating point number. The numeric form also 
carries a designator of the class of precision. Numbers 
may be exact with an infinite number of trailing zeros 
implied or they may be empirical implying that all 
following digits are unknown and cannot be assumed 
present for calculation purposes. Like the string field 
all attributes of the datum are carried by the datum 
itself. 

As a simplifying hardware design decision other forms 
of data fields were not implemented. It is straight­
forward to extend the SYMBOL concepts to packed 
variable-length binary strings, fixed length binary nu­
merics, variable length binary numerics, etc. In any of 
these cases the datum must carry a type designator 
and an explicit or implicit designation of field length. 

(JohnlAI celJ mlEI zabeth) 

I J o h n I 
I A I I c • I 
I J 1m I 
I E I I z a b • 
t h I 
~ 

Figure to-A vector of string fields and the corresponding 
representation of the data in memory 
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Source programs 

Source programs are special forms of string fields. 
They are variable length ASCII character strings with 
delimiters defining length and type. They can be 
treated as data fields during preparation and then later 
used as program source for compilation. Source pro­
cedures may be assembled into libraries of various 
forms as long as they retain the string field attributes 
for compilation purposes. 

Data structures 

Data structures are defined as a variable length 
group of items where an item may be a string field, a 
numeric field, or another group of items. With this re­
cursive definition a structure could be a vector, a ma­
trix, or an irregular array. There is no limit to the depth 
or size of an array providing a field or a group does not 
exceed the size of main memory during execution. 

Consider the example of a simple vector shown in 
Figure 10. The special graphics <, I, and > have been 
introduced for representing field boundaries and group­
ings of fields. They are used to define the extent of 
variable length fields and referred to as left group 
marks, field marks, and right group marks respectively. 
In memory the string fields are delimited by String 
Start (SS) and String End (SE) characters. Another 
special character called the End Vector (EV) code 
terminates a group of fields. The storage representation 
in Figure 10 shows a series of string fields followed by 
a special End Vector (EV) code which again is a length 
indicator with the data. The string fields are aligned to 
start on machine word boundaries. In the case of Eliza­
beth two machine words are needed to store the field. 

In Figure 11 the matrix representation is similar to 
the vector example except that two levels of vectors 
exist. The definition of a structure could be restated as 
a variable length group of items where an item may be 
a string field, a numeric field, or an address link to 
another group. 

Object string and name tables 

When a program is compiled the translator creates a 
reverse Polish string with postfix operator notation and 
a structured name table. The Polish string, called the 
object string, and the name table are the basic informa­
tion forms used during program execution by the cen­
tral processor. The use of a" separate name table during 
execution is perhaps one of the most distinctive de­
partures from traditional processing forms. Where in 
most systems, the program string to be executed con-
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Figure 11-A simple two dimensional array.and the corresponding 
three variable length memory strings that are used 

tains address references to the data space to be utilized, 
with the SYMBOL system the object string contains 
references to entries in the name table which act as a 
centralized point where all information about a given 
identifier is kept. It is this feature that gives the system 
its extreme execution time dynamicism. Whenever the 
nature of an identifier is modified in any way-loca­
tion, size, type, etc., only the name table entry need be 
changed since all references in the object string to an 
identifier must go through this entry. 

The source form of a simple assignment statement 
and the corresponding object string and name table 
are shown in Figure 12. The identifiers are isolated and 
added to the name table when not already there. Note 
that the identifiers can be variable length and have 
more than one word. Associated with each identifier is 
a control word. All references in the object string in­
volving the identifier will point to the corresponding 
control word. The object string is composed of name 
table addresses, literal data (the value 3.2), operators 
in postfix representation, and correspondence links back 
to the source string. The correspondence links are for 
simple error diagnosis and are therefore ignored during 
normal execution. The object string and name table are 
totally independent of the future size and data type of 
the variable. 

Now consider the name table after execution has be­
gun and assume that the data variables have current 
values. In Figure 13 the variables Beta and Gamma are 

Source String: 

Alpha 4-- Beta * 3.2 - (Long Name join Beta) i 

Object String 

A[Alpha] A[Beta] 3.2 * A[Long Name] A [Beta] join- +-; 

Source String Storage 
A I p h a 
B • t a * 
.2-(Lon 
Nam. Jol 

B • t a ) 

Ob' Ject String S~rage: Name Table Storage: 
A .J IAlphal 
A .. t-'-r---\ ---1-
.i3. 2 ~lB. -
L ~ 

t a : -* J L 0 n Q N a 
A 

-~ ------.. m • I 
A 

' .. Ll -
~II 
-
~I 
; ~ 

JTO 
Data 
Values 

Figure 12-Information structure for a simple assignment 
statement 

Data Values: 

Alpha (John Doe /110 Main (30-25IDSR )(39IMS 112» 

Beta /1432.1/ 

Gamma 1 Heading for a report / 

Storage Representation: 

_, A I P h a I 
--'- i .. 

.. e ~B e t a I Nom 
Tab Ie : 1 4 32. 

• G a m m a 
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I--

1 I 
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c::: 
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Figure 13-Examples of a structure and two fields and how they 
are stored into memory along with the name table 
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simple fields. Gamma is a multiword string and there­
fore it is stored in a memory string with a link address 
placed in the corresponding control word. Beta is a 
short field such that it can be stored in one word directly 
in the name table. Alpha is an irregular structure. The 
name table for Alpha contains a link to the first group 
which in turn contains two string fields, two link ad­
dresses, and an end vector mark. The link addresses 
point to two groups, one containing two fields and one 
containing three fields. As execution progresses the 
attributes and storage representation of the variables 
may change. In any event, the name table and the data 
itself will contain all the attributes of the variables. 

BASIC INFORMATION FLOW 

In order to observe how the various processors of 
SYMBOL are used to serve the end users problem 
temporarily ignore the multiprocessing aspects of the 
system. A user at a terminal operates in various modes; 
program loading, program compilation, and program 
execution are the fundamental usage modes. Consider 
the state diagram in Figure 14. A user would start in 
the OFF-LINE mode and by some transitional control 
means he would initialize his tasks into the ON-LINE 
IDLE mode. From here he can go into the LOAD 
mode to develop a program. When he is ready to exe­
cute his program and assuming he is a perfect program­
mer he would have his program compiled and executed. 
At the end of execution he can restart and rerun his 
program or he can return to the LOAD mode and 
modify his program. 

Figure 14-Idealized task flow for one terminal 
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Figure 15-A more detailed block diagram of the SYMBOL 
system showing register configuration and major functions within 

each processor 

The following sections deal with examples of the in­
formation flow for the basic operational modes of a 
terminal. A more detailed system block diagram in 
Figure 15 will be used to support the description. Visu­
alize the time sequence of the terminal operational 
states of Figure 14 in conjunction with the static hard­
ware diagram of Figure 15. 

Load mode 

The LOAD mode is an input/output text editing 
mode. Its primary purpose is for program source load­
ing. In the normal case a separate page list is used to 
store the text string. This area is called the Transient 
Working Area (TWA). 

Three processors work together to perform the text 
editing tasks. The Channel Controller (CC) transfers 
data characters to and from I/O devices from and to 
the I/O Buffers in main memory respectively. When 
the CC detects control characters in the I/O stream it 
communicates the control information directly to the 
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Figure 16-Information flow in the LOAD mode 

SS by way of a control exchange cycle. The CC is a . 
character oriented processor which services up to 32 
processors in a commutating manner. The CC also has 
a high speed (block) operating mode which is priority 
driven to allow servicing of disk and high speed tape 
devices. The block mode is not used in the LOAD or 
normal I/O mode. 

The Interface Processor (IP) operating on a burst 
basis empties or fills I/O buffers and transfers appropri­
ate characters to and from the virtual memorv. The 
IP works with a current text pointer while perf~rming 
its functions. The IP functions include basic text inser­
tion, searching, displaying designated text portions, 
deletion of designated text portions, and moving the 
current pointer. In Figure 16 the basic information flow 
during the LOAD mode is summarized. 

Part of the justification for implementing editing 
functions in hardware came from the desire to eliminate 
the CP from many of the system overhead tasks. In 
addition, response times would be unacceptable if the 
CC were to communicate directly with virtual memory. 
The IP was developed to make the basic transfers be­
tween small buffers and paging memory. Once a special 
processor was developed it was found that many editing 
tasks and double buffering could be handled using es­
sentially the same data transfer hardware. 

This IP /CC/SS process is available for both LOAD 
mode data preparation and program execution· I/O. 
The full text editing facilities are available for any 
program input statement. 

Compile mode 

Program compilation and address linkage editing 
functions are performed by the Translator (TR). The 
TR accepts the language source string from the TWA 

or some other source text area in virtual memory. The 
high level language is converted into a reverse Polish 
string and a structured name (identifier) table. The 
Polish string, called the Object Stri~g, and the Name 
Table may be stored in Virtual Memory on separate 
page lists or on a common page list. The gross flow of 
information in the Translation mode is shown in Figure 
17. 

The TR performs a one pass compilation generating 
the object string as it scans the source string. It also 
builds the name table during this scan on a program 
block-by-block basis. At the end of the source pass the 
TR processes the name table and resolves all global 
references by creating appropriate indirect links. Ex­
ternal procedure references are resolved during the 
name table pass and they are compiled and included 
with the object string as needed. 

The TR includes external procedures by accessing 
procedure source libraries and compiling needed proce­
dures into the object string. The procedure libraries are 
organized into two sets, namely privileged and non­
privileged procedures. Privileged programs differ from 
normal programs in that they can contain privileged 
statements for direct memory manipulation using the 
NrC operations. Storage protection is obtained by con­
trolling the privileged status of user programs and the 
programs that they can reference. Non-privileged pro­
grams have a high degree of storage protection both 
from other programs and from themselves due to the 
hardware storage management and central processor 
algorithms. Programs using privileged statements loose 
some of the protection. By controlling the access to 

Transient 
Working Area 

--------. TRANSLATOR 

Procedure Library 

Ob' ect String 

Name Table 

Figure 17-Information flow in the COMPILE mode 
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privileged programs and the manner in which they are 
used the overall storage protection in the system is 
quite satisfactory for multiterminal operation. 

Execution mode 

The Central Processor (CP) is the execution unit for 
the translated language receiving the translated source 
string along with the nested name table blocks as input. 
Because the CP operates on a high order language­
actually a Polish string, postfixed operator object 
string-the CP uses a push-down stack for its operands. 
That is, the data reference is generated with all indirec­
tions traced out until a memory reference point is 
reached, and then this reference is pushed into the 
stack. This process continues until the postfixed opera­
tors are encountered in the object string. Each operator 
causes the top one or two (monadic or dyadic operator) 
stack entries to be pulled up, processing to take place, 
and the result to replace the operand(s) on the stack. 

Substructure referencing, also known as subscripting, 
is a much more formidable task in SY1VIBOL than with 
conventional systems. This is due to the extremely dy­
namic flexibility of these structures. With conventional, 
systems, accessing an element of a vector is a simple 
matter of assigning a base along with an index register 
for the subscript variable and at execution time merely 
doing an address calculation to find the desired element. 
With SYMBOL there can be no possibility of a base 
address or an address calculation both because of the 
dynamic nature of space allocation as well as the fact 
that logically contiguous data need not be physically 
contiguous in memory. The Reference Processor (RP) 
has the charter for finding substructure points, basically 
through a scanning technique along with several speed­
ups. 

Another novel aspect of the CP is that all processing 
operations are done on variable length data. The string 
operations can be of any length, the only limitation 
being that they must fit into the main memory. The 
numeric operations are limited to a 99 digit fractional 
length (numbers are represented internally as normal­
ized floating-point decimal numbers). Furthermore, 
the length of numeric processing is controlled by the 
limit register. Also, a precision mode exists whereby 
numbers tagged with E}VI (empirical) will limit pro­
cessing precision to the number of fractional digits they 
contain, unless the limit register is set to a smaller 
value. 

The information flow for the CP is summarized in 
Figure 18. The CP has four distinct sections, namely 
the Instruction Sequencer (IS), the Reference Pro­
cessor (RP), the Arithmetic Processor (AP) , and the 
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OBJECT STRING 

DATA STORAGE 

Figure 18-Information flow during program execution 

Format and String Processor (FP). As shown in Figure 
15 the CP has a common control bus that is used to 
control the various processors during program execu­
tion. The following four sections describe the functions 
of each of the processors in the CP. 

Instruction sequencer 

The IS portion of the CP is the master controller 
and switching unit of the CPo It has the task of scan­
ning the object string, and accumulating items in the 
stack for the various units it supplies. For example, 
operands are accumulated for the process units and any 
type conversion required is sensed and requested of the 
FP by the IS, as appropriate. Similarly, a structure 
reference and all of its subscripts are computed and 
placed into the stack which is then turned over to the 
RP for access. 

The IS also prepares data for assignment by the RP 
or output by the I/O unit. It does this in the former 
case by stacking both the assignment reference and the 
data and in the latter case by stacking the data and 
turning control back to the system. 

Another major task performed by the IS is that of 
dynamically creating nested language blocks. Reference 
should be made to the companion paper on the SYM­
BoL language3 if the concept is new to the reader. In 
quick review, blocks are language constructs consisting 
of program segments contained between the reserved 
words BLOCK and END (PROCEDURE and ON also 
establish blocks). Within a block, all uses of an identifier 
are local to that block, unless contained within a 
GLOBAL statement, and thus a different name table 
is constructed for each block. The overall structure of 
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name tables has a static aspect determined by the way 
the program is written and a dynamic aspect deter­
mined by the sequence in which these blocks are exe­
cuted. It is this latter characteristic that we are con­
cerned with in this discussion. Whenever a new block 
is encountered by the IS, processing on the old block is 
suspended by pushing down all information about that 
block that must be retained (sometimes called the 
activation record) into the stack, and starting a new 
stack and activation record for the new block on top 
of the old stack. Of course, the new record must con­
tain a link to the old record so that when the new block 
is completed, the old block with its status information 
can be reestablished. 

A further complexity occurs with procedure blocks 
because of the need to correlate actual and formal 
parameters (again, see the language paper).3 The IS 
transfers the links to the actual parameters from the 
object string to the stack, accesses the name table for 
the new block where the formal parameters occur as 
the first entries of this name table. The actual param­
eter links are then placed one-by-one into the formal 
parameter entries of the name table. Parameter linking 
completed, the remainder of the normal block action 
for the procedure is accomplished. Whenever the IS 
encounters' a name table entry tagged as a formal 
parameter, it indirectly accesses the actual parameter 
in its place, which may not be a statement; but may be 
a variable, constant, label, literal, procedure, or ex­
pression. This indirection mechanism is also handled in 
the IS stack. A push down of a limited set of status 
information takes place, mostly consisting of the ad­
dress where execution of the object string was tem­
porarily discontinued. Then the new object string of 
the actual parameter is executed, using the stack until 
the return operator is encountered indicating the end 
of the actual parameter string. This causes the previous 
status to be recovered from the stack and execution of 
the object string recommences with the results of the 
execution of the actual parameter remaining in the top 
of the stack. 

Reference processor 

The basic task of the RP is to deal with structures. 
As a simple added duty, it accesses the address of an 
item from the name table for the IS. That is, the IS 
receives an address from the object string and turns it 
over to the RP with a request to "get simple address." 
The RP performs several actions depending on the 
nature of the identifier. If it is an existing data item it 
provides the address of the data along with a code indi­
cating its nature. If it is an uninitialized data item, it 

first assigns space before supplying the data address. 
In a similar manner it provides links to labels and pro­
cedures and if any identifiers are global, it first traces 
out the global indirection before returning the link. Any 
anomalies in the name table cause an error return. 

The structure handling task may be broken down 
into two subtasks: creation of structures and substruc­
ture and the referencing of substructure points. Recall 
that structures are dynamically variable in all aspects. 
Thus, there are two further subsets under the creation 
of structures: creation of basic structures and the re­
configuration of substructures. As a subset task to the 
referencing of substructures the language contains a 
character subscripting capability where the final sub­
script may be a "bound-pair" of subscripts which refer 
to the starting point and extent of a character subfield 
with the previous subscripts pointing to the field. 

The RP receives a linear representation of the struc­
ture to be created in the IS stack. The RP must store 
this structure in memory, replacing its linear form with 
a hierarchical form with links to lower or deeper elements 
occurring at the next higher level. Refer to Figures 10, 
11, and 13. It achieves this by assigning a new memory 
group each time it encounters a new left group mark, 
creating a line to the new group in the higher group and 
filling that group with elements maintaining a link back 
to the higher group in its own group link stack. When­
ever a right group mark is encountered in the IS stack, 
the current memory group is closed with an "end 
vector" tag and the next higher memory group continu­
ation point is accessed from the group link stack. This 
process continues until the structure in the IS stack is 
exhausted and results in a linked, hierarchical structure. 

A similar process takes place when a new structure is 
assigned to an existing substructure point. The old 
structure is deleted (for later recovery by the memory 
reclaimer) and the new linear structure in the stack is 
structured and linked into the proper substructure 
point. All combinations of replacement are allowed: 
structure by a structure, field by a filed, structure by a 
filed, field by a structure. The second situation of a field 
replacing a field can be a problem in the case where the 
new field is larger than the old field because vector 
expansion must take place (in the opposite situation, 
nulls are inserted). The simple solution of providing a 
non-hierarchical link out of a new space is inadequate 
for the situation where successive words of a large 
vector are sequentially expanded. The solution is to 
link in a new memory group only after checking if there 
is no space remaining in the present group or the next 
one, and then rewriting the remainder of the present 
group adjacent to the new field. In this way, expansion 
of many fileds of a vector makes use of the newly 
created space. 
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The general algorithm for structure referencing is for 
the RP to scan back through the IS stack to find the 
structured link, and then to proceed upward a sub­
script at a time, accessing each vector using special 
speed up techniques as appropriate, until the final sub­
script is reached. At this point the RP replaces the 
subscripted reference in the IS stack with a link to a 
substructure or a link to a field if the data level was 
reached. At any point in structure referencing, the 
structure previously stored may not extend to the 
referenced point (oversubscripting). The language rule 
in this situation is that new space should be created as 
required to expand the structure to the subscripted 
reference point (fields filled with nulls) and the RP is 
responsible for accomplishing this task. 

If after structure referencing to the field level, a 
bound pair of subscripts appear in the IS stack, the 
RP scans and counts across the field, selecting the 
requisite characters and placing the result in the IS 
stack. An error is called if the bound pair is encountered 
before the field level is reached. 

A rithmetic processor 

The AP is a serial process unit operating on variable 
length data consisting of floating-point, normalized, 
decimal numbers. These operations are done from high­
to-low order to simplify data handling by allowing the 
register operations for both string and numeric pro­
cessing to be similar. Also, comparisons are faster be­
cause a mis-match is immediately known. Two other 
important features are included in the processing hard­
ware: a limit register, loaded by the IS under command 
of the language, which causes processing to terminate 
at the precision specified, and a precision controlling 
mode whereby each operand can be specified to be ac­
curate to its existing precision and thus control the 
precision of the result. 

The operations add, subtract, multiply and divide 
are performed. For add and subtract, one or the other 
operand is streamed through the unit (high-to-Iow) 
until the exponents are aligned, at which time both 
operands start to stream through. Since the number 
representation is magnitude plus sign, a positive result 
is desired so that the signs of the operands and the sign 
of the operator are combined to control which, if either, 
of the operands is streamed through in complemented 
form. High-to-Iow order arithmetic requires a nine's 
counterlO to delay output over an intervening string of 
nines until a carry/no carry decision is reached. Even­
tually, either an empirical end of an operand is reached, 
or the limit counter value is reached, or both exact 
numbers are ended. At this point, arithmetic is finished 
and control is turned back to the IS. 
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l\1ultiply is accomplished by successive additions or 
subtractions followed by a shift until all of the multi-:­
plier digits are exhausted. Only after the full trapazoid 
of the partial product is produced is a rounding pass 
applied to achieve the precision requirements. The 
speed-up of adding one to the previous multiplier digit 
and subtracting from the partial product if the multi­
plier digit is larger than four is used. Of course, with 
multiply (and divide) exponents are added (subtracted) 
so that no shift of the fractional portions of the operands 
are required. Division is accomplished by a gradual 
non-restoring reduction of the partial dividend until 
the precision of the result is equal to the least precise of 
the two operands or the limit counter. 

Since processing in this system is accomplished seri­
ally in a decimal mode with few speed-ups, the speed of 
processing is sharply dependent on the size of the 
operands. When the limit counter is set to a small value, 
say 5, processing can be quite fast but 99 digit divides 
can be extremely slow. It is therefore important that 
the user selects only as much precision as he really 
needs. 

The numeric comparisons are performed by the AP as 
a subtract operation but terminate immediately upon 
a mismatch and return a zero result rather than a one. 
The IS has the task of combining the result returned 
by the AP with the desired comparison operation to 
generate the overall result in the IS stack. 

Format processor 

The FP unit performs the string JOIN operation, 
the binary string operations AND, OR, NOT, the 
string comparison operations BEFORE, SAME, 
AFTER, the FORMAT and MASK operations, and 
the automatic type conversion on operands requested 
by the IS: numeric to string, string to numeric, and 
numeric to integer (used primarily for sUbscripts). 
These operations are also performed serially. 

The JOIN operation is performed in the obvious 
manner of streaming the second operand onto the tail 
of the first operand, forming a single result operand. 

The binary operations are performed character-by­
character, performing the required operation by pro­
ducing ·0/1 result characters, filling in the shorter 
operand with zeros. 

The string comparisons are also performed character­
by-character, comparing successive .characters until a 
mismatch is found according to the built-in ASCII 
collate sequence and returning a 0/1 result. 

The FORl\1AT and MASK operators provide a 
powerful string manipulation capability for a wide 
variety of applications from payroll and banking forms 
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Figure 19-Typical task queue structure 

preparation to system software character manipulation. 
FORMAT is a packed-numeric-to-string operator that 
allows the user to describe the format of the result with 
a pictorial like character string. The operation is per­
formed in a serial manner as dictated by the operands. 
The standard default conversion from packed numeric 
form to string is a subset of the FORMAT operation. 
MASK is a string-to-string operator similar to FOR­
MAT. MASK can be used for character insertion, dele­
tion, and spacing control. It is often used to control or 
measure the length of the fields. MASK is also processed 
in a serial-by-character manner. 

SYSTEM SUPERVISION 

The Load, Compile, Execution, and I/O comprise 
the basic processing modes for the system. Three addi­
tional modes are defined for a terminal, off-line, on-line 
idle, and normal completion. They are all passive modes 
and differ only in the allowed transitions that can take 
place upon an interrupt stimulus. For example, the 
normal completion state is the only state from which 
the RESTART execution command can be honored. 
RESTART is only allowed if the object string were 
left in a reusable state. 

The diagram in Figure 14 shows a few of the terminal 
state transitions. These transitions are significant in 
that they are all supported by hardware algorithms. 

When the control code corresponding to RUN is re­
ceived by the SS the transition from the Load mode 
to the compile mode can be processed without soft­
ware intervention. Many other transitions can occur 
but they generally require some system software as­
sistance. The transition from the Load mode to the 
Compile mode involves the following steps. If the IP 
is active it must be allowed to complete in such a way 
that the source string is intact. The task is then re­
moved from the queue for the IP and added to the 
queue for the TR. In addition the control tables in 
main memory are initialized for the TR making avail­
able the address of the start of the source string and 
the address of the procedure libraries to be used. 

A typical task queue is illustrated in Figure 19. It is 
comprised of a linked list of entries (control words). 
The queue has a pointer to the top entry and another 
pointer to the bottom entry. By maintaining both the 
top and bottom pointers it is easy to add an entry to 
either the top or the bottom of the queue. 

Each time a control transition occurs the SS updates 
the queues by performing appropriate add or delete ac­
tions to each of the processor queues involved. This is 
part of first phase of any SS task processing. The second 
phase of SS processing involves assigning work to free 
processors that have assignable tasks on their queues. 

The multiprocessing algorithm is centered around 
manipulation and use of queues for the CP, TR, IP, 
MR, and DC. The SS has a general purpose queue 
processor that allows an item to be added to the top, 
added to the bottom, or deleted from any queue. The 
algorithm has a default mode which is completely 
hardware controlled. Various parameters can be set by 
software that bias the operating dynamics. For ex­
ample, two time values are maintained for each entry 
in the CP queue. One measures the accumulated pro­
cessing time and the other measures the actual time 
that the task is on the top of a queue. The values are 
preset to parameter values when a task enters the 
queue. When the values have been counted down to 
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Figure 20-Mode transitions affecting the central processor 
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zero an SS task is generated to modify the queues. In 
most cases this is used to move the task from a high 
priority position near the top of a queue to a low pri­
ority position near the bottom of a queue. 

The processing flow in Figure 14 is greatly over­
simplified for general purpose system supervision. In 
Figure 20, the control commands to and from the cen­
tral processor are illustrated. The SS can command the 
CP to start on a task or to quit working on a task. The 
CP can terminate processing on a given task for one of 
six basic reasons. Consider the I/O completion. In most 
cases for most terminals the hardware algorithm for 
controlling I/O would be sufficient. If on the other 
hand, a batch processing terminal with spooled I/O 
were desired it would be necessary to alter the control 
process for I/O with a system software procedure. To 
cause software to be called for a specific terminal upon 
an I/O service request, a specific control bit must be 
set in the terminal control word for that channel. This 
causes an automatic software call to be generated by 
the SS. 

The software call is handled in SYMBOL by starting 
a pseudo terminal operating with the requesting chan­
nel number as a parameter. In this manner the control 
header tables for the requesting channel can be operated 
upon as data. This is illustrated in Figure 21 where an 
interrupt of a specific class causes the corresponding 
program specified in a software call table to be selected 
and control transferred to the pseudo terminal with the 
parameter TN. Each different class of interrupt maps 
into a different control word in the software control 
table. In this manner only the software procedure de­
sired will be accessed in virtual memory. In SYMBOL 
over 80 different software interrupts are controlled via 
the software control table located in the lower part of 
main memory. This represents the principle interface 
between hardware and system software. 

CONCLUSION 

The traditional boundary between hardware and soft­
ware has been weakened during the past ten years and 
is due for a significant shift beyond the token improve­
ments. It is believed that in SYMBOL a major step 
towards significantly more capable hardware has been 
attained. 

The SYJVIBOL system is now entering an extensive 
evaluation phase where the system's strengths and 
weaknesses will become more apparent through actual 
day to day usage. The developers of the system have 
gained much insight into the merits of each of. the ap­
proaches taken. The overall approach to memory man­
agement is considered a breakthrough. The moving of 
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Figure 21-Mechanism for handling a software call caused by a 
transition interrupt 

data attributes from instructions to the data is con­
sidered fundamental. 

No clain is made that the SYMBOL system has been 
balanced for optimum performance and use of hard­
ware. Certain critical areas of memory management 
and system supervision are felt to be 10 to 100 times 
more efficient than conventional means. Certain aspects 
of structure referencing are a major advance over soft­
ware list processors but fall short of being competitive 
for some types of large array referencing. Many of the 
weaknesses in this first SYMBOL model were solved 
by the designers too late to be factored into the actual 
hardware. Many other aspects of the system such as 
the paging and system supervisor algorithms can be 
evaluated after significant usage experience. 

The computing professionals have debated for many 
years the questions: Can a compiler be developed in 
hardware? Can the heart of system supervision be com­
mitted to hardware? Can data space management be 
taken over by hardware? Can hardware be designed to 
take over major software functions? Can complex 
hardware be debugged? These and many other ques­
tions have been positively answered with the running 
SYMBOL system. The most significant part of the en­
tire project is that the concepts were reduced to full 
scale, operating hardware. 
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