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This paper is concerned with a reliable solution to the distributed estimation and control issues over hybrid two-tier industrial
wireless sensor and actuator networks (IWSANs). It aims at applying wireless technology to industrial automation control domains
in hash industrial environment. Amain challenge in these application domains is thatwireless communication channelsmust satisfy
strict requirements of real time and reliability.Therefore, first, we propose a new interacting dual model (IDM) adaptive estimation
algorithm to identify the unreliable wireless communication channels, and, second, to further enhance the accuracy and fault
tolerance of state estimation for controlled plant, a federated multisensor estimation fusion approach is presented. Furthermore,
considering that the IWSANs need commonly to be deployed over a vast geographical area, a distributed collaborative control
strategy is adopted. Finally, an example of temperature control illustrates the effectiveness of the proposed method.

1. Introduction

Wireless communication represents a major industrial stake
in the coming years following the Fieldbus and Industrial Eth-
ernet [1]. With the increasing demand in spatially distributed
and flexible industrial applications, automation enterprises
have drawn great attention to the communication and control
architectures based on industrial wireless sensor and actuator
networks (IWSANs). The essential attribute of IWSANs
brings several significant advantages compared with tradi-
tional wired counterparts from the perspective of flexibility
and convenience of the deployment for sensors and actuators
(in remote, dangerous, and hard-to-reach areas), low cost
(due to the less demands for cables, materials, preinstalled
infrastructure, maintenance, and labor), compositionality
(where scalability of network can be carried out more easily),
and so forth [2, 3]. The benefits of integrating wireless
communication technology with industrial applications are
compelling. Some exploratory work has been done such as
drip irrigation control for agriculture using wireless sensor
and actuator network (WSAN) [4], environment control
system in WSAN [5, 6], wireless ventilation systems in

mining industrial [7], wireless fire detection and control [8],
towards usage ofwirelessMEMS in industrial context [9], and
monitoring system for robots and inventories in assembly line
based on wireless sensor networks (WSNs) [10].

However, a common outstanding problem in these
aforementioned applications is that the unreliable wireless
communication channels suffering from delays and losses
of data are difficult to ensure real-time and reliability
requirements of control systems. The problem hinders that
wireless technology is accepted generally and permeated in
many industrial application domains. Therefore, designing
the communication protocol standards, network topology
architecture, and appropriate estimation and control strate-
gies over IWSANs for networked control systems (NCSs) in
industrial applications are still open issues.

In current literatures, most commonly adoptedmodels of
unreliable wireless channels are I.I.D (independent and iden-
tically distributed)model andGilbert-Elliottmodel.The I.I.D
model describes packet losses by a I.I.D Bernoulli random
variable (taking value 1 or 0), such as in [5]. Gilbert-Elliott
model considers packet losses as a two-state Markov chain to
describe packet arrival and drop behaviors in [11]. Based on
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the above-mentioned two models, many researches have got
some significant results for the problems of estimation and
control [12–20].

The fault-tolerant mechanism is also an important issue
which is used to improve the reliability of wireless data trans-
mission in hash industrial context. As the current research
hot spot issue of signal processing area, multisensor informa-
tion fusion [21] can improve the fault tolerance and accuracy
of real-time field data by utilizing multiple spatially dis-
tributed sensors to provide complementary and overlapping
coverage on plants. It has received significant attention. Xia
et al. [22] consider the networked data-fusion system with
packet losses. In [23–26], fault-tolerant fusion, identification,
and control for wireless sensor networks are presented.
Hierarchical sensor data aggregation/fusion is studied by [27,
28].

Currently, high-reliable estimation and control strategies
for industrial NCSs are still challenging issues. Since the qual-
ity of state estimation of plant will have a significant impact
on control performance, communication and control became
closely related and thus cannot be considered independently.
In this paper, we are committed to developing a distributed
collaborative estimation and control strategy over IWSANs.
The main contributions are summarized as follows.

(1) We use interacting dual model (IDM) adaptive esti-
mation algorithm to identify online the unreliable
communication channels within IWSANs. To the best
of our knowledge, the problem formulation is novel.
Further, a federated estimation fusion algorithm is
presented to improve the performance of accuracy
and fault tolerance of state estimation.

(2) A distributed collaborative scheme is presentedwhich
is similar to [20] but is a direct coordination method
among actuators without going through the sensors.

(3) A hybrid two-tier IWSAN based on OCARI technol-
ogy [1] is developed. Based on the network topology
architecture, the presented distributed estimation and
control methods in (1) and (2) can be readily “piggy-
backed” into industrial wireless networks such as
WIA-PA [29] and OCARI [30].

The rest of this paper is organized as follows. The control
systemmodel is introduced in Section 2. A new IDM estima-
tion and federated fusion algorithm are stated in Section 3.
We design the distributed collaborative control strategy in
Section 4. A simulation example of temperature control is
provided in Section 5. Finally, Section 6 concludes this paper.

Notations. R𝑛 is the 𝑛-dimensional Euclidean space. I
𝑛

denotes the 𝑛 × 𝑛 identity matrix. Pr{⋅}, p(⋅), and E{⋅}

denote the operators for probability, probability density, and
estimation, respectively. | ⋅ | denotes cardinality of a set.𝐴 →

𝐵 denotes the map of set 𝐴 to 𝐵. Tr(⋅) denotes the trace of a
matrix. diag(⋅) denotes a diagonal matrix.
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Figure 1: Topology of hybrid two-tier IWSANs.

2. Problem Formulation

In many industry fields such as printing, textile, refrigera-
tion, and semiconductor, industrial workplaces put forwards
strict requirements for some distinct parameters such as
temperature, humidity, air cleanliness, pressure balance, and
ventilation [5, 7]. In this paper, we consider an example of
temperature supervision and control system in an industrial
workshop. Based on OCARI technology, we place hybrid
two-tier IWSANs organized in a cluster of cells in a workshop
as shown in Figure 1. Each cell has a star topology and consists
of an actuator (cell coordinator) with its group of sensors
(end device nodes). The actuator is in charge of coordinating
its sensors within cell and routing data packets to gateway.
Furthermore, every actuator can exchange information with
its neighbor actuators via the upper layer actuator network
with mesh structure, so actuators can take decisions and col-
laboratively achieve a global target upon the industrial envi-
ronment. In addition, the cooperation mechanism among
actuators can improve the reliability of system. For example,
when an actuator malfunctions, its neighbor actuators can
be complements or alternate devices. In this paper, the
actuator, also regarded as a processing center, can perform
a multisource estimate fusion with its “radiofixed” intracell
sensors through only single-hop communication channels.
The single-hop star topology can overcome the high packet
loss and long-time delays induced bymultihop transmissions.
The design of “radiofixed,” where the sensors need not
choose their transmission paths to actuator, decreases the
communication complexity and improves the real-time and
reliability of data transmission.

Our object is to control the temperature within every
cell domain in a workshop to meet set value, respectively,
according to the actual production requirements.
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2.1. Graph of Hybrid Two-Tier IWSANs. In order to facilitate
the following work, the communication relationship between
the actuators and sensors and among actuators themselves
over the hybrid two-tier IWSANs can be described by a graph
G. Assume that there are 𝑛 cells in a workshop. An actuator
(i.e., central air conditioning) and a group of 𝑚 temperature
sensors with wireless communication function are deployed
within every cell. At first, we focus on the graph of actuator
network G

𝑎
≜ {A,E} (i.e., a subgraph of G), where A =

{𝑎
1
, . . . , 𝑎

𝑛
} is the set of 𝑛 actuators and

E = {(𝑎
𝑖
, 𝑎
𝑙
) | 𝑎
𝑖
, 𝑎
𝑙
∈ A, 𝑎

𝑙
∈ N
𝑎𝑖
, ∀𝑖, 𝑙 ∈ {1, . . . , 𝑛}} (1)

is the edge set. N
𝑎𝑖
is a set of the neighbor actuators of 𝑎

𝑖
.

Each actuator is only allowed to communicate with neighbor
actuators over actuator network, that is, ∃(𝑎

𝑖
, 𝑎
𝑙
) ∈ E, if and

only if 𝑎
𝑙
∈ N
𝑎𝑖
.

Consider that 𝑎
𝑖
can communicate with a group of 𝑚

intracell sensors (i.e., S
𝑖
= {𝑠
1

𝑖
, . . . , 𝑠

𝑚

𝑖
}) over sensor network.

Thus, the overall graph G can be obtained via taking the
subgraph G

𝑎
and adding 𝑚 × 𝑛 new vertices S, where S =

𝑆
1
∪ 𝑆
2
, . . . , ∪ 𝑆

𝑛
corresponds to the set of all sensors. Define

the edge set

EO = {(𝑠
𝑗

𝑖
, 𝑎
𝑖
) | 𝑎
𝑖
∈ A, 𝑠

𝑗

𝑖
∈ S
𝑖
, ∀𝑖 ∈ {1, . . . , 𝑛} ,

∀𝑗 ∈ {1, . . . , 𝑚} } .

(2)

Then, we obtainG = {A ∪S,E ∪EO}.

Remark 1. In this paper,EO represents the radioconnectivity
between actuators and their intracell sensors. However, E
represents not only the radio connectivity but also interactive
acting among neighboring actuators through some ventila-
tion pipes.

2.2. Modeling. Consider the above-mentioned temperature
control system, where the temperature is controlled in an
industrial workshop using hybrid two-tier IWSANs as pre-
sented in Figure 1. We focus on the following discrete-time
plant model:

𝑥
𝑖,𝑘+1

= 𝑔
𝑖
𝑥
𝑖,𝑘
+ 𝑤
𝑖𝑖
𝑢
𝑎

𝑖,𝑘
+ ∑

𝑎𝑙∈N𝑎𝑖

𝑤
𝑖𝑙
𝑢
𝑎

𝑙,𝑘
,

𝑦
𝑖,𝑘

= ℎ
𝑖
𝑥
𝑖,𝑘
,

(3)

where 𝑥
𝑖,𝑘
, 𝑖 ∈ {1, . . . , 𝑛} is the temperature state of 𝑖th

cell domain of plant at time 𝑘 and is measured by a group
of 𝑚 intracell sensors, that is, S

𝑖
= {𝑠
1

𝑖
, . . . , 𝑠

𝑚

𝑖
}, 𝑦
𝑖,𝑘

=

[𝑦
1

𝑖,𝑘
, . . . , 𝑦

𝑚

𝑖,𝑘
]

𝑇 is the generalized measurement value of 𝑥
𝑖,𝑘

collected by S
𝑖
and can be sent to actuator 𝑎

𝑖
, and 𝑢

𝑎

𝑖,𝑘
and

𝑢
𝑎

𝑙,𝑘
, 𝑙 ∈ {1, . . . , 𝑛}, are the input (output wind temperature)

corresponding to the acting applied to the state 𝑥
𝑖,𝑘

by local
actuator 𝑎

𝑖
and neighbor actuator 𝑎

𝑙
, respectively.

Due to the unreliable wireless communication channels
and the interference from the harsh industrial environment,
it is necessary to take into account a more “realistic” plant
model. First, consider the unreliable wireless communica-
tion channels within actuator network. Let I.I.D Bernoulli

stochastic variable 𝛾
𝑖𝑙,𝑘

with E{𝛾
𝑖𝑙,𝑘
} = 𝛾

𝑖𝑙
indicate whether

data packet (including state information) from 𝑎
𝑖
is received

(𝛾
𝑖𝑙,𝑘

= 1) or lost (𝛾
𝑖𝑙,𝑘

= 0) by neighbor 𝑎
𝑙
∈ N
𝑎𝑖
. Apparently,

𝛾
𝑖𝑖,𝑘

≡ 1, for all 𝑖 ∈ {1, . . . , 𝑛}. After any neighbor 𝑎
𝑙
of

𝑎
𝑖
obtains the state information of 𝑎

𝑖
, its control unit can

compute an appropriate input to 𝑎
𝑖
. Therefore, when 𝑎

𝑙
∈ N
𝑎𝑖

and 𝛾
𝑖𝑙,𝑘

= 1, 𝑥
𝑖,𝑘

will be actuated cooperatively by local
actuator 𝑎

𝑖
and its neighbor actuators {𝑎

𝑙
}. For instance, in

Figure 1, except local 𝑎
1
, cell 1 domain can also receive the

other inputs sent from 𝑎
2
, 𝑎
3
, and 𝑎

4
through some ventilation

pipes, respectively.
For a concise derivation, according to the zero-input

strategy in the literature [31], we can write

𝑢
𝑎

𝑖,𝑘
= 𝑢
𝑖,𝑘
,

𝑢
𝑎

𝑙,𝑘
= 𝑢
𝑙,𝑘
,

(4)

where 𝑢
𝑖,𝑘

and 𝑢
𝑙,𝑘

are the desired control laws computed by
embedded control units of 𝑎

𝑖
and 𝑎
𝑙
, respectively.

Secondly, we use the Gilbert-Elliott model to simulate
the unreliable wireless channels within sensor network. At
time 𝑘, the stochastic variable 𝜃

𝑖,𝑘
is used to describe the

packet loss model 𝜃0
𝑖,𝑘

and the packet arrival model 𝜃1
𝑖,𝑘

of
communication channel from S

𝑖
to 𝑎
𝑖
, for all 𝑖 ∈ {1, . . . , 𝑛},

where 𝜃𝛼
𝑖,𝑘

≜ {𝜃
𝑖,𝑘

= 𝛼}, 𝛼 = 0, 1. To capture the temporal
correlation of channel variation, 𝜃

𝑖,𝑘
can be modeled as a

two-state Markovian chain with the initial model probability
vector 𝜋

𝑖,0
and the transition probability matrix (TPM) Ξ

𝑖
as

𝜋
𝑖,0

= [𝜋
0

𝑖,0
𝜋
1

𝑖,0
] , (5)

Ξ
𝑖
= [

𝜉
00

𝑖
𝜉
01

𝑖

𝜉
10

𝑖
𝜉
11

𝑖

] , (6)

where 𝜋
𝛼

𝑖,0
≜ Pr{𝜃𝛼

𝑖,0
} (𝛼 = 0, 1) is the initial model

probability, 𝜉𝛼𝛽
𝑖

≜ Pr{𝜃𝛽
𝑖,𝑘

| 𝜃
𝛼

𝑖,𝑘−1
} (𝛼, 𝛽 = 0, 1) is the

transition probability of switching frommodel 𝜃𝛼
𝑖,𝑘−1

tomodel
𝜃
𝛽

𝑖,𝑘
, and 𝜉

00

𝑖
, 𝜉11
𝑖
, 𝜉01
𝑖

= 1 − 𝜉
00

𝑖
, and 𝜉

10

𝑖
= 1 − 𝜉

11

𝑖
are

called packet remaining loss rate, packet remaining arrival
rate, packet recovery rate, and packet failure rate, respectively.
Apparently, Ξ

𝑖
, the TPM, is characterized by the 𝜉00

𝑖
and 𝜉
11

𝑖
.

When aggregating all states at time 𝑘 into the 𝑥
𝑘

=

[𝑥
𝑇

1,𝑘
, . . . , 𝑥

𝑇

𝑛,𝑘
]

𝑇 and considering packet losses, noises, and
(4), the above plant model (3) can be written in vector form
as

𝑥
𝑘+1

= 𝐺𝑥
𝑘
+𝑊(𝛾

𝑘
) 𝑢
𝑘
+ 𝜔
𝑘
,

𝑦
𝑘
= 𝐻 (𝜃

𝑘
) 𝑥
𝑘
+ ]
𝑘
,

(7)

where 𝑥
𝑘
∈ R𝑛, 𝑢

𝑘
∈ R𝑛, 𝑦

𝑘
∈ R𝑛𝑚, 𝜔

𝑘
∈ R𝑛, ]

𝑘
∈ R𝑛𝑚, 𝜔

𝑘

and ]
𝑘
are mutually uncorrelated Gaussian, white, and zero-

mean noises with covariance 𝑄 > 0 and covariance 𝑅 > 0,
respectively, 𝐺 = diag(𝑔

1
, . . . , 𝑔

𝑛
),𝑊(𝛾

𝑘
) ∈ R𝑛×𝑛, 𝑤

𝑖𝑙
(𝛾
𝑖𝑙,𝑘
) =

0 if 𝑎
𝑙
∉ N
𝑎𝑖
or 𝛾
𝑖𝑙,𝑘

= 0, and𝐻(𝜃
𝑘
) = diag(ℎ

1
(𝜃
𝑘
), . . . , ℎ

𝑛
(𝜃
𝑘
))

with ℎ
𝑖
(𝜃
𝑘
) = [ℎ

1

𝑖
(𝜃
𝑖,𝑘
), . . . , ℎ

𝑚

𝑖
(𝜃
𝑖,𝑘
)]
𝑇.

In this paper, the main objective is to control temperature
within every cell domain to a required set value. For the
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aforementioned stochastic system (7), firstly, let us give the
following quadratic cost function:

𝐽 =

1

𝑛

E {[𝜓
𝑘
− 𝑥
𝑘
)
𝑇

(𝜓
𝑘
− 𝑥
𝑘
]} , (8)

where 𝜓
𝑘

= [𝜓
1,𝑘
, . . . , 𝜓

𝑛,𝑘
]
𝑇 is the temperature set value

vector. Then, by estimating the temperature state, users wish
to find an admissible optimal control strategy 𝑢∗

𝑘
to minimize

the cost function 𝐽 as

𝑢
∗

𝑘
≜ E
𝑦
𝑘 {argmin

𝑢𝑘

𝐽} , (9)

where 𝑢
𝑘
∈ 𝑢
𝑘, 𝑢𝑘 = {𝑢

𝜏
| 𝜏 = 1, . . . , 𝑘}, and 𝑦

𝑘

= {𝑦
𝜏
| 𝜏 =

1, . . . , 𝑘}.

3. Estimation and Fusion

In this section, we present a new adaptive estimation and
fusion algorithm based on IDM and federated filter (IDM-
FF). The architecture of the IDM-FF is shown in Figure 2.
The IDM-FF method can be divided into two phases: first,
the single-sensor processing phase, where temperature of
every cell domain is measured by 𝑚 sensors, so the actuator
provides 𝑚 LFs (local filters) to preprocess the data received
from the 𝑚 sensors, respectively, that is, every LF runs
an adaptive IDM filtering algorithm to identify online the
unreliable communication channel in order to estimate the
measurement data of sensors, and, second, the multisensor
data fusion phase, where the MF (main filter) is only to
fuse the data obtained from its 𝑚 preprocessing LFs so
as to improve the accuracy and fault tolerance against the
harsh environments and electromagnetic interference issues
in industrial workshop.

3.1. IDM Adaptive Filtering. As presented in Section 2.2, the
unreliable wireless channels within sensor network can be
modeled as a two-state Markovian chain. In many practical
situations, however, the prior knowledge of TPM (6) about
the channel may be inadequate and lacking especially for
large-scale wireless networks. Therefore, we propose a new

adaptive channel-aware method based on IDM filter to not
only identify the channel status but also learn online a
posterior estimation of TPM from collected data.

First, we give the adaptive learning process online to
obtain the TPM without the prior knowledge; then the
updated TPM can be stored and utilized in IDM filtering
algorithm by LF for channel decoding. According to the
Bayesian framework, the estimation Ξ

𝑖
of Ξ
𝑖
, model proba-

bility 𝜋
𝑖,𝑘
, andmodel likelihoodΛ

𝑖,𝑘
are defined, respectively,

as follows:

Ξ
𝑖,𝑘

≜ E [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘

] ,

𝜋
𝑖,𝑘

= [𝜋
0

𝑖,𝑘
, 𝜋
1

𝑖,𝑘
]

𝑇

with

𝜋
𝛽

𝑖,𝑘
≜ Pr {𝜃𝛽

𝑖,𝑘
| Ξ
𝑖,𝑘−1

, (𝑦
𝑗

𝑖
)

𝑘−1

} , 𝛽 = 0, 1,

Λ
𝑖,𝑘

= [Λ
0

𝑖,𝑘
, Λ
1

𝑖,𝑘
]

𝑇

with

Λ
𝛽

𝑖,𝑘
≜ p [𝑦𝑗

𝑖,𝑘
| 𝜃
𝛽

𝑖,𝑘
, Ξ
𝑖,𝑘−1

, (𝑦
𝑗

𝑖
)

𝑘−1

] , 𝛽 = 0, 1,

(10)

where 𝑖 ∈ {1, . . . , 𝑛}, (𝑦𝑗
𝑖
)

𝑘

= {𝑦
𝑗

𝑖,𝜏
| 𝜏 = 1, . . . , 𝑘}.

At time 𝑘, we consider an adaptive recursive process to
obtain the TPM according to posterior model probability
𝜋
𝑖,𝑘−1

and likelihood Λ
𝑖,𝑘
.

By the whole probability formula, one can obtain

p [𝑦𝑗
𝑖,𝑘

| Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

]

=

1

∑

𝛽=0

p [𝑦𝑗
𝑖,𝑘

| 𝜃
𝛽

𝑖,𝑘
, Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

]Pr {𝜃𝛽
𝑖,𝑘

| Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

}

=

1

∑

𝛽=0

p [𝑦𝑗
𝑖,𝑘

| 𝜃
𝛽

𝑖,𝑘
, Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

]
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×

1

∑

𝛼=0

Pr {𝜃𝛽
𝑖,𝑘

| 𝜃
𝛼

𝑖,𝑘−1
, Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

}

× Pr {𝜃𝛼
𝑖,𝑘−1

| Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

}

≈

1

∑

𝛽=0

Λ
𝛽

𝑖,𝑘

1

∑

𝛼=0

𝜉
𝛼𝛽

𝑖
𝜋
𝛼

𝑖,𝑘−1

= 𝜋
𝑇

𝑖,𝑘−1
Ξ
𝑖
Λ
𝑖,𝑘
,

(11)

where the following approximations

p [𝑦𝑗
𝑖,𝑘

| 𝜃
𝛽

𝑖,𝑘
, Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

] ≈ Λ
𝛽

𝑖,𝑘
,

Pr {𝜃𝛼
𝑖,𝑘−1

| Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

} ≈ 𝜋
𝛼

𝑖,𝑘−1

(12)

are used in (11). These local linearity approximations are
equivalent to replacing the unknown Ξ

𝑖
in (11) with its best

estimate Ξ
𝑖,𝑘−1

for the current recursive cycle (𝑘 − 1) → 𝑘.
This approximation approach can provide high accuracy as
stated in [32].

According to (11), p[𝑦𝑗
𝑖,𝑘

| (𝑦
𝑗

𝑖
)

𝑘−1

] becomes

p [𝑦𝑗
𝑖,𝑘

| (𝑦
𝑗

𝑖
)

𝑘−1

]

= ∫ p [𝑦𝑗
𝑖,𝑘

| Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

] p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘−1

] 𝑑Ξ
𝑖

= ∫𝜋
𝑇

𝑖,𝑘−1
Ξ
𝑖
Λ
𝑖,𝑘
p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘−1

] 𝑑Ξ
𝑖

= 𝜋
𝑇

𝑖,𝑘−1
Ξ
𝑖,𝑘−1

Λ
𝑖,𝑘
.

(13)

Further, the approximate posterior probability density func-
tion (PDF) of TPM will be updated as follows:

p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘

] =

p [𝑦𝑗
𝑖,𝑘

| Ξ
𝑖
, (𝑦
𝑗

𝑖
)

𝑘−1

]

p [𝑦𝑗
𝑖,𝑘

| (𝑦
𝑗

𝑖
)

𝑘−1

]

p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘−1

] .

(14)

Substituting (11) and (13) into (14), we can obtain

p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘

] =

𝜋
𝑇

𝑖,𝑘−1
Ξ
𝑖
Λ
𝑖,𝑘

𝜋
𝑇

𝑖,𝑘−1
Ξ
𝑖,𝑘−1

Λ
𝑖,𝑘

p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘−1

] . (15)

Finally, we compute the estimation of TPM by a numeri-
cal integration as

Ξ
𝑖,𝑘

= ∫Ξ
𝑖
p [Ξ
𝑖
| (𝑦
𝑗

𝑖
)

𝑘

] 𝑑Ξ
𝑖

=

1

𝑁

𝑁

∑

𝑠=1

Ξ
𝑠

𝑖
p [Ξ𝑠
𝑖
| (𝑦
𝑗

𝑖
)

𝑘

] ,

(16)

which means the posterior PDF distribution in𝑁 grid TPMs
Ξ
𝑠

𝑖
points over [0, 1].

Next, we use the IDM filter algorithm with Ξ
𝑖,𝑘−1

and
𝜋
𝑖,𝑘−1

to estimate the measurement data.The basic idea of the
presented IDM filtering approach requires running two same
parallel optimal filters for the two possible channel model
sequences (i.e., 𝜃0

𝑖,𝑘
and 𝜃
1

𝑖,𝑘
), and then the measurement data

can be calculated using a combined estimate. We define the
local mean and variance of 𝑥𝑗

𝑖,𝑘
measured and sent by sensor

𝑠
𝑗

𝑖
with the model 𝜃𝛼

𝑖,𝑘
, 𝛼 = 0, 1, at time 𝑘 as follows:

𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
≜ E [𝑥

𝑗,𝛼

𝑖,𝑘
| (𝑦
𝑗

𝑖
)

𝑘

] ,

𝑃
𝑗,𝛼

𝑖,𝑘|𝑘
≜ E [(𝑥

𝑗,𝛼

𝑖,𝑘
− 𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
) (𝑥
𝑗,𝛼

𝑖,𝑘
− 𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
)

𝑇

| (𝑦
𝑗

𝑖
)

𝑘

] .

(17)

For brevity, we provide a summary of IDM filter algorithm as
follows.

Step 1 (interacting for two models of varying channel). The
mixed probabilities 𝜉𝛽|𝛼

𝑖,𝑘
for channel models 𝜃𝛼

𝑖,𝑘
and 𝜃

𝛽

𝑖,𝑘
at

time 𝑘 are calculated as

𝜉
𝛽|𝛼

𝑖,𝑘
=

𝜉

𝛽𝛼

𝑖,𝑘−1
𝜋
𝛽

𝑖,𝑘−1

∑
1

𝛽=0
𝜉

𝛽𝛼

𝑖,𝑘−1
𝜋
𝛽

𝑖,𝑘−1

, (18)

where 𝜋
𝛽

𝑖,𝑘−1
is probabilities for model 𝜃

𝛽

𝑖,𝑘
at time 𝑘 −

1. 𝜉
𝛽𝛼

𝑘−1
can be calculated and updated using (16) and is

the recursively Bayesian posterior estimation of transition
probabilities. Then, the mixed inputs (mean and covariance)
for every filter can be computed as

𝑥
𝑗,𝛼

𝑖,𝑘−1
=

1

∑

𝛽=0

𝜉
𝛽|𝛼

𝑖,𝑘
𝑥
𝑗,𝛽

𝑖,𝑘−1|𝑘−1
,

𝑃̃
𝑗,𝛼

𝑖,𝑘−1
=

1

∑

𝛽=0

𝜉
𝛽|𝛼

𝑖,𝑘

× {𝑃
𝑗,𝛽

𝑖,𝑘−1|𝑘−1
+ [𝑥
𝑗,𝛽

𝑖,𝑘−1|𝑘−1
− 𝑥
𝑗,𝛼

𝑖,𝑘−1
]

×[𝑥
𝑗,𝛽

𝑖,𝑘−1|𝑘−1
− 𝑥
𝑗,𝛼

𝑖,𝑘−1
]

𝑇

} ,

(19)

where 𝑥𝑗,𝛽
𝑖,𝑘−1|𝑘−1

and 𝑃̂
𝑗,𝛽

𝑖,𝑘−1|𝑘−1
are the updated state mean and

covariance for model 𝜃𝛽
𝑖,𝑘
, respectively, at time 𝑘 − 1.

Step 2 (informationKalman filler (IKF)). For eachmodel 𝜃𝛼
𝑖,𝑘
,

the IKF is done as

IKF
𝑢
:

𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
= 𝑃
𝑗,𝛼

𝑖,𝑘|𝑘
(𝑃
𝑗,𝛼

𝑖,𝑘|𝑘−1
)

−1

𝑥
𝑗,𝛼

𝑖,𝑘|𝑘−1

+ 𝑃
𝑗,𝛼

𝑖,𝑘|𝑘
(ℎ
𝑗

𝑖
(𝜃
𝛼

𝑖,𝑘
))

𝑇

(𝑅
𝑗

𝑖
)

−1

𝑦
𝑗,𝛼

𝑖,𝑘
,

(𝑃
𝑗,𝛼

𝑖,𝑘|𝑘
)

−1

= (𝑃
𝑗,𝛼

𝑖,𝑘|𝑘−1
)

−1

+ (ℎ
𝑗

𝑖
(𝜃
𝛼

𝑖,𝑘
))

𝑇

(𝑅
𝑗

𝑖
)

−1

ℎ
𝑗

𝑖
(𝜃
𝛼

𝑖,𝑘
) ,

(20)
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IKF
𝑝
:

𝑥
𝑗,𝛼

𝑖,𝑘|𝑘−1
= 𝑔
𝑖𝑖
𝑥
𝑗,𝛼

𝑖,𝑘−1
+ 𝑤
𝑖𝑖
𝑢
𝑖,𝑘−1

+ ∑

𝑎𝑙∈N𝑎𝑖

𝑤
𝑖𝑙
(𝛾
𝑖𝑙,𝑘−1

) 𝑢
𝑙,𝑘−1

,

(𝑃
𝑗,𝛼

𝑖,𝑘|𝑘−1
)

−1

= (𝑔
𝑖𝑖
𝑃̃
𝑗,𝛼

𝑖,𝑘−1
𝑔
𝑇

𝑖𝑖
+ 𝑄
𝑗

𝑖
)

−1

,

(21)

where the prediction and update steps of IKF are
denoted by IKF

𝑝
and IKF

𝑢
, respectively, 𝑄𝑗

𝑖
= 𝛽
𝑗

𝑖
𝑄
𝑖
,

according to the rule of information-distribution
technology of federated filter stated in Section 3.2.

Step 3 (model probabilities update). By Bayes’ rule, the
probabilities of each model 𝜃𝛼

𝑖,𝑘
at time 𝑘 are updated as

𝜋
𝛼

𝑖,𝑘
=

(∑
1

𝛽=0
𝜉

𝛽𝛼

𝑖,𝑘−1
𝜉
𝛽

𝑖,𝑘−1
)Λ
𝛼

𝑖,𝑘

∑
1

𝛼=0
(∑
1

𝛽=0
(𝜉

𝛽𝛼

𝑖,𝑘−1
𝜉
𝛽

𝑖,𝑘−1
)Λ
𝛼

𝑖,𝑘
)

. (22)

Step 4 (combined estimation). The combined estimate for the
state mean and covariance at time 𝑘 are computed as

𝑥
𝑗

𝑖,𝑘|𝑘
=

1

∑

𝛼=0

𝜋
𝛼

𝑖,𝑘
𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
,

𝑃
𝑗

𝑖,𝑘|𝑘
=

1

∑

𝛼=0

𝜋
𝛼

𝑖,𝑘
× {𝑃
𝑖,𝛼

𝑖,𝑘|𝑘
+ [𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
− 𝑥
𝑗

𝑖,𝑘|𝑘
]

× [𝑥
𝑗,𝛼

𝑖,𝑘|𝑘
− 𝑥
𝑗

𝑖,𝑘|𝑘
]

𝑇

} .

(23)

From the above results, we can know that the purpose of
using IDM filter in every LF is to estimate the probability of
channel model switching between packet loss model 𝜃0

𝑖,𝑘
and

packet arrival model 𝜃1
𝑖,𝑘

to reduce the channel uncertainty
and then obtain the combined estimation of state mean and
covariance.

3.2. Federated Multisensor Estimation Fusion. In order to
enhance the accuracy and fault tolerance of the whole
measurement system in harsh industrial environment, the
federated filter (FF) [33, 34], a decentralized filtering tech-
nology, is adopted to fuse the data of LFs (i.e., 𝑥𝑗

𝑖,𝑘|𝑘
, 𝑃𝑗
𝑖,𝑘|𝑘

,
𝑗 = 1, . . . , 𝑚) for every 𝑥

𝑖,𝑘
in MF.

To remove the correlation among the states in different
LFs, according to the rule of information distribution, we
have

𝑄
𝑗

𝑖
= 𝛽
𝑗

𝑖
𝑄
𝑖
, (24)

where 𝛽𝑗
𝑖
> 0 is the information-distribution coefficient of

the 𝑗th LF and is subjected to

𝑚

∑

𝑗=1

𝛽
𝑗

𝑖
= 1. (25)

Because (ℎ𝑗
𝑖
)
𝑇

(𝑅
𝑗

𝑖
)
−1

ℎ
𝑗

𝑖
can reflect the measurement accuracy

of local measurement, 𝜎𝑗
𝑖

= (ℎ
𝑗

𝑖
)
𝑇

(𝑅
𝑗

𝑖
)
−1

ℎ
𝑗

𝑖
is defined as

an information variable. Thus, the optimal information-
distribution method [35] is given as

𝛽
𝑗

𝑖
=

Tr (𝜎𝑗
𝑖
)

∑
𝑚

𝑗=1
Tr (𝜎𝑗
𝑖
)

. (26)

Then, the global state estimation 𝑥
𝑔

𝑖,𝑘|𝑘
and its covariance

𝑃
𝑔

𝑖,𝑘|𝑘
obtained from the MF can be given as follows:

𝑃
𝑔

𝑖,𝑘|𝑘
= [(𝑃

1

𝑖,𝑘|𝑘
)

−1

+ (𝑃
2

𝑖,𝑘|𝑘
)

−1

+ ⋅ ⋅ ⋅ + (𝑃
𝑚

𝑖,𝑘|𝑘
)

−1

]

−1

,

𝑥
𝑔

𝑖,𝑘|𝑘
= 𝑃
𝑔

𝑖,𝑘|𝑘
[(𝑃
1

𝑖,𝑘|𝑘
)

−1

𝑥
1

𝑖,𝑘|𝑘
+ (𝑃
2

𝑖,𝑘|𝑘
)

−1

𝑥
2

𝑖,𝑘|𝑘

+ ⋅ ⋅ ⋅ + (𝑃
𝑚

𝑖,𝑘|𝑘
)

−1

𝑥
𝑚

𝑖,𝑘|𝑘
] ,

(27)

which indicates that the federated global estimation fusion
𝑥
𝑔

𝑖,𝑘|𝑘
for 𝑥
𝑖,𝑘

is a linear weighted combination of the local

estimates 𝑥
𝑗

𝑖,𝑘|𝑘
with weighting matrices 𝑃𝑔

𝑖,𝑘|𝑘
(𝑃
𝑗

𝑖,𝑘|𝑘
)

−1

, 𝑗 =

1, . . . , 𝑚. To a better fault tolerance of sensor measurements,
we select a no-reset mode of federated filter which will not
cross infect between LFs, as shown in Figure 2.

In summary, the main motivation for the above-
mentioned results stems from the need to obtain reliable
measurement data from sensors over wireless sensor network
in the harsh industrial environment. In the following, we
consider the cooperative control problem among actuators.

4. Distributed Control

In every cell domain within workshop, actuator can decide
its control input according to the estimated local temperature
state provided by its IDM-FF presented in Section 3. How-
ever, the stability of the whole system cannot be guaranteed
due to overlapping actuation between actuators. Fortunately,
the upper layer actuator network of two-tier IWSANs pro-
vides a foundation for coordinating the control inputs of
actuators to improve the performance of control system.
This implies that every actuator can obtain more complete
state information of plant by exchanging information with
neighbor actuators over the actuator network. Therefore,
in this paper, we consider that every actuator can firstly
perform a locally optimized control law without accounting
for the effect of neighbor actuators, and then a cooperation
mechanism is adopted to eliminate the overshoot caused
by the interaction with neighbor actuators. Comparing the
cooperation mechanism with the one presented in [20],
the main difference between them is that any actuator
can directly communicate with its neighbor actuators in
our method, unlike the indirect communication between
actuators going through the sensors in [20].

In this section, a locally optimal control method is
considered firstly for actuator 𝑎

𝑖
without collaborations with

neighbor actuators: first, every 𝑎
𝑖
can exchange information

with neighbor 𝑎
𝑙
if and only if 𝛾

𝑘
= 1 via the upper
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actuator network. Second, every 𝑎
𝑖
can decide its control

input to its own 𝑖th cell domain and all neighbor 𝑙 cell
domains, respectively, based on the received information
packets at the first step. Next, we describe the information
flow among actuators by G

𝑎
. The input matrix 𝑊(𝛾

𝑘
) in (7)

can be degenerated as a binary matrix𝑊󸀠(𝛾
𝑘
) to indicate the

connectivity of G
𝑎
by replacing any nonzero elements with

one. Thus, we can use 𝑊
󸀠

(𝛾
𝑘
) = [𝑤

󸀠

𝑖𝑙
(𝛾
𝑖𝑙,𝑘
)] ∈ R𝑛×𝑛 as the

adjacency matrix ofG
𝑎
:

𝑤
󸀠

𝑖𝑙
(𝛾
𝑖𝑙,𝑘
) = {

1 if 𝑤
𝑖𝑙
(𝛾
𝑖𝑙,𝑘
) ̸= 0

0 otherwrise.
(28)

Remark 2. Consider that 𝑎
𝑖
is a neighborhood itself; that is,

𝑤
󸀠

𝑖𝑖
(𝛾
𝑘
) ≡ 1 in (28).

For 𝑎
𝑖
, we define the number of its neighborsN

𝑎𝑖
as

𝜌
𝑖,𝑘

≜

󵄨
󵄨
󵄨
󵄨
󵄨
N
𝑎𝑖

󵄨
󵄨
󵄨
󵄨
󵄨𝛾𝑘=1

= ∑

𝑎𝑙∈N𝑎𝑖

𝑤
󸀠

𝑖𝑙
(𝛾
𝑘
= 1) , (29)

where 1 ⩽ 𝜌
𝑖,𝑘

⩽ |N
𝑎𝑖
| ⩽ 𝑛.

According to the aforementioned distributed collabora-
tive control mechanism, every actuator needs to obtain the
information of neighbor actuators before deciding a control
law. So, 𝑎

𝑖
can use a row selectionmatrix Γ

𝑖,𝑘
∈ R𝜌𝑖,𝑘×𝑛 to collect

information from 𝜌
𝑖,𝑘
neighbor actuators. Γ

𝑖,𝑘
is defined as

Γ
𝑖,𝑘

= [𝑒
𝑇

𝑙
]
𝑙|𝑤
󸀠

𝑖𝑙
(𝛾𝑘)=1

, 𝑙 = 1, . . . , 𝑛, (30)

where 𝑒
𝑙
denotes the 𝑙th vector of the standard basis of R𝑛.

Apparently, Γ𝑇
𝑖,𝑘

is a column selection matrix. Thus, actuator
𝑎
𝑖
can receive available information from neighbor actuators

(including itself) as

Ψ
𝑖,𝑘

= Γ
𝑖,𝑘
𝜓
𝑘
, (31)

𝑋
𝑖,𝑘+1

= 𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
+𝑊
𝑘
𝑢
𝑘
+ Ω
𝑖,𝑘
, (32)

where 𝑋
𝑖,𝑘

= Γ
𝑖,𝑘
𝑥
𝑘
, Ω
𝑖,𝑘

= Γ
𝑖,𝑘
𝜔
𝑘
with covariance 𝑄󸀠

𝑖
> 0,

𝐺
𝑖,𝑘

= Γ
𝑖,𝑘
𝐺Γ
𝑇

𝑖,𝑘
, and𝑊

𝑘
= Γ
𝑖,𝑘
𝑊(𝛾
𝑘
).

Remark 3. Note that the process of selecting neighbor actu-
ators of 𝑎

𝑖
via Γ
𝑖,𝑘

is a dynamic process based on 𝛾
𝑘
due to

the uncertainty of wireless actuator network. For example,
𝑎
𝑙
∈ N
𝑎𝑖
is a neighbor actuator of 𝑎

𝑖
if 𝛾
𝑘−1

= 1 (packet
reception) at time 𝑘 − 1 but is not a neighbor actuator of 𝑎

𝑖

if 𝛾
𝑘
= 0 (packet loss) at time 𝑘.
From the aforementioned results, we can obtain the cost

function only computed by 𝑎
𝑖
as

𝐽
𝑖,𝑘

=

1

𝜌
𝑖,𝑘

E {(Ψ
𝑖,𝑘
− 𝑋
𝑖,𝑘
)
𝑇

(Ψ
𝑖,𝑘
− 𝑋
𝑖,𝑘
)} . (33)

Theorem 4. At time 𝑘 − 1, one can find the locally optimal
control law 𝑢

∗

𝑖,𝑘
of actuator 𝑎

𝑖
without accounting for the effects

of the neighbor actuatorsN
𝑎𝑖
as follows:

𝑢
∗

𝑖,𝑘
= E{argmin

𝑢𝑖,𝑘

𝐽
𝑖,𝑘
}

= (𝑊

𝑇

𝑖,𝑘
𝑊
𝑖,𝑘
)

−1

𝑊

𝑇

𝑖,𝑘
(Ψ
𝑖,𝑘+1

− 𝐺
𝑖,𝑘
𝑋
𝑖,𝑘|𝑘

) ,

(34)

where 𝑋
𝑖,𝑘|𝑘

= Γ
𝑖,𝑘
[𝑥
𝑔

1,𝑘|𝑘
, . . . , 𝑥

𝑔

𝑛,𝑘|𝑘
]
𝑇, and 𝑊

𝑖,𝑘
is the 𝑖th

column of matrix𝑊
𝑘
.

Proof. According to (33), one can obtain

𝐽
𝑖,𝑘+1

=

1

𝜌
𝑖,𝑘+1

E {(Ψ
𝑖,𝑘+1

− 𝑋
𝑖,𝑘+1

)
𝑇

(Ψ
𝑖,𝑘+1

− 𝑋
𝑖,𝑘+1

)}

=

1

𝜌
𝑖,𝑘+1

(E {−2Ψ
𝑇

𝑖,𝑘+1
𝑋
𝑖,𝑘+1

+ 𝑋
𝑇

𝑖,𝑘+1
𝑋
𝑖,𝑘+1

}

+Ψ
𝑇

𝑖,𝑘+1
Ψ
𝑖,𝑘+1

) .

(35)

Substituting (32) into (35), we have
𝐽
𝑖,𝑘+1

=

1

𝜌
𝑖,𝑘+1

(E { − 2Ψ
𝑇

𝑖,𝑘+1
(𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
+𝑊
𝑘
𝑢
𝑘
+ Ω
𝑖,𝑘
)

+ (𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
+𝑊
𝑘
𝑢
𝑘
+ Ω
𝑖,𝑘
)

𝑇

× (𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
+𝑊
𝑘
𝑢
𝑘
+ Ω
𝑖,𝑘
) } + Ψ

𝑇

𝑖,𝑘+1
Ψ
𝑖,𝑘+1

)

=

1

𝜌
𝑖,𝑘+1

(E {𝑢
𝑇

𝑘
𝑊

𝑇

𝑘
𝑊
𝑘
𝑢
𝑘
+ 2𝑢
𝑇

𝑘
𝑊

𝑇

𝑘

× (𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
− Ψ
𝑖,𝑘+1

) }+Ψ
𝑇

𝑖,𝑘+1
Ψ
𝑖,𝑘+1

+ Tr (𝑄󸀠
𝑖
)

+ E {𝑋
𝑇

𝑖,𝑘
𝐺
𝑇

𝑖,𝑘
𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
− 2𝑋
𝑇

𝑖,𝑘
𝐺
𝑇

𝑖,𝑘
Ψ
𝑖,𝑘+1

}) .

(36)
The minimum of 𝐽

𝑖,𝑘+1
in (36) controlled by 𝑢

𝑘
is

𝑉
𝑖,𝑘+1

=

1

𝜌
𝑖,𝑘+1

(min
𝑢𝑘

E {𝑢
𝑇

𝑘
𝑊

𝑇

𝑘
𝑊
𝑘
𝑢
𝑘

+2𝑢
𝑇

𝑘
𝑊

𝑇

𝑘
(𝐺
𝑖,𝑘
𝑋
𝑖,𝑘
− Ψ
𝑖,𝑘+1

)} ) .

(37)
By solving 𝜕𝑉

𝑖,𝑘+1
/𝜕𝑢
𝑘
= 0, that is,

𝜕𝑉
𝑖,𝑘+1

𝜕𝑢
𝑘

= 2𝑊

𝑇

𝑘
𝑊
𝑘
𝑢
𝑘
+ 2𝑊

𝑇

𝑘
(𝐺
𝑖,𝑘
𝑋
𝑖,𝑘|𝑘

− Ψ
𝑖,𝑘+1

) = 0,

(38)

where 𝑋
𝑖,𝑘|𝑘

= Γ
𝑖,𝑘
[𝑥
𝑔

1,𝑘|𝑘
, . . . , 𝑥

𝑔

𝑛,𝑘|𝑘
]

𝑇, we can obtain the
optimal control law 𝑢

∗

𝑖,𝑘
as

𝑢
∗

𝑖,𝑘
= (𝑊

𝑇

𝑘
𝑊
𝑘
)

−1

𝑊

𝑇

𝑘
(Ψ
𝑖,𝑘+1

− 𝐺
𝑖,𝑘
𝑋
𝑖,𝑘|𝑘

) . (39)

Since 𝑢
1,𝑘
, 𝑢
2,𝑘
, . . . , 𝑢

𝑛,𝑘
are independent, the locally opti-

mal control law 𝑢
∗

𝑖,𝑘
of 𝑎
𝑖
without accounting for the effects

of the neighbor actuators N
𝑎𝑖
can be expressed in (34). This

completes the proof.

The locally optimal control law 𝑢
∗

𝑖,𝑘
stated in Theorem 4

does not consider the issues of cooperation among neighbor
actuators for the stability of the entire system. Therefore, in
order to eliminate the overlapping action between neighbor
actuators, we adopt a distributed cooperation mechanism for
every actuator as follows:

𝑢
†

𝑖,𝑘
= 𝜇
𝑖,𝑘
𝑢
∗

𝑖,𝑘
, 𝑖 = 1, . . . , 𝑛, (40)
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where 𝜇
𝑖,𝑘

is a tuning parameter. Next, we introduce how to
compute 𝜇

𝑖,𝑘
for 𝑎
𝑖
. First, at time 𝑘, every actuator 𝑎

𝑙
, 𝑎
𝑙
∈ N
𝑎𝑖
,

can use an information set I
𝑙,𝑘

= {𝑤
𝑙𝑗
(𝛾
𝑙𝑗,𝑘
)𝑢
∗

𝑗,𝑘
| 𝑎
𝑗

∈

N
𝑎𝑙
, 𝛾
𝑙𝑗,𝑘

= 1}, where 𝑢∗
𝑗,𝑘

is calculated by (34). Second, every
𝑎
𝑙
computes the number of elements in set I

𝑙,𝑘
that have

the same sign as one another and then obtains a factor set
Λ = {𝜆

𝑗𝑙,𝑘
}. For 𝑎

𝑙
, 𝜆
𝑗𝑙,𝑘

means the number of its neighbor
actuators that can produce overlapping actuation with 𝑎

𝑙
at

time 𝑘. Then, after receiving Λ, we can obtain the tuning
parameter for 𝑎

𝑖
as

𝜇
𝑖,𝑘

=

1

𝜌
𝑖,𝑘

∑

𝑎𝑙∈𝑁𝑎𝑖

1

𝜆
𝑖𝑙,𝑘

. (41)

Note that the aforementioned cooperation mechanism in
(41) is similar to [20]; however, our method runs a direct
cooperation among actuators without going through the
sensors.

5. Numerical Example

In this section, we consider an example of temperature
control in industrial environment over the hybrid two-tier
IWSANs. The simulation experiment is built on MATLAB
software platform. The monitored workshop field is 100m ×

100m and deployed 7 cells. The actuating radius of actuators
within each cell is 𝑟

𝑎
= 17m, and the detection radius of each

sensor is 𝑟
𝑠
= 8m. Assume that the environment temperature

of every cell domain can be controlled by a central air
conditioning (i.e., an actuator with estimate/control unit)
and collected by 5 intracell sensors. According to the actual
production requirements, assume that our object is to control
the temperature within every cell domain to meet set value
Ψ
𝑖
, 𝑖 ∈ {1, . . . , 7}, chosen from [10

∘C, 40∘C]. Let the plant
model be specified as follows. Consider 𝑔

𝑖𝑖
= 0.9, for all 𝑖, and

weight coefficient 𝑤
𝑖𝑙
(𝛾
𝑖𝑙,𝑘
) is distributed randomly in [0, 1].

The average loss packet rate of channel is E(𝛾
𝑖𝑙,𝑘
) = 75% in

the actuator network. For the sensor network, assume that
𝜃
1,𝑘

= 𝜃
2,𝑘

= ⋅ ⋅ ⋅ = 𝜃
7,𝑘

= 𝜃
𝑘
, ℎ𝑗
𝑖
(𝜃
𝛼

𝑘
) = 𝛼, 𝛼 = 0, 1, the initial

channel model probability is 𝜋
0
= [0.5 0.5], the true TPM

is chosen with 𝜉
00

= 0.3 and 𝜉
11

= 0.9, and the IDM uses
a numerical integration estimator with 50 grid points over
[0, 1] for posterior TPM.

In simulation running, let the number of the total
simulation steps and the measurement packets from sensors
successfully arriving at actuator be ϝ and Δ (i.e., the number
of model 𝜃1

𝑘
), respectively. According to the TPM in (6), the

times channel state 𝜃
𝑘
switching from 𝜃

1

𝑘
to 𝜃
0

𝑘
is about Δ𝜉10.

We introduce a variable 𝑇loss ∈ Z that denotes the times of 𝜃
𝑘

remaining at 𝜃0
𝑘
. Therefore, the average times 𝜃

𝑘
remaining at

𝜃
0

𝑘
can be estimated as

E {𝑇loss} =
∞

∑

𝑡=1

𝑡(𝜉
00

)

𝑡−1

=

1

(1 − 𝜉
00
)
2
=

1

(𝜉
01
)
2
. (42)

Table 1: Analysis of packet losses.

Distribution of 𝑇loss

𝑇loss Pr{𝑇loss = 𝑡} = 𝜉
01

(𝜉
00

)
𝑡−1 Times of 𝑇loss = 𝑡

1 0.7000 5
2 0.2100 2
3 0.0630 1
4 0.0189 1

𝜃
k

k

1

0.5

0
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Figure 3: Example of sample sequence of 𝜃
𝑘
.
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Figure 4: Control performance.

The total times 𝜃
0

𝑘
in sequence of 𝜃

𝑘
can be described

approximately as Δ𝜉10/(𝜉01)2; thus

Δ + Δ

𝜉
10

(𝜉
01
)
2
≈ ϝ. (43)

Finally, the above equation can be rewritten as

Δ ≈

(𝜉
01

)

2

𝜉
10
+ (𝜉
01
)
2
ϝ. (44)

If we take ϝ = 100, then Δ ≈ 83, Δ𝜉10 ≈ 9, and
the average arrival rates of channel state 𝜃

𝑘
are about 83%.

We report the approximate distribution of 𝑇loss in Table 1. A
sample sequence of 𝜃

𝑘
is generated as shown in Figure 3.

The results of simulation are shown in Figures 4–8.
Figure 4 illustrates the control performance of the system.
It is clearly seen that the system with cooperation is sta-
ble, but the cost function curve without cooperation has
an about 20% deviation due to overlapping effects among
neighbor actuators. Figure 5 illustrates the convergence of the
TPM estimators. Figure 6 shows that the adaptive IDM has
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a better accuracy of state estimate than the nonadaptive one
with a mismatched TPM (𝜉00 = 𝜉

11

= 0.6). Because the
prior knowledge of true TPM for wireless communication
channel with random packet losses is unknown in most real
situations, it is preferable to use an adaptive algorithm to
estimate the TPM. Figure 7 compares the accuracy of mean
trace for estimation covariance for LF (Tr(𝑝𝑙)), SF (Tr(𝑝𝑠)),
and MF (Tr(𝑝𝑔)). Note that SF (single filter) indicates this
case in which the temperature state 𝑥

𝑖
is measured by single

sensor rather than a multisensor measurement of federated
estimation fusion. It shows that, first, the accuracy of MF is
improved much compared with LF, and, second, federated
estimators perform better than estimators without fusion.
Figure 8 shows that the adaptive IDM filtering can provide
a better true model probability. As one can expect, the
distributed collaborative control approach can ameliorate
effectively the control performance of the whole system,
and the adaptive IDM-FF shows substantially better overall
performance than the nonadaptive one.

6. Conclusions

In this paper, we consider the problem of distributed control
and estimate over hybrid two-tier IWASNs for industrial
automation control applications. In order to identify the
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Figure 7: Mean trace for estimate covariance.
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unreliable communication channel, a novel IDM with the
adaptive channel-aware algorithm is designed. The federated
estimation fusion algorithm is presented to further improve
the performance of accuracy and fault tolerance of state
estimation. A distributed control scheme with coordination
is proposed. The system stability and effectiveness of the
presented methods are shown by simulation results.

Future work includes finding a multi-index (such as
temperature, humidity, and air cleanliness) fusion and con-
trol strategy for production environments in a workshop
and considering a coordination mechanism to minimize the
average energy consumption of system.
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