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As an alternative to classical techniques, the problem of image segmentation has also been handled through evolutionary
methods. Recently, several algorithms based on evolutionary principles have been successfully applied to image segmentation with
interesting performances. However, most of themmaintain two important limitations: (1) they frequently obtain suboptimal results
(misclassifications) as a consequence of an inappropriate balance between exploration and exploitation in their search strategies; (2)
the number of classes is fixed and known in advance.This paper presents an algorithm for the automatic selection of pixel classes for
image segmentation. The proposed method combines a novel evolutionary method with the definition of a new objective function
that appropriately evaluates the segmentation quality with respect to the number of classes.The new evolutionary algorithm, called
Locust Search (LS), is based on the behavior of swarms of locusts. Different to the most of existent evolutionary algorithms, it
explicitly avoids the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to
suboptimal solutions and the limited exploration-exploitation balance. Experimental tests over several benchmark functions and
images validate the efficiency of the proposed technique with regard to accuracy and robustness.

1. Introduction

Image segmentation [1] consists in grouping image pixels
based on some criteria such as intensity, color, and texture
and still represents a challenging problem within the field of
image processing. Edge detection [2], region-based segmen-
tation [3], and thresholdingmethods [4] are themost popular
solutions for image segmentation problems.

Among such algorithms, thresholding is the simplest
method. It works by considering threshold (points) values
to adequately separate distinct pixels regions within the
image being processed. In general, thresholding methods are
divided into two types depending on the number of threshold
values, namely, bilevel andmultilevel. In bilevel thresholding,
only a threshold value is required to separate the two objects
of an image (e.g., foreground and background). On the
other hand, multilevel thresholding divides pixels into more

than two homogeneous classes that require several threshold
values.

The thresholding methods use a parametric or non-
parametric approach [5]. In parametric approaches [6, 7],
it is necessary to estimate the parameters of a probability
density function that is capable of modelling each class. A
nonparametric technique [8–11] employs a given criteria such
as the between-class variance or the entropy and error rate, in
order to determine optimal threshold values.

A common method to accomplish parametric thresh-
olding is the modeling of the image histogram through a
Gaussian mixture model [12] whose parameters define a
set of pixel classes (threshold points). Therefore, each pixel
that belongs to a determined class is labeled according to
its corresponding threshold points with several pixel groups
gathering those pixels that share a homogeneous grayscale
level.
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The problem of estimating the parameters of a Gaussian
mixture that better model an image histogram has been
commonly solved through the Expectation Maximization
(EM) algorithm [13, 14] or gradient-based methods such
as Levenberg-Marquardt, LM [15]. Unfortunately, EM algo-
rithms are very sensitive to the choice of the initial values
[16],meanwhile gradient-basedmethods are computationally
expensive and may easily get stuck within local minima [17].

As an alternative to classical techniques, the problem
of Gaussian mixture identification has also been handled
through evolutionarymethods. In general, they have demon-
strated to deliver better results than those based on clas-
sical approaches in terms of accuracy and robustness [18].
Under these methods, an individual is represented by a
candidate Gaussian mixture model. Just as the evolution
process unfolds, a set of evolutionary operators are applied
in order to produce better individuals. The quality of each
candidate solution is evaluated through an objective function
whose final result represents the similarity between the
mixture model and the histogram. Some examples of these
approaches involve optimization methods such as Artificial
Bee Colony (ABC) [19], Artificial Immune Systems (AIS)
[20], Differential Evolution (DE) [21], Electromagnetism
Optimization (EO) [22], Harmony Search (HS) [23], and
Learning Automata (LA) [24]. Although these algorithms
own interesting results, they present two important limita-
tions. (1) They frequently obtain suboptimal approximations
as a consequence of a limited balance between exploration
and exploitation in their search strategies. (2) They are based
on the assumption that the number of Gaussians (classes) in
the mixture is preknown and fixed; otherwise, they cannot
work. The cause of the first limitation is associated with their
evolutionary operators employed to modify the individual
positions. In such algorithms, during their evolution, the
position of each agent for the next iteration is updated
yielding an attraction towards the position of the best
particle seen so far or towards other promising individuals.
Therefore, as the algorithmevolves, these behaviors cause that
the entire population rapidly concentrates around the best
particles, favoring the premature convergence and damaging
the appropriate exploration of the search space [25, 26].
The second limitation is produced as a consequence of the
objective function that evaluates the similarity between the
mixture model and the histogram. Under such an objective
function, the number of Gaussians functions in the mixture
is fixed. Since the number of threshold values (Gaussian
functions) used for image segmentation varies depending on
the image, the best threshold number and values are obtained
by an exhaustive trial and error procedure.

On the other hand, bioinspired algorithms represent a
field of research that is concerned with the use of biology
as a metaphor for producing optimization algorithms. Such
approaches use our scientific understanding of biological
systems as an inspiration that, at some level of abstraction,
can be represented as optimization processes.

In the last decade, several optimization algorithms have
been developed by a combination of deterministic rules and
randomness, mimicking the behavior of natural phenomena.
Such methods include the social behavior of bird flocking

and fish schooling such as the Particle Swarm Optimization
(PSO) algorithm [27] and the emulation of the differential
evolution in species such as the Differential Evolution (DE)
[28]. Although PSO and DE are the most popular algorithms
for solving complex optimization problems, they present
serious flaws such as premature convergence and difficulty to
overcome local minima [29, 30].The cause for such problems
is associated with the operators that modify individual posi-
tions. In such algorithms, during the evolution, the position
of each agent for the next iteration is updated yielding an
attraction towards the position of the best particle seen so far
(in case of PSO) or towards other promising individuals (in
case of DE). As the algorithm evolves, these behaviors cause
that the entire population rapidly concentrates around the
best particles, favoring the premature convergence and dam-
aging the appropriate exploration of the search space [31, 32].

Recently, the collective intelligent behavior of insect
or animal groups in nature has attracted the attention of
researchers.The intelligent behavior observed in these groups
provides survival advantages, where insect aggregations of
relatively simple and “unintelligent” individuals can accom-
plish very complex tasks using only limited local information
and simple rules of behavior [33]. Locusts (Schistocerca
gregaria) are a representative example of such collaborative
insects [34]. Locust is a kind of grasshopper that can change
reversibly between a solitary and a social phase, with clear
behavioral differences among both phases [35]. The two
phases show many differences regarding the overall level
of activity and the degree to which locusts are attracted or
repulsed among them [36]. In the solitary phase, locusts
avoid contact to each other (locust concentrations). As
consequence, they distribute throughout the space, exploring
sufficiently over the plantation [36]. On the other hand, in
the social phase, locusts frantically concentrate around those
elements that have already found good food sources [37].
Under such a behavior, locusts attempt to efficiently find
better nutrients by devastating promising areas within the
plantation.

This paper presents an algorithm for the automatic
selection of pixel classes for image segmentation. The pro-
posed method combines a novel evolutionary method with
the definition of a new objective function that appropri-
ately evaluates the segmentation quality with regard to the
number of classes. The new evolutionary algorithm, called
Locust Search (LS), is based on the behavior presented in
swarms of locusts. In the proposed algorithm, individuals
emulate a group of locusts which interact to each other
based on the biological laws of the cooperative swarm.
The algorithm considers two different behaviors: solitary
and social. Depending on the behavior, each individual is
conducted by a set of evolutionary operators which mimics
different cooperative conducts that are typically found in the
swarm. Different to most of existent evolutionary algorithms,
the behavioral model in the proposed approach explicitly
avoids the concentration of individuals in the current best
positions. Such fact allows avoiding critical flaws such as
the premature convergence to suboptimal solutions and
the incorrect exploration-exploitation balance. In order to
automatically define the optimal number of pixel classes
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(Gaussian functions in themixture), a new objective function
has been also incorporated. The new objective function is
divided into two parts. The first part evaluates the quality
of each candidate solution in terms of its similarity with
regard to the image histogram. The second part penalizes
the overlapped area among Gaussian functions (classes).
Under these circumstances, Gaussian functions that do not
“positively” participate in the histogram approximation could
be easily eliminated in the final Gaussian mixture model.

In order to illustrate the proficiency and robustness
of the proposed approach, several numerical experiments
have been conducted. Such experiments are divided into
two sections. In the first part, the proposed LS method
is compared to other well-known evolutionary techniques
over a set of benchmark functions. In the second part,
the performance of the proposed segmentation algorithm
is compared to other segmentation methods which are also
based on evolutionary principles. The results in both cases
validate the efficiency of the proposed technique with regard
to accuracy and robustness.

This paper is organized as follows: in Section 2 basic
biological issues of the algorithm analogy are introduced and
explained. Section 3 describes the novel LS algorithm and its
characteristics. A numerical study on different benchmark
function is presented in Section 4 while Section 5 presents
the modelling of an image histogram through a Gaussian
mixture. Section 6 exposes the LS segmentation algorithm
and Section 7 the performance of the proposed segmentation
algorithm. Finally, Section 8 draws some conclusions.

2. Biological Fundamentals and
Mathematical Models

Social insect societies are complex cooperative systems that
self-organize within a set of constraints. Cooperative groups
are good at manipulating and exploiting their environment,
defending resources and breeding, yet allowing task special-
ization among groupmembers [38, 39]. A social insect colony
functions as an integrated unit that not only possesses the
ability to operate at a distributed manner but also undertakes
a huge construction of global projects [40]. It is important to
acknowledge that global order for insects can arise as a result
of internal interactions among members.

Locusts are a kind of grasshoppers that exhibit two
opposite behavioral phases: solitary and social (gregarious).
Individuals in the solitary phase avoid contact to each
other (locust concentrations). As consequence, they dis-
tribute throughout the space while sufficiently exploring the
plantation [36]. In contrast, locusts in the gregarious phase
gather into several concentrations. Such congregations may
contain up to 1010 members, cover cross-sectional areas of
up to 10 km2, and a travelling capacity up to 10 km per
day for a period of days or weeks as they feed causing a
devastating crop loss [41].Themechanism to switch from the
solitary phase to the gregarious phase is complex and has
been a subject of significant biological inquiry. Recently, a
set of factors has been implicated to include geometry of the
vegetation landscape and the olfactory stimulus [42].

Only few works [36, 37] that mathematically model
the locust behavior have been published. Both approaches
develop two different minimal models with the goal of
reproducing the macroscopic structure and motion of a
group of locusts. Considering that themethod in [36] focuses
on modelling the behavior for each locust in the group, its
fundamentals have been employed to develop the algorithm
that is proposed in this paper.

2.1. Solitary Phase. This section describes how each locust’s
position is modified as a result of its behavior under the
solitary phase. Considering that x𝑘

𝑖
represents the current

position of the 𝑖th locust in a group of 𝑁 different elements,
the new position x𝑘+1

𝑖
is calculated by using the following

model:

x𝑘+1
𝑖

= x𝑘
𝑖
+Δx
𝑖
, (1)

with Δx
𝑖
corresponding to the change of position that is

experimented by x𝑘
𝑖
as a consequence of its social interaction

with all other elements in the group.
Two locusts in the solitary phase exert forces on each

other according to basic biological principles of attraction
and repulsion (see, e.g., [36]). Repulsion operates quite
strongly over a short length scale in order to avoid concentra-
tions. Attraction is weaker and operates over a longer length
scale, providing the social force that is required to maintain
the group’s cohesion. Therefore, the strength of such social
forces can be modeled by the following function:

𝑠 (𝑟) = 𝐹 ⋅ 𝑒
−𝑟/𝐿

− 𝑒
−𝑟
. (2)

Here, 𝑟 is a distance, 𝐹 describes the strength of attraction,
and 𝐿 is the typical attractive length scale. We have scaled the
time and the space coordinates so that the repulsive strength
and length scale are both represented by the unity.We assume
that 𝐹 < 1 and 𝐿 > 1 so that repulsion is stronger and features
in a shorter-scale, while attraction is applied in a weaker and
longer-scale; both facts are typical for social organisms [21].
The social force exerted by locust 𝑗 over locust 𝑖 is

s
𝑖𝑗
= 𝑠 (𝑟
𝑖𝑗
) ⋅ d
𝑖𝑗
, (3)

where 𝑟
𝑖𝑗
= ‖x
𝑗
− x
𝑖
‖ is the distance between the two locusts

and d
𝑖𝑗
= (x
𝑗
− x
𝑖
)/𝑟
𝑖𝑗
is the unit vector pointing from x

𝑖
to

x
𝑗
.The total social force on each locust can be modeled as the

superposition of all of the pairwise interactions:

S
𝑖
=

𝑁

∑

𝑗=1
𝑗 ̸=𝑖

s
𝑖𝑗
. (4)

The change of positionΔx
𝑖
is modeled as the total social force

experimented by x𝑘
𝑖
as the superposition of all of the pairwise

interactions. Therefore, Δx
𝑖
is defined as follows:

Δx
𝑖
= S
𝑖
. (5)

In order to illustrate the behavioral model under the solitary
phase, Figure 1 presents an example, assuming a population of
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Figure 1: Behavioral model under the solitary phase.

three different members (𝑁 = 3) which adopt a determined
configuration in the current iteration 𝑘. As a consequence
of the social forces, each element suffers an attraction or
repulsion to other elements depending on the distance among
them. Such forces are represented by s12, s13, s21, s23, s31,
and s32. Since x1 and x2 are too close, the social forces s12
and s13 present a repulsive nature. On the other hand, as the
distances ‖x1 − x3‖ and ‖x2 − x3‖ are quite long, the social
forces s13, s23, s31, and s32 between x1 ↔ x3 and x2 ↔ x3
all belong to the attractive nature. Therefore, the change of
position Δx1 is computed as the vector resultant between s12
and s13 (Δx1 = s12+s13) is S1.The valuesΔx2 andΔx3 are also
calculated accordingly.

In addition to the presented model [36], some studies
[43–45] suggest that the social force s

𝑖𝑗
is also affected by

the dominance of the involved individuals x
𝑖
and x

𝑗
in the

pairwise process. Dominance is a property that relatively
qualifies the capacity of an individual to survive, in relation
to other elements in a group. The locust’s dominance is
determined by several characteristics such as size, chemical
emissions, and location with regard to food sources. Under
such circumstances, the social force ismagnified orweakened
depending on the most dominant individual that is involved
in the repulsion-attraction process.

2.2. Social Phase. In this phase, locusts frantically concen-
trate around the elements that have already found good food
sources. They attempt to efficiently find better nutrients by
devastating promising areas within the plantation. In order
to simulate the social phase, the food quality index Fq

𝑖
is

assigned to each locust x
𝑖
of the group as such index reflects

the quality of the food source where x
𝑖
is located.

Under this behavioral model, each of the 𝑁 elements
of the group is ranked according to its corresponding food
quality index. Afterwards, the 𝑏 elements featuring the best
food quality indexes are selected (𝑏 ≪ 𝑁). Considering a
concentration radius 𝑅

𝑐
that is created around each selected

element, a set of 𝑐 new locusts is randomly generated inside
𝑅
𝑐
. As a result, most of the locusts will be concentrated

around the best 𝑏 elements. Figure 2 shows a simple example
of the behavioral model under the social phase. In the
example, the configuration includes eight locusts (𝑁 = 8),
just as it is illustrated by Figure 2(a) that also presents the food
quality index for each locust. A food quality index near to one
indicates a better food source.Therefore, Figure 2(b) presents
the final configuration after the social phase, assuming 𝑏 = 2.

3. The Locust Search (LS) Algorithm

In this paper, some behavioral principles drawn froma swarm
of locusts have been used as guidelines for developing a
new swarm optimization algorithm. The LS assumes that
entire search space is a plantation, where all the locusts
interact to each other. In the proposed approach, each
solution within the search space represents a locust position
inside the plantation. Every locust receives a food quality
index according to the fitness value of the solution that is
symbolized by the locust’s position. As it has been previously
discussed, the algorithm implements two different behavioral
schemes: solitary and social. Depending on each behavioral
phase, each individual is conducted by a set of evolutionary
operators which mimics the different cooperative operations
that are typically found in the swarm. The proposed method
formulates the optimization problem in the following form:

maximize/minimize 𝑓 (l) , l = (𝑙1, . . . , 𝑙𝑛) ∈ R
𝑛

subject to l ∈ S,
(6)

where 𝑓 : R𝑛 → R is a nonlinear function whereas S = {l ∈
R𝑛 | 𝑙𝑏

𝑑
≤ 𝑙
𝑑
≤ 𝑢𝑏
𝑑
, 𝑑 = 1, . . . , 𝑛} is a bounded feasible search

space, which is constrained by the lower (𝑙𝑏
𝑑
) and upper (𝑢𝑏

𝑑
)

limits.
In order to solve the problem formulated in (6), a

population L𝑘 ({l𝑘1, l
𝑘

2, . . . , l
𝑘

𝑁
}) of 𝑁 locusts (individuals) is

evolved inside the LS operation from the initial point (𝑘 =

0) to a total 𝑔𝑒𝑛 number of iterations (𝑘 = 𝑔𝑒𝑛). Each
locust l𝑘

𝑖
(𝑖 ∈ [1, . . . , 𝑁]) represents an 𝑛-dimensional

vector {𝑙𝑘
𝑖,1, 𝑙
𝑘

𝑖,2, . . . , 𝑙
𝑘

𝑖,𝑛
} where each dimension corresponds to

a decision variable of the optimization problem to be solved.
The set of decision variables constitutes the feasible search
space S = {l𝑘

𝑖
∈ R𝑛 | 𝑙𝑏

𝑑
≤ 𝑙
𝑘

𝑖,𝑑
≤ 𝑢𝑏
𝑑
}, where 𝑙𝑏

𝑑
and 𝑢𝑏

𝑑

correspond to the lower and upper bounds for the dimension
𝑑, respectively. The food quality index that is associated with
each locust l𝑘

𝑖
(candidate solution) is evaluated through an

objective function 𝑓(l𝑘
𝑖
) whose final result represents the

fitness value of l𝑘
𝑖
. In the LS algorithm, each iteration of the

evolution process consists of two operators: (A) solitary and
(B) social. Beginning by the solitary stage, the set of locusts is
operated in order to sufficiently explore the search space. On
the other hand, the social operation refines existent solutions
within a determined neighborhood (exploitation) subspace.

3.1. Solitary Operation (A). One of the most interesting
features of the proposed method is the use of the solitary
operator to modify the current locust positions. Under this
approach, locusts are displaced as a consequence of the
social forces produced by the positional relations among the
elements of the swarm. Therefore, near individuals tend to
repel each other, avoiding the concentration of elements in
regions. On the other hand, distant individuals tend to attract
to each other, maintaining the cohesion of the swarm. A clear
difference to the original model in [20] considers that social
forces are alsomagnified or weakened depending on themost
dominant (best fitness values) individuals that are involved in
the repulsion-attraction process.
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Figure 2: Behavioral model under the social phase. (a) Initial configuration and food quality indexes, (b) final configuration after the
operation of the social phase.

In the solitary phase, a new position p
𝑖
(𝑖 ∈ [1, . . . , 𝑁]) is

produced by perturbing the current locust position l𝑘
𝑖
with a

change of position Δl
𝑖
(p
𝑖
= l𝑘
𝑖
+ Δl
𝑖
). The change of position

Δl
𝑖
is the result of the social interactions experimented by l𝑘

𝑖

as a consequence of its repulsion-attraction behavioralmodel.
Such social interactions are pairwise computed among l𝑘

𝑖
and

the other 𝑁 − 1 individuals in the swarm. In the original
model, social forces are calculated by using (3). However, in
the proposedmethod, it is modified to include the best fitness
value (the most dominant) of the individuals involved in
the repulsion-attraction process. Therefore, the social force,
that is exerted between l𝑘

𝑗
and l𝑘
𝑖
, is calculated by using the

following new model:

s𝑚
𝑖𝑗
= 𝜌 (l𝑘

𝑖
, l𝑘
𝑗
) ⋅ 𝑠 (𝑟

𝑖𝑗
) ⋅ d
𝑖𝑗
+ rand (1, − 1) , (7)

where 𝑠(𝑟
𝑖𝑗
) is the social force strength defined in (2) and d

𝑖𝑗
=

(l𝑘
𝑗
− l𝑘
𝑖
)/𝑟
𝑖𝑗
is the unit vector pointing from l𝑘

𝑖
to l𝑘
𝑗
. Besides,

rand(1, −1) is a randomly generated number between 1 and
−1. Likewise, 𝜌(l𝑘

𝑖
, l𝑘
𝑗
) is the dominance function that calcu-

lates the dominance value of the most dominant individual
from l𝑘

𝑗
and l𝑘
𝑖
. In order to operate 𝜌(l𝑘

𝑖
, l𝑘
𝑗
), all the individuals

from L𝑘 ({l𝑘1, l
𝑘

2, . . . , l
𝑘

𝑁
}) are ranked according to their fitness

values. The ranks are assigned so that the best individual
receives the rank 0 (zero) whereas the worst individual
obtains the rank 𝑁 − 1. Therefore, the function 𝜌(l𝑘

𝑖
, l𝑘
𝑗
) is

defined as follows:

𝜌 (l𝑘
𝑖
, l𝑘
𝑗
) =

{

{

{

𝑒
−(5⋅rank(l𝑘

𝑖
)/𝑁) if rank (l𝑘

𝑖
) < rank (l𝑘

𝑗
)

𝑒
−(5⋅rank(l𝑘

𝑗
)/𝑁) if rank (l𝑘

𝑖
) > rank (l𝑘

𝑗
) ,

(8)
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Figure 3: Behavior of 𝜌(l𝑘
𝑖
, l𝑘
𝑗
) considering 100 individuals.

where the function rank(𝛼) delivers the rank of the 𝛼-
individual. According to (8), 𝜌(l𝑘

𝑖
, l𝑘
𝑗
) yields a value within

the interval (1, 0). Its maximum value of one in 𝜌(l𝑘
𝑖
, l𝑘
𝑗
) is

reached when either individual l𝑘
𝑗
or l𝑘
𝑖
is the best element of

the population L𝑘 regarding their fitness values. On the other
hand, a value close to zero is obtained when both individuals
l𝑘
𝑗
and l𝑘
𝑖
possess quite bad fitness values. Figure 3 shows the

behavior of 𝜌(l𝑘
𝑖
, l𝑘
𝑗
) considering 100 individuals. In the figure,

it is assumed that l𝑘
𝑖
represents one of the 99 individuals with

ranks between 0 and 98whereas l𝑘
𝑗
is fixed to the element with

the worst fitness value (rank 99).
Under the incorporation of 𝜌(l𝑘

𝑖
, l𝑘
𝑗
) in (7), social forces

are magnified or weakened depending on the best fitness
value (the most dominant) of the individuals involved in the
repulsion-attraction process.
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Figure 4: Examples of different distributions. (a) Initial condition, (b) distribution after applying 25, (c) 50 and (d) 100 operations.The green
asterisk represents the minimum value so far.

Finally, the total social force on each individual l𝑘
𝑖
is mod-

eled as the superposition of all of the pairwise interactions
exerted over it:

S𝑚
𝑖
=

𝑁

∑

𝑗=1
𝑗 ̸=𝑖

s𝑚
𝑖𝑗
. (9)

Therefore, the change of positionΔl
𝑖
is considered as the total

social force experimented by l𝑘
𝑖
as the superposition of all of

the pairwise interactions. Thus, Δl
𝑖
is defined as follows:

Δl
𝑖
= S𝑚
𝑖
. (10)

After calculating the new positions P ({p1, p2, . . . , p𝑁})
of the population L𝑘 ({l𝑘1, l

𝑘

2, . . . , l
𝑘

𝑁
}), the final positions

F ({f1, f2, . . . , f𝑁}) must be calculated. The idea is to admit
only the changes that guarantee an improvement in the
search strategy. If the fitness value of p

𝑖
(𝑓(p
𝑖
)) is better than

l𝑘
𝑖
(𝑓(l𝑘
𝑖
)), then p

𝑖
is accepted as the final solution. Otherwise,

l𝑘
𝑖
is retained.This procedure can be resumed by the following

statement (considering a minimization problem):

f
𝑖
=
{

{

{

p
𝑖

if 𝑓 (p
𝑖
) < 𝑓 (l𝑘

𝑖
)

l𝑘
𝑖

otherwise.
(11)

In order to illustrate the performance of the solitary oper-
ator, Figure 4 presents a simple example with the solitary
operator being iteratively applied. A population of 50 dif-
ferent members (𝑁 = 50) is assumed which adopt a
concentrated configuration as initial condition (Figure 4(a)).
As a consequence of the social forces, the set of elements
tends to distribute throughout the search space. Examples
of different distributions are shown in Figures 4(b), 4(c),
and 4(d) after applying 25, 50, and 100 different solitary
operations, respectively.

3.2. Social Operation (B). The social procedure represents
the exploitation phase of the LS algorithm. Exploitation is
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the process of refining existent individuals within a small
neighborhood in order to improve their solution quality.

The social procedure is a selective operation which is
applied only to a subset E of the final positions F (where
E ⊆ F). The operation starts by sorting F with respect to
fitness values, storing the elements in a temporary population
B = {b1, b2, . . . , b𝑁}. The elements in B are sorted so that
the best individual receives the position b1 whereas the worst
individual obtains the location b

𝑁
. Therefore, the subset E

is integrated by only the first 𝑔 locations of B (promising
solutions). Under this operation, a subspace 𝐶

𝑗
is created

around each selected particle f
𝑗
∈ E. The size of 𝐶

𝑗
depends

on the distance 𝑒
𝑑
which is defined as follows:

𝑒
𝑑
=

∑
𝑛

𝑞=1 (𝑢𝑏𝑞 − 𝑙𝑏𝑞)

𝑛
⋅ 𝛽, (12)

where 𝑢𝑏
𝑞
and 𝑙𝑏

𝑞
are the upper and lower bounds in the

𝑞th dimension and 𝑛 is the number of dimensions of the
optimization problem, whereas 𝛽 ∈ [0, 1] is a tuning factor.
Therefore, the limits of 𝐶

𝑗
can be modeled as follows:

𝑢𝑠𝑠
𝑞

𝑗
= 𝑏
𝑗,𝑞
+ 𝑒
𝑑
,

𝑙𝑠𝑠
𝑞

𝑗
= 𝑏
𝑗,𝑞
− 𝑒
𝑑
,

(13)

where 𝑢𝑠𝑠𝑞
𝑗
and 𝑙𝑠𝑠𝑞

𝑗
are the upper and lower bounds of the 𝑞th

dimension for the subspace 𝐶
𝑗
, respectively.

Considering the subspace 𝐶
𝑗
around each element f

𝑗
∈

E, a set of ℎ new particles (Mℎ
𝑗

= {m1
𝑗
,m2
𝑗
, . . . ,mℎ

𝑗
}) are

randomly generated inside bounds fixed by (13). Once the
ℎ samples are generated, the individual l𝑘+1

𝑗
of the next

population L𝑘+1 must be created. In order to calculate l𝑘+1
𝑗

,
the best particlem𝑏𝑒𝑠𝑡

𝑗
, in terms of its fitness value from the ℎ

samples (wherem𝑏𝑒𝑠𝑡
𝑗

∈ [m1
𝑗
,m2
𝑗
, . . . ,mℎ

𝑗
]), is compared to f

𝑗
.

Ifm𝑏𝑒𝑠𝑡
𝑗

is better than f
𝑗
according to their fitness values, l𝑘+1

𝑗

is updated with m𝑏𝑒𝑠𝑡
𝑗

; otherwise, f
𝑗
is selected. The elements

of F that have not been processed by the procedure (f
𝑤
∉ E)

transfer their corresponding values to L𝑘+1 with no change.
The social operation is used to exploit only prominent

solutions. According to the proposed method, inside each
subspace 𝐶

𝑗
, ℎ random samples are selected. Since the

number of selected samples at each subspace is very small
(typically ℎ < 4), the use of this operator substantially reduces
the number of fitness function evaluations.

In order to demonstrate the social operation, a numerical
example has been set by applying the proposed process to a
simple function. Such function considers the interval of −3 ≤
𝑑1, 𝑑2 ≤ 3 whereas the function possesses one global maxima
of value 8.1 at (0, 1.6). Notice that 𝑑1 and 𝑑2 correspond to
the axis coordinates (commonly 𝑥 and 𝑦). For this example,
a final position population F of six 2-dimensional members
(𝑁 = 6) is assumed. Figure 5 shows the initial configuration
of the proposed example, with the black points representing
half of the particles with the best fitness values (the first three
elements of B, 𝑔 = 3) whereas the grey points (f2, f4, f6 ∉ E)
correspond to the remaining individuals. From Figure 5, it

0

0

0

d1

d
2

−3

−2

−1

−
2

−2

𝐟6

𝐟3
𝐟1

𝐟4

𝐟5

𝐟2 𝐦2
1𝐦1

1

𝐦2
3

𝐦1
3

𝐦2
5

𝐦1
5

C1

C5

C3

2

2

2

2

22

2

0

0 0

0

−2

−2

−
2

−4

−4
−6

4

44

6

6
8

3

2

1

0

−3 −2 −1 3210

Figure 5: Operation of the social procedure.

can be seen that the social procedure is applied to all black
particles (f5 = b1, f3 = b2, and f1 = b3, f5, f3, f1 ∈

E) yielding two new random particles (ℎ = 2), which are
characterized by white points m1

1, m
2
1, m

1
3, m

2
3, m

1
5, and m2

5,
for each black point inside of their corresponding subspaces
𝐶1, 𝐶3, and 𝐶5. Considering the particle f3 in Figure 7, the
particle m2

3 corresponds to the best particle (m𝑏𝑒𝑠𝑡3 ) from the
two randomly generated particles (according to their fitness
values) within 𝐶3. Therefore, the particlem𝑏𝑒𝑠𝑡3 will substitute
f3 in the individual l𝑘+13 for the next generation, since it holds
a better fitness value than f3(𝑓(f3)<𝑓(m𝑏𝑒𝑠𝑡3 )).

The LS optimization procedure is defined over a bounded
search space S. Search points that do not belong to such
area are considered to be infeasible. However, during the
evolution process, some candidate solutions could fall outside
the search space. In the proposed approach, such infeasible
solutions are arbitrarily placed with a random position inside
the search space S.

3.3. Complete LS Algorithm. LS is a simple algorithm with
only seven adjustable parameters: the strength of attraction
𝐹, the attractive length 𝐿, number of promising solutions 𝑔,
the population size 𝑁, the tuning factor 𝛽, the number of
random samples ℎ, and the number of generations 𝑔𝑒𝑛. The
operation of LS is divided into three parts: initialization of the
solitary and social operations. In the initialization (𝑘 = 0), the
first population L0 ({l01, l

0
2, . . . , l

0
𝑁
}) is produced. The values

{𝑙
0
𝑖,1, 𝑙

0
𝑖,2, . . . , 𝑙

0
𝑖,𝑛
} of each individual l𝑘

𝑖
and each dimension

𝑑 are randomly and uniformly distributed between the
prespecified lower initial parameter bound 𝑙𝑏

𝑑
and the upper

initial parameter bound 𝑢𝑏
𝑑
:

𝑙
0
𝑖,𝑗
= 𝑙𝑏
𝑑
+ rand ⋅ (𝑢𝑏

𝑑
− 𝑙𝑏
𝑑
) ;

𝑖 = 1, 2, . . . , 𝑁; 𝑑 = 1, 2, . . . , 𝑛.
(14)

In the evolution process, the solitary (A) and social (B) oper-
ations are iteratively applied until the number of iterations
𝑘 = 𝑔𝑒𝑛 has been reached. The complete LS procedure is
illustrated in Algorithm 1.
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(1) Input: 𝐹, 𝐿, 𝑔,𝑁, 𝑔𝑒𝑛, ℎ and 𝛽.
(2) Initialize L0 (𝑘 = 0)
(3) until (𝑘 = 𝑔𝑒𝑛)
(4) F ← SolitaryOperation(L𝑘) Solitary operator (Section 3.1)
(5) L𝑘+1 ← SocialOperation(L𝑘, F) Social operator (Section 3.2)
(6) 𝑘 = k + 1
(7) end until

Algorithm 1: Locust Search (LS) algorithm.

3.4. Discussion about the LS Algorithm. Evolutionary algo-
rithms (EA) have been widely employed for solving complex
optimization problems. These methods are found to be
more powerful than conventional methods that are based
on formal logics or mathematical programming [46]. In
the EA algorithm, search agents have to decide whether
to explore unknown search positions or to exploit already
tested positions in order to improve their solution quality.
Pure exploration degrades the precision of the evolutionary
process but increases its capacity to find new potentially solu-
tions. On the other hand, pure exploitation allows refining
existent solutions but adversely drives the process to local
optimal solutions. Therefore, the ability of an EA to find a
global optimal solution depends on its capacity to find a good
balance between the exploitation of found-so-far elements
and the exploration of the search space [47].

Most of swarm algorithms and other evolutionary algo-
rithms tend to exclusively concentrate the individuals in the
current best positions. Under such circumstances, such algo-
rithms seriously limit their exploration-exploitation capaci-
ties.

Different to most of existent evolutionary algorithms,
in the proposed approach, the modeled behavior explicitly
avoids the concentration of individuals in the current best
positions. Such fact allows not only to emulate the coop-
erative behavior of the locust colony in a good realistic
way but also to incorporate a computational mechanism to
avoid critical flaws that are commonly present in the popular
evolutionary algorithms, such as the premature convergence
and the incorrect exploration-exploitation balance.

It is important to emphasize that the proposed approach
conducts two operators (solitary and social) within a single
iteration. Such operators are similar to those that are used
by other evolutionary methods such as ABC (employed bees,
onlooker bees, and scout bees), AIS (clonal proliferation
operator, affinity maturation operator, and clonal selection
operator), andDE (mutation, crossover, and selection), which
are all executed in a single iteration.

4. Numerical Experiments over
Benchmark Functions

A comprehensive set of 13 functions, all collected from [48–
50], has been used to test the performance of the LS approach
as an optimization method. Tables 11 and 12 present the
benchmark functions used in our experimental study. Such

functions are classified into two different categories: uni-
modal test functions (Table 11) andmultimodal test functions
(Table 12). In these tables, 𝑛 is the function dimension; 𝑓opt
is the minimum value of the function, with S being a subset
of 𝑅𝑛. The optimum locations (xopt) for functions in Tables
11 and 12 are in [0]𝑛, except for 𝑓5, 𝑓12, and 𝑓13 with xopt in
[1]𝑛 and 𝑓8 in [420.96]

𝑛. A detailed description of optimum
locations is given in Tables 11 and 12.

We have applied the LS algorithm to 13 functions whose
results have been compared to those produced by the Particle
SwarmOptimization (PSO) method [27] and the Differential
Evolution (DE) algorithm [28], both considered as the most
popular algorithms formany optimization applications. In all
comparisons, the population has been set to 40 (𝑁 = 40)
individuals.Themaximum iteration number for all functions
has been set to 1000. Such stop criterion has been selected
to maintain compatibility to similar works reported in the
literature [48, 49].

The parameter setting for each of the algorithms in the
comparison is described as follows:

(1) PSO: in the algorithm, 𝑐1 = 𝑐2 = 2 while the inertia
factor (𝜔) is decreased linearly from 0.9 to 0.2.

(2) DE: the DE/Rand/1 scheme is employed. The param-
eter settings follow the instructions in [28, 51]. The
crossover probability is CR = 0.9 and the weighting
factor is 𝐹 = 0.8.

(3) In LS, 𝐹 and 𝐿 are set to 0.6 and 𝐿, respectively.
Besides, 𝑔 is fixed to 20 (𝑁/2), ℎ = 2, 𝛽 = 0.6 whereas
𝑔𝑒𝑛 and𝑁 are configured to 1000 and 40, respectively.
Once such parameters have been experimentally
determined, they are kept for all experiments in this
section.

In the comparison, three indexes are considered: the average
best-so-far solution (ABS), the standard deviation (SD),
and the number of function evaluations (NFE). The first
two indexes assess the accuracy of the solution whereas
the last one measures the computational cost. The average
best-so-far solution (ABS) expresses the average value of
the best function evaluations that have been obtained from
30 independent executions. The standard deviation (SD)
indicates the dispersion of the ABS values. Evolutionary
methods are, in general, complex pieces of software with
several operators and stochastic branches. Therefore, it is
difficult to conduct a complexity analysis fromadeterministic
perspective. Under such circumstances, it ismore appropriate
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Table 1: Minimization results from the benchmark functions test in
Table 11 with 𝑛 = 30. Maximum number of iterations = 1000.

PSO DE LS

𝑓
1

ABS 1.66 × 10−1 6.27 × 10−3 4.55 × 10−4

SD 3.79 × 10−1 1.68 × 10−1 6.98 × 10−4

NFE 28,610 20,534 16,780

𝑓
2

ABS 4.83 × 10−1 2.02 × 10−1 5.41 × 10−3

SD 1.59 × 10−1 0.66 1.45 × 10−2

NFE 28,745 21,112 16,324

𝑓
3

ABS 2.75 5.72 × 10−1 1.61 × 10−3

SD 1.01 0.15 1.32 × 10−3

NFE 38,320 36,894 20,462

𝑓
4

ABS 1.84 0.11 1.05 × 10−2

SD 0.87 0.05 6.63 × 10−3

NFE 37,028 36,450 21,158

𝑓
5

ABS 3.07 2.39 4.11 × 10−2

SD 0.42 0.36 2.74 × 10−3

NFE 39,432 37,264 21,678

𝑓
6

ABS 6.36 6.51 5.88 × 10−2

SD 0.74 0.87 1.67 × 10−2

NFE 38,490 36,564 22,238

𝑓
7

ABS 6.14 0.12 2.71 × 10−2

SD 0.73 0.02 1.18 × 10−2

NFE 37,274 35,486 21,842

to use the number of function evaluations (NFE), just as
it is used in the literature [52, 53], to evaluate and assess
the computational effort (time) and the complexity among
optimizers. It represents how many times an algorithm uses
the objective function to evaluate the objective (fitness)
function until the best solution of a determined execution
has been found. Since the experiments require 30 different
executions, the NFE index corresponds to the averaged value
obtained from these executions. A small NFE value indicates
that less time is needed to reach the global optimum.

4.1. Unimodal Test Functions. Functions 𝑓1 to 𝑓7 are uni-
modal functions. The results for unimodal functions over
30 runs are reported in Table 1 considering the average
best-so-far solution (ABS), the standard deviation (SD), and
the number of function evaluations (NFE). According to
this table, LS provides better results than PSO and DE for
all functions in terms of ABS and SD. In particular, the
test yields the largest performance difference in functions
𝑓
4
–𝑓
7
. Such functions maintain a narrow curving valley that

is hard to optimize, in case the search space cannot be
explored properly and the direction changes cannot be kept
up with [54]. For this reason, the performance differences
are directly related to a better trade-off between exploration
and exploitation that is produced by LS operators. In the
practice, a main goal of an optimization algorithm is to find
a solution as good as possible within a small time window.
The computational cost for the optimizer is represented by
its NFE values. According to Table 1, the NFE values that
are obtained by the proposed method are smaller than its

Table 2: 𝑝 values produced by Wilcoxon’s test that compares LS
versus PSO and DE over the “average best-so-far” values from
Table 1.

LS versus PSO DE
𝑓
1

1.83 × 10−4 1.73 × 10−2

𝑓
2

3.85 × 10−3 1.83 × 10−4

𝑓
3

1.73 × 10−4 6.23 × 10−3

𝑓
4

2.57 × 10−4 5.21 × 10−3

𝑓
5

4.73 × 10−4 1.83 × 10−3

𝑓
6

6.39 × 10−5 2.15 × 10−3

𝑓
7

1.83 × 10−4 2.21 × 10−3

counterparts. LowerNFE values aremore desirable since they
correspond to less computational overload and, therefore,
faster results. In the results perspective, it is clear that PSO
and DE needmore than 1000 generations in order to produce
better solutions. However, this number of generations is
considered in the experiments aiming for producing a visible
contrast among the approaches. If the number of generations
has been set to an exaggerated value, then all methods would
converge to the best solution with no significant troubles.

A nonparametric statistical significance proof known as
Wilcoxon’s rank sum test for independent samples [55, 56]
has been conducted with an 5% significance level, over the
“average best-so-far” data of Table 1. Table 2 reports the 𝑝
values produced byWilcoxon’s test for the pairwise compari-
son of the “average best-so-far” of two groups. Such groups
are formed by LS versus PSO and LS versus DE. As a null
hypothesis, it is assumed that there is no significant difference
between mean values of the two algorithms. The alternative
hypothesis considers a significant difference between the
“average best-so-far” values of both approaches. All 𝑝 values
reported in the table are less than 0.05 (5% significance
level) which is a strong evidence against the null hypothesis,
indicating that the LS results are statistically significant and
that it has not occurred by coincidence (i.e., due to the normal
noise contained in the process).

4.2. Multimodal Test Functions. Multimodal functions pos-
sess many local minima which make the optimization a
difficult task to be accomplished. In multimodal functions,
the results reflect the algorithm’s ability to escape from
local optima. We have applied the algorithms over functions
𝑓8 to 𝑓13 where the number of local minima increases
exponentially as the dimension of the function increases.
The dimension of such functions is set to 30. The results
are averaged over 30 runs, with performance indexes being
reported in Table 3 as follows: the average best-so-far solution
(ABS), the standard deviation (SD), and the number of func-
tion evaluations (NFE). Likewise, 𝑝 values of the Wilcoxon
signed-rank test of 30 independent runs are listed in Table 4.
From the results, it is clear that LS yields better solutions
than others algorithms for functions 𝑓9, 𝑓10, 𝑓11, and 𝑓12, in
terms of the indexes ABS and SD. However, for functions 𝑓8
and 𝑓13, LS produces similar results to DE. The Wilcoxon
rank test results, that are presented in Table 6, confirm that
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Table 3:Minimization results from the benchmark functions test in
Table 12 with 𝑛 = 30. Maximum number of iterations = 1000.

PSO DE LS

𝑓
8

ABS −6.7 × 103 −1.26 × 104 −1.26 × 104

SD 6.3 × 102 3.7 × 102 1.1 × 102

NFE 38,452 35,240 21,846

𝑓
9

ABS 14.8 4.01 × 10−1 2.49 × 10−3

SD 1.39 5.1 × 10−2 4.8 × 10−4

NFE 37,672 34,576 20,784

𝑓
10

ABS 14.7 4.66 × 10−2 2.15 × 10−3

SD 1.44 1.27 × 10−2 3.18 × 10−4

NFE 39,475 37,080 21,235

𝑓
11

ABS 12.01 1.15 1.47 × 10−4

SD 3.12 0.06 1.48 × 10−5

NFE 38,542 34,875 22,126

𝑓
12

ABS 6.87 × 10−1 3.74 × 10−1 5.58 × 10−3

SD 7.07 × 10−1 1.55 × 10−1 4.18 × 10−4

NFE 35,248 30,540 16,984

𝑓
13

ABS 1.87 × 10−1 1.81 × 10−2 1.78 × 10−2

SD 5.74 × 10−1 1.66 × 10−2 1.64 × 10−3

NFE 36,022 31,968 18,802

Table 4: 𝑝 values produced byWilcoxon’s test comparing LS versus
PSO and DE over the “average best-so-far” values from Table 3.

LS versus PSO DE
𝑓
8

1.83 × 10−4 0.061
𝑓
9

1.17 × 10−4 2.41 × 10−4

𝑓
10

1.43 × 10−4 3.12 × 10−3

𝑓
11

6.25 × 10−4 1.14 × 10−3

𝑓
12

2.34 × 10−5 7.15 × 10−4

𝑓
13

4.73 × 10−4 0.071

LS performed better than PSO and DE considering four
problems 𝑓

9
–𝑓
12
, whereas, from a statistical viewpoint, there

is no difference between results from LS and DE for 𝑓8 and
𝑓13. According to Table 3, the NFE values obtained by the
proposed method are smaller than those produced by other
optimizers. The reason of this remarkable performance is
associated with its two operators: (i) the solitary operator
allows a better particle distribution in the search space,
increasing the algorithm’s ability to find the global optima
and (ii) the use of the social operation provides a simple
exploitation operator that intensifies the capacity of finding
better solutions during the evolution process.

5. Gaussian Mixture Modelling

In this section, the modeling of image histograms through
Gaussian mixture models is presented. Let one consider an
image holding 𝐿 gray levels [0, . . . , 𝐿 − 1] whose distribution

is defined by a histogram ℎ(𝑔) represented by the following
formulation:

ℎ (𝑔) =

𝑛
𝑔

𝑁𝑝
, ℎ (𝑔) > 0,

Np =
𝐿−1
∑

𝑔=0
𝑛
𝑔
,

𝐿−1
∑

𝑔=0
ℎ (𝑔) = 1,

(15)

where 𝑛
𝑔
denotes the number of pixels with gray level 𝑔

and Np the total number of pixels in the image. Under such
circumstances, ℎ(𝑔) can be modeled by using a mixture 𝑝(𝑥)
of Gaussian functions of the form:

𝑝 (𝑥) =

𝐾

∑

𝑖=1

𝑃
𝑖

√2𝜋𝜎
𝑖

exp[
− (𝑥 − 𝜇

𝑖
)
2

2𝜎2
𝑖

] , (16)

where𝐾 symbolizes the number of Gaussian functions of the
model whereas 𝑃

𝑖
is the a priori probability of function 𝑖. 𝜇

𝑖

and 𝜎
𝑖
represent the mean and standard deviation of the 𝑖th

Gaussian function, respectively. Furthermore, the constraint
∑
𝐾

𝑖=1 𝑃𝑖 = 1must be satisfied by themodel. In order to evaluate
the similarity between the image histogram and a candidate
mixture model, the mean square error can be used as follows:

𝐽 =
1
𝑛

𝐿

∑

𝑗=1
[𝑝 (𝑥
𝑗
) − ℎ (𝑥

𝑗
)]

2
+𝜔 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝐾

∑

𝑖=1
𝑃
𝑖
)− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (17)

where 𝜔 represents the penalty associated with the constrain
∑
𝐾

𝑖=1 𝑃𝑖 = 1. Therefore, 𝐽 is considered as the objective func-
tion which must be minimized in the estimation problem. In
order to illustrate the histogram modeling through a Gaus-
sian mixture, Figure 6 presents an example, assuming three
classes, that is, 𝐾 = 3. Considering Figure 6(a) as the image
histogram ℎ(𝑥), the Gaussian mixture 𝑝(𝑥), that is shown in
Figure 6(c), is produced by adding the Gaussian functions
𝑝1(𝑥), 𝑝2(𝑥), and 𝑝3(𝑥) in the configuration presented in
Figure 6(b). Once themodel parameters that bettermodel the
image histogram have been determined, the final step is to
define the threshold values 𝑇

𝑖
(𝑖 ∈ [1, . . . , 𝐾]) which can be

calculated by simple standard methods, just as it is presented
in [19–21].

6. Segmentation Algorithm Based on LS

In the proposed method, the segmentation process is
approached as an optimization problem. Computational
optimization generally involves two distinct elements: (1) a
search strategy to produce candidate solutions (individuals,
particles, insects, locust, etc.) and (2) an objective function
that evaluates the quality of each selected candidate solution.
Several computational algorithms are available to perform
the first element. The second element, where the objective
function is designed, is unquestionably the most critical.
In the objective function, it is expected to embody the full
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Figure 6: Histogram approximation through a Gaussian mixture. (a) Original histogram, (b) configuration of the Gaussian components
𝑝1(𝑥), 𝑝2(𝑥), and 𝑝3(𝑥), and (c) final Gaussian mixture 𝑝(𝑥).

complexity of the performance, biases, and restrictions of the
problem to be solved. In the segmentation problem, candidate
solutions represent Gaussian mixtures. The objective func-
tion 𝐽 (17) is used as a fitness value to evaluate the similarity
presented between the Gaussian mixture and the image
histogram. Therefore, guided by the fitness values (𝐽 values),
a set of encoded candidate solutions are evolved using the
evolutionary operators until the best possible resemblance
can be found.

Over the last decade, several algorithms based on evo-
lutionary and swarm principles [19–22] have been proposed
to solve the problem of segmentation through a Gaussian
mixture model. Although these algorithms own certain good
performance indexes, they present two important limitations.
(1) They frequently obtain suboptimal approximations as
a consequence of an inappropriate balance between explo-
ration and exploitation in their search strategies. (2) They
are based on the assumption that the number of Gaussians
(classes) in the mixture is preknown and fixed; otherwise,
they cannot work.

In order to eliminate such flaws, the proposed approach
includes (A) a new search strategy and (B) the definition
of a new objective function. For the search strategy, the LS
method (Section 4) is adopted. Under LS, the concentration
of individuals in the current best positions is explicitly
avoided. Such fact allows reducing critical problems such as
the premature convergence to suboptimal solutions and the
incorrect exploration-exploitation balance.

6.1. New Objective Function 𝐽
new. Previous segmentation

algorithms based on evolutionary and swarm methods use
(17) as objective function. Under these circumstances, each

candidate solution (Gaussian mixture) is only evaluated in
terms of its approximation with the image histogram.

Since the proposed approach aims to automatically select
the number ofGaussian functions𝐾 in the finalmixture𝑝(𝑥),
the objective function must be modified. The new objective
function 𝐽new is defined as follows:

𝐽
new

= 𝐽 + 𝜆 ⋅𝑄, (18)

where 𝜆 is a scaling constant. The new objective function is
divided into two parts.The first part 𝐽 evaluates the quality of
each candidate solution in terms of its similarity with regard
to the image histogram (17). The second part 𝑄 penalizes the
overlapped area among Gaussian functions (classes), with 𝑄
being defined as follows:

𝑄 =

𝐾

∑

𝑖=1

𝐾

∑

𝑗=1
𝑗 ̸=𝑖

𝐿

∑

𝑙=1
min (𝑃

𝑖
⋅ 𝑝
𝑖
(𝑙) , 𝑃
𝑗
⋅ 𝑝
𝑗
(𝑙)) , (19)

where 𝐾 and 𝐿 represent the number of classes and the gray
levels, respectively. The parameters 𝑝

𝑖
(𝑙) and 𝑝

𝑗
(𝑙) symbolize

the Gaussian functions 𝑖 and 𝑗, respectively, that are to be
evaluated on the point 𝑙 (gray level) whereas the elements
𝑃
𝑖
and 𝑃

𝑗
represent the a priori probabilities of the Gaussian

functions 𝑖 and 𝑗, respectively. Under such circumstances,
mixtures with Gaussian functions that do not “positively”
participate in the histogram approximation are severely
penalized.

Figure 7 illustrates the effect of the new objective function
𝐽
new in the evaluation of Gaussian mixtures (candidate
solutions). From the image histogram (Figure 7(a)), it is
evident that two Gaussian functions are enough to accurately
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Figure 7: Effect of the new objective function 𝐽new in the evaluation of Gaussian mixtures (candidate solutions). (a) Original histogram, (b)
Gaussian mixture considering four classes, (c) penalization areas, and (d) Gaussian mixture of better quality solution.

approximate the original histogram.However, if theGaussian
mixture is modeled by using a greater number of functions
(e.g., four as it is shown in Figure 7(b)), the original objective
function 𝐽 is unable to obtain a reasonable approximation.
Under the new objective function 𝐽

new, the overlapped area
among Gaussian functions (classes) is penalized. Such areas,
in Figure 7(c), correspond to 𝑄12, 𝑄23, and 𝑄34, where
𝑄12 represents the penalization value produced between the
Gaussian function 𝑝1(𝑥) and 𝑝2(𝑥). Therefore, due to the
penalization, theGaussianmixture shown in Figures 7(b) and
7(c) provides a solution of low quality. On the other hand, the
Gaussian mixture presented in Figure 7(d) maintains a low
penalty; thus, it represents a solution of high quality. From
Figure 7(d), it is easy to see that functions 𝑝1(𝑥) and 𝑝4(𝑥)
can be removed from the final mixture. This elimination
could be performed by a simple comparison with a threshold
value 𝜃, since 𝑝1(𝑥) and 𝑝4(𝑥) have a reduced amplitude
(𝑝1(𝑥) ≈ 𝑝2(𝑥) ≈ 0). Therefore, under 𝐽new, it is possible
to find the reduced Gaussian mixture model starting from a
considerable number of functions.

Since the proposed segmentation method is conceived
as an optimization problem, the overall operation can be
reduced to solve the formulation of (20) by using the LS
algorithm:

minimize 𝐽
new

(x) = 𝐽 (x) + 𝜆 ⋅ 𝑄 (x) ,

x = (𝑃1, 𝜇1, 𝜎1, . . . , 𝑃𝐾, 𝜇𝐾, 𝜎𝐾) ∈ R
3⋅𝐾

subject to 0 ≤ 𝑃
𝑑
≤ 1, 𝑑 ∈ (1, . . . , 𝐾)

0 ≤ 𝜇
𝑑
≤ 255

0 ≤ 𝜎
𝑑
≤ 25,

(20)

where 𝑃
𝑑
, 𝜇
𝑑
, and 𝜎

𝑑
represent the probability, mean, and

standard deviation of the class 𝑑. It is important to remark
that the new objective function 𝐽

new allows the evaluation
of a candidate solution in terms of the necessary number
of Gaussian functions and its approximation quality. Under
such circumstances, it can be used in combination with any
other evolutionary method and not only with the proposed
LS algorithm.

6.2. Complete Segmentation Algorithm. Once the new search
strategy (LS) and objective function (𝐽new) have been defined,
the proposed segmentation algorithm can be summarized by
Algorithm 2.The new algorithm combines operators defined
by LS and operations for calculating the threshold values.

(Line 1) The algorithm sets the operative parameters 𝐹,
𝐿, 𝑔, 𝑔𝑒𝑛, 𝑁, 𝐾, 𝜆, and 𝜃. They rule the behavior of the
segmentation algorithm. (Line 2) Afterwards, the population
L0 is initialized considering 𝑁 different random Gaussian
mixtures of𝐾 functions.The idea is to generate an𝑁-random
Gaussian mixture subjected to the constraints formulated
in (20). The parameter 𝐾 must hold a high value in order
to correctly segment all images (recall that the algorithm
is able to reduce the Gaussian mixture to its minimum
expression). (Line 3)Then, the Gaussianmixtures are evolved
by using the LS operators and the new objective function
𝐽
new.This process is repeated during𝑔𝑒𝑛 cycles. (Line 8) After
this procedure, the best Gaussian mixture l𝑔𝑒𝑛

𝑏𝑒𝑠𝑡
is selected

according to its objective function 𝐽
new. (Line 9) Then,

the Gaussian mixture l𝑔𝑒𝑛
𝑏𝑒𝑠𝑡

is reduced by eliminating those
functions whose amplitudes are lower than 𝜃 (𝑝

𝑖
(𝑥) ≤ 𝜃).

(Line 10) Then, the threshold values 𝑇
𝑖
from the reduced

model are calculated. (Line 11) Finally, the calculated 𝑇
𝑖

values are employed to segment the image. Figure 8 shows a
flowchart of the complete segmentation procedure.
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(1) Input: 𝐹, 𝐿, 𝑔, 𝑔𝑒𝑛,𝑁, 𝐾, 𝜆 and 𝜃.
(2) Initialize L0 (𝑘 = 0)
(3) until (𝑘 = 𝑔𝑒𝑛)
(4) F ← SolitaryOperation(L𝑘) Solitary operator (Section 3.1)
(5) L𝑘+1 ← SocialOperation(L𝑘, F) Social operator (Section 3.2)
(6) 𝑘 = k + 1
(7) end until
(8) Obtain I𝑔𝑒𝑛

𝑏𝑒𝑠𝑡

(9) Reduce I𝑔𝑒𝑛
𝑏𝑒𝑠𝑡

(10) Calculate the threshold values 𝑇
𝑖
from the reduced model

(11) Use 𝑇
𝑖
to segment the image

Algorithm 2: Segmentation LS algorithm.

The proposed segmentation algorithm permits to auto-
matically detect the number of segmentation partitions
(classes). Furthermore, due to its remarkable search capaci-
ties, the LSmethodmaintains a better accuracy than previous
algorithms based on evolutionary principles. However, the
proposed method presents two disadvantages: first, it is
related to its implementation which in general is more
complex than most of the other segmentators based on
evolutionary basics. The second refers to the segmentation
procedure of the proposed approach which does not consider
any spatial pixel characteristics. As a consequence, pixels
that may belong to a determined region due to its position
are labeled as a part of another region due to its gray
level intensity. Such a fact adversely affects the segmentation
performance of the method.

7. Segmentation Results

This section analyses the performance of the proposed
segmentation algorithm.The discussion is divided into three
parts: the first one shows the performance of the proposed
LS segmentation algorithm while the second presents a com-
parison between the proposed approach and others segmen-
tation algorithms that are based on evolutionary and swam
methods. The comparison mainly considers the capacities of
each algorithm to accurately and robustly approximate the
image histogram. Finally, the third part presents an objective
evaluation of segmentation results produced by all algorithms
that have been employed in the comparisons.

7.1. Performance of LS Algorithm in Image Segmentation.
This section presents two experiments that analyze the
performance of the proposed approach. Table 5 presents
the algorithm’s parameters that have been experimentally
determined and kept for all the test images through all
experiments.

First Image. The first test considers the histogram shown
by Figure 9(b) while Figure 9(a) presents the original image.
After applying the proposed algorithm, just as it has been
configured according to parameters in Table 5, a minimum
model of four classes emerges after the start from Gaussian

Table 5: Parameter setup for the LS segmentation algorithm.

𝐹 𝐿 𝑔 𝑔𝑒𝑛 𝑁 𝐾 𝜆 𝜃

0.6 0.2 20 1000 40 10 0.01 0.0001

Table 6: Results of the reduced Gaussian mixture for the first and
the second image.

Parameters First image Second image
𝑃1 0.004 0.032
𝜇1 18.1 12.1
𝜎1 8.2 2.9
𝑃2 0.0035 0.0015
𝜇2 69.9 45.1
𝜎2 18.4 24.9
𝑃3 0.01 0.006
𝜇3 94.9 130.1
𝜎3 8.9 17.9
𝑃4 0.007 0.02
𝜇4 163.1 167.2
𝜎4 29.9 10.1

mixtures of 10 classes. Considering 30 independent exe-
cutions, the averaged parameters of the resultant Gaussian
mixture are presented in Table 6. One final Gaussian mixture
(ten classes), which has been obtained by LS, is presented
in Figure 10. Furthermore, the approximation of the reduced
Gaussian mixture is also visually compared with the original
histogram in Figure 10. On the other hand, Figure 11 presents
the segmented image after calculating the threshold points.

Second Image. For the second experiment, the image in
Figure 12 is tested.Themethod aims to segment the image by
using a reduced Gaussian mixture model obtained by the LS
approach. After executing the algorithm according to param-
eters from Table 5, the resulting averaged parameters of the
resultant Gaussian mixture are presented in Table 6. In order
to assure consistency, the results are averaged considering 30
independent executions. Figure 13 shows the approximation
quality that is obtained by the reduced Gaussian mixture
model in (a) and the segmented image in (b).
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Figure 8: Flowchart of the complete segmentation procedure.
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Figure 9: (a) Original first image used on the first experiment and (b) its histogram.
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Figure 10: Gaussian mixture obtained by LS for the first image.

Figure 11: Image segmented with the reduced Gaussian mixture.
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Figure 12: (a) Original second image used on the first experiment and (b) its histogram.

7.2. Histogram Approximation Comparisons. This section
discusses the comparison between the proposed segmenta-
tion algorithm and other evolutionary-segmentation meth-
ods that have been proposed in the literature. The set of
methods used in the experiments includes the 𝐽 + ABC
[19], 𝐽 + AIS [20], and 𝐽 + DE [21]. These algorithms
consider the combination between the original objective
function 𝐽 (17) and an evolutionary technique such as
Artificial Bee Colony (ABC), the Artificial Immune Systems
(AIS), and the Differential Evolution (DE) [21], respectively.

Since the proposed segmentation approach considers the
combination of the new objective function 𝐽

new (18) and
the LS algorithm, it will be referred to as 𝐽

new
+ LS.

The comparison focuses mainly on the capacities of each
algorithm to accurately and robustly approximate the image
histogram.

In the experiments, the populations have been set to 40
(𝑁 = 40) individuals. The maximum iteration number for all
functions has been set to 1000. Such stop criterion has been
considered to maintain compatibility to similar experiments
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Figure 13: (a) Segmentation result obtained by LS for the first image and (b) the segmented image.
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Figure 14: (a) Synthetic image used in the comparison and (b) its histogram.

that are reported in the literature [18]. The parameter setting
for each of the segmentation algorithms in the comparison is
described as follows:

(1) 𝐽 + ABC [19]: in the algorithm, its parameters are
configured as follows: the abandonment limit = 100,
𝛼 = 0.05 and limit = 30.

(2) 𝐽 + AIS [20]: it presents the following parameters, ℎ =
120,𝑁

𝑐
= 80, 𝜌 = 10, 𝑃

𝑟
= 20, 𝐿 = 22, and 𝑇

𝑒
= 0.01.

(3) 𝐽 + DE [21]: the DE/Rand/1 scheme is employed. The
parameter settings follow the instructions in [21].The
crossover probability is CR = 0.9 and the weighting
factor is 𝐹 = 0.8.

(4) In 𝐽new +LS, the method is set according to the values
described in Table 5.

In order to conduct the experiments, a synthetic image is
designed to be used as a reference in the comparisons. The
main idea is to know in advance the exact number of classes
(and their parameters) that are contained in the image so
that the histogram can be considered as a ground truth. The

Table 7: Employed parameters for the design of the reference image.

𝑃
𝑖

𝜇
𝑖

𝜎
𝑖

(1) 0.05 40 8
(2) 0.04 100 10
(3) 0.05 160 8
(4) 0.027 220 15

synthetic image is divided into four sections. Each section
corresponds to a different class which is produced by setting
each gray level pixel 𝑃V𝑖 to a value that is determined by the
following model:

𝑃V
𝑖
= 𝑒
−((𝑥−𝜇1)

2
/2𝜎2
𝑖
)
, (21)

where 𝑖 represents the section, whereas 𝜇
𝑖
and 𝜎
𝑖
are themean

and the dispersion of the gray level pixels, respectively. The
comparative study employs the image of 512 × 512 that is
shown in Figure 14(a) and the algorithm’s parameters that
have been presented in Table 7. Figure 14(b) illustrates the
resultant histogram.
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Figure 15: Convergence results. (a) Convergence of the following methods: 𝐽 + ABC, 𝐽 + AIS, and 𝐽 + DE considering Gaussian mixtures of
8 classes. (b) Convergence of the proposed method (reduced Gaussian mixture).

(a) (b)

Figure 16: Segmentation results obtained by (a) several methods including 𝐽 + ABC, 𝐽 + AIS, and 𝐽 + DE considering Gaussian mixtures of
8 classes and (b) the proposed method (reduced Gaussian mixture).

In the comparison, the discussion focuses on the follow-
ing issues: first of all, accuracy; second, convergence; and
third, computational cost.

Convergence. This section analyzes the approximation con-
vergence when the number of classes that are used by
the algorithm during the evolution process is different to
the actual number of classes in the image. Recall that the
proposed approach automatically finds the reduced Gaussian
mixture which better adapts to the image histogram.

In the experiment, the methods, 𝐽 + ABC, 𝐽 + AIS,
and 𝐽 + DE, are executed considering Gaussian mixtures
composed of 8 functions. Under such circumstances, the
number of classes to be detected is higher than the actual
number of classes in the image. On the other hand, the

proposed algorithm maintains the same configuration of
Table 5.Therefore, it can detect and calculate up to ten classes
(𝐾 = 10).

As a result, the techniques 𝐽 + ABC, 𝐽 + AIS, and 𝐽 +
DE tend to overestimate the image histogram. This effect
can be seen in Figure 15(a), where the resulting Gaussian
functions are concentrated within actual classes. Such a
behavior is a consequence of the evaluation that is considered
by the original objective function 𝐽, which privileges only
the approximation between the Gaussian mixture and the
image histogram. This effect can be graphically illustrated by
Figure 16(a) that shows the pixel misclassification produced
by the wrong segmentation of Figure 14(a). On the other
hand, the proposed approach obtains a reduced Gaussian
mixture model which allows the detection of each class from
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Figure 17: Approximation results in terms of accuracy. (a) 𝐽 + ABC, (b) 𝐽 + AIS, (c) 𝐽 + DE, and (d) the proposed 𝐽new + LS approach.

the actual histogram (see Figure 15(b)). As a consequence,
the segmentation is significantly improved by eliminating the
pixel misclassification, as it is shown by Figure 16(b).

It is evident from Figure 15 that the techniques, 𝐽 + ABC,
𝐽 + AIS, and 𝐽 + DE, all need an a priori knowledge of the
number of classes that are contained in the actual histogram
in order to obtain a satisfactory result. On the other hand,
the proposed algorithm is able to find a reduced Gaussian
mixture whose classes coincide with the actual number of
classes that are contained in the image histogram.

Accuracy. In this section, the comparison among the algo-
rithms in terms of accuracy is reported. Most of the reported
comparisons [19–26] are concerned about comparing the
parameters of the resultant Gaussian mixtures by using real
images. Under such circumstances, it is difficult to consider
a clear reference in order to define a meaningful error.
Therefore, the image defined in Figure 14 has been used in the
experiments because its construction parameters are clearly
defined in Table 7.

Since the parameter values from Table 7 act as ground
truth, a simple averaged difference between them and the
values that are computed by each algorithm could be used as

comparison error. However, as each parametermaintains dif-
ferent active intervals, it is necessary to express the differences
in terms of percentage. Therefore, if Δ𝛽 is the parametric
difference and 𝛽 the ground truth parameter, the percentage
error Δ𝛽% can be defined as follows:

Δ𝛽% =
Δ𝛽

𝛽
⋅ 100%. (22)

In the segmentation problem, each Gaussian mixture repre-
sents a 𝐾-dimensional model where each dimension corre-
sponds to a Gaussian function of the optimization problem
to be solved. Since each Gaussian function possesses three
parameters 𝑃

𝑖
, 𝜇
𝑖
, and 𝜎

𝑖
, the complete number of parameters

is 3 ⋅ 𝐾 dimensions. Therefore, the final error 𝐸 produced by
the final Gaussian mixture is

𝐸 =
1

𝐾 ⋅ 3

𝐾⋅3
∑

V=1
Δ𝛽V%, (23)

where 𝛽V ∈ (𝑃𝑖, 𝜇𝑖, 𝜎𝑖).
In order to compare accuracy, the algorithms, 𝐽 + ABC,

𝐽 + AIS, 𝐽 + DE, and the proposed approach are all executed
over the image shown by Figure 14(a). The experiment aims
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Figure 18: Segmentation results in terms of accuracy. (a) 𝐽 + ABC, (b) 𝐽 + AIS, (c) 𝐽 + DE, and (d) the proposed 𝐽new + LS approach.

to estimate the Gaussian mixture that better approximates
the actual image histogram. Methods 𝐽 + ABC, 𝐽 + AIS,
and 𝐽 + DE consider Gaussian mixtures composed of 4
functions (𝐾 = 4). In case of the 𝐽new + LS method, although
the algorithm finds a reduced Gaussian mixture of four
functions, it is initially set with ten functions (𝐾 = 10).
Table 8 presents the final Gaussian mixture parameters and
the final error 𝐸. The final Gaussian mixture parameters
have been averaged over 30 independent executions in order
to assure consistency. A close inspection of Table 8 reveals
that the proposed method is able to achieve the smallest
error (𝐸) in comparison to the other algorithms. Figure 16
presents the histogram approximations that are produced by
each algorithm whereas Figure 17 shows their correspondent
segmented images. Both illustrations present the median
case obtained throughout 30 runs. Figure 18 exhibits that 𝐽 +
ABC, 𝐽 + AIS, and 𝐽 + DE present different levels of misclas-
sifications which are nearly absent in the proposed approach
case.

Computational Cost. The experiment aims to measure the
complexity and the computing time spent by the 𝐽 + ABC,

Table 8: Results of the reduced Gaussian mixture in terms of
accuracy.

Algorithm Gaussian function 𝑃
𝑖

𝜇
𝑖

𝜎
𝑖

𝐸

J + ABC

(1) 0.052 44.5 6.4

11.79%(2) 0.084 98.12 12.87
(3) 0.058 163.50 8.94
(4) 0.025 218.84 17.5

J + AIS

(1) 0.072 31.01 6.14

22.01%(2) 0.054 88.52 12.21
(3) 0.039 149.21 9.14
(4) 0.034 248.41 13.84

J + DE

(1) 0.041 35.74 7.86

13.57%(2) 0.036 90.57 11.97
(3) 0.059 148.47 9.01
(4) 0.020 201.34 13.02

𝐽
new + LS

(1) 0.049 40.12 7.5

3.98%(2) 0.041 102.04 10.4
(3) 0.052 168.66 8.3
(4) 0.025 110.92 15.2
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Figure 19: Images employed in the computational cost analysis.

the 𝐽 + AIS, the 𝐽 + DE, and the 𝐽new + LS algorithm while
calculating the parameters of the Gaussian mixture in bench-
mark images (see Figures 19(a)–19(d)). 𝐽 + ABC, 𝐽 + AIS,
and 𝐽 + DE consider Gaussian mixtures that are composed
of 4 functions (𝐾 = 4). In case of the 𝐽new + LS method,
although the algorithm finds a reduced Gaussian mixture of
four functions despite being initialized with ten functions
(𝐾 = 10), Table 9 shows the averaged measurements after
30 experiments. It is evident that the 𝐽 + ABC and 𝐽 +

DE are the slowest to converge (iterations) and the 𝐽 + AIS
shows the highest computational cost (time elapsed) because
it requires operators which demand long times. On the other
hand, the 𝐽new + LS shows an acceptable trade-off between
its convergence time and its computational cost. Therefore,
although the implementation of 𝐽new + LS in general requires
more code than most of other evolution-based segmentators,
such a fact is not reflected in the execution time. Finally,
Figure 19 below shows the segmented images as they are
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Figure 20: Experimental set used in the evaluation of the segmentation results.

Table 9: Iterations and time requirements of the 𝐽 + ABC, the 𝐽 +
AIS, the 𝐽 + DE. and the 𝐽new + LS algorithm as they are applied to
segment benchmark images (see Figure 17).

Iterations (a) (b) (c) (d)
Time elapsed

𝐽 + ABC 855 833 870 997
2.72 s 2.70 s 2.73 s 3.1 s

𝐽 + AIS 725 704 754 812
1.78 s 1.61 s 1.41 s 2.01 s

𝐽 + DE 657 627 694 742
1.25 s 1.12 s 1.45 s 1.88 s

𝐽
new + LS 314 298 307 402

0.98 s 0.84 s 0.72 s 1.02 s

Table 10: Evaluation of the segmentation results in terms of the ROS
index.

Number of classes
Image

𝑁
𝑅
= 4

(a)
𝑁
𝑅
= 3

(b)
𝑁
𝑅
= 4

(c)
𝑁
𝑅
= 4

(d)
𝐽 + ABC 0.534 0.328 0.411 0.457
𝐽 + AIS 0.522 0.321 0.427 0.437
𝐽 + DE 0.512 0.312 0.408 0.418
𝐽
new + LS 0.674 0.401 0.514 0.527

generated by each algorithm. It can be seen that the proposed
approach generate more homogeneous regions whereas 𝐽 +
ABC, 𝐽 + AIS, and 𝐽 + DE present several artifacts that are
produced by an incorrect pixel classification.

7.3. Performance Evaluation of the Segmentation Results. This
section presents an objective evaluation of segmentation
results that are produced by all algorithms in the compar-
isons. The ill-defined nature of the segmentation problem
makes the evaluation of a candidate algorithm difficult
[57]. Traditionally, the evaluation has been conducted by
using some supervised criteria [58] which are based on the
computation of a dissimilarity measure between a segmen-
tation result and a ground truth image. Recently, the use of
unsupervised measures has substituted supervised indexes
for the objective evaluation of segmentation results [59].They

Table 11: Unimodal test functions.

Test function S 𝑓opt

𝑓1(x) =
𝑛

∑

𝑖=1
𝑥
2
𝑖

[−100, 100]𝑛 0

𝑓2(x) =
𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +

𝑛

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 [−10, 10]𝑛 0

𝑓3(x) =
𝑛

∑

𝑖=1
(

𝑖

∑

𝑗=1
𝑥
𝑗
)

2

[−100, 100]𝑛 0

𝑓4 (x) = max
𝑖

{
󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 , 1 ≤ 𝑖 ≤ 𝑛} [−100, 100]𝑛 0

𝑓5(x) =
𝑛−1
∑

𝑖=1
[100 (𝑥

𝑖+1 − 𝑥
2
𝑖
)
2
+ (𝑥
𝑖
− 1)2] [−30, 30]𝑛 0

𝑓6(x) =
𝑛

∑

𝑖=1
(𝑥
𝑖
+ 0.5)2 [−100, 100]𝑛 0

𝑓7(x) =
𝑛

∑

𝑖=1
𝑖𝑥

4
𝑖
+ rand(0, 1) [−1.28, 1.28]𝑛 0

enable the quantification of the quality of a segmentation
result without a priori knowledge (ground truth image).

Evaluation Criteria. In this paper, the unsupervised index
ROS proposed by Chabrier et al. [60] has been used to
objectively evaluate the performance of each candidate algo-
rithm. This index evaluates the segmentation quality in
terms of the homogeneity within segmented regions and
the heterogeneity among the different regions. ROS can be
computed as follows:

ROS =
𝐷 − 𝐷

2
, (24)

where 𝐷 quantifies the homogeneity within segmented
regions. Similarly, 𝐷 measures the disparity among the
regions. A segmentation result 𝑆1 is considered better than 𝑆2,
if ROS

𝑆1
> ROS

𝑆2
. The interregion homogeneity character-

ized by𝐷 is calculated considering the following formulation:

𝐷 =
1
𝑁
𝑅

𝑁𝑅

∑

𝑐=1

𝑅
𝑐

𝐼
⋅

𝜎
𝑐

(∑
𝑁𝑅

𝑙=1 𝜎𝑙)
, (25)

where 𝑁
𝑅
represents the number of partitions in which the

image has been segmented. 𝑅
𝑐
symbolizes the number of
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Figure 21: Segmentation results using in the evaluation.

pixels contained in the partition 𝑐 whereas 𝐼 considers the
number of pixels that integrate the complete image. Similarly,
𝜎
𝑐
represents the standard deviation from the partition 𝑐. On

the other hand, disparity among the regions 𝐷 is computed
as follows:

𝐷 =
1
𝑁
𝑅

𝑁𝑅

∑

𝑐=1

𝑅
𝑐

𝐼
⋅ [

1
(𝑁
𝑅
− 1)

𝑁𝑅

∑

𝑙=1

󵄨󵄨󵄨󵄨𝜇𝑐 − 𝜇𝑙
󵄨󵄨󵄨󵄨

255
] , (26)

where 𝜇
𝑐
is the average gray level in the partition 𝑐.

Experimental Protocol. In the comparison of segmentation
results, a set of four classical images has been chosen to
integrate the experimental set (Figure 20). The segmentation
methods used in the comparison are 𝐽 + ABC [19], 𝐽 + AIS
[20], and 𝐽 + DE [21].

From all segmentation methods used in the comparison,
the proposed 𝐽new + LS algorithm is the only one that has the
capacity to automatically detect the number of segmentation
partitions (classes). In order to conduct a fair comparison,
all algorithms have been proved by using the same number
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Table 12: Multimodal test functions.

Test function S 𝑓opt

𝑓8(x) =
𝑛

∑

𝑖=1
−𝑥
𝑖
sin(√󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨) [−500, 500]𝑛 −418.98 ∗ 𝑛

𝑓9(x) =
𝑛

∑

𝑖=1
[𝑥

2
𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10] [−5.12, 5.12]𝑛 0

𝑓10(x) = −20 exp(−0.2√ 1
𝑛

𝑛

∑

𝑖=1
𝑥
2
𝑖
) − exp(1

𝑛

𝑛

∑

𝑖=1
cos (2𝜋𝑥

𝑖
)) + 20 [−32, 32]𝑛 0

𝑓11(x) =
1

4000

𝑛

∑

𝑖=1
𝑥
2
𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1 [−600, 600]𝑛 0

𝑓12(x) =
𝜋

𝑛
{10 sin (𝜋𝑦1) +

𝑛−1
∑

𝑖=1
(𝑦
𝑖
− 1)2 [1 + 10 sin2

(𝜋𝑦
𝑖+1)] + (𝑦𝑛 − 1)2} +

𝑛

∑

𝑖=1
𝑢(𝑥
𝑖
, 10, 100, 4)

[−50, 50]𝑛 0
𝑦
𝑖
= 1 +

𝑥
𝑖
+ 1
4

𝑢(𝑥
𝑖
, 𝑎, 𝑘, 𝑚) =

{{{{

{{{{

{

𝑘 (𝑥
𝑖
− 𝑎)
𝑚

𝑥
𝑖
> 𝑎

0 −𝑎 < 𝑥
𝑖
< 𝑎

𝑘 (−𝑥
𝑖
− 𝑎)
𝑚

𝑥
𝑖
< −𝑎

𝑓13(x) = 0.1{sin2
(3𝜋𝑥1) +

𝑛

∑

𝑖=1
(𝑥
𝑖
− 1)2 [1 + sin2

(3𝜋𝑥
𝑖
+ 1)] + (𝑥

𝑛
− 1)2 [1 + sin2

(2𝜋𝑥
𝑛
)]} +

𝑛

∑

𝑖=1
𝑢(𝑥
𝑖
, 5, 100, 4) [−50, 50]𝑛 0

of partitions. Therefore, in the experiments, the 𝐽new + LS
segmentation algorithm is firstly applied to detect the best
possible number of partitions 𝑁

𝑅
. Once we obtained the

number of partitions 𝑁
𝑅
, the rest of the algorithms were

configured to approximate the image histogram with this
number of classes.

Figure 21 presents the segmentation results obtained
by each algorithm considering the experimental set from
Figure 20. On the other hand, Table 10 shows the evaluation
of the segmentation results in terms of the ROS index.
Such values represent the averaged measurements after 30
executions. From them, it can be seen that the proposed
𝐽
new

+ LS method obtains the best ROS indexes. Such values
indicate that the proposed algorithm maintains the best
balance between the homogeneity within segmented regions
and the heterogeneity among the different regions. From
Figure 21, it can be seen that the proposed approach generates
more homogeneous regions whereas 𝐽 + ABC, 𝐽 + AIS, and
𝐽 + DE present several artifacts that are produced by an
incorrect pixel classification.

8. Conclusions

Despite the fact that several evolutionary methods have been
successfully applied to image segmentation with interest-
ing results, most of them have exhibited two important
limitations: (1) they frequently obtain suboptimal results
(misclassifications) as a consequence of an inappropriate
balance between exploration and exploitation in their search
strategies; (2) the number of classes is fixed and known in
advance.

In this paper, a new swarm algorithm for the automatic
image segmentation, called the Locust Search (LS), has
been presented. The proposed method eliminates the typical
flaws presented by previous evolutionary approaches by
combining a novel evolutionary method with the definition

of a new objective function that appropriately evaluates
the segmentation quality with respect to the number of
classes. In order to illustrate the proficiency and robustness of
the proposed approach, several numerical experiments have
been conducted. Such experiments have been divided into
two parts. First, the proposed LS method has been compared
to other well-known evolutionary techniques on a set of
benchmark functions. In the second part, the performance
of the proposed segmentation algorithm has been compared
to other segmentation methods based on evolutionary prin-
ciples. The results in both cases validate the efficiency of the
proposed technique with regard to accuracy and robustness.

Several research directions will be considered for future
work such as the inclusion of other indexes to evaluate
similarity between a candidate solution and the image his-
togram, the consideration of spatial pixel characteristics in
the objective function, the modification of the evolutionary
LS operators to control the exploration-exploitation balance,
and the conversion of the segmentation procedure into a
multiobjective problem.

Appendix

List of Benchmark Functions

In Table 11, 𝑛 is the dimension of function, 𝑓opt is the
minimum value of the function, and S is a subset of 𝑅𝑛. The
optimum location (xopt) for functions in Table 11 is in [0]𝑛,
except for 𝑓5 with xopt in [1]

𝑛.
The optimum locations (xopt) for functions in Table 12 are

in [0]𝑛, except for 𝑓8 in [420.96]
𝑛 and 𝑓12-𝑓13 in [1]

𝑛.
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thresholds for image segmentation with Learning Automata,”
Machine Vision and Applications, vol. 22, no. 5, pp. 805–818,
2011.

[25] K. C. Tan, S. C. Chiam, A. A. Mamun, and C. K. Goh, “Bal-
ancing exploration and exploitation with adaptive variation for
evolutionarymulti-objective optimization,” European Journal of
Operational Research, vol. 197, no. 2, pp. 701–713, 2009.

[26] G. Chen, C. P. Low, and Z. Yang, “Preserving and exploiting
genetic diversity in evolutionary programming algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 3,
pp. 661–673, 2009.

[27] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, December 1995.

[28] R. Storn andK. Price, “Differential Evolution—a simple and effi-
cient adaptive scheme for global optimisation over continuous
spaces,” Tech. Rep. TR-95–012, ICSI, Berkeley, Calif, USA, 1995.

[29] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, and Q. Tian,
“Self-adaptive learning based particle swarm optimization,”
Information Sciences, vol. 181, no. 20, pp. 4515–4538, 2011.

[30] J. Tvrdı́k, “Adaptation in differential evolution: a numerical
comparison,” Applied Soft Computing Journal, vol. 9, no. 3, pp.
1149–1155, 2009.

[31] H.Wang,H. Sun, C. Li, S. Rahnamayan, and J.-s. Pan, “Diversity
enhanced particle swarm optimization with neighborhood
search,” Information Sciences, vol. 223, pp. 119–135, 2013.
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