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We study a generalized equilibriumproblemby using a nonsymmetric extension of Ky Fan’s inequality. As an application, we present
a fixed point type algorithm inspired by a model from Tada and Takahashi (2007).

1. Introduction

In this paper, we study a generalized equilibrium problem
which is connected with some results from [1, 2]. More
precisely, by using a nonsymmetric extension of Ky Fan’s
inequality, we solve a special class of equilibrium problems,
which can be fitted into the field of minimax inequalities.
By using such type of generalized equilibrium problems we
consider a fixed point type algorithm based on two iterative
sequences. Such type of problems have been extensively stud-
ied [1–4]. Other interesting results concerning equilibrium
problems can be found in [5, 6].

Several methods for solving systems of equilibrium prob-
lems in Hilbert spaces are studied in [3]. The proposed
methods include proximal-like block-iterative algorithms
for general systems, as well as regularization and splitting
algorithms for single equilibrium problems.

On the other hand, the study of such inequalities,
fixed point of nonlinear mappings, and their approximation
algorithms can be successfully used in order to solve some
equilibrium problems. In [1] two iterative algorithms for a
generalized Ky Fan inequality and a fixed point problem
of asymptotically strict pseudocontractions are studied. A
strong convergence theorem is also obtained based on the
hybrid projection method in Hilbert spaces. Moreover, in
[2, 7, 8], weak and strong convergence theorems of finding a
common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of the equilibrium problem
have been studied.

Let us consider a function 𝑓 : 𝐶 × 𝐶 → R, where 𝐶 is a
nonempty, compact, and convex subset of a Hilbert spaceH.

The equilibrium problem, denoted by (EP), consists in
finding an element 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) ≥ 0 (𝑦 ∈ 𝐶) . (1)

The function 𝑓 is called monotone if

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑥) ≤ 0 (𝑥, 𝑦 ∈ 𝐶) . (2)

Let 𝑔 : 𝐶 → 𝐶 be one to one continuous functions, 𝐹 :
𝐶 × 𝐶 → R and 𝑟 > 0.

Let 𝑥 ∈ H. The generalized equilibrium problem,
denoted by (GEP), consists in finding an element 𝑧 ∈ 𝐶 such
that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑔−1 (𝑧) , 𝑔

−1

(𝑧) − 𝑥⟩ ≥ 0 (𝑦 ∈ 𝐶) . (3)

We remark that if we choose 𝑥 = 𝑔−1(𝑧) we obtain the
classical equilibrium problem (EP). The aim of the paper is
to solve the generalized equilibrium problem (3) under the
suitable conditions imposed to the function 𝐹 and to study
some related problems.

Note that many classes of problems can be fitted in
the class of equilibrium problems. In the following, we
present such classes of problems which can be solved as an
equilibrium problem.
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First example consists of an optimization problem. Let𝑇 :
𝐶 → R be a given mapping. We are looking for an element
𝑥 ∈ 𝐶 such that

𝑇 (𝑥) ≤ 𝑇 (𝑦) (𝑦 ∈ 𝐶) . (4)

We remark that 𝑥 solves the minimization problem (4)
if and only if it solves the equilibrium problem (EP), where
𝑓(𝑥, 𝑦) = 𝑇(𝑦) − 𝑇(𝑥). Note that in this case we have

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑥) = 0; (5)

thus, 𝑓 is monotone.
On the other hand, if 𝑇 is a convex differentiable map-

ping, then the optimization problem (4) is equivalent with
the existence of an element 𝑥 ∈ 𝐶 such that the following
variational inequality holds:

⟨∇𝑇 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 (𝑦 ∈ 𝐶) . (6)

Nevertheless, if we consider 𝑓(𝑥, 𝑦) = ⟨∇𝑇(𝑥), 𝑦 − 𝑥⟩, for all
𝑥, 𝑦 ∈ 𝐶, the variational inequality (6) and the equilibrium
problem (EP) are equivalent.

Moreover, since 𝑇 is convex and differentiable, we have
that

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑥) = − ⟨∇𝑇 (𝑥) − ∇𝑇 (𝑦) , 𝑥 − 𝑦⟩ ≤ 0; (7)

hence, 𝑓 is monotone.
Moreover, we can consider a generalized version of (6)

given by the existence of an element 𝑥 ∈ 𝐶 such that

⟨𝑇 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 (𝑦 ∈ 𝐶) . (8)

If we consider 𝑓(𝑥, 𝑦) = ⟨𝑇𝑥, 𝑦−𝑥⟩, we have the equivalence
between (8) and equilibrium problem (EP).

The saddle point problems can be viewed also in the
context of equilibrium problems. If 𝜙 : 𝐶

1

× 𝐶
2

→ R, then
(𝑥
1

, 𝑥
2

) ∈ 𝐶
1

× 𝐶
2

is a saddle point if and only if

𝜙 (𝑥
1

, 𝑦
2

) ≤ 𝜙 (𝑦
1

, 𝑥
2

) ((𝑦
1

, 𝑦
2

) ∈ 𝐶
1

× 𝐶
2

) . (9)

The classical definition of a saddle point can be obtained
by taking in (9) 𝑦

1

= 𝑥
1

, respectively 𝑦
2

= 𝑥
2

, which gives

𝜙 (𝑥
1

, 𝑦
2

) ≤ 𝜙 (𝑥
1

, 𝑥
2

) ≤ 𝜙 (𝑦
1

, 𝑥
2

) ((𝑦
1

, 𝑦
2

) ∈ 𝐶
1

× 𝐶
2

) .
(10)

In order to formulate the saddle point problem as an
equivalent equilibrium problem, we define 𝐶 = 𝐶

1

×
𝐶
2

and 𝑓((𝑥
1

, 𝑥
2

), (𝑦
1

, 𝑦
2

)) = 𝜙(𝑦
1

, 𝑥
2

) − 𝜙(𝑥
1

, 𝑦
2

). The
function 𝑓 is also monotone, that is, 𝑓((𝑥

1

, 𝑥
2

), (𝑦
1

, 𝑦
2

)) +
𝑓((𝑦
1

, 𝑦
2

), (𝑥
1

, 𝑥
2

)) = 0.
We present now an application to economics, given by a

Nash equilibrium problem. Suppose that we have a finite set
I of 𝑁 players. Let 𝐶

𝑖

be the finite set of pure strategies of
player 𝑖 ∈ 𝐼. We define 𝐶 = ∏

𝑖∈𝐼

𝐶
𝑖

. For all 𝑖 ∈ 𝐼, let 𝑓
𝑖

:
𝐶
𝑖

→ R be the loss function of player 𝑖. For arbitrary 𝑥 =
(𝑥
1

, . . . , 𝑥
𝑛

) ∈ 𝐶, we define 𝑥
𝑖

= (𝑥
1

, . . . , 𝑥
𝑖−1

, 𝑥
𝑖+1

, . . . , 𝑥
𝑛

).
An N-tuple 𝑥 ∈ 𝐶 is a Nash equilibrium point if for all

𝑖 ∈ 𝐼 we have that

𝑓
𝑖

(𝑥) ≤ 𝑓
𝑖

(𝑥
𝑖

, 𝑦
𝑖

) (𝑦
𝑖

∈ 𝐶
𝑖

) . (11)

It can be shown that 𝑥 is a Nash equilibrium point, more
precisely a solution of (11), if and only if it is a solution of the
equilibrium problem (EP), where 𝑓 : 𝐶 × 𝐶 → R is given by
𝑓(𝑥, 𝑦) = ∑

𝑖∈𝐼

𝑓
𝑖

(𝑥
𝑖

, 𝑦
𝑖

) − 𝑓
𝑖

(𝑥).
Let us consider now a fixed point problem. If 𝑇 : 𝐶 → 𝐶

is a map, then 𝑥 ∈ 𝐶 is a fixed point of 𝑇 if and only if 𝑥 is
a solution of the equilibrium problem (EP), where 𝑓(𝑥, 𝑦) =
⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑥⟩.

Note that the function 𝑓(𝑥, 𝑦) = ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑥⟩ is
monotone if and only if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≤
𝑥 − 𝑦


2

, (𝑥, 𝑦 ∈ 𝐶) , (12)

which says that 𝑓 is monotone if and only if it is nonexpan-
sive.

The rest of the paper is organized as follows. In Section 2,
we use some minimax theory elements in order to obtain
a nonsymmetric form of Ky Fan’s inequality for the case of
quasiconvex functions. In Section 3, we solve the generalized
equilibrium problem (GEP) by using the extension of Ky
Fan inequality and we discuss some related problems and
applications.

2. A Nonsymmetric Extension of
Ky Fan’s Inequality

In this section, we present a nonsymmetric extension of Ky
Fan’s inequality for the case of quasi-convex functions. In
a similar way, Ky Fan’s inequality has been extended in the
context of metric spaces with global nonpositive curvature.
More details and results on this topic can be found in [9–11].

Suppose that𝐶 is a nonempty compact and convex subset
of a linear topological space 𝐸. Recall the fact that Ky Fan’s
minimax inequality asserts that any function 𝑓 : 𝐶×𝐶 → R

which is upper semicontinuous in the first variable and quasi-
convex in the second variable verifies the following minimax
inequality:

max
𝑥∈𝐶

inf
𝑦∈𝐶

𝑓 (𝑥, 𝑦) ≥ inf
𝑧∈𝐶

𝑓 (𝑧, 𝑧) . (13)

Notice that Ky Fan’s inequality is equivalent to Brouwer’s fixed
point theorem. See [12, page 212].

Definition 1. We say that a function 𝑔 : 𝐸 → 𝐹 is quasi-
convex if

𝑔 ((1 − 𝜆) 𝑥 + 𝜆𝑦) ≤ max {𝑔 (𝑥) , 𝑔 (𝑦)}

(𝑥, 𝑦 ∈ 𝐸, 𝜆 ∈ (0, 1)) .
(14)

Firstly, we present the classical Knaster-Kuratowski-
Mazurkiewicz (KKM) theorem, which will be used later.

Theorem 2 (KKM). Assume that for every point 𝑥 belonging
to a nonempty set𝑋 ⊂ 𝐸 there exists a closed subset𝑀(𝑥) ⊂ 𝑋.
Suppose that the following property:

conv 𝐹 ⊂ ⋃
𝑥∈𝐹

𝑀(𝑥) (15)
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holds for every finite set𝐹 ⊂ 𝑋.Then for any finite subset𝐹 ⊂ 𝑋
one has

⋂
𝑥∈𝐹

𝑀(𝑥) ̸= 0. (16)

Thus, if a subset 𝑀(𝑥) is compact, one has

⋂
𝑥∈𝑋

𝑀(𝑥) ̸= 0. (17)

We prove now a nonsymmetric extension of Ky Fan’s
inequality by using a continuous and onto function.

Theorem 3. Let 𝐷, 𝐹 be two nonempty, compact, and convex
subsets of 𝐸 and let 𝑔 be a continuous onto function 𝑔 : 𝐹 →
𝐷. Let 𝑓 : 𝐷 × 𝐹 → R be a function which is upper
semicontinuous in the first variable and quasiconvex in the
second variable. Then, one has

max
𝑥∈𝐷

inf
𝑦∈𝐹

𝑓 (𝑥, 𝑦) ≥ inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) . (18)

Notice that Theorem 3 extends the classical Ky Fan
inequality. More exactly, taking 𝐷 = 𝐹 and 𝑔(𝑧) = 𝑧 for all
𝑧 ∈ 𝐹 in Theorem 3 we obtain (13).

Proof. Consider the family of sets

𝑀(𝑔 (𝑦)) = {𝑥 ∈ 𝐷 | 𝑓 (𝑥, 𝑦) ≥ inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧)}

(𝑦 ∈ 𝐹) .

(19)

We will show that we can apply the results from KKM’s
theorem. First of all, we remark that 𝑔(𝑦) ∈ 𝑀(𝑔(𝑦)) ⊂ 𝐷,
for 𝑦 ∈ 𝐹.

Let 𝐴 = {𝑔(𝑦
1

), 𝑔(𝑦
2

)} be a subset of 𝐷. For more
elements of 𝐷 the proof is similar. We need to show that

conv𝐴 ⊂ ⋃
𝑖∈{1,2}

𝑀(𝑔 (𝑦
𝑖

)) ; (20)

that is,

(1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) ∈ 𝑀 (𝑔 (𝑦
1

)) ∪ 𝑀(𝑔 (𝑦
2

))

(𝜆 ∈ (0, 1)) .
(21)

Indeed, if the contrary is true, then for a𝜆 ∈ (0, 1)we have

𝑓 ((1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) , 𝑦
1

) < inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) ,

𝑓 ((1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) , 𝑦
2

) < inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) .
(22)

From the continuity of 𝑔, we infer the existence of an
element 𝑦

𝜆

∈ 𝐷 such that

(1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) = 𝑔 (𝑦
𝜆

) , (23)

where 𝑦
𝜆

= 𝛼
0

𝑦
1

+ (1 − 𝛼
0

)𝑦
2

for an 𝛼 ∈ (0, 1).
Let ℎ : [0, 1] → 𝐹 be a continuous function such that

ℎ (𝛼) = (1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) − 𝑔 (𝛼𝑦
1

+ (1 − 𝛼) 𝑦
2

) .
(24)

It follows that

ℎ (0) = (1 − 𝜆) (𝑔 (𝑦
1

) − 𝑔 (𝑦
2

)) ,

ℎ (1) = 𝜆 (𝑔 (𝑦
2

) − 𝑔 (𝑦
1

)) .
(25)

Hence, ℎ(0) and ℎ(1) are of contrary signs and we deduce
the existence of an 𝛼

0

∈ [0, 1] such that ℎ(𝛼
0

) = 0.
We have

𝑓 (𝑔 (𝑦
𝜆

) , 𝑦
𝜆

)

= 𝑓 ((1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) , 𝛼
0

𝑦
1

+ (1 − 𝛼
0

) 𝑦
2

)

≤ max {𝑓 ((1 − 𝜆) 𝑔 (𝑦
1

) + 𝜆𝑔 (𝑦
2

) , 𝑦
1

) ,

𝑓 ((1 − 𝜆) 𝑔 (𝑥
1

) + 𝜆𝑔 (𝑥
2

) , 𝑦
2

)}

< inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) .

(26)

Thus, we obtain a contradiction. Hence, we can apply
KKM’s theorem and we have that ∩

𝑦∈𝐹

𝑀(𝑔(𝑦)) ̸= 0. It follows
that there exists 𝑥

0

∈ 𝐷 such that for every 𝑦 ∈ 𝐹 we have

𝑓 (𝑥
0

, 𝑦) ≥ inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) ,

inf
𝑦∈𝐹

𝑓 (𝑥
0

, 𝑦) ≥ inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) ,

max
𝑥∈𝐷

inf
𝑦∈𝐹

𝑓 (𝑥, 𝑦) ≥ inf
𝑧∈𝐹

𝑓 (𝑔 (𝑧) , 𝑧) .

(27)

With similar arguments, we can prove the following
theorem in the case of quasiconcavity.

Theorem 4. Let 𝐷, 𝐹 be two nonempty, compact, and convex
subsets of 𝐸 and let 𝑔 : 𝐷 → 𝐹 be a continuous onto function.
Let 𝑓 : 𝐷 × 𝐹 → R be a quasi-concave function in the
first variable and lower semicontinuous in the second variable.
Then, one has

min
𝑦∈𝐹

sup
𝑥∈𝐷

𝑓 (𝑥, 𝑦) ≤ sup
𝑧∈𝐷

𝑓 (𝑧, 𝑔 (𝑧)) . (28)

An important application of the above theorems is the
existence of an 𝑔-equilibriumwhich generalizes the existence
of the well-known concept of Nash equilibrium. See [10].

Theorem 5. Let 𝐶 = 𝐶
1

×𝐶
2

× ⋅ ⋅ ⋅ × 𝐶
𝑛

, where 𝐶
𝑖

, 𝑖 = 1, . . . , 𝑛
are nonempty, compact, and convex subsets of 𝐸, let 𝑔 =
(𝑔
1

, 𝑔
2

, . . . , 𝑔
𝑛

) : 𝐶 → 𝐶 be a continuous onto function, and
let 𝑓
𝑖

: 𝐶 → 𝐶 be a function which is lower semicontinuous
in the second variable and 𝑥

𝑖

→ (𝑓
𝑖

)(𝑦
1

, . . . , 𝑔(𝑥
𝑖

), . . . , 𝑦
𝑛

) is
quasiconcave for every 𝑖 = 1, . . . , 𝑛. Then, there exists an 𝑦 ∈ 𝐶
such that

𝑓
𝑖

(𝑦) ≤ 𝑓
𝑖

(𝑦
1

, . . . , 𝑔 (𝑥
𝑖

) , . . . , 𝑦
𝑛

) , (29)

for every 𝑥
𝑖

∈ 𝐶
𝑖

, 𝑖 = 1, . . . , 𝑛.



4 Abstract and Applied Analysis

3. Main Results

In this section, we use the above nonsymmetric extension
of Ky Fan’s inequality in order to solve the generalized
equilibrium problem (GEP). In the following, we present
the strategy of solving the generalized equilibrium problem
(GEP) which will be used later to present a fixed point type
algorithm.

Let H be a Hilbert space, 𝑥 ∈ H, and 𝑟 > 0. Recall
here the generalized equilibrium problem, which consists in
finding an element 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑔−1 (𝑧) , 𝑔

−1

(𝑧) − 𝑥⟩ ≥ 0 (𝑦 ∈ 𝐶) , (30)

where 𝐹 : 𝐶 × 𝐶 → R is a suitable function and 𝑔 : 𝐶 → 𝐶
is a one to one function.

We pass now to the problem of proving the existence of
an element 𝑧 ∈ 𝐶 which solves (30).

Lemma 6. Let 𝑔 : 𝐶 → 𝐶 be a continuous bijective function
and let𝐹 : 𝐶×𝐶 → R be a quasiconvex function in the second
variable and upper semicontinuous in the first variable which
verifies

𝐹 (𝑔 (𝑧) , 𝑧) ≥ 0 (𝑧 ∈ 𝐶) . (31)

Then there exists 𝑧 ∈ 𝐶 a solution of problem (30).

Remark 7. Here, the novelty consists of the fact that we can
solve (30) by imposingweaker conditions than those from [1–
3]. More precisely, the symmetric condition 𝑓(𝑧, 𝑧) = 0 is
replaced with a nonsymmetric one, given by 𝐹(𝑧, 𝑔(𝑧)) ≥ 0,
for each 𝑧 ∈ 𝐶.

Proof. Let us consider 𝐹
𝑔

(𝑧, 𝑦) = 𝐹(𝑧, 𝑦) + (1/𝑟)(𝑦 −

𝑔−1(𝑧), 𝑔−1(𝑧) − 𝑥). Since the function 𝐹 is quasiconvex in
the second variable (as the sum of a quasi-convex function
and a linear function) and upper semicontinuous in the first
variable, then by applyingTheorem 3 we obtain

sup
𝑧∈𝐶

inf
𝑦∈𝐶

𝐹
𝑔

(𝑧, 𝑦) ≥ inf
𝑧∈𝐶

𝐹
𝑔

(𝑔 (𝑧) , 𝑧) . (32)

In fact, (32) says the fact that there exists 𝑧 ∈ 𝐶 such that

𝐹
𝑔

(𝑧, 𝑦) ≥ inf
𝑧∈𝐶

𝐹
𝑔

(𝑔 (𝑧) , 𝑧) = inf
𝑧∈𝐶

𝐹 (𝑔 (𝑧) , 𝑧) ≥ 0 (𝑦 ∈ 𝐶) .

(33)

Hence, we have an element 𝑧 ∈ 𝐶 which solves (30) and
the proof is finished.

Note that Lemma 6 will be used to study two iterative
sequences which converge to a common element of the set
attached to a nonexpansive mapping and the set of solutions
of an equilibrium problem in a Hilbert space. The ideas
are based on several results from [2], when the conditions
imposed are symmetric 𝑓(𝑧, 𝑧) = 0. By assuming weaker
conditions we prove that similar results hold.

Definition 8. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert spaceH and let 𝑔 : 𝐶 → 𝐶 be a continuous

and bijective function. We say that a bifunction 𝐹 : 𝐶 ×𝐶 →
R verifies the 𝑔-equilibrium conditions if

(a) 𝐹(𝑔(𝑥), 𝑥) = 0, for all 𝑥 ∈ 𝐶;

(b) 𝐹(𝑔(𝑥), 𝑦) + 𝐹(𝑔(𝑦), 𝑥) ≤ 0, for all 𝑥, 𝑦 ∈ 𝐶;

(c) lim sup
𝑡↓0

𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈
𝐶;

(d) 𝐹(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶.

Definition 9. The generalized resolvent of a bifunction
𝐹 : 𝐶 × 𝐶 → R is the set-valued operator 𝐽

𝐹

: H → 2𝐶

defined by

𝐽
𝐹

(𝑥) = {𝑧 ∈ 𝐶 | 𝐹 (𝑧, 𝑦) + ⟨𝑦 − 𝑔−1 (𝑧) ,

𝑔−1 (𝑧) − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .
(34)

Since 𝑔 is an onto function we have that

𝐽
𝐹

(𝑥)

= {𝑧 ∈ 𝐶 | 𝐹 (𝑧, 𝑔−1 (𝑦)) + ⟨𝑔−1 (𝑦) − 𝑔−1 (𝑧) ,

𝑔−1 (𝑧) − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(35)

Lemma 10. Suppose that 𝐹 : 𝐶 × 𝐶 → R satisfies the 𝑔-
equilibrium conditions and let

𝑆
𝐹

= {𝑥 ∈ 𝐶 | 𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶} . (36)

Then, one has

(i) dom 𝐽
𝐹

= H;

(ii) 𝐽
𝐹

is single-valued and firmly nonexpansive; that is, for
any 𝑥, 𝑦 ∈ H

𝐽𝐹(𝑥) − 𝐽
𝐹

(𝑦)

2

≤ ⟨𝐽
𝐹

(𝑥) − 𝐽
𝐹

(𝑦) , 𝑥 − 𝑦⟩; (37)

(iii) for each 𝑥 ∈ 𝐶 𝑔(𝑥) ∈ 𝐽
𝐹

(𝑥) is equivalent with the fact
that 𝑔(𝑥) ∈ 𝑆

𝐹

;

(iv) 𝑆
𝐹

is closed and convex.

Proof. (i) By using Lemma 6 we deduce that for every 𝑥 ∈ H
there exists a point 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) + ⟨𝑦 − 𝑔−1 (𝑧) , 𝑔
−1

(𝑧) − 𝑥⟩ ≥ 0 (𝑦 ∈ 𝐶) . (38)

(ii) Let (𝑥, 𝑥) ∈ H × H and let 𝑧 ∈ 𝐽
𝐹

(𝑥), 𝑧 ∈ 𝐽
𝐹

(𝑥). It
follows that

𝐹 (𝑔 (𝑧) , 𝑧
) ≥ ⟨𝑥 − 𝑧, 𝑧 − 𝑧⟩,

𝐹 (𝑔 (𝑧) , 𝑧) ≥ ⟨𝑥 − 𝑧, 𝑧 − 𝑧⟩.
(39)
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Therefore, by using condition (b) from Definition 8 we
have that

0 ≥ 𝐹 (𝑔 (𝑧) , 𝑧
) + 𝐹 (𝑔 (𝑧) , 𝑧)

≥ ⟨(𝑥 − 𝑥) − (𝑧 − 𝑧) , 𝑧 − 𝑧⟩ ;
(40)

hence we obtain that

⟨𝑥 − 𝑥, 𝑧 − 𝑧⟩ ≥
𝑧 − 𝑧


2

. (41)

In particular, for 𝑥 = 𝑥, we obtain 𝑧 = 𝑧, which implies
that 𝐽
𝐹

is single valued. Moreover, from (41) we derive that 𝐽
𝐹

is firmly nonexpansive.
(iii) Let us consider 𝑥 ∈ 𝐶. Then 𝑔(𝑥) ∈ 𝐽

𝐹

(𝑥) means
exactly that

𝐹 (𝑔 (𝑥) , 𝑦) ≥ 0 (𝑦 ∈ 𝐶) ; (42)

hence we obtain the conclusion 𝑔(𝑥) ∈ 𝑆
𝐹

.
(iv) It follows from (ii), (iii), and the 𝑔-equilibrium

conditions.

Let us consider the mapping 𝑇
𝑟

: H → 𝐶 given by

𝑇
𝑟

(𝑥) = {𝑧 ∈ 𝐶 | 𝐹 (𝑧, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑔−1 (𝑧) , 𝑔

−1

(𝑧) − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(𝑟 > 0) .

(43)

We are now in position to present an extension of
Theorem 3.1 from [2] in the case of our weaker generalized
𝑔-equilibrium conditions.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
Hilbert space H. Let 𝐹 : 𝐶 × 𝐶 → R a bifunction satisfying
the generalized 𝑔-equilibrium conditions and let 𝑆 : 𝐶 → H
be a nonexpansive mapping such that

𝐹
𝑔

(𝑆) ∩ 𝐸𝑃 (𝑓) ̸= 0, (44)

where 𝐹
𝑔

(𝑆) = {𝑔(V) ∈ 𝐶 | 𝑆(𝑔(V)) = V, V ∈ 𝐶}. Let
(𝑥
𝑛

)
𝑛≥1

and (𝑢
𝑛

)
𝑛≥1

be two sequences generated by the following
recurrent formulas:

𝑥
1

= 𝑥 ∈ H, (45)

𝑢
𝑛

∈ 𝐶 such that

𝑓 (𝑢
𝑛

, 𝑦) +
1

𝑟
𝑛

⟨𝑦 − 𝑔−1 (𝑢
𝑛

) , 𝑔−1 (𝑢
𝑛

) − 𝑥
𝑛

⟩ ≥ 0

(𝑦 ∈ 𝐶) ,

𝑤
𝑛

= (1 − 𝛼
𝑛

) 𝑥
𝑛

+ 𝛼
𝑛

𝑆 (𝑢
𝑛

) ,

𝐶
𝑛

= {𝑧 ∈ 𝐻 |
𝑤𝑛 − 𝑧

 ≤
𝑥𝑛 − 𝑧

} ,

𝐷
𝑛

= {𝑧 ∈ 𝐻 | ⟨𝑥
𝑛

− 𝑧, 𝑥 − 𝑥
𝑛

⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶

𝑛
∩𝐷

𝑛

(𝑥) ,

(46)

for every 𝑛 ≥ 1 where (𝛼
𝑛

)
𝑛≥1

⊂ [𝑎, 1], for some 𝑎 ∈ (0, 1)
and (𝑟

𝑛

)
𝑛≥1

⊂ (0,∞) satisfies lim inf
𝑛→∞

𝑟
𝑛

> 0. Then (𝑥
𝑛

)
𝑛≥1

converges strongly to 𝑃
𝐹

𝑔
(𝑆)∩𝐸𝑃(𝑓)

(𝑥).

Proof. The strategy is based on the model from the proof
of Theorem 3.1 in [2]. For the convenience of the reader we
present here only the main steps of the proof.

First step consists in proving the fact that the sequence
(𝑥
𝑛

)
𝑛≥1

is well defined. It is easy to see that 𝐶
𝑛

∩𝐷
𝑛

is a closed
convex subset ofH for each 𝑛 ∈ N. Let 𝑔(V) ∈ 𝐹

𝑔

(𝑆) ∩ EP(𝑓),
by using that 𝑇

𝑟

𝑛

𝑥
𝑛

= 𝑢
𝑛

we have that
𝑢𝑛 − 𝑔 (V) ≤

𝑇𝑟𝑛𝑥𝑛 − 𝑇
𝑟

𝑛

V
 ≤

𝑥𝑛 − V (𝑛 ∈ N) . (47)

Moreover, we obtain that
𝑤𝑛 − V ≤ (1 − 𝛼

𝑛

)
𝑥𝑛 − V + 𝛼

𝑛

𝑆𝑢𝑛 − 𝑆𝑔 (V)

≤ (1 − 𝛼
𝑛

)
𝑥𝑛 − V + 𝛼

𝑛

𝑢𝑛 − 𝑔 (V) ≤
𝑥𝑛 − V

(𝑛 ∈ N) .

(48)

Hence, V ∈ 𝐶
𝑛

and 𝐹
𝑔

(𝑆) ∩ EP(𝑓) ⊂ 𝐶
𝑛

, for every 𝑛 ∈ N.
Moreover, by inductionwe can show that𝐹(𝑆)∩EP(𝑓) ⊂ 𝐶

𝑛

∩
𝐷
𝑛

, for each 𝑛 ∈ N.Wededuce that (𝑥
𝑛

)
𝑛≥1

is well defined, and
hence by Lemma 6 the sequence (𝑢

𝑛

)
𝑛≥1

is also well defined.
Let us denote by 𝑧 = 𝑃

𝐹

𝑔
(𝑆)∩EP(𝑓)(𝑥). Since 𝑥

𝑛+1

=

𝑃
𝐶

𝑛
∩𝐷

𝑛

(𝑥) we have
𝑥𝑛+1 − 𝑥

 ≤
𝑧
 − 𝑥

 (𝑛 ∈ N) ; (49)

thus it follows that (𝑥
𝑛

)
𝑛≥1

is bounded.Now, by using (47) and
(48) we have that (𝑢

𝑛

)
𝑛≥1

and (𝑤
𝑛

)
𝑛≥1

are also bounded.
Since 𝑥

𝑛

= 𝑃
𝐷

𝑛

(𝑥) and 𝑥
𝑛+1

∈ 𝐷
𝑛

, we have
𝑥 − 𝑥

𝑛

 ≤
𝑥 − 𝑥

𝑛+1

 (𝑛 ∈ N) ; (50)

thus the sequence 𝐶
𝑛

= ‖𝑥 − 𝑥
𝑛

‖, 𝑛 ≥ 1 is bounded and
nondecreasing and there exists 𝐶 = lim

𝑛→∞

‖𝑥 − 𝑥
𝑛

‖.
The rest of the proof becomes more similar with the one

from Theorem 3.1 in [2], and we recall here only the main
steps.

In the first step, it is proved that
1

4

𝑥𝑛 − 𝑥
𝑛+1


2

≤
1

2

𝑥 − 𝑥
𝑛+1


2

−
1

2

𝑥 − 𝑥
𝑛


2

, (51)

hence lim
𝑛→∞

‖𝑥
𝑛

− 𝑥
𝑛+1

‖ = 0 and lim
𝑛→∞

‖𝑥
𝑛

− 𝑤
𝑛

‖ = 0.
By using Lemma 10 we have that

𝑢𝑛 − 𝑔(V)
2

=
𝑇𝑟𝑛 (𝑥𝑛) − 𝑇

𝑟

𝑛

(V)
 ≤ ⟨𝑢

𝑛

− V, 𝑥
𝑛

− V⟩ ; (52)

thus we obtain
𝑢𝑛 − 𝑔(V)

2

≤
𝑥𝑛 − V

2

−
𝑥𝑛 − V + 𝑔(V) − 𝑢

𝑛


2

. (53)

Later on, the fact that lim
𝑛→∞

‖𝑥
𝑛

− V + 𝑔(V) − 𝑢
𝑛

‖ = 0
is proved. Next, we obtain lim

𝑛→∞

‖𝑢
𝑛

− 𝑆𝑢
𝑛

‖ = 0 and 𝑤 ∈
𝐹
𝑔

(𝑆) ∩ EP(𝑓).
Finally, we conclude that

𝑥
𝑛

→ 𝑃
𝐹

𝑔
(𝑆)∩EP(𝑓) (𝑥) . (54)
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