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This paper reviews some of the promising doors that functional analysis techniques have recently opened in the field of electronic
circuit simulation. Because of the modulated nature of radio frequency (RF) signals, the corresponding electronic circuits seem
to operate in a slow time scale for the aperiodic information and another, much faster, time scale for the periodic carrier. This
apparentmultirate behavior can be appropriately described using partial differential equations (PDEs)within a bivariate framework,
which can be solved in an efficient way using hybrid time-frequency techniques. With these techniques, the aperiodic information
dimension is treated in the discrete time domain, while the periodic carrier dimension is processed in the frequency domain, in
which the solution is evaluated within a space of harmonically related sinusoidal functions. The objective of this paper is thus to
provide a general overview on the most important hybrid time-frequency techniques, as the ones found in commercial tools or the
ones recently published in the literature.

1. Introduction

Numerical simulation plays an important role in electronics,
helping engineers to verify correctness and debug circuits
during their design, and so avoiding breadboarding and phys-
ical prototyping. The advantages of numerical simulation
are especially significant in integrated circuits design, where
manufacturing is expensive and probing internal nodes is
difficult or prohibitive.

Circuit simulation has emerged in the early 1970’s,
and many numerical techniques have been developed and
improved along the years. Radio frequency (RF) and
microwave system design is a field that was an important
driver for numerical simulation development, and continues
to be so nowadays. Indeed, computing the solution of some
current electronic circuits, as is the case of modern wireless
communication systems, is still today a hot topic. In effect,
serious difficulties arise when these nonlinear systems are
highly heterogeneous circuits operating in multiple time
scales. Current examples of these are wireless RF integrated

circuits (RFICs), or systems-on-a-chip (SoC), combining RF,
baseband analog, and digital blocks in the same the circuit.

Signals handed by wireless communication systems can
usually be described by a high frequency RF carrier modu-
lated by some kind of slowly varying baseband information
signal. Hence, the analysis of any statistically relevant infor-
mation time frame requires the processing of thousands or
millions of time points of the composite modulated signal,
turning any conventional numerical integration of the cir-
cuit’s system of ordinary differential equations (ODEs) highly
inefficient, or even impractical. However, if the waveforms
produced by the circuit are not excessively demanding on
the number of harmonics for a convenient frequency-domain
representation, this class of problems can be efficiently
simulated with hybrid time-frequency techniques. Handling
the response to the slowly varying baseband information
signal in the conventional time step by time-step basis,
but representing the reaction to the periodic RF carrier
as a small set of Fourier components (a harmonic balance
algorithm for computing the steady-state response to the
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carrier) new circuit simulators are taking an enormous profit
from functional analysis techniques. But, beyond overcoming
the signals’ time-scale disparity, one of the recently proposed
hybrid time-frequency techniques is also able to deal with
highly heterogeneous RF circuits in an efficient way, by
applying different numerical strategies to state variables in
different parts (blocks) of the circuits.

2. Theoretical Background Material

2.1. Mathematical Model of an Electronic Circuit. The behav-
ior of an electronic circuit can be described with a system
of equations involving voltages, currents, charges, and fluxes.
This system of equations can be constructed from a circuit
description using, for example, nodal analysis, which involves
applying the Kirchhoff current law to each node in the circuit,
and applying the constitutive or branch equations to each
circuit element. Systems generated this way have, in general,
the following form

p (y (𝑡)) +
𝑑q (y (𝑡))

𝑑𝑡
= x (𝑡) , (1)

where x(𝑡) ∈ R𝑛 and y(𝑡) ∈ R𝑛 stand for the excitation
(independent voltage or current sources) and state variable
(node voltages and branch currents) vectors, respectively. p :
R𝑛 → R𝑛 stands for all linear or nonlinear elements, as
resistors, nonlinear voltage-controlled current sources, and
so forth, while q : R𝑛 → R𝑛 models dynamic linear or
nonlinear elements, as capacitors (represented as linear or
nonlinear voltage-dependent electric charges), or inductors
(represented as linear or nonlinear current-dependent mag-
netic fluxes).

The system of (1) is, in general, a differential alge-
braic equations’ (DAE) system, which represents the general
mathematical formulation of lumped problems. However,
as reviewed in [1], this DAE circuit model formulation
could even be extended to include linear distributed ele-
ments. For that, these are substituted, one-by-one, by their
lumped-element equivalent circuit models or are replaced,
as whole sub-circuits, by reduced order models derived
from their frequency-domain characteristics whenever larger
distributed linear networks are dealt with.

The substitution of distributed devices by lumped-
equivalent models is especially reasonable when the size of
the circuit elements is small in comparison to the wave-
lengths, as is the case of most emerging RF technologies (e.g.,
new systems on chip (SoCs), or systems in package (SiPs),
integrating digital high-speed CMOS baseband processing
and RFCMOS hardware).

2.2. Steady-State Simulation. The most natural way of sim-
ulating an electronic circuit is to numerically time-step
integrate, in time domain, the ordinary differential system
describing its operation. This straightforward technique was
used in the first digital computer programs of circuit analysis
and is still widely used nowadays. It is the core of all
SPICE (which means simulation program with integrated
circuit emphasis) [2] or SPICE-like computer programs.

The dilemma is that these tools focus on transient analysis,
and sometimes electronics designers, as is the case of RF
and microwave designers, are not interested in the circuits’
transient response, but, instead, in their steady-state regimes.
This is because certain aspects of circuits’ performance are
better characterized, or simply only defined, in steady-state
(e.g., distortion, noise, power, gain, impedance, etc.). Time-
step integration engines, as linear multistep methods, or
Runge-Kutta methods, which were tailored for finding the
circuit’s transient response, are not adequate for computing
the steady-state because they have to pass through the lengthy
process of integrating all transients and expecting them
to vanish. In circuits presenting extremely different time
constants, or high Q resonances, as is typically the case of
RF and microwave circuits, time-step integration can be very
inefficient. Indeed, in such cases, frequencies in steady-state
response are much higher than the rate at which the circuit
approaches steady-state or the ratio between the highest and
the lowest frequency is very large. Thus, the number of
discretization time steps used by the numerical integration
scheme will be enormous because the time interval over
which the differential equations must be numerically inte-
grated is set by the lowest frequency or by how long the circuit
takes to achieve steady-state, while the size of the time steps
is constrained by the highest frequency component.

It must be noted that there are several different kinds of
steady-state behavior that may be of interest. The first one is
DC steady-state. Here, the solution does not vary with time.
Stable linear circuits driven by sinusoidal sourcesmay exhibit
a sinusoidal steady-state regime, which is characterized as
being purely sinusoidal except, possibly, for some DC offset.
If the steady-state response of a circuit consists of generic
waveforms presenting a common period, then the circuit is
said to be in a periodic steady-state. Directly computing the
periodic steady-state response of an electronic circuit, with-
out having to first integrate its transient response, involves
finding the initial condition, y(𝑡

0
), for the differential system

that describe the circuit’s operation, such that the solution at
the end of one period matches the initial condition, that is,
y(𝑡
0
) = y(𝑡

0
+ 𝑇), where 𝑇 is the period. Problems of this

form, those of finding the solution to a system of ordinary
differential equations that satisfies constraints at two or more
distinct points in time, are referred to as boundary value
problems. In this particular case, we have a periodic boundary
value problem that can be formulated as

p (y (𝑡)) +
𝑑q (y (𝑡))

𝑑𝑡
= x (𝑡) , y (𝑡

0
) = y (𝑡

0
+ 𝑇) ,

𝑡
0

≤ 𝑡 ≤ 𝑡
0

+ 𝑇, y (𝑡) ∈ R
𝑛,

(2)

where the condition y(𝑡
0
) = y(𝑡

0
+𝑇) is known as the periodic

boundary condition.
In the following, we will focus our attention to the most

widely used technique for computing the periodic steady-
state solution of RF and microwave electronic circuits: the
harmonic balance method [3–5].

2.3. Harmonic Balance. Harmonic balance (HB) is a mature
computer steady-state simulation tool that operates in the
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frequency domain [3]. Frequency-domain methods differ
from time-domain steady-state techniques in the way that,
instead of representingwaveforms as a collection of time sam-
ples, they represent them using coefficients of sinusoids in
trigonometric series. The main advantage of the trigonomet-
ric series approach is that the steady-state solution can often
be represented accurately with a small number of terms. For
example, if the circuit is linear and its inputs are all sinusoidal
of the same frequency, only two terms (magnitude and phase)
of the trigonometric series will represent the solution exactly,
whereas an approximate time-domain solutionwould require
a much larger number of sample points.

Another advantage of operating directly in the frequency-
domain is that linear dynamic operations, like differentiation
or integration, are converted into simple algebraic operations,
such as multiplying or dividing by frequency, respectively.
For example, when analyzing linear time-invariant circuit
devices, the coefficients of the response are easily evaluated
by exploiting superposition within phasor analysis [6]. Com-
puting the response of nonlinear devices is obviously more
difficult than for linear devices, in part because superposition
no longer applies, and also because, in general, the coefficients
of the response cannot be computed directly from the coeffi-
cients of the stimulus. Nevertheless, in the case of moderate
nonlinearities, the steady-state solution is typically achieved
muchmore easily in frequency-domain than in time-domain
simulators.

HB handles the circuit, its excitation and its state variables
in the frequency domain, which is the format normally
adopted by RF designers. Because of that, it also benefits
from allowing the direct inclusion of distributed devices
(like dispersive transmission lines) or other circuit ele-
ments described by frequency-domain measurement data,
for which we cannot find an exact time-domain representa-
tion.

In order to provide a brief and illustrative explanation of
the conventional HB theory, let us start by considering again
the boundary value problem of (2), describing the periodic
steady-state regime of an electronic circuit. For simplicity,
let us momentarily suppose that we are dealing with a scalar
problem, that is, that we have a simple circuit described with
a unique state variable 𝑦(𝑡), and that this circuit is driven by
a single source 𝑥(𝑡), verifying the periodic condition 𝑥(𝑡) =
𝑥(𝑡 + 𝑇). Since the steady-state response of the circuit will
be also periodic with period 𝑇, both the excitation and the
steady-state solution can be expressed as the Fourier series

𝑥 (𝑡) =
+∞

∑
𝑘=−∞

𝑋
𝑘
𝑒𝑗𝑘𝜔0𝑡, 𝑦 (𝑡) =

+∞

∑
𝑘=−∞

𝑌
𝑘
𝑒𝑗𝑘𝜔0𝑡, (3)

where 𝜔
0

= 2𝜋/𝑇 is the fundamental frequency. By
substituting (3) into (2), and adopting a convenient harmonic
truncation at some order 𝑘 = 𝐾, we will obtain

𝑝 (
+𝐾

∑
𝑘=−𝐾

𝑌
𝑘
𝑒𝑗𝑘𝜔0𝑡) +

𝑑

𝑑𝑡
[𝑞 (

+𝐾

∑
𝑘=−𝐾

𝑌
𝑘
𝑒𝑗𝑘𝜔0𝑡)]=

+𝐾

∑
𝑘=−𝐾

𝑋
𝑘
𝑒𝑗𝑘𝜔0𝑡.

(4)

The HB method consists in converting this differen-
tial system into the frequency domain, in way to obtain

an algebraic system of 2𝐾 + 1 equations, in which the
unknowns are the Fourier coefficients 𝑌

𝑘
. It must be noted

that since 𝑝 and 𝑞 are, in general, nonlinear functions, it
is not possible to directly compute the Fourier coefficients
𝑌
𝑘
in this system. In fact, we only know a priori the trivial

solution 𝑦(𝑡) = 0 for 𝑥(𝑡) = 0. So, we can possibly guess an
initial estimate to 𝑦(𝑡) and then adopt an iterative procedure
to compute the steady-state response of the circuit. For that,
we use a first-order Taylor-series expansion, in which each
initial expansion point corresponds to the previous iterated
solution. Indeed, we expand the left hand side of the DAE
system in (2) to obtain

𝑝 (𝑦[𝑟] (𝑡)) +
𝑑𝑞 (𝑦[𝑟] (𝑡))

𝑑𝑡

+
𝑑𝑝 (𝑦)

𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦[𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑔(𝑦[𝑟])

[𝑦[𝑟+1] (𝑡) − 𝑦[𝑟] (𝑡)]

+
𝑑

𝑑𝑡

𝑑𝑞 (𝑦)

𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦[𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐(𝑦[𝑟])

[𝑦[𝑟+1] (𝑡) − 𝑦[𝑟] (𝑡)] = 𝑥 (𝑡) ,

(5)

which results in

𝑝 (
𝐾

∑
𝑘=−𝐾

𝑌[𝑟]
𝑘

𝑒𝑗𝑘𝜔0𝑡) +
𝑑

𝑑𝑡
[𝑞 (

𝐾

∑
𝑘=−𝐾

𝑌[𝑟]
𝑘

𝑒𝑗𝑘𝜔0𝑡)]

+ 𝑔 (
𝐾

∑
𝑘=−𝐾

𝑌[𝑟]
𝑘

𝑒𝑗𝑘𝜔0𝑡) [
𝐾

∑
𝑘=−𝐾

(𝑌[𝑟+1]
𝑘

− 𝑌[𝑟]
𝑘

) 𝑒𝑗𝑘𝜔0𝑡]

+
𝑑

𝑑𝑡
[𝑐 (

𝐾

∑
𝑘=−𝐾

𝑌[𝑟]
𝑘

𝑒𝑗𝑘𝜔0𝑡) [
𝐾

∑
𝑘=−𝐾

(𝑌[𝑟+1]
𝑘

− 𝑌[𝑟]
𝑘

) 𝑒𝑗𝑘𝜔0𝑡]]

=
𝐾

∑
𝑘=−𝐾

𝑋
𝑘
𝑒𝑗𝑘𝜔0𝑡.

(6)

The difficulty now arising in solving (6) is that we
want to transform this system entirely into the frequency
domain, but we do not know how to compute the Fourier
coefficients of 𝑝(⋅), 𝑞(⋅), 𝑔(⋅), and 𝑐(⋅) at each iteration 𝑟.
So, one possible way to do that consists of computing each
of these nonlinear functions in the time domain and then
calculate their Fourier coefficients. Therefore, according to
the properties of the Fourier transform, the time-domain
products 𝑔(𝑦[𝑟]) ⋅ [𝑦[𝑟+1](𝑡) − 𝑦[𝑟](𝑡)] and 𝑐(𝑦[𝑟]) ⋅ [𝑦[𝑟+1](𝑡) −
𝑦[𝑟](𝑡)] will become spectral convolutions, which can be
represented as matrix-vector products using the conversion
matrix formulation [5, 7]. This way, and because of the
orthogonality of the Fourier series, (6) can be expressed in
the form

P[𝑟] + 𝑗ΩQ[𝑟] + G[𝑟] [Y[𝑟+1] − Y[𝑟]]

+ 𝑗ΩC[𝑟] [Y[𝑟+1] − Y[𝑟]] = X,
(7)
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where

Y =

[
[
[
[
[
[
[

[

𝑌
−𝐾

...
𝑌
0

...
𝑌
𝐾

]
]
]
]
]
]
]

]

, X =

[
[
[
[
[
[
[

[

𝑋
−𝐾

...
𝑋
0

...
𝑋
𝐾

]
]
]
]
]
]
]

]

,

𝑗Ω = diag (−𝑗𝐾𝜔
0
, . . . , 0, . . . , 𝑗𝐾𝜔

0
) .

(8)

In (7), P and Q are vectors containing the Fourier
coefficients of 𝑝(𝑦(𝑡)) and 𝑞(𝑦(𝑡)), respectively, and G and C
denote the (2𝐾+1)× (2𝐾+1) conversion matrices (Toeplitz)
[5, 7] corresponding to 𝑔(𝑦(𝑡)) and 𝑐(𝑦(𝑡)). If we rewrite (7)
as

P[𝑟] + 𝑗ΩQ[𝑟] − X⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
F(Y[𝑟])

+ [
[

[

G[𝑟] + 𝑗ΩC[𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
J(Y[𝑟])

]
]

]

[Y[𝑟+1] − Y[𝑟]] = 0,

(9)

we can obtain

F (Y[𝑟]) +
𝑑F (Y)

𝑑Y

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Y=Y[𝑟]
[Y[𝑟+1] − Y[𝑟]] = 0, (10)

in which

F (Y) = P (Y) + 𝑗ΩQ (Y) − X = 0 (11)

is known as the harmonic balance equation, and the (2𝐾+1)×
(2𝐾 + 1) composite conversion matrix

J (Y) =
𝑑F (Y)

𝑑Y
= G (Y) + 𝑗ΩC (Y) (12)

is known as the Jacobian matrix of the error function F(Y).
The iterative procedure of (5)–(12) is the so-called

harmonic-Newton algorithm. In order to achieve the final
solution of the problem, we have to do the following
operations at each iteration 𝑟: (i) perform inverse Fourier
transformation to obtain 𝑦[𝑟](𝑡) from Y[𝑟]; (ii) evaluate
𝑝(𝑦[𝑟](𝑡)), 𝑞(𝑦[𝑟](𝑡)), 𝑔(𝑦[𝑟](𝑡)), and 𝑐(𝑦[𝑟](𝑡)) in time domain;
(iii) calculate their Fourier coefficients to obtain P(Y[𝑟]),
Q(Y[𝑟]),G(Y[𝑟]), andC(Y[𝑟]), and thusF(Y[𝑟]) and J(Y[𝑟]); (iv)
solve the linear system of (2𝐾 + 1) algebraic equations of (10)
to compute the next estimate Y[𝑟+1]. Consecutive iterations
will be conducted until a final solution Y[𝑓] satisfies the HB
equation of (11) with a desired accuracy, that is, until

󵄩󵄩󵄩󵄩󵄩F (Y[𝑓])󵄩󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩P (Y[𝑓]) + 𝑗ΩQ (Y[𝑓]) − X󵄩󵄩󵄩󵄩󵄩 < tol, (13)

where tol is an allowed error ceiling and ‖F(⋅)‖ stands for
some norm of the error function F(⋅).

Since in a digital computer, both time and frequency
domains are represented by discrete quantities, the
mathematical tools used to perform Fourier and inverse
Fourier transformations are, respectively, the discrete
Fourier transform (DFT) and the inverse discrete Fourier

transform (IDFT) or their fast algorithms, the fast Fourier
transform (FFT) and the inverse fast Fourier transform
(IFFT).

The system of (10) is typically a sparse linear system in the
case of a generic circuit with 𝑛 state variables. In general, sev-
eral methods can be used to solve this system, such as direct
solvers, sparse solvers, or iterative solvers. However, for very
large systems, iterative solvers are usually preferred. Krylov
subspace techniques [8] are a class of iterative methods for
solving sparse linear systems of equations. An advantage
of Krylov techniques is that (10) does not need to be fully
solved in each iteration. The iterative process needs only to
proceed until Y[𝑟+1] − Y[𝑟] is such that Y[𝑟+1] decreases the
error function. This approach to the solution, called inexact
Newton, can provide significantly improved efficiency. Today,
there is a general consensus that a technique called the
generalized minimum residual (GMRES) [9] is the preferred
one among the many available Krylov subspace techniques,
for harmonic-balance analysis [10–12].

The generalization of the above described harmonic-
Newton algorithm to the case of a generic electronic circuit
with 𝑛 state variables is obviously straightforward. Indeed, in
such case we will simply have

Y = [Y
1

𝑇,Y
2

𝑇, . . . ,Y
𝑛

𝑇]
𝑇

, (14)

where each one of the Y
𝑣
, 𝑣 = 1, . . . , 𝑛, is a (2𝐾+1)× 1 vector

containing the Fourier coefficients of the corresponding state
variable 𝑦

𝑣
(𝑡). The 𝑗Ωmatrix will be defined as

𝑗Ω = diag(−𝑗𝐾𝜔
0
, . . . , 𝑗𝐾𝜔

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑣=1

,

−𝑗𝐾𝜔
0
, . . . , 𝑗𝐾𝜔

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑣=2

, . . . , −𝑗𝐾𝜔
0
, . . . , 𝑗𝐾𝜔

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑣=𝑛

) ,

(15)

and the Jacobian matrix J(Y) = 𝑑F(Y)/𝑑Y will have a
block structure, consisting of an 𝑛 × 𝑛 matrix of square
submatrices (blocks), each of one with dimension (2𝐾 + 1).
Each block contains information on the sensitivity of changes
in a component of the error function F(Y), resulting from
changes in a component ofY.The general block of row𝑚 and
column 𝑙 can be expressed as

𝑑F
𝑚

(Y)

𝑑Y
𝑙

=
𝑑P
𝑚

(Y)

𝑑Y
𝑙

+ 𝑗Ω
𝑑Q
𝑚

(Y)

𝑑Y
𝑙

, (16)

where 𝑑P
𝑚

(Y)/𝑑Y
𝑙
and 𝑑Q

𝑚
(Y)/𝑑Y

𝑙
denote, respectively, the

Toeplitz conversionmatrices [7] of the vectors containing the
Fourier coefficients of𝑑𝑝

𝑚
(𝑦(𝑡))/𝑑𝑦

𝑙
(𝑡) and𝑑𝑞

𝑚
(𝑦(𝑡))/𝑑𝑦

𝑙
(𝑡).

3. Hybrid Time-Frequency Simulation

3.1. Modulated Signals. Signals containing components that
vary at two ormorewidely separated rates are usually referred
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to as multirate signals and have a special incidence in RF
and microwave applications, such as mixers (up/down con-
verters), modulators, demodulators, power amplifiers, and so
forth. Multirate signals can appear in RF systems due to the
existence of excitation regimes of widely separated time scales
(e.g., baseband stimuli and high frequency local oscillators)
or because the stimuli can be, themselves, multirate signals
(e.g., circuits driven by modulated signals). The general form
of an amplitude and phase-modulated signal can be defined
as

𝑥 (𝑡) = 𝑒 (𝑡) cos (𝜔
𝐶
𝑡 + 𝜙 (𝑡)) , (17)

where 𝑒(𝑡) and 𝜙(𝑡) are, respectively, the amplitude, or enve-
lope, and phase slowly varying baseband signals, modulating
the cos(𝜔

𝐶
𝑡) fast-varying carrier. Circuits driven by this

kind of signals, or presenting themselves state variables of
this type, are common in RF and microwave applications.
Since the baseband signals have a spectral content of much
lower frequency than the carrier, that is, because they are
typically slowly varying signals while the carrier is a fast-
varying entity, simulating nonlinear circuits containing this
kind of signals is often a very challenging issue. Because
the aperiodic nature of the signals obviates the use of any
steady-state technique, one might think that conventional
time-step integration would be the natural method for
simulating such circuits. However, the large time constants
of the bias networks determine long transient regimes and,
as a result, the obligation of simulating a large number
of carrier periods. In addition, computing the RF carrier
oscillations long enough to obtain information about its
envelope and phase properties is, itself, a colossal task.
Time-step integration is thus inadequate for simulating this
kind of problems because it is computationally expensive or
prohibitive.

3.2. Hybrid Time-Frequency ETHB Technique. The envelope
transient harmonic balance (ETHB) [13–16] is a hybrid time-
frequency technique thatwas conceived to overcome the inef-
ficiency revealed by SPICE-like engines (time-step integra-
tion schemes) when simulating circuits driven by modulated
signals or presenting state variables of this type. It consists in
calculating the response of the circuit to the baseband and the
carrier by treating the envelope and phase in the time domain
and the carrier in the frequency domain. For that, it assumes
that the envelope and phase baseband signals are extremely
slow when compared to the carrier, so that they can be con-
sidered as practically constant during many carrier periods.
Taking this into account, ETHB samples the baseband signals
in an appropriately slow time rate and assumes a staircase
version of both amplitude and phase, which will conduct to
a new modulated version of these signals. The steady-state
response of the circuit to this new modulated version is then
computed at each time step with the frequency-domain HB
engine.

In order to provide a very brief theoretical description of
the ETHB technique, let us suppose that we have a circuit

driven by a single source of the form of 𝑥(𝑡) in (17). If we
rewrite 𝑥(𝑡) as

𝑥 (𝑡) = 𝑒 (𝑡)
1

∑
𝑘=−1

𝐴
𝑘
𝑒𝑗𝑘[𝜔𝐶𝑡+𝜙(𝑡)] =

1

∑
𝑘=−1

𝑒 (𝑡) 𝐴
𝑘
𝑒𝑗𝑘𝜙(𝑡)𝑒𝑗𝑘𝜔𝐶𝑡

=
1

∑
𝑘=−1

𝑋
𝑘
(𝑡) 𝑒𝑗𝑘𝜔𝐶𝑡

(18)

and assume that the circuit is stable, then all its state variables
can be expressed as time-varying Fourier series

𝑦 (𝑡) = ∑
𝑘

𝑌
𝑘
(𝑡) 𝑒𝑗𝑘𝜔𝐶𝑡, (19)

where 𝑌
𝑘
(𝑡) represents the time-varying Fourier coefficients

of 𝑦(𝑡), which are slowly varying in the baseband time scale.
Now, if we take into consideration the disparity between the
baseband and the carrier time scales and assume that they are
also uncorrelated, which is normally the case, then we can
rewrite (17) and (19) as

𝑥 (𝑡
𝐸
, 𝑡
𝐶
) = 𝑒 (𝑡

𝐸
) cos (𝜔

𝐶
𝑡
𝐶

+ 𝜙 (𝑡
𝐸
)) , (20)

𝑦 (𝑡
𝐸
, 𝑡
𝐶
) = ∑
𝑘

𝑌
𝑘
(𝑡
𝐸
) 𝑒𝑗𝑘𝜔𝐶𝑡𝐶 , (21)

where 𝑡
𝐸
is the slow baseband time scale and 𝑡

𝐶
is the fast

carrier time scale. Then, if we discretize the slow baseband
time scale using a grid of successive time instants 𝑡

𝐸,𝑖
and

adopt a convenient harmonic truncation at some order 𝑘 =
𝐾, we will obtain for each 𝑡

𝐸,𝑖
a periodic boundary value

problem that can be solved in the frequency domain withHB.
In order to compute the whole response of the circuit, a set of
successive HB equations of the form

F (Y (𝑡
𝐸,𝑖

)) = P (Y (𝑡
𝐸,𝑖

)) + 𝑗ΩQ (Y (𝑡
𝐸,𝑖

)) − X (𝑡
𝐸,𝑖

) = 0
(22)

has to be solved, in which X(𝑡
𝐸,𝑖

) and Y(𝑡
𝐸,𝑖

) represent the
vectors containing the time-varying Fourier coefficients of
the excitation and the solution, respectively.

Two different ways can be conceived to evidence the
system’s dynamics to the time-varying envelope, depending
on whether the circuit’s elements’ constitutive relations are
described in the frequency domain or they can be formulated
in the time domain.

In one possibility, we rely on the frequency-domain
description of each of the constitutive elements, and so of the
entire system represented in (22). Assuming that the envelope
time evolution is much slower than that of the carrier, we
no longer consider that each harmonic component of the
carrier occupies a single frequency (constant amplitude and
phase carrier) but spreads through its vicinity (slowly varying
amplitude and phasemodulation). For example, any dynamic
linear component whose frequency-domain representation is

𝑄 (𝑌 (𝜔)) = 𝐻 (𝜔) 𝑌 (𝜔) (23)
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can be approximated by a Taylor series (or any other polyno-
mial or rational function) in the vicinity of each of the carrier
harmonics, 𝑘𝜔

𝐶
, that is, 𝜔 = 𝑘𝜔

𝐶
+ 𝜛, where 𝜛 is a slight

frequency perturbation, as

𝐻 (𝜔) − 𝐻 (𝑘𝜔
𝐶
)

≃
𝑑𝐻 (𝜔)

𝑑𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝑘𝜔𝐶
𝜛

+
1

2!

𝑑𝐻2 (𝜔)

𝑑𝜔2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝑘𝜔𝐶
𝜛2 +

1

3!

𝑑𝐻3 (𝜔)

𝑑𝜔3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝑘𝜔𝐶
𝜛3 + ⋅ ⋅ ⋅

= 𝐻
1
(𝑘𝜔
𝐶
) 𝜛 + 𝐻

2
(𝑘𝜔
𝐶
) 𝜛2 + 𝐻

3
(𝑘𝜔
𝐶
) 𝜛3 + ⋅ ⋅ ⋅

= 𝐻̃
𝑘
(𝜛) ,

(24)

which leads to

𝑄 (𝑌̃
𝑘
(𝜛 = 𝜔 − 𝑘𝜔

𝐶
))

= 𝐻̃
𝑘
(𝜛) 𝑌̃
𝑘
(𝜛)

≃ 𝐻
1
(𝑘𝜔
𝐶
) 𝜛𝑌̃
𝑘
(𝜛) + 𝐻

2
(𝑘𝜔
𝐶
) 𝜛2𝑌̃
𝑘
(𝜛)

+ 𝐻
3
(𝑘𝜔
𝐶
) 𝜛3𝑌̃
𝑘
(𝜛) + ⋅ ⋅ ⋅

≃
1

𝑗
𝑗𝜛𝐻
1
(𝑘𝜔
𝐶
) 𝑌̃
𝑘
(𝜛) +

1

𝑗2
(𝑗𝜛)
2

𝐻
2
(𝑘𝜔
𝐶
) 𝑌̃
𝑘
(𝜛)

+
1

𝑗3
(𝑗𝜛)
3

𝐻
3
(𝑘𝜔
𝐶
) 𝑌̃
𝑘
(𝜛) + ⋅ ⋅ ⋅ ,

(25)

with 𝐻̃ and 𝑌̃ being the low-pass equivalent of𝐻 and𝑌. Since
𝐻
𝑚

(𝑘𝜔
𝐶
)/𝑗𝑚 is a constant, and (𝑗𝜛)𝑚𝑌̃

𝑘
(𝜛) can be interpreted

as the m’th order derivative of the time-domain 𝑌
𝑘
(𝑡
𝐸
) with

respect to time 𝑡
𝐸
, (25) can be rewriten as

𝑄 (𝑌
𝑘
(𝑡
𝐸
)) ≃

𝐻
1
(𝑘𝜔
𝐶
)

𝑗

𝑑𝑌
𝑘
(𝑡
𝐸
)

𝑑𝑡
𝐸

+
𝐻
2
(𝑘𝜔
𝐶
)

𝑗2
𝑑2𝑌
𝑘
(𝑡
𝐸
)

𝑑𝑡2
𝐸

+
𝐻
3
(𝑘𝜔
𝐶
)

𝑗3
𝑑3𝑌
𝑘
(𝑡
𝐸
)

𝑑𝑡3
𝐸

+ ⋅ ⋅ ⋅ ,

(26)

which, substituted in (22), would evidence the desired sys-
tem’s dynamics to the amplitude and phase modulations.
Therefore, the ETHB technique consists in the transient
simulation, in an envelope time-step by time step basis,
𝑡
𝐸,𝑖

, 𝑡
𝐸,𝑖+1

, . . ., of the harmonic balance equation of (22).
This formulation of ETHB is, nowadays, a mature tech-

nique in the RF simulation community. However, its basic
assumption constitutes also its major drawback. By requiring
the envelope and phase to be extremely slowly varying
signals when compared to the carrier frequency, this mixed
frequency-time technique becomes restricted to circuits
whose stimuli occupy only a small fraction of the available
bandwidth.

In an alternative ETHB formulation,we assume that every
element can be described in the time domain. Hence, we

can substitute the time-varying Fourier description of (21)
into (1) and then treat the carrier time, 𝑡

𝐶
, in the frequency

domain—converting the DAE system into an algebraic one—
but keeping the envelope time, 𝑡

𝐸
, in the time domain. This

way, we obtain another hybrid time-frequency description of
the system that no longer suffers from the narrow bandwidth
restriction just mentioned and whose formulation and solu-
tion will be discussed in more detail in Section 3.4.

3.3. Multivariate Formulation. We will now introduce a
powerful strategy for analyzing nonlinear circuits handling
amplitude and/or phase modulated signals, as with any other
kind of multirate signals. This strategy consists in using
multiple time variables to describe the multirate behavior,
and it is based on the fact that multirate signals can be repre-
sented much more efficiently if they are defined as functions
of two or more time variables, that is, if they are defined
as multivariate functions [17, 18]. With this multivariate
formulation, circuits will be no longer described by ordinary
differential algebraic equations in the one-dimensional time
𝑡 but, instead, by partial differential algebraic systems.

Let us consider the amplitude and phase-modulated
signal of (17), and let us define its bivariate form as

𝑥 (𝑡
1
, 𝑡
2
) = 𝑒 (𝑡

1
) cos (𝜔

𝐶
𝑡
2

+ 𝜙 (𝑡
1
)) , (27)

where 𝑡
1
is the slow envelope time scale and 𝑡

2
is the fast

carrier time scale. As can be seen, 𝑥(𝑡
1
, 𝑡
2
) is a periodic

function with respect to 𝑡
2
but not to 𝑡

1
, that is,

𝑥 (𝑡
1
, 𝑡
2
) = 𝑥 (𝑡

1
, 𝑡
2

+ 𝑇
2
) , 𝑇

2
=

2𝜋

𝜔
𝐶

, (28)

and, in general, this bivariate form requires far fewer points
to represent numerically the original signal, especially when
the 𝑡
1
and 𝑡
2
time scales are widely separated [17, 18].

Let us now consider the differential algebraic equations’
(DAEs) system of (1), describing the behavior of a generic
RF circuit driven by the envelope-modulated signal of (17).
Taking the above considerations into account, we will adopt
the following procedure: for the slowly varying parts (enve-
lope time scale) of the expressions of vectors x(𝑡) and y(𝑡), 𝑡
is replaced by 𝑡

1
; for the fast-varying parts (RF carrier time

scale), 𝑡 is replaced by 𝑡
2
. The application of this bivariate

strategy to theDAE systemof (1) converts it into the following
multirate partial differential algebraic equations’ (MPDAEs)
system [17, 18]:

p (ŷ (𝑡
1
, 𝑡
2
)) +

𝜕q (ŷ (𝑡
1
, 𝑡
2
))

𝜕𝑡
1

+
𝜕q (ŷ (𝑡

1
, 𝑡
2
))

𝜕𝑡
2

= x̂ (𝑡
1
, 𝑡
2
) .

(29)

The mathematical relation between (1) and (29) establishes
that if x̂(𝑡

1
, 𝑡
2
) and ŷ(𝑡

1
, 𝑡
2
) satisfy (29), then the univariate

forms x(𝑡) = x̂(𝑡, 𝑡) and y(𝑡) = ŷ(𝑡, 𝑡) satisfy (1) [18].Therefore,
the univariate solutions of (1) are available on diagonal lines
𝑡
1

= 𝑡, 𝑡
2

= 𝑡, along the bivariate solutions of (29), that is, y(𝑡)
may be retrieved from its bivariate form ŷ(𝑡

1
, 𝑡
2
), by simply

setting 𝑡
1

= 𝑡
2

= 𝑡. Consequently, if one wants to obtain the
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univariate solution in a generic [0, 𝑡Final] interval due to the
periodicity of the problem in the 𝑡

2
dimension we will have

y (𝑡) = ŷ (𝑡, 𝑡 mod 𝑇
2
) (30)

on the rectangular domain [0, 𝑡Final] × [0, 𝑇
2
], where 𝑡 mod

𝑇
2
represents the remainder of division of 𝑡 by 𝑇

2
. The

main advantage of this MPDAE approach is that it can
result in significant improvements in simulation speed when
compared to DAE-based alternatives [17–20].

Envelope-modulated responses to excitations of the form
of (17) correspond to a combination of initial and periodic
boundary conditions for the MPDAE. This means that the
bivariate forms of these solutions can be obtained by numer-
ically solving the following initial-boundary value problem
[18]

p (ŷ (𝑡
1
, 𝑡
2
)) +

𝜕q (ŷ (𝑡
1
, 𝑡
2
))

𝜕𝑡
1

+
𝜕q (ŷ (𝑡

1
, 𝑡
2
))

𝜕𝑡
2

= x̂ (𝑡
1
, 𝑡
2
) ,

ŷ (0, 𝑡
2
) = g (𝑡

2
) ,

ŷ (𝑡
1
, 0) = ŷ (𝑡

1
, 𝑇
2
) ,

(31)

on the rectangle [0, 𝑡Final] × [0, 𝑇
2
]. g(⋅) is a given initial-

condition function defined on [0, 𝑇
2
], satisfying g(0) =

g(𝑇
2
) = y(0), and the periodic boundary condition ŷ(𝑡

1
, 0) =

ŷ(𝑡
1
, 𝑇
2
) is due to the periodicity of the problem in the 𝑡

2

fast carrier time scale. The reason why bivariate envelope-
modulated solutions do not need to be evaluated on the entire
[0, 𝑡Final] × [0, 𝑡Final] domain (which would be computation-
ally very expensive and would turn the multivariate strategy
useless), and are restricted to the rectangle [0, 𝑡Final] × [0, 𝑇

2
],

is because the solutions repeat along the 𝑡
2
time axis.

3.4. Multitime Envelope Transient Harmonic Balance. Mul-
titime envelope transient harmonic balance is an improved
version of the previously described ETHB technique, which is
based on the multivariate formulation [21, 22]. For achieving
an intuitive explanation of the multitime envelope transient
harmonic balance let us consider the initial-boundary value
problem of (31), and let us also consider the semidiscretiza-
tion of the rectangular domain [0, 𝑡Final]×[0, 𝑇

2
] in the 𝑡

1
slow

time dimension defined by the grid

0 = 𝑡
1,0

< 𝑡
1,1

< ⋅ ⋅ ⋅ < 𝑡
1,𝑖−1

< 𝑡
1,𝑖

< ⋅ ⋅ ⋅ < 𝑡
1,𝐾1

= 𝑡Final,

ℎ
1,𝑖

= 𝑡
1,𝑖

− 𝑡
1,𝑖−1

,
(32)

where 𝐾
1
is the total number of steps in 𝑡

1
. If we replace

the derivatives of the MPDAE in 𝑡
1
with a finite-differences

approximation (e.g., the Backward Euler rule), thenwe obtain
for each slow time instant 𝑡

1,𝑖
, from 𝑖 = 1 to 𝑖 = 𝐾

1
, the

periodic boundary value problem defined by

p (ŷ
𝑖
(𝑡
2
)) +

q (ŷ
𝑖
(𝑡
2
)) − q (ŷ

𝑖−1
(𝑡
2
))

ℎ
1,𝑖

+
𝑑q (ŷ
𝑖
(𝑡
2
))

𝑑𝑡
2

= x̂ (𝑡
1,𝑖

, 𝑡
2
) ,

ŷ
𝑖
(0) = ŷ

𝑖
(𝑇
2
) ,

(33)

where ŷ
𝑖
(𝑡
2
) ≃ ŷ(𝑡

1,𝑖
, 𝑡
2
). This means that, once ŷ

𝑖−1
(𝑡
2
) is

known, the solution on the next slow time instant, ŷ
𝑖
(𝑡
2
),

is obtained by solving (33). Thus, for obtaining the whole
solution ŷ in the entire domain [0, 𝑡Final] × [0, 𝑇

2
], a total

of 𝐾
1
boundary value problems have to be solved. With

multitime ETHB, each one of these periodic boundary value
problems is solved using the harmonic balance method. The
correspondingHB system for each slow time instant 𝑡

1,𝑖
is the

𝑛 × (2𝐾 + 1) algebraic equations set given by

P (Ŷ (𝑡
1,𝑖

)) +
Q (Ŷ (𝑡

1,𝑖
)) − Q (Ŷ (𝑡

1,𝑖−1
))

ℎ
1,𝑖

+ 𝑗ΩQ (Ŷ (𝑡
1,𝑖

))

= X̂ (𝑡
1,𝑖

) ,

(34)

where X̂(𝑡
1,𝑖

) and Ŷ(𝑡
1,𝑖

) are the vectors containing the Fourier
coefficients of the excitation sources and of the solution (the
state variables), respectively, at 𝑡

1
= 𝑡
1,𝑖
. P(⋅) and Q(⋅) are

unknown functions, 𝑗Ω is the diagonal matrix (15), and the
Ŷ(𝑡
1,𝑖

) vector can be expressed as

Ŷ (𝑡
1,𝑖

) = [Ŷ
1
(𝑡
1,𝑖

)
𝑇

, Ŷ
2
(𝑡
1,𝑖

)
𝑇

, . . . , Ŷ
𝑛
(𝑡
1,𝑖

)
𝑇

]
𝑇

, (35)

where each one of the state variable frequency components,
Ŷ
𝑣
(𝑡
1,𝑖

), 𝑣 = 1, . . . , 𝑛, is a (2𝐾 + 1) × 1 vector defined as

Ŷ
𝑣
(𝑡
1,𝑖

) = [𝑌
𝑣,−𝐾

(𝑡
1,𝑖

) , . . . , 𝑌
𝑣,0

(𝑡
1,𝑖

) , . . . , 𝑌
𝑣,𝐾

(𝑡
1,𝑖

)]
𝑇

. (36)

As seen in Section 2.3, since p(⋅) and q(⋅) are in general
nonlinear functions, one possible way to compute P(⋅) and
Q(⋅) in (34) consists in evaluating p(⋅) and q(⋅) in the time
domain and then calculate its Fourier coefficients. The HB
system of (34) can be rewriten as

F (Ŷ (𝑡
1,𝑖

)) = P (Ŷ (𝑡
1,𝑖

)) +
Q (Ŷ (𝑡

1,𝑖
)) − Q (Ŷ (𝑡

1,𝑖−1
))

ℎ
1,𝑖

+ 𝑗ΩQ (Ŷ (𝑡
1,𝑖

)) − X̂ (𝑡
1,𝑖

) = 0,
(37)

or, in its simplified form, as

F (Ŷ (𝑡
1,𝑖

)) = 0, (38)

in which F(Ŷ(𝑡
1,𝑖

)) is the error function at 𝑡
1

= 𝑡
1,𝑖
. In order

to solve the nonlinear algebraic system of (38) a Newton-
Raphson iterative solver is usually used. In this case, the
Newton-Raphson algorithm conducts us to

F (Ŷ[𝑟] (𝑡
1,𝑖

))

+
𝑑F (Ŷ (𝑡

1,𝑖
))

𝑑Ŷ (𝑡
1,𝑖

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Ŷ(𝑡1,𝑖)=Ŷ[𝑟](𝑡1,𝑖)
[Ŷ[𝑟+1] (𝑡

1,𝑖
) − Ŷ[𝑟] (𝑡

1,𝑖
)]=0,

(39)
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which means that at each iteration 𝑟, we have to solve a
linear system of 𝑛 × (2𝐾 + 1) equations to compute the
new estimate Ŷ[𝑟+1](𝑡

1,𝑖
). Consecutive Newton iterations will

be computed until a desired accuracy is achieved, that is,
until ‖F(Ŷ(𝑡

1,𝑖
))‖ < tol, where tol is the allowed error

ceiling.
The system of (39) involves the derivative of the vector

F(Ŷ(𝑡
1,𝑖

)), with respect to the vector Ŷ(𝑡
1,𝑖

). The result is a
matrix, the so-called Jacobian of F(Ŷ(𝑡
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(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
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(40)

In the same way as in Section 2.3, this matrix has a block
structure, consisting of an 𝑛 × 𝑛 matrix of square subma-
trices (blocks), each one with dimension (2𝐾 + 1). The
general block of row 𝑚 and column 𝑙 can now be expressed
as

𝑑F
𝑚

(Ŷ (𝑡
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))

𝑑Ŷ
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𝑙
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(41)

In summary, multitime ETHB handles the solution
dependence on 𝑡

2
in frequency domain, while treating the

course of the solution to 𝑡
1
in time domain. So, it is a

hybrid time-frequency technique which is similar to the
ETHB engine previously reported in Section 3.2. However,
an important advantage of multitime ETHB over conven-
tional ETHB is that it does not suffer from bandwidth
limitations [21]. For example, in circuits driven by enve-
lope modulated signals, the only restriction that has to
be imposed is that the modulating signal and the carrier
must not be correlated in time (which is typically the
case).

4. Advanced Hybrid Time-Frequency
Simulation

One limitation of the ETHB and multitime ETHB engines
is that they do not perform any distinction between nodes
or blocks within the circuit, that is to say that they treat
all the circuit’s state variables in the same way. Thus, if
the circuit evidences some heterogeneity, as is the case of
modern wireless architectures combining radio frequency,
baseband analog, and digital blocks in the same circuit,
these tools cannot benefit from such feature. To overcome
this difficulty an innovative mixed mode time-frequency
technique was recently proposed by the authors [23, 24].
This technique splits the circuit’s state variables (node
voltages and mesh currents) into fast and slowly varying
subsets, treating the former with multitime ETHB and
the later with a SPICE-like engine (a time-step integration
scheme). This way, the strong nonlinearities of the circuit
are appropriately evaluated in the time domain, while the
moderate ones are computed in the frequency domain [23,
24].

4.1. Time-Domain Latency within the Multivariate Formu-
lation. In order to provide an illustrative explanation of
the issues under discussion in this section, let us start by
considering an RF circuit in which some of its state variables
(node voltages and branch currents) are fast carrier envelope-
modulated waveforms, while the remaining state variables
are slowly varying aperiodic signals. For concreteness, let us
suppose that the signals

𝑦
1
(𝑡) =

𝐾

∑
𝑘=−𝐾

𝑌
𝑘
(𝑡) 𝑒𝑗𝑘𝜔𝐶𝑡,

𝑦
2
(𝑡) = 𝑒 (𝑡)

(42)

are two distinct state variables in different parts of the
circuit. 𝑌

𝑘
(𝑡) represents the Fourier coefficients of 𝑦

1
(𝑡),

which are slowly varying in the baseband time scale, 𝜔
𝐶
is

the carrier frequency, and 𝑒(𝑡) is a slowly varying aperiodic
baseband function. We will denote signals of the form of
𝑦
1
(𝑡) as active and signals of the form of 𝑦

2
(𝑡) as latent.

The latency revealed by 𝑦
2
(𝑡) indicates that this variable

belongs to a circuit block where there are no fluctuations
dictated by the fast carrier. Consequently, due to its slowness,
it can be represented efficiently with much less sample points
than 𝑦

1
(𝑡). On the other hand, since it does not evidence

any periodicity, it cannot be processed with harmonic bal-
ance. On the contrary, if the number of harmonics K is
not too large, the fast carrier oscillation components of
𝑦
1
(𝑡) can be efficiently computed in the frequency domain.

Therefore, it is straightforward to conclude that if we want
to simulate circuits having such signal format disparities
in an efficient way, distinct numerical strategies will be
required.



Journal of Function Spaces and Applications 9

Local oscillator

Baseband
signal

VDD

L1

L4

L2
L3

ZS-LO

ZS-BB

2 MHz

2 GHz

R

v1(t)

vo(t)

−

+

C1

C2

C3vLO(t)

Figure 1: Simplified resistive FET mixer used in wireless transmit-
ters.

Let us now consider the bivariate forms of 𝑦
1
(𝑡) and 𝑦

2
(𝑡)

denoted by 𝑦
1
(𝑡
1
, 𝑡
2
) and 𝑦

2
(𝑡
1
, 𝑡
2
) and defined as

𝑦
1
(𝑡
1
, 𝑡
2
) =
𝐾

∑
𝑘=−𝐾

𝑌
𝑘
(𝑡
1
) 𝑒𝑗𝑘𝜔𝐶𝑡2 ,

𝑦
2
(𝑡
1
, 𝑡
2
) = 𝑒 (𝑡

1
) ,

(43)

where 𝑡
1
and 𝑡

2
are, respectively, the slow envelope time

dimension and the fast carrier time dimension. As we can see,
𝑦
2
(𝑡
1
, 𝑡
2
) has no dependence on 𝑡

2
, so it has no fluctuations

in the fast time axis. In fact, it is so because 𝑦
2
(𝑡) does

not oscillate at the carrier frequency. Consequently, for each
slow time instant 𝑡

1,𝑖
defined on the grid of (32), while

𝑦
1
(𝑡
1,𝑖

, 𝑡
2
) is a waveform that has to be represented by a

certain quantity 𝑘 = −𝐾, . . . , 𝐾 of harmonic components,
𝑦
2
(𝑡
1,𝑖

, 𝑡
2
) is merely a constant (DC) signal that can be simply

represented by the 𝑘 = 0 component. Therefore, there is
no necessity to perform the conversion between time and
frequency domains for 𝑦

2
(𝑡
1,𝑖

, 𝑡
2
), which means that this

state variable can be processed in a purely time-domain
scheme.

4.2.MixedMode Time-Frequency Technique. In the above, we
illustrated that bivariate forms of latent state variables have
no undulations in the 𝑡

2
fast time scale. So, while active state

variables have to be represented by a set of (2𝐾+1) harmonic
components arranged in vectors of the form of (36), latent
state variables can be represented as scalar quantities, that
is,

Ŷ
𝑣
(𝑡
1,𝑖

) = 𝑌
𝑣,0

(𝑡
1,𝑖

) = 𝑦
𝑣
(𝑡
1,𝑖

) . (44)

By considering this, it is straightforward to conclude
that the size of the Ŷ(𝑡

1,𝑖
) vector defined by (35) can be

considerably reduced, as can be the total number of equations
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Figure 2: RFpolar transmitterwith a hybrid envelope amplifier [23].

in the HB system of (37). An additional and crucial detail is
that there is no longer obligation to perform the conversion
between time and frequency domains for the latent state
variables expressed in the form of (44), as well as for the
components of F(Ŷ(𝑡

1,𝑖
)) corresponding to latent blocks of

the circuit. Since the 𝑘 = 0 order Fourier coefficient 𝑌
𝑣,0

(𝑡
1,𝑖

)
is exactly the same as the constant 𝑡

2
time value 𝑦

𝑣
(𝑡
1,𝑖

), the
use of the discrete Fourier transform (DFT) and the inverse
discrete Fourier transform (IDFT)—or their fast algorithms,
that is, the fast Fourier transform (FFT) and the inverse
fast Fourier transform (IFFT)—will be required only for
components in the HB system of (37) having dependence
on active state variables. Significant Jacobian matrix size
reductions will be achieved, too. In effect, by taking into
consideration this multirate characteristic (the subset circuit
latency), some of the blocks of (40) will be merely 1×1 scalar
elements that contain dc information on the sensitivity of
changes in components of F(Ŷ(𝑡

1,𝑖
)) resulting from changes

in latent components of Ŷ(𝑡
1,𝑖

).
With this strategy of partitioning the circuit into active

and latent subcircuits (blocks), significant computation and
memory savings can be achieved when finding the solution
of (37). Indeed, with the state variable Ŷ(𝑡

1,𝑖
) and the error

function F(Ŷ(𝑡
1,𝑖

)) vector size reductions, as also the resulting
Jacobian J(Ŷ(𝑡

1,𝑖
))matrix size reduction, it is possible to avoid

dealing with large linear systems in the iterations of (39).
Thus, a less computationally expensive Newton-Raphson
iterative solver is required.



10 Journal of Function Spaces and Applications

Table 1: Computation times—resistive FET mixer.

Simulation time interval Mixed mode time-frequency
technique Multitime ETHB Speedup (approx.)

[0, 0.5𝜇s] 2.1 s 4.6 s 2.2
[0, 5.0𝜇s] 19.3 s 42.5 s 2.2

Table 2: Computation times—RF polar transmitter.

Simulation time interval Mixed mode time-frequency
technique Multitime ETHB Speedup (approx.)

[0, 0.5𝜇s] 3.2 s 51.5 s 16.1
[0, 5.0𝜇s] 25.3 s 484.6 s 19.2

5. Performance of the Methods

The performance and the efficiency of the ETHB and mul-
titime ETHB techniques were already attested and recog-
nized by the RF and microwave community. In the same
way, the performance and the efficiency of the advanced
hybrid technique described in the previous section (the
mixed mode time-frequency simulation technique) were
also already demonstrated through its application to several
illustrative examples of practical relevance. Indeed, electronic
circuits with distinct configurations and levels of complexity
were especially selected to illustrate the significant gains in
computational speed that can be achieved when simulating
the circuits with this method [23, 24]. Nevertheless, in order
to provide the reader with a realistic idea of the potential of
this recently proposed technique, we included in this section
a brief comparison between this method and the previous
state-of-the-artmultitime ETHB. For that, we considered two
distinct circuits: the resistive FET mixer depicted in Figure 1
and the RF polar transmitter described in [23] and depicted
in Figure 2.

The circuits were simulated in MATLAB with the mixed
mode time-frequency simulation technique versus the mul-
titime ETHB. In our experiments a dynamic step size control
tool was used in the 𝑡

1
slow time scale, andwe considered𝐾 =

9 as the maximum harmonic order for the HB evaluations.
Numerical computation times (in seconds) for simulations in
the [0, 0.5𝜇s] and [0, 5.0 𝜇s] intervals are presented in Tables
1 and 2.

As we can see, speedups of approximately 2 times were
obtained for the simulation of the resistive FET mixer, and
speedups ofmore than one order ofmagnitude were obtained
for the RF polar transmitter. These efficiency gains were
achieved without compromising accuracy. Indeed, for both
cases, the maximum discrepancy between solutions (for all
the circuits’ state variables) was on the order of 10−8.

The choice of these two circuits, which have different
levels of complexity, was to illustrate how the computational
efficiency is more evident as the ratio between the number
of active and latent state variables is increased. In the first
example, this ratio is 1, whereas in the second one this ratio is
4.5.

6. Conclusion

Although significant advancement has been made in RF and
microwave circuit simulation along the years, the use of
more elaborate functional analysis techniques has kept this
subject a hot topic of scientific and practical engineering
interest. Indeed, emergingwireless communication technolo-
gies continuously bring new challenges to this scientific field,
as is now the case of heterogeneous RF circuits containing
state variables of distinct formats and running on widely
separated time scales. Taking into account the popularity of
HB, but mostly ETHB, in the RF and microwave community,
in this paper we have briefly reviewed the use of some
functional analysis methods to address numerical simulation
challenges using hybrid time-frequency techniques. A com-
parison between two state-of-the-art hybrid techniques in
terms of computational speed is also included to evidence
the efficiency gains that can be achieved by partitioning
heterogeneous circuits into blocks, treating latent blocks in
a one-dimensional space, and active ones in a bidimensional
space.
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