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An improved Kalman filter algorithm by using variational inference (VIKF) is proposed. With variational method, the joint
posterior distribution of the states is approximately decomposed into several relatively independent posterior distributions. To
avoid the difficulty of high-dimensional integrals, these independent posterior distributions are solved by using Kullback-Leibler
divergence. The variational inference of Kalman filter includes two steps, the predict step and the update step, and an iterative
process is included in the update step to get the optimized solutions of the posterior distribution. To verify the effectiveness of the
proposed algorithm,VIKF is applied to the state estimation of discrete linear state space and the tracking problems inwireless sensor
networks. Simulation results show that the variational approximation is effective and reliable for the linear state space, especially
for the case with time-varying non-Gaussian noise.

1. Introduction

The Kalman filter (KF), also known as linear quadratic esti-
mation (LQE), is one of the most used linear state estimation
methods and has numerous applications [1], which include
guidance, navigation, and control of vehicles [2–5]. Kalman
filter is alsowidely applied in time series analysis in fields such
as signal processing and econometrics [6, 7]. Other nonlinear
methods, such as Extension-Kalman filter (EKF) [2] and
unscented Kalman filter (UKF) [8], also use the Kalman filter
to fix problems, combined with the linearization of nonlinear
functions or the approximation of the probability density
distribution, respectively. Practical implementation of the
Kalman Filter is often difficult due to the inability of getting
a good estimate of the noise covariance matrices. Extensive
researches have been carried out in this field to estimate
these covariances fromdata, such as the autocovariance least-
squares (ALS) [9, 10], the modified Bryson-Frazier smoother
[11], and the minimum-variance smoother [12, 13].

Variational inference for the Kalman filter in linear state
spacemodel was also considered in several literatures [14–16].
However, the authors in [14] just used the limited memory
BFGS method to decrease the computational burden, both
factorization and Kullback-Leibler (KL) divergence [15] (the

expectation of joint distribution with holding some variable
distribution as constant) were not considered. Works in
[16] indeed applied the variational approximation, and got
the posterior distributions of the state variables and the
measurement noise. However, in the update step of the
Variational Bayesian approximation Adaptive Kalman Filter
(VBAKF), the initial values of states or variances were used
in all iterative steps; thus, the iterations would quickly reach
“steady states.” Sometimes, the maximum number of the
iterations is only 2 in the algorithm. That is to say that there
are only two effective iterative loops performed in the update
step of the Kalman filter, therefore, the performance of this
algorithm is not good in such cases as the non-Gaussian and
high-dimensional linear state space models. In this paper, we
rederive the parameter expressions for the Kalman filter by
using variational inference method (we call it VIKF in this
paper), which can really form an iterative process for the
update step of the Kalman filter.

Location and tracking are the keys in variety WSN appli-
cations [17–19], where the Kalman filter and its extension
algorithms are widely used. In this paper, we will also con-
sider the application of VIKF for WSN tracking problems,
especially with time-varying and non-Gaussian noises.
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This paper is organized as follows.Wefirstly introduce the
linear state space model, then the derivation of Kalman filter
by using variational inference (VIKF) follows, and the itera-
tive process of VIKF is presented. In simulation section, the
effectiveness of our proposed method will be demonstrated
by examples. Finally, we will compare VIKFwith standard KF
and VBAKF in the cases of high-dimensional discrete state
spaces, and the tracking in WSN with non-Gaussian noise.

2. The Linear State Space Model

Linear state space models are a widely used class of models
for control, economics, and so on. The most general state-
space representation of a discrete-time linear system with 𝐾
samples, 𝑛 state variables, and 𝑚 outputs is written in the
following form:

X𝑘 = M𝑘X𝑘−1 + 𝜀
𝑥

𝑘
, (1)

Y𝑘 = N𝑘X𝑘 + 𝜀
𝑦

𝑘
, (2)

where X𝑘 is an 𝑛 × 1 state vector of the system at time 𝑘, 𝑘 =
1, 2, . . . , 𝐾.M𝑘 is the state transitionmatrix at time 𝑘. 𝜀𝑥

𝑘
is the

corresponding prediction error vector of X𝑘, 𝜀𝑥𝑘 ∼ 𝑁(0,Q𝑘).
𝜀
𝑥

𝑘
is assumed to be independent and identically distributed

(i.d.d), so Q𝑘 is a diagonal matrix. Y𝑘 is the observation
vector, and we assume that there are 𝑚 observations, so N𝑘
is an𝑚× 𝑛 linear observation operator matrix. 𝜀𝑦

𝑘
is an𝑚× 1

observation error vector and assumed to be i.d.d; therefore,
𝜀
𝑦

𝑘
∼𝑁(0, Γ𝑘), Γ𝑘 = diag(𝜎2

𝑘,1
, . . . , 𝜎

2

𝑘,𝑚
). Time is indexed by 𝑘.

In general, we assume that the initial state has a Gaussian
prior distributionX0∼𝑁(𝜇0,P0), andM𝑘,Q𝑘,N𝑘,𝜇0, and P0
are all known. In tracking problems, X𝑘 includes the
information of positions and speeds of the moving target,
X𝑘 = [𝑝𝑥, 𝑝𝑦, 𝑠𝑥, 𝑠𝑦]

𝑇, where (𝑝𝑥, 𝑝𝑦) is the two-dimensional
coordinate positions and (𝑠𝑥, 𝑠𝑦) is the two-dimensional
speeds.

3. Variational Inference for
the Linear Space Model

Variational inference techniques have been extensively stud-
ied to solve problems in various fields [20–23]. There are two
steps in the optimization for the standard Kalman filter [24].
The first step is to predict the state X𝑘 and Γ𝑘 from the last
state X𝑘−1 and the observations Y1:𝑘−1. The second step is to
update X𝑘 and Γ𝑘 using information from new observations
Y𝑘.

3.1. Predict Step. This step calculates X𝑘 and Γ𝑘 from Y1:𝑘−1.
Here we assume that 𝑝(X𝑘, Γ𝑘 | Y1:𝑘−1) can be decomposed as

𝑝 (X𝑘, Γ𝑘 | Y1:𝑘−1) = 𝑝 (X𝑘 | Y1:𝑘−1) 𝑝 (Γ𝑘 | Y1:𝑘−1) . (3)

According to (1), we know that 𝑝(X𝑘 | Y1:𝑘−1) is a Gaus-
sian distribution:

𝑝 (X𝑘 | Y1:𝑘−1) ∼ 𝑁 (𝜇
󸀠

𝑘
,P󸀠
𝑘
) (4)

with

𝜇
󸀠

𝑘
= M𝑘𝜇𝑘−1,

P󸀠
𝑘
= M𝑘P𝑘−1M

𝑇

𝑘
+Q𝑘,

(5)

whereP𝑘−1 is the variance of the distribution of last stateX𝑘−1.
𝑝(Γ𝑘 | Y1:𝑘−1) is the posterior variance of observation

errors. We can assume that 𝑝(Γ𝑘 | Y1:𝑘−1) equals 𝑝(Γ𝑘−1 |
Y1:𝑘−1) temporarily in the prediction step, and it will be
updated in the update step.We also assume that this posterior
distribution is an inverse-Gamma distribution (also called
Wald distribution). The inverse-Gamma distribution is often
used in Bayesian inference, where the distribution arises as
themarginal posterior distribution for the unknown variance
of a normal distribution.

𝑝(Γ𝑘 | Y1:𝑘−1) can be decomposed as

𝑝 (Γ𝑘 | Y1:𝑘−1) =
𝑚

∏

𝑖=1

IG (𝛼󸀠
𝑘,𝑖
, 𝛽
󸀠

𝑘,𝑖
) , (6)

where 𝛼󸀠
𝑘,𝑖
, 𝛽󸀠
𝑘,𝑖

are the shape and scale parameters of inverse
Gamma distribution IG(⋅), and set

𝛼
󸀠

𝑘,𝑖
= 𝛼𝑘−1,𝑖,

𝛽
󸀠

𝑘,𝑖
= 𝛽𝑘−1,𝑖.

(7)

3.2. Update Step. This step updates X𝑘 and Γ𝑘 based on the
new observation Y𝑘. According to the Bayes’ rule,

𝑝 (X𝑘, Γ𝑘 | Y1:𝑘) ∝ 𝑝 (Y𝑘,X𝑘, Γ𝑘 | Y1:𝑘−1) . (8)

We assume that 𝑝(X𝑘, Γ𝑘 | Y1:𝑘) can be factored as

𝑝 (X𝑘, Γ𝑘 | Y1:𝑘) = 𝑞 (X𝑘) 𝑞 (Γ𝑘) . (9)

The variational method gets the approximation of each
component by minimizing the Kullback-Leibler (KL) diver-
gence between the estimated value and the true joint pos-
terior. Each component can be obtained by performing the
expectation operation to the joint distribution with respect
to all other unknown parameters. So we have

ln 𝑞X𝑘 (X𝑘) = 𝐸Γ𝑘 (ln𝑝 (Y𝑘,X𝑘, Γ𝑘 | Y1:𝑘−1)) + const., (10)

ln 𝑞Γ𝑘 (Γ𝑘) = 𝐸X𝑘 (ln𝑝 (Y𝑘,X𝑘, Γ𝑘 | Y1:𝑘−1)) + const. (11)

According to the known priori, we calculate (10):

ln 𝑞X𝑘 (X𝑘) = 𝐸Γ𝑘 (ln𝑝 (Y𝑘,X𝑘, Γ𝑘 | Y1:𝑘−1)) + const.

= 𝐸Γ𝑘
(ln [𝑝 (Y𝑘 | X𝑘, Γ𝑘) ∗ 𝑝 (X𝑘 | Y1:𝑘−1)

∗𝑝 (Γ𝑘 | Y1:𝑘−1)]) + const.

= 𝐸Γ𝑘
(ln [𝑝 (Y𝑘 | X𝑘, Γ𝑘) ∗ 𝑝 (X𝑘 | Y1:𝑘−1)])

+ const.,
(12)
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Input observation matrix Y1:𝑛; set initial hyper parameters 𝜇
0
,P0, 𝛼0,𝑖, 𝛽0,𝑖, 𝑖 = 1, . . . , 𝑚,

Set a small value to 𝜉, which is used to judge whether the loop of update step comes to an end or not.
Predict:

Calculate 𝜇󸀠
𝑘
,P󸀠
𝑘
by (5);

Calculate 𝛼󸀠
𝑘,𝑖
, 𝛽
󸀠

𝑘,𝑖
by (7)

Update:
Set 𝜇(0)
𝑘
= 𝜇
󸀠

𝑘
, P(0)
𝑘
= P󸀠
𝑘
. Γ󸀠 = diag (𝛽𝑘,1/𝛼𝑘,1, . . . , 𝛽𝑘,𝑚/𝛼𝑘,𝑚), 𝛼𝑘,𝑖 = 1/2 + 𝛼

󸀠

𝑘,𝑖
;

Set Flag = 1;
While Flag

Update 𝜇
𝑘
by (15), Update P𝑘 by (16);

Update 𝛽
𝑘
by (20);

Calculate Γ󸀠 = diag (𝛽𝑘,1/𝛼𝑘,1, . . . , 𝛽𝑘,𝑚/𝛼𝑘,𝑚) and 𝑆 = ∑𝑖 (𝜇
(𝑠+1)

𝑘,𝑖
− 𝜇
(𝑠)

𝑘,𝑖
)
2

If 𝑆 < 𝜉, then set Flag = 0;
End flag

Output 𝜇
𝑘
in the last iteration as the inferred value X𝑘.

Algorithm 1

where 𝐸Γ𝑘(ln𝑝(Γ𝑘 | Y1:𝑘−1)) is a constant In (12), 𝑝(Y𝑘 |
X𝑘, Γ𝑘) is a Gaussian distribution (see (2)), so we have

𝑝 (Y𝑘 | X𝑘, Γ𝑘) ∼ 𝑁 (Y𝑘 − N𝑘X𝑘, Γ𝑘) . (13)

From the predict step, we know that 𝑝(X𝑘 | Y1:𝑘−1) is
also a Gaussian distribution 𝑁(𝜇󸀠

𝑘
,P󸀠
𝑘
) (see (4) and (5)). The

product of two Gaussian functions is still a Gaussian, so

𝑞X𝑘 (X𝑘) = 𝑁 (X𝑘 | 𝜇𝑘,P𝑘) . (14)

Based on (4) and (13), we get the analytical expression of
𝜇
𝑘
and P𝑘, and because variational method usually requires

an iterative process to achieve convergence, so we expressed
them as

𝜇
(𝑠+1)

𝑘
= 𝜇
(𝑠)

𝑘
+ P(𝑠)
𝑘
N𝑇
𝑘
(N𝑘(P

(𝑠)

𝑘
)
−1

N𝑇
𝑘
+ Γ
󸀠
)

−1

(Y𝑘 − N𝑘𝜇
(𝑠)

𝑘
) ,

(15)

P(𝑠+1)
𝑘

= P(𝑠)
𝑘
− P(𝑠)
𝑘
N𝑇
𝑘
(N𝑘(P

(𝑠)

𝑘
)
−1

N𝑇
𝑘
+ Γ
󸀠
)

−1

N𝑘P
(𝑠)

𝑘
, (16)

where the superscript (𝑠) means the 𝑠th iteration, Γ󸀠 =
diag(𝛽𝑘,1/𝛼𝑘,1, . . . , 𝛽𝑘,𝑚/𝛼𝑘,𝑚), 𝛽𝑘,𝑖, 𝛼𝑘,𝑖, 𝑖 = 1, . . . , 𝑚 will be
computed lately. At the beginning of the iteration, we use the
results of the predict step, set 𝜇(0)

𝑘
= 𝜇
󸀠

𝑘
, P(0)
𝑘
= P󸀠
𝑘
.

Similar results also appeared in [16] and the algorithm
there was called VBAKF. In the iteration process, VBAKF
computes 𝜇(𝑠+1)

𝑘
and P(𝑠+1)

𝑘
with 𝜇(0)

𝑘
and P(0)

𝑘
, not 𝜇(𝑠)

𝑘
and P(𝑠)

𝑘
;

therefore, VBAKF cannot form sufficient iteration during
the update process. The maximum number of effective
iterations of VBAKF is small, sometimes even only 2, so
the performance cannot achieve the optimal solution of the
variational method.

Similarly, we calculate ln 𝑞Γ𝑘(Γ𝑘) = 𝐸X𝑘(ln𝑝(Y𝑘,X𝑘, Γ𝑘 |
Y1:𝑘)) + const. as

ln 𝑞Γ𝑘 (Γ𝑘) = 𝐸X𝑘 (ln𝑝 (Y𝑘,X𝑘, Γ𝑘 | Y1:𝑘)) + const.

= 𝐸X𝑘 (ln [𝑝 (Y𝑘 | X𝑘, Γ𝑘) ∗ 𝑝 (X𝑘 | Y1:𝑘−1)

∗𝑝 (Γ𝑘 | Y1:𝑘−1)]) + const.

= 𝐸X𝑘 (ln [𝑝 (Y𝑘 | X𝑘, Γ𝑘) ∗ 𝑝 (Γ𝑘 | Y1:𝑘−1)])

+ const.

(17)

Based on the known conditions, we know that 𝑞Γ𝑘(Γ𝑘) is
still a Wald distribution, and can be expressed as

𝑄Γ𝑘
(Γ𝑘) =

𝑚

∏

𝑖=1

IG (𝜎2
𝑘,𝑖
| 𝛼𝑘,𝑖, 𝛽𝑘,𝑖) . (18)

In the iterations, parameters are calculated as follows:

𝛼
(𝑠+1)

𝑘,𝑖
=
1

2
+ 𝛼
(𝑠)

𝑘,𝑖
, (19)

𝛽
(𝑠+1)

𝑘,𝑖
= 𝛽
(𝑠)

𝑘,𝑖
+
1

2
[(Y𝑘 − N𝑘m

(𝑠+1)

𝑘
)
2

𝑖
+ (N𝑘P

(𝑠+1)

𝑘
N𝑇
𝑘
)
𝑖𝑖
] .

(20)

The initial values can be obtained from the predict step, so
𝛼
(0)

𝑘,𝑖
= 𝛼
󸀠

𝑘,𝑖
𝛽
(0)

𝑘,𝑖
= 𝛽
󸀠

𝑘,𝑖
.

We can see that (15), (16), (19), and (20) form an iterative
process.

Variational method is an approximate calculation, not
the best computation. Through simulations, we find that the
performance of the algorithm is better if we set 𝛼(𝑠+1)

𝑘,𝑖
=

1/2 + 𝛼
(0)

𝑘,𝑖
. Therefore, 𝛼𝑘,𝑖 does not participate in the iterative

process in our algorithm.
During the iteration, the iterative process should be

executed with a sufficient number of times to reach a steady
state. A simple stop condition for this is to test the value of
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Figure 1: Performances of VIKF, VBAKF, and KF for the case of Student’s 𝑡-distribution. (a) The RMSE of each state obtained by averaging
the results of 20 replicates. (b) The accumulated RMSE of all 30 steps for each replicate.

the difference of inferred parameters between two successive
iterations; that is, 𝑆 = ‖𝜇(𝑡+1)

𝑘
− 𝜇
(𝑡)

𝑘
‖
2

. If the difference is small
enough (say 𝜉), the iteration has reached a stable state. The
selection for 𝜉 can influence the accuracy of the algorithm.
The smaller 𝜉 is, the higher the accuracy is, at the cost of more
iterations and more computational time needed.

3.3.TheAlgorithm of VIKF. VIKF includes two steps; the first
step is to predict the present state with the initial information
or the results of previous states, and the second step is the
update step, which includes an iterative process to update the
state with new observations.

The process of the algorithm is as shown in Algorithm 1.

4. Simulations

The performance of proposed algorithm (VIKF) was simu-
lated and compared with that of the standard Kalman filter
(KF) and the VBAKF. We first applied the three algorithms
to high-dimensional discrete state space with the noise of
Gaussian or Student’s 𝑡-distributions. Residual mean square
errors (RMSE) between the true state and the inferred state
were calculated in all simulations and were used as the main
evaluation criteria. We also applied these three algorithms
to the tracking problems in the wireless sensor networks. In
these simulations, time-varying parameters are considered
for the noise of Student’s 𝑡-distribution.

0 5 10 15 20 25 30
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120
140
160
180
200

Sample sequence

RM
SE

KF
VBAKF
VIKF

Figure 2: A typical simulation result with Student’s 𝑡-distribution in
high-dimensional linear state space.

4.1. High-Dimensional Discrete State Space Simulation. We
considered a 40-dimensional discrete linear state space; the
dimension of observation vector was 80, and there are 30
samples. State transition matrix and observation operator
matrix were all sparse matrixes. In each simulation case, 20
replicates were conducted and the results were averaged to
get the performance of RMSE.
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Figure 3: Performances of VIKF, VBAKF, and KF for the case of Gaussian distribution. (a) The RMSE of each state obtained by averaging
the results of 20 replicates. (b) The accumulated RMSE of all 30 steps for each replicate.
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Figure 4: Performances of VIKF, VBAKF, and KF for the case of Student’s 𝑡-distribution. (a) The RMSE of each state obtained by averaging
the results of 20 replicates. (b) The accumulated RMSE of all 50 steps for each replicate.
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Figure 5: Performances of VIKF, VBAKF, and KF for the case of Gaussian distribution. (a) The RMSE of each state obtained by averaging
the results of 20 replicates. (b) The accumulated RMSE of all 50 steps for the 20 replicates.

In the case of Gaussian noise, we assumed that the process
noise and the observation noise were all subject to 𝑁(0, 1).
In the simulations, the freedom of Student’s 𝑡-distribution
was 2 for the process noise, while the freedom was selected
randomly from set (1, 2, 3, 4) for the observation noise. The
noise intensities were 1 for all the cases in simulations.

The RMSE performances of VIKF, VBAKF, and KF are
shown in Figure 1, Figure 2 (for Student’s 𝑡-distribution), and
Figure 3 (for Gaussian distribution). The results shown in
Figure 1(a) show the RMSE of each state, which are obtained
by averaging the results of the 20 replicates. Figure 1(b) shows
the accumulatedRMSEof all steps for each replicate. A typical
simulation result is also shown in Figure 2. In these figures,
we restrict the display range of the 𝑌-axis to show the results
clearly, so some points with high RMSE cannot be seen. We
can see that the performance of VIKF is clearly higher than
that of VBAKF and KF in the case of noise with Student’s
𝑡-distribution. KF and VBAKF all have a higher probability
of occurring extreme RMSE in certain circumstances, while
the VIKF algorithm has a relatively lower probability. The
reason that VIKF can decrease the probability of occurring
large RMSE is that VIKF can perform sufficient iterations.

In the case of Gaussian noise, the performances of these
three algorithms are close, as shown in Figure 3.

4.2. Tracking in WSN. The state space for the tracking
problem in WSN was fixed as in Section 4, included two-
dimensional coordinates and two-dimensional velocities. As
the simulations in Section 4.1, we considered two kinds of

0 20 40 60 80 100 120 140 160
−40

−20

0

20

40

60

80

100

VBAKF
VIKF

KF
Real point

X

Y

Figure 6: Tracking performances of VIKF, VBAKF, and KF with
Student’s 𝑡-distribution noise.

noise: Gaussian distribution and Student’s 𝑡-distribution. We
assume that there are 15 sensor nodes and 50 sampling points.
Noise was set as that in Section 4.1.

As Figures 1 and 3, Figure 4 shows the RMSE perfor-
mances with Student’s 𝑡-distribution noise, where Figure 4(a)
shows the RMSE of each state obtained by averaging the
results of 20 replicates and Figure 4(b) shows the accumu-
lated RMSE of all steps for each replicate. Figure 5 shows the
corresponding results with Gaussian noise. Figure 6 shows
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the tracking performance using the three algorithms with
noise of Student’s 𝑡-distribution.

With the noise of Student’s 𝑡-distribution, the perfor-
mance of VIKF in tracking is higher than that of VBAKF and
KF. VIKF’s probability of high RMSE is also lower than KF
andVBAKF. In Gaussian cases, it seems that the performance
of KF is better than that of VBIKF and VIKF.

5. Conclusions

This paper used variational approximation method to solve
the problems arisen from high-dimensional discrete state
space and the tracking problems in WSN with linear state
model. We proposed a modified variational filtering algo-
rithm, in which an iterative process was formed to get the
optimization solutions.

The performance of variational methods is slightly lower
than that of KF in a Gaussian environment. But in non-
Gaussian and time-varying noise environment, the average
performances of VIKF and VBAKF are better than that of
KF. Since VIKF can carry out more sufficient iterations than
the VBAKF in the update step, the performance of VIKF
is better than that of VBAKF. VIKF algorithm also has a
lower probability of high RMSE than KF and VBAKF in non-
Gaussian environments.

Acknowledgments

This work was jointly supported by The National Natural
Science Foundation of China (No. 61271207, No. 61174013),
the Natural Science Foundation of Jiangsu Province, China
(No. BK2011398), the Jiangsu Overseas Research & Training
Program for University Prominent Young & Middle-aged
Teachers and Presidents, and the Priority Academic Program
Development of Jiangsu Higher Education Institutions.

References

[1] S. L. Lauritzen, “Time series analysis in 1880: a discussion
of contributions made by TN Thiele,” International Statistical
Review, vol. 49, pp. 319–331, 1981.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation: Theory Algorithms and
Software, John Wiley & Sons, New York, NY, USA, 2004.

[3] G. Einicke, J. Ralston, C. Hargrave, D. C. Reid, and D. Hain-
sworth, “Longwall mining automation: an application of mini-
mum-variance smoothing [Applications of Control],” IEEE
Control Systems, vol. 28, no. 6, pp. 28–37, 2008.

[4] R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes with
Applications to Guidance, vol. 326,The AmericanMathematical
Society, 1987.

[5] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Inte-
grated Navigation Systems, Artech House, 2008.

[6] K. Paliwal and A. Basu, “A speech enhancement method based
on Kalman filtering,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP
’87), pp. 177–180, 1987.

[7] A. C.Harvey, “Application of theKalmanfilter in econometrics,”
in Advances in Econometrics: Fifth World Congress, Cambridge
University Press, Cambridge, Mass, USA, 1987.

[8] E. A.Wan andR. van derMerwe, “The unscentedKalman filter,”
in Kalman Filtering and Neural Networks, pp. 221–280, 2001.

[9] M. R. Rajamani, Data-Based Techniques to Improve State Esti-
mation in Model Predictive Control, ProQuest, 2007.

[10] M. R. Rajamani and J. B. Rawlings, “Estimation of the distur-
bance structure from data using semidefinite programming and
optimal weighting,”Automatica, vol. 45, no. 1, pp. 142–148, 2009.

[11] G. J. Bierman, Factorization Methods for Discrete Sequential
Estimation, Courier Dover, Mineola, NY, USA, 2006.

[12] G. A. Einicke, “Optimal and robust noncausal filter formula-
tions,” IEEE Transactions on Signal Processing, vol. 54, no. 3, pp.
1069–1077, 2006.

[13] G.A. Einicke, “Asymptotic optimality of theminimum-variance
fixed-interval smoother,” IEEE Transactions on Signal Process-
ing, vol. 55, no. 4, pp. 1543–1547, 2007.

[14] H. Auvinen, J. Bardsley, H. Haario, and T. Kauranne, “The vari-
ational Kalman filter and an efficient implementation using
limited memory BFGS,” International Journal for Numerical
Methods in Fluids, vol. 64, no. 3, pp. 314–335, 2010.

[15] J.-F. Cardoso, “Infomax and maximum likelihood for blind
source separation,” IEEE Signal Processing Letters, vol. 4, no. 4,
pp. 112–114, 1997.

[16] S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kal-
man filtering by variational Bayesian approximations,” IEEE
Transactions on Automatic Control, vol. 54, no. 3, pp. 596–600,
2009.

[17] S. Li and F. Qin, “A dynamic neural network approach for solv-
ing nonlinear inequalities defined on a graph and its application
to distributed, routing-free, range-free localization of WSNs,”
Neurocomputing, vol. 117, pp. 72–80, 2013.

[18] S. Li, B. Liu, B. Chen, and Y. Lou, “Neural network based
mobile phone localization using Bluetooth connectivity,”Neural
Computing and Applications, vol. 23, no. 3-4, pp. 667–675, 2013.
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