
J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 253-266, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Flexible, Dynamic, and Scalable Service Composition for
Active Routers

Stefan Schmid, Tim Chart, Manolis Sifalakis, Andrew C. Scott

Distributed Multimedia Research Group
Computing Department

Lancaster University, U.K.
{sschmid, chart, mjs, acs}@comp.lancs.ac.uk

Abstract. This paper describes a novel model for the provision of service com-
posites for active routers. The service composition framework enables flexible
programmability of the router's data path through dynamically loadable soft-
ware components, called 'active components'. The composition model promotes
transparent and dynamic creation of network-side services and allows inde-
pendent users to partake in this process. A prototype implementation has re-
vealed that the composition model using packet filters and a classification graph
structure as a means to integrate active components into the forwarding path
enables the dynamic alteration of the elements of a composite at run-time and
permits scalability in the generation of such composites. Furthermore, it allows
the flexible provision of a unique service profile for each packet passing
through an active router. We show that the overhead of this composition model
does not significantly affect the performance of the router.

1 Introduction

In recent years, many diverse and variously-focused frameworks sporting elements of
active network solutions have emerged and established themselves. The majority of
those platforms address only a subset of the issues that determine their utility outside
of a laboratory environment, resulting in many being inflexible, poorly-performing,
unscalable or insecure. Few active network solutions have considered the magnitude
of the service composition model for real-life network environments and hence pro-
vide only a limited flexibility for the composition of network services. Yet, in order
for active networking to be considered a suitable technology for wide deployment
over inter-networks, these issues must be addressed.

A recent study by Hicks and Nettles [10] has revealed that even most extensible
active router platforms lack sufficient flexibility in order to allow for true evolution.
Such modular or plug-in based architectures typically limit the scope of future changes
through pre-defined interfaces. Instead, true extensibility should not be limited to a
fixed set of modules or plug-ins, but should rather allow modification and replacement
of all components contributing to a service composite.

This paper presents the service composition framework � a key component of the
LARA++ [6] active router architecture � which attempts to provide a secure, safe,

254 Stefan Schmid et al.

flexibly extensible platform for the deployment of powerful active components. The
main objective of the LARA++ architecture is flexible extensibility in order to facili-
tate network functionalities and services whose need may evolve in the future by
making the entire forwarding path of the router programmable. The packet classifier is
the LARA++ component responsible for the effective and flexible deployment of
active components and the decentralised provision of an acceptable service composite.

The remainder of this paper is organised as follows: The second chapter gives a
brief overview of the LARA++ architecture. Chapter 3 continues with a detailed de-
scription of the service composition model. Chapters 4 and 5 describe the prototype
implementation of the LARA++ classifier and the measurements made from that pro-
totype. Chapter 6 compares the composition model with other architectures. Finally,
chapter 7 concludes on our findings.

1.1 Motivation

Before we describe the LARA++ architecture, we outline some scenarios that ade-
quately encompass many of the problems of service composition. Scenarios such as
those described in this section precipitated the desire to provide a flexible and scalable
composition model for active routers.

Suppose an active node has two components installed to process packets arriving
on a given interface. One of the components might be a lightweight firewall compo-
nent installed by the router administrator, which is able to efficiently filter incoming
packets to prevent processing of certain types of traffic. A second component installed
by a network user might, for example, offer intelligent congestion control services for
a custom protocol carried over UDP. The intelligent congestion control is likely to
require much more processor time than the firewall, so it would be advantageous for
the firewall component to be processed first, thus reducing the amount of traffic sent
to the congestion control component. In order to ensure this optimisation, the active
router must necessarily have a framework that allows an ordering of components to be
maintained. Moreover, where two users dispute the ordering of components on the
same stream, user privileges must be taken into account.

Another example might involve a network user who would like to co-operate with
active components already deployed on the active router. For example, an existing
active program on the active router might provide IPv6 transitioning support in the
form of network address translation [7]. IPv6 packets entering the router from one
interface might be converted to IPv4 packets before being forwarded out of another,
and vice versa for the reverse path. This would enable IPv4-only hosts and IPv6-only
hosts to converse. However, this would cause any applications that embed IP ad-
dresses in the payload of the packet to �break�. A network user wishing to provide
support for such an application over a translating router would need to provide a com-
ponent that co-operates with the network-layer translation active component. The co-
operation would require both components to be processed, but in a strict order. The
challenge would be to find a way of asserting this co-operation over the same stream
of packets without causing undesired interference between the components.

The problem of service composition is principally one of managing competition
and co-operation between components in the processing of packets. The LARA++

 Flexible, Dynamic, and Scalable Service Composition for Active Routers 255

service composition model described in this paper provides the structure required for a
distributed (i.e. involving more than one entity) and dynamic (i.e. allowing service
composition at runtime) composition model without restricting the flexibility and
programmability of the active node.

2 Background

LARA++ is a software architecture that evolved from the predominantly hardware
oriented Lancaster Active Router Architecture (LARA) [1]. The architecture is ge-
neric in the sense that it can be implemented on top of any router platform with a
software forwarding engine. Platform independence is assured by virtue of the fact
that prototype implementations have been developed for Windows XP and Linux.

The LARA++ architecture is designed to extend existing routers with active net-
work functionality. Low-level functionality of the active router architecture is directly
integrated with the router OS in order to maintain good performance for active proc-
essing. A high-level layer accommodates processing environments that enable safe
processing of dynamically loadable1 software components. Well-known interfaces are
exposed at this layer in order to unify programmability across different platforms.

The processing environments provide the policing and code isolation necessary for
a fair and safe platform. However, since this paper focuses on the service composition
model of the LARA++ architecture, we refer the reader to previous publications [1].

Fig. 1. A Conceptual View of the Active Component Space.

Figure 1 provides a conceptual overview of the approach taken. The vision of the
LARA++ platform is to provide a framework upon which complete router functional-
ity can be provided in component form (for example, a routing component, a filtering
component, etc.), which are then composed into actual network services at runtime.
Componentisation has the advantages that it allows a �divide and conquer� approach
to be employed for complex functionality, and that software components can be dy-
namically extended and replaced due to their well-defined interfaces.

1 Based on in-band or out-of-band code loading techniques.

256 Stefan Schmid et al.

Service composition is achieved through packet classification. Packet filters define
the processing �route� through the component environment. This allows such �routes�
to be appropriately tailored to the packet type or content.

3 LARA++ Composition Model

The LARA++ composition model plays a central role in the overall architecture, as it
provides the foundation for the flexibly extensible and dynamic component-based
programming model. Service composition is carried out in two manners:
• Macro composition is achieved at the service level via the filter-based composition

model. Active components dynamically integrate themselves into node-local serv-
ice composites by inserting packet filters into the classification graph (using a sys-
tem call to the LARA++ NodeOS).

• Micro composition is achieved at the component level using an explicit, lightweight
composition model, which enables the construction of active components from pas-
sive components. The fact that active components can be largely composed from
functionality provided by passive components facilitates active component design
and co-operation between active components (section 1.1).

Macro composition within LARA++ is largely packet driven. Dependent on the packet
content, a different overall service may be composed for the processing of that packet.
The packet classifier plays a key role in the service composition process. It determines
based upon the set of packet filters currently installed whether or not a packet passing
through the active router requires active processing, which active component(s) are
involved, and in which order they should process the packet. Thus, the active compo-
nents implicitly and collectively define a service composite, resolving competition
(see section 1.1) in the process. The classification graph, which is managed by the
packet classifier, maintains the key data structures for the composition framework. It
organises the packet filters of the active components according to their computational
function, and thus, provides the basis for the classification process. The following
sections describe each of these elements in more detail.

3.1 Packet Classifier

The packet classifier defines the �route� through the active component space for pack-
ets passing through a node. The classifier filters incoming (and outgoing) network
packets based on the component filters installed in the classification graph. Figure 2
presents an example classification graph.

The classification mechanism traverses the classification graph starting at a root
node (i.e. /netin in figure 2). At each node in the graph, the classifier tries to match
the packet filters installed there. Packets matching a filter are passed to the corre-
sponding active component. After completion of the active processing, the classifier
continues classification at the same point (or an optionally specified point defined by

 Flexible, Dynamic, and Scalable Service Composition for Active Routers 257

the packet filter2) in the classification graph. When the classifier has applied all packet
filters that have been installed by the active components at a node, it follows the clas-
sification graph based on the �default� or graph filters (for example, /netin/ipv4 or
/netin/ipv6) and continues the multi-stage classification process there. Finally, the
packet is forwarded to the next hop router when the classifier runs out of graph filters.

Fig. 2. The classification graph

3.2 Packet Filters

The packet classifier distinguishes two main types of packet filter: active component
filters and graph filters. Figure 3 illustrates how these filters are used within the classi-
fication graph.

Active component filters are used by active components to define the network
packets of their interest. These filters are typically registered with the packet classifier
at component instantiation or at run-time if necessary through the LARA++ system
API. The classifier uses these filters to determine the active components to which
network traffic is sent for active processing. For example, a customisable firewall
component might register active component filters for each protocol the user has
asked it to filter. Graph filters, in contrast, are used by the classifier itself in order to
define the structure of the classification graph.

2 Availability of this option depends on the user privileges and filter type.

258 Stefan Schmid et al.

Fig. 3. The classifier manages packet filters within a filter graph structure, called classification
graph. Active component filters are used to dispatch network data to ACs for processing,
whereas graph filters are used to define the structure of the graph.

Packet filters installed by active components can be further divided into general
filters and flow filters. Since a single active component could install multiple filters,
and given there may be many components running on an active router, it would be
very costly to check all of those filters. Flow filters (a specialization of general active
component filters) have been introduced to allow the number of filters to scale well.
Flow filters are always bound to a specific user3 flow. They have the advantage that
they can be looked up instantly based upon the flow characteristics of the packet being
processed using a hash table. Consequently, no processing is necessary to reject most
unmatched flow filters. Due to the hashing technique used to lookup flow filters, a
LARA++ router can handle a potentially large number of these filters (which is fully
sufficient for typical edge routers � the target platform for LARA++).

All types of filter define patterns against which the active node attempts to match
characteristics of packets. Such characteristics are commonly fields in packet headers,
and are described by a four-tuple of {packet offset, bit pattern, bit
mask, pattern length}. The specification of packet filters is facilitated
through well-known reference points and pre-defined tags. For example, a filter for
HTTP traffic might make use of the TCP_HEADER reference point like so:
{TCP_HEADER + TCP_PORT, 0x00504, 0xffff, 2}. Packet filters are
fixed in a single classification node, known as the filter input node, which must be
appropriate to the filter. For example, the HTTP filter defined above could be placed
in the classification node dedicated to TCP traffic because the filter requires TCP as a
prerequisite. Graph filters and some specially privileged active component filters also
define a filter output node, which provides an alternative route (cut-through path)

3 A user (or end-to-end) flow is defined by the source, destination, or both end-points. An end-

point may be identified by packet fields such as the network layer addresses and transport
layer ports, or any other flow labeling techniques.

4 0x0050 (80 decimal) is the TCP port to which HTTP traffic is directed.

 Flexible, Dynamic, and Scalable Service Composition for Active Routers 259

through the classification graph. For any packets matching those filters, classification
commences at the filter output node.

Active component filters require additional properties: (i) an operation property to
express the packet access permissions required by the component (i.e. read-only, read-
write or write-only) and (ii) a principal (security credential) to indicate the network
user, on whose behalf the filter is installed, and/or the code producer. The operation
and principal properties permit the classifier to authorise the insertion of a filter based
upon the node-local security policy and the privileges associated with the principal.

3.3 Classification Graph Table

The classification graph table (CGT) provides the means to describe the structure of
the classification graph. Its main purpose is to make the graph structure globally avail-
able across a LARA++ active network. In order to support flexible extension of the
classification graph (e.g. to incorporate new protocols or extend current protocols), an
�elastic� means to describe the graph structure is required. For this purpose, a simple
notion for defining the nodes (for example, ipv4, tcp, and udp) and the branches of
the graph (for example, ipv4!!!!tcp or ipv4!!!!udp) has been introduced.

The basic structure of the classification graph described in the CGT conforms to
the TCP/IP layer model, which ensures that active components providing low-level
services are processed before components dealing with higher-level computations. For
example, network protocol options must be processed prior to transport protocol
headers. The fine-grained structure accounts for the layer-specific protocols. For ex-
ample, extension headers in IPv6 must be processed in a pre-defined order.

The active node security policy specifies the types of filters that may be installed
inside the classification nodes. For example, it would make no sense to allow general-
purpose filters to be processed before filters pertaining to a firewall component, or
otherwise the security measure could possibly be circumvented. Classification nodes
also define access permissions for fine-grained control of packet access.

Since the CGT is expected to change occasionally (for example, a new node in the
global classification graph might be introduced when a new protocol becomes estab-
lished), an automated mechanism to update the CGT across the active network is em-
ployed. At a first glance, it may seem that the overhead of updating the CGT every
time a new protocol is introduced is heavyweight and makes the system inflexible.
However, it should be noted that a CGT update is only required if a new protocol or
protocol extension is �standardised� (i.e., globally announced such that it can be ex-
tended by others). The CGT does not require a global update in order to deploy and
test the new protocol or extension locally.

3.4 Composite Characteristics

Service composition within LARA++ is a co-operative process; it allows independent
network users to install active components that match the same data streams or subsets
of streams (controlled by the local security policies). The classification graph provides
the means for independent users to integrate new active functionality or services in a

260 Stefan Schmid et al.

�meaningful� way without having to know about other users� active components. The
decoupling of component bindings among active components through the classifica-
tion graph hides component changes from other components.

The fact that active services are composed through insertion or removal of packet
filters at run-time (when components are instantiated or removed) makes the composi-
tion process highly dynamic. Since the service composite depends on the actual data
in the packets, the component bindings are conditional. Service composition within
LARA++ is therefore a process that takes place on a per-packet basis.

4 Implementation

This chapter outlines the implementation of the LARA++ composition model, and
some of the features of the implementation that affect overall performance.

4.1 Design Overview

The classification component of the LARA++ architecture is a key subsystem. Inter-
actions between the classifier and the other components affect the overall performance
of the implementation.

The classification component is responsible for the dispatch of classified packets to
active components. When the classifier matches the filter of an active component, it
inserts the packet into the packet channel (i.e. input queue) of the corresponding com-
ponent and continues the classification process. This allows the classifier to efficiently
classify packets without waiting for active components to be ready to receive them.

Fig. 4. The LARA++ Classifier Architecture

Figure 4 illustrates the architecture of the LARA++ classifier. Incoming packets,
intercepted by the packet interceptor component, are asynchronously queued on a
circular buffer known as the external queue. The classification thread sequentially
takes packets from the external queue and performs an initial classification on them.

After a packet has been classified (i.e. a component has been selected to perform
active processing on the packet), the packet is immediately queued in the packet chan-
nel of the active component, so that the classification engine can continue to classify
more packets until all packets are classified or until its scheduling quantum is over.

 Flexible, Dynamic, and Scalable Service Composition for Active Routers 261

Once classified packets have been processed by the corresponding active components,
they are returned to a second queue known as the internal queue. The purpose of the
internal queue is to hold packets prior to the continuation of their classification.

Many components will often be identified to process a packet over the course of its
passage through the active router. However, it is not possible to identify all compo-
nents to which a packet will be sent in advance as the components could change the
content of the packet. Therefore, re-classification of packets between the processing of
active components is crucial. This important feature distinguishes LARA++ from
active router implementations such as CANEs [8], Router Plugins [2] and Scout [11].

Packets requiring reclassification are separated from packets that are awaiting ini-
tial classification, so that the classifier can process packets waiting on the internal
queue in preference to those on the external queue and thus minimise packet latency.

Packets being processed by a LARA++ node are given a packet context, which is
used to store state information, such as its progress through the classifier. On arrival,
the user flow of the packet is calculated and a flow key is generated to facilitate flow
filter lookups. This key is stored in the packet context. When checking flow filters, the
key is used to perform a lookup in the hash table for the node. This operation yields a
shortlist of candidate flow filters, which are then checked individually.

In each node in the classification graph, filters are processed starting with flow fil-
ters, then general filters, graph filters and finally the default graph. Graph filters are
processed last in a node to ensure that all active components are processed before
progressing to the subsequent node in the classification node. A classification is made
if the patterns of any filter match the packet. If the match is made with an active com-
ponent filter, the packet is sent to the associated component for processing, and re-
sumes the classification process at the next filter in the same classification node on its
return. If the match is made with a graph filter, or with the default graph filter (which
is matched if no other graph filter could be applied), classification terminates in the
filter input node and resumes at the start of the filter output node.

4.2 Filter Processing

The creation of a service composite for each packet is based upon the packet filters.
Section 3.2 introduced the notion of filter patterns. Each filter type (general, flow and
graph filter) contains such a pattern as one of its attributes. While the expression of
packet filters in this way is convenient and extremely flexible, it comes with an inher-
ent overhead. The position of fields that might be identified by the filter pattern (e.g.
TCP_HEADER) can change from packet to packet due to extra headers and options.
This means that the absolute offset must be recalculated for each packet. The impact
of the operation can be somewhat lessened if the classifier maintains a list of packet
characteristics (e.g. protocol headers) that have been identified during the classifica-
tion of the packet in its journey through the active router. These features can then be
used in the offset calculation, rather than having to parse the packet to locate these
features each time they are required. For example, the classifier could store the offset
of the IPv6 header in the packet when the header is encountered so that subsequent
filters can use it in offset calculations. Because of this approach, it is not a coincidence

262 Stefan Schmid et al.

that most headers have one or more dedicated classification nodes in the classification
graph; this is a property of the composition model.

In order to facilitate this optimisation, graph filters are given an additional property
known as the focus translation. The packet context contains a stack of foci, and the
packet begins classification at the first classification node with a single focus of zero.
If a graph filter is matched or default graph is encountered, a new focus is pushed on
the stack. The new focus increases/decreases the previous offset by the focus transla-
tion of the matched graph filter or default graph. For example, the focus translation of
a graph filter branching between an IP header and a TCP header would be the size, in
bytes, of the IP header. A focus that pointed to the start of the IP header would point
to the start of the TCP header subsequent to the processing of the graph filter.

In order to find a feature of the packet for use in offset calculation, the problem is
reduced to one of searching for the desired feature (identified by the classification
node) on the stack of foci. The focus stack model was chosen because it is likely that
most attempts to examine features of packets will be made closest to the focus of the
packet in the current classification node. Since the most recent foci are placed at the
top of the stack, searches for foci usually find a match within a few attempts. For ex-
ample, a filter identifying the protocol field in the IP header will normally be placed in
the IP header classification node, thus the operation to locate that field (i.e. �Focus
{IP_HEADER}+IP_PROTOCOL�) will find the target focus at the top of the stack.

Another potentially heavyweight task in filter processing is the computation in-
volved in calculating the offset of packet fields. The fact that packet features are not
always of constant length (e.g. IP options and padding can cause the length of an IP
header to vary), creates a need for flexible expressions, such as the one above, in order
to specify the focus translation for graph and default filters. Since the majority of
network traffic can be categorised into just a few payload types, many filter patterns
and graph filters will need to be checked against every packet passing though the
node. Given the frequency of the evaluation of offsets and the fact that packet filters
do not change after filter installation, it is best to move the overhead of evaluating the
semantics of the expression to the installation time of the filter. We use a just-in-time
compiler that translates the safe, machine-independent expressions into native ma-
chine code at the time of filter installation. Consequently, execution of the compiled
expressions is very lightweight (only a few CPU cycles). This allows focus transla-
tions and packet offsets to be calculated efficiently and flexibly on a per-packet basis.

5 Performance Measurements

On completion of the prototype classifier, we took measurements of the throughput
under three different scenarios. These scenarios were intended to lend proof of con-
cept to the LARA++ model for flexible and dynamic composition. Each of the sce-
narios operated over the same populated classification graph, albeit with different
processing characteristics for each one.

 Flexible, Dynamic, and Scalable Service Composition for Active Routers 263

700 697

1580

0

200

400

600

800

1000

1200

1400

1600

1800

Five-node
Classification Path,

500 Flow Filters

Ten-node
Classification Path,

500 Flow Filters

Ten-node
Classification Path,
1000 Flow Filters

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Fig. 5. Classifier Throughput for Pre-defined Packet Paths. These tests were performed on an
Athlon XP1800 with 512Mb RAM running Windows 2000, using simulated packets, thus
producing a reflection of the Classifier�s capabilities untainted by other active routing activi-
ties.

Experiment one involved a type of packets chosen so that the traffic passes through
5 classification nodes in the classification graph. The packets were checked against 10
general filters and 500 flow filters. The second experiment used a packet content that
causes the traffic to pass through 10 classification nodes in the classification graph.
The number of general filters was doubled in order to impose roughly the same proc-
essing load per node (as in test one), whereas the number of flow filters on the path
was kept constant at 500. By comparing the throughput of the first and second tests,
we expected to find the processing load to be proportional to the number of classifica-
tion nodes through which the packet travelled. The third scenario involved the same
packet format and number of general filters on the packet path as the second test, but
the number of flow filters on the classification path was doubled. The objective of this
experiment was to confirm that adding extra flow filters does not proportionally de-
crease performance, all other things remaining equal.

Figure 5 presents the results of these three experiments calculated over 5 million
packets. As expected, the throughput roughly halved between experiment one and two
because the number of classification nodes on the packet path doubled. The results
show that the graph filters and general filters do not scale well. Fortunately, their
numbers are not related to the number of users of the active router (unprivileged users
can only install flow filters), and hence do not have to scale to large quantities. By
increasing the number of users of the active network, mainly the number of flow filters
will increase proportionally. Between experiment two and three, the number of flow
filters doubled, but performance was virtually unaffected. With an average drop in
throughput of 0.43% between these experiments, we have shown that the use of flow
filters allows the classification model to scale well as the number of users rises.

Further experiments were performed with the aim of measuring the packet latency.
Figure 6 illustrates a breakdown of the time taken to perform different stages of classi-
fication. Six states of processing have been selected to represent the complete passage
of a packet through the classifier, and the figure shows how these states account for
the total latency of a packet. The average latency imposed by the classifier on an indi-

264 Stefan Schmid et al.

vidual packet is 9.4µs, which is a tiny fraction of the latency of most packets travelling
though a passive router. For packets that do not require active processing, cut-through
paths in the classification graph can further reduce that latency.

0
10
20
30
40
50
60
70
80
90

100

Packet
Initial

Processing

Searching
for Filters

Processing
Flow Filters

Processing
General
Filters

Processing
Graph
Filters

Executing
Expression

Code

Cu
m

ul
at

iv
e

Pa
ck

et
 L

at
en

cy
 (1

00
ns

)

Fig. 6. Breakdown of the stages of packet classification, measured in tenths of microseconds.
The classification graph and its population were chosen such that 500 flow, 10 graph and 12
general filters were checked. Of these, 1 flow, 2 general and 4 graph filters were matched.

Of the total latency, more than half is accounted for by the complexity of the classi-
fication graph. The complexity of the path through the classification graph undoubt-
edly has a direct impact upon the latency. Thus, the main determinant of the packet
latency is the complexity of the packet itself. The majority of packets have only a
MAC header, a network header, a transport header and a payload but rarely have
many options. They would therefore take a �shortcut� through the classification graph,
avoiding the extra classification nodes required to process these optional headers.

The average latency of the classification stage processing flow filters is compara-
tively small (~1µs) in the context of the total packet latency. The measurements de-
scribed above show that doubling the number of flow filters in the classification path
reduces the throughput by less than 0.5%. The impact of such a proportion added to
the latency of this classification stage would barely be noticeable. The classification
latency of packets is therefore largely unaffected by a change in the number of flow
filters installed on an active router.

6 Related Work

A common objective of most active network approaches is to expedite network evolu-
tion through solutions that enable extensibility of network functionality by way of
dynamically loaded code. Most active network approaches, such as ANTS [3],
NetScript [9], PLANet [4], SmartPackets [5], accomplish this through software plug-
ins or a similar form of active code integration. The limitations of such plug-in based
approaches to extensibility have been revealed in a previous study [10]. The remain-
der of this section compares further, more closely related approaches to LARA++:

 Flexible, Dynamic, and Scalable Service Composition for Active Routers 265

The CANEs execution environment [8], implemented on top of the Bowman No-
deOS, provides a composition framework for active services based on the selection
and customisation of a generic �underlying program�. The underlying program can be
tailored for a type of packets or set of streams by injecting customised code into well-
defined slots in the program. The packet filter mechanism, selecting the underlying
program, can be configured to match arbitrary patterns in the packet. This flexible
classification approach allows Bowman to dynamically deploy new protocols at run-
time like LARA++. However, in contrast to LARA++, Bowman has a number of re-
strictions. First, Bowman restricts classification to the selection of an underlying pro-
gram; i.e., once an appropriate underlying program has been identified, the service
composite is fixed and only dependent on the plug-ins. Second, although Bowman
appears to allow multiple underlying programs to be selected, the literature implies
that only a copy of the packet can be sent to each logical input channel which prevents
implicit active program co-operation. CANEs further restricts service composition.
The static nature of the underlying program for any given execution environment is
naturally inflexible. One needs to make assumptions about the customisable aspects of
the program at instantiation time of the execution environment.

The Router Plugins architecture [2] also uses a plug-in based composition model,
whereby an underlying data structure or program defines the �glue� for the service
composites. The fact that these composition structures are defined at compile time of
the kernel limits extensibility to predefined gates. LARA++, by comparison, allows
the dynamic extension of the classification graph (i.e. allows the creation of new clas-
sification nodes at run-time) and also overcomes the limitations that only one plug-in
can be incorporated per gate (i.e. many active components can be inserted per node).

Further related works are the modular router architecture Click [12] and the config-
urable operating system Scout [11]. Both use a graph-based composition approach
like LARA++ to support extensibility of the communication subsystem through so
called modules. However, since configurability in both cases is limited to the compile-
time of the system, dynamic introduction of new services is not possible.
This analysis shows that providing the service composite for plug-in or component-
based solutions should be extensible at run-time. Assuming an underlying graph
structure or program that cannot be dynamically changed is not necessarily suitable for
the lifetime of the system, and thus, limits extensibility unnecessarily.

7 Conclusions

In this paper we have presented a novel framework for managing the creation of serv-
ice composites in an active router. The LARA++ composition framework supports
dynamic integration of router extensions (active components) at runtime. The classifi-
cation-based service composition model enables flexible integration of extended
router functionality at any point in the packet processing path. A classification graph,
representing the packet processing path on the router, provides the necessary man-
agement structure for the integration of the software extensions. The use of packet
filters as a means of binding the software components allows the composition mecha-
nism to dynamically incorporate new functionality at run-time.

266 Stefan Schmid et al.

The service composition model is sufficiently flexible to allow the creation of a
service composite for each packet passing through the router. Using packet filters to
compose active services also has the advantage that active computation can be applied
transparently. The application of an active extension is based on the packet content
(i.e., any bit pattern can be used to trigger the processing of an active component).

The LARA++ composition model is capable of managing both competition and co-
operation between users of an active router. It allows unrelated users to partake in the
programming process of the active node in a structured fashion. The model provides
sufficient semantics to structure independent software extensions in a meaningful way.

Finally, we have presented the evaluation results of the LARA++ composition
framework. The results show that the processing latency imposed by the classifier on
an individual packet is less than one hundredth of a millisecond, which is a tiny frac-
tion of the latency introduced by a normal edge router. This shows that the inclusion
of the LARA++ composition framework has a negligible impact on the overall latency
of the packets passing such a node. The results also demonstrate that the introduction
of the flow filters allows the composition model to scale exceptionally well in terms of
both the throughput of the active router and the latency of packets being routed, and
does so without the number of users significantly reducing performance.

References
1. R. Cardoe, et al., �LARA: A Prototype System for Supporting High Performance Active

Networking�, In Proc. of IWAN 99, June 1999.
2. D. Decasper, Z. Dittia, G. Parulkar, B. Plattner, �Router Plug-ins: A Software Architecture

for Next Generation Routers�, In Proc. of SIGCOMM, pages 229-240, September, 1998.
3. D.UJ. Wetherall, J.V. Guttag and D.L. Tennenhouse, �ANTS: A Toolkit for Building and

Dynamically Deploying Network Protocols�, In Proc. of OPENARCH, April 1998.
4. M.W. Hicks and J.T. Moore and D.S. Alexander and C.A. Gunter and S. Nettles, �PLANet:

An Active Internetwork�, In Proc. of IEEE INFOCOM (3), 1124-1133, 1999.
5. B. Schwartz et al., �Smart Packets for Active Networks�, In Proc. of OPENARCH, 1999.
6. S. Schmid, J. Finney, A.C. Scott, W.D. Shepherd, �Component-based Active Network

Architecture�, In Proc. of IEEE Symposium on Computers and Communications, July 2001.
7. K. Egevang et al., �The IP Network Address Translator (NAT)�, RFC 1631, May 1994.
8. S. Merugu et al., �Bowman and CANEs: Implementation of an Active Network", In Proc. of

37th Conference on Communication, Control and Computing, September 1999.
9. Y. Yemini and S. da Silva, �Towards Programmable Networks�, In Proc. of IFIP/IEEE

International Workshop on Distributed Systems Operations and Management, October
1996.

10.M.W. Hicks and S. Nettles, �Active Networking Means Evolution (or Enhanced Extensibil-
ity Required)�, In Proc. of IWAN 2000, October 2000.

11.A. Montz et Al., �Scout: A Communications-Oriented Operating System�, In Operating
Systems Design and Implementation, pages 200, 1994.

12.R. Morris, E. Kohler, J. Jannotti, M Kaashoek, �The Click Modular Router�, In Proc. of
ACM Symposium on Operating Systems Principles, pages 217-231, December 1999.

	Flexible, Dynamic, and Scalable Service Composition for Active Routers
	1 Introduction
	1.1 Motivation

	2 Background
	3 LARA++ Composition Model
	3.1 Packet Classifier
	3.2 Packet Filters
	3.3 Classification Graph Table
	3.4 Composite Characteristics

	4 Implementation
	4.1 Design Overview
	4.2 Filter Processing

	5 Performance Measurements
	6 Related Work
	7 Conclusions
	References

