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Abstract

I consider issues in distributed computation that should be of relevance to game the
particular, I focus on (a) representing knowledge and uncertainty, (b) dealing with failures
(c) specification of mechanisms.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

There are many areas of overlap between computer science and game theo
influence of computer science has been felt perhaps most strongly through com
theory. Complexity theory has been viewed as a tool to help capture bounded ratio
going back to the work of Neyman (1985) and Rubinstein (1986). In addition, it is
understood that complexity-theoretic notions like NP-completeness help categori
intrinsic difficulty of a problem. Thus, for example, a result showing that, even in sim
settings, the problem of optimizing social welfare is NP-hard (Kfir-Dahav et al., 2
shows that the standard procedure of applying Clarke’s mechanism, despite its
benefits, is not going to work in large systems.

Perhaps less obvious is the interplay between game theory and work in distr
computing. At the surface, both areas are interested in much the same problems:
with systems where there are many agents, facing uncertainty, and having possibly d
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goals. In practice, however, there has been significant difference in emphasis in t
areas. In distributed computing, the focus has been on problems such as fault tol
scalability, and proving correctness of algorithms; in game theory, the focus has be
strategic concerns (that is, playing so as to optimize returns, in light of the preferen
other agents). In this paper, I hope to make the case that each area has much to lea
the other. I focus on three particular topics:

• the representation of games (and, in particular, the knowledge and uncertai
players in a game),

• strategic concerns vs. fault tolerance, and
• specification of mechanisms.

The following sections deal with each of these topics in turn.

2. Representing games as systems

In order to analyze a game, we must first represent it. The two most com
representations in the literature are the normal-form representation and the extensiv
representation. As is well known, the extensive-form representation brings out the tem
aspects of the game better, as well as explicitly representing (at least some aspects
players’ knowledge. Consider the game that is represented in Fig. 1 in both norma
and extensive form. The extensive-form representation brings out clearly that the
takes place over time, with the first player’s second move, for example, occurring
the second player’s first move. Moreover, when the first player makes that second
he does not know what the second player’s move is. However, as is also well know
information sets used in the extensive-form representation do not capture all asp
a player’s information. For example, they cannot be used to capture beliefs one
has about what strategy the other player is using, or notions like rationality and co
knowledge of rationality. The state-space representation does better in this regard.

2.1. The state-space representation

The state-space representation, first used in the economics literature by A
(1976), is actually a variant of the standard possible-worlds model for knowled
the philosophical literature that goes back to Hintikka (1962); see (Fagin et al.,

A D
aa (3,3) (4,2)
ad (3,2) (4,2)
da (1,2) (1,3)
dd (1,2) (1,3)

Fig. 1. Representing a game in normal form and in extensive form.
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Fig. 2. Representing the game of Fig. 1 using a state space.

Section 2.5) for discussion. In this representation, each state in a state spaceΩ is
a complete description of the world, which includes what happened in the past and
will happen in the future, the agents’ beliefs and knowledge, and so on.

One representation of the game in Fig. 1 using a state space is given in Fig.
Ω = {w1, . . . ,w5}. With each statew ∈Ω is associated the strategy profiles(w) played at
w. In this example,

• s(w1)= s(w5)= (aa,A),
• s(w2)= (aa,D),
• s(w3)= (ad,A),
• s(w4)= (ad,D).

In addition, there are two partitions associated with this state space, one for pla
(denoted by ellipses in Fig. 2) and one for player 2 (denoted by rectangles). The fa
w3 andw4 are both in the same cell of player 1’s partition means that player 1 canno
in statew3, if the actual state isw3 or w4. Note that in every cell for player 1, player 1
following the same strategy; similarly for player 2. This is meant to capture the intu
that the players know their strategy. Further note that not all strategy profiles are ass
with a state (for example,(dd,A) is not associated with any state) and some profiles (s
as(aa,A) in this case) can be associated with more than one state. There is more to
than the strategy profile used there. For example, inw5, player 2 knows that the strateg
profile is(aa,A), while inw1, player 2 considers it possible that(ad,A) is played.

The state-space representation suffers from some of the same problems as the
form representation. While it does a reasonably good job of capturing an a
knowledge, it does not do such a good job of describing the play of the game—
moves when, and what the possible moves are. Moreover, because time is not
in this representation, it becomes difficult to model statements such as “I know no
after I move my opponent will not know. . . .” More seriously, I would claim, neither th
state-space representation nor the extensive-form representation makes it clear w
knowledge is coming from. Exactly what does it mean put two nodes or two states
same information set?

This issue becomes particularly relevant when considering games with imperfect
Considering the single-agent game described in Fig. 3, introduced by Piccion
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Fig. 3. A game with imperfect recall.

Rubinstein (1997). It is a game of imperfect recall since at the information set{x3, x4},
the agent has forgotten nature’s initial move (i.e., whether it was earlier atx1 or x2).

It is not hard to show that the strategy that maximizes expected utility in this g
chooses actionS at nodex1, actionB at nodex2, and actionR at the information setX
consisting ofx3 andx4. Call this strategyf . Let f ′ be the strategy of choosing actionB
atx1, actionS atx2, andL atX. Piccione and Rubinstein argue that if nodex1 is reached
the agent should reconsider, and decide to switch fromf to f ′. If the agent is able to
remember that he switched strategies, then this is correct; the agent is indeed better
(under any reasonable notion of “better off”) if he switches.

The reason for the time inconsistency here is that an agent’s strategy must dict
same action at nodesx3 andx4, since they are in the same information set. Intuitive
since the agent cannot distinguish the nodes, he must do the same thing at both
agent had perfect recall, he could distinguish the nodes. The optimal strategy with p
recall amounts to switching fromf to f ′ at x1: the agent playsL at x3 (as he would
with f ′) andR at x4 (as he would withf ). However, by having the ability to rememb
that he has switched strategies, the agent is able to simulate perfect recall. If he is uf ′
at the information set, he knows he must have been atx1 (and thus is atx3); similarly, if
he is usingf at the information set, then he must be atx4. What does it mean, then, to p
x3 andx4 in the same information set? What entitles a modeler to put an ellipse aroux3
andx4?

In the computer science literature a different approach is used to represent kno
in multi-agent systems. This approach goes back to (Halpern and Fagin, 1989; H
and Moses, 1990), and has been used quite successfully to model distributed s
applications (Fagin et al., 1995, Chapters 4–7). The approach can be viewed as com
features of both game trees and the state-space representation. Not surprisingly, it c
be used to model games. The idea is that a game is represented as a multi-agentsystem.
In the description of the system, the actual play of the game is distinguished from
goes on in the agent’s mind. I claim that doing so can clear up the type of prob
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encountered in the game in Fig. 3. In the remainder of this section, I describe the ap
and sketch how it can be used to deal with this game. I describe some further adva
of the approach in the next section.

2.2. The multi-agent systems approach

The basic framework is easy to describe although, unfortunately, the descr
requires a number of definitions. I review the relevant definitions in this section2 To
describe the agent’s state of mind, we assume that, at every point in time, the a
in somestate. Occasionally this is called alocal state, to distinguish it from aglobal state,
which is defined below. The local state is essentially what is called an agent’stype in the
game theory literature. Intuitively, it encapsulates all the information to which the a
has access. Deciding how to model the state can be quite a nontrivial issue. In a
game, a player’s state might consist of the cards he currently holds, the bets made
other players, other cards he has seen, and whatever information he has about the s
of the other players. A forgetful player may not remember all the details of the bets
by the other players; his state would reflect this.

To describe the external world, we use anenvironment, which is also in some stat
at every point in time. Roughly speaking, the environment’s state describes ever
relevant to the system that is not part of the agents’ states. For example, when des
a game, we can take the environment’s state at a given point to consist of the sequ
actions that have been performed up to that point; in addition, at points representing t
of play, the environment’s state can include the payoffs. If we do this, we can esse
identify the possible environment states with the nodes in the game tree.

The configuration of the system as a whole can be described by aglobal state, a tuple
of the form(�e, �1, . . . , �n), where�e is the environment’s state, and�i is agenti ’s state,
i = 1, . . . , n. A global state describes the system at a given point in time. We are typ
interested in dynamic systems that change over time. Arun is a function from time (which
is taken for simplicity to range over the natural numbers) to global states. Intuitively,
is a complete description of how the system’s global state evolves over time. For ex
when analyzing a game, a run could be a particular play of the game. Thus, ifr is a run,
r(0) describes the initial global state of the system,r(1) describes the next global state, a
so on. Apoint is a pair(r,m) consisting of a runr and timem. If r(m)= (�e, �1, . . . , �n),
let ri(m)= �i . Thus,ri (m) is agenti ’s local state at the point(r,m).

Finally, a system is formally defined to be a set of runs. Intuitively, a system is be
identified with its set of possible behaviors. Thus, for example, the game of bridge c
identified with all the possible games of bridge that can be played (where a run des
a particular play of the game, by describing the deal of the cards, the bidding, and th
of the hand).

Notice that information sets are conspicuously absent from this definition. Inform
sets in fact do not have to be specified exogenously; they can be reconstructed fr

2 The following description is taken almost verbatim from (Halpern, 1997). See (Fagin et al., 1995, Cha
for more details.
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local states. Given a system, that is, a setR of runs, we can define an equivalence relat
on the points inR. The point(r,m) is indistinguishable from (r ′,m′) by agent i, denoted
(r,m) ∼i (r ′,m′), if ri (m) = r ′i (m). Thus, two points are indistinguishable by agenti if
agenti has the same local state at both points. Clearly∼i is an equivalence relation. Th
∼i relations can be viewed as defining information sets. However, note that even a
where agenti does not move is in an information set for agenti. We can now define what
means for agenti to know an eventE: agenti knowsE at a point(r,m) if the set of points
indistinguishable from(r,m) by agenti (that is,{(r ′,m′) : (r,m)∼i (r ′,m′)}) is a subse
of E.

A protocol for an agent in this setting is a function from that agent’s local state
actions (or to a distribution over actions, if we want to consider randomized proto
Essentially, a protocol is just a strategy; a randomized protocol is essentially a be
strategy. The definition captures the intuition that what an agent does can depen
on her information (i.e., her local state). At two points where the agent has the
information, the agent must do the same thing. The agent’s local state in this s
corresponds to the agent’s information set in the extensive-form representation of the
However, thinking in terms of local states seems more natural for protocol designer
thinking in terms of information states in a game tree. It is much more natural to
a program that says “if you have received a message then send an acknowled
than to describe the whole interaction (i.e., the game tree), put an ellipse around
nodes in the game tree in which the agent has received the message (this would
information set corresponding to the local state where the agent has received the me
and describe the strategy that performs the action of acknowledging the message
information set. Most importantly, by using local states, it becomes clear exactly wh
agent’s information is at any point and, thus, what the agent’s information set should

We often think of systems as generated by agents running ajoint protocol, that is, a
tuple consisting of a protocol for each agent. Intuitively, starting in some initial gl
state(s), we run the joint protocol and see what happens step by step. But what
happens when a joint protocolP is run? That depends on the setting, orcontext, in which
P is being run. The context determines, among other things, what the environmen
The environment is viewed as running a protocol just like the agents; its protocol is
to capture features of the setting such as “all messages are delivered within 5 r
or “messages may be lost.” Roughly speaking, the environment’s protocol correspo
“nature’s strategy”—the way nature plays the game. The context also determines h
actions performed by the protocol change the global state. Formally, a contextγ is a tuple
(Pe,G0, τ ), wherePe is a protocol for the environment,G0 is a set of initial global state
(intuitively, the set of states in which it is possible to start a run), andτ is a transition
function.3 The transition functionτ captures the effect of actions; formally, it describ
how the actions performed by the agents and the environment change the global s
associating with eachjoint action (a tuple consisting of an action for the environment a

3 Often it is also convenient to include in the tuple a component describing which runs are admissible.
done in (Fagin et al., 1995) to capture notions such asfairness: if a message is sent infinitely often, it is eventua
received. (Thus, runs where a message is sent infinitely often but not received are considered inadmissib
admissible runs play no role in the discussion here, I omit this component from the context.
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one for each of the agents) aglobal state transformer, that is, a mapping from global stat
to global states.

For ease of exposition, suppose thatP is a deterministic joint protocol. A runr is
consistent with P in context γ = (Pe,G0, τ ) if the initial global stater(0) is one of the
global states inG0, and for allm, the transition from global stater(m) to r(m+ 1) is the
result of performing the joint action specified byP and the environment protocolPe in the
global stater(m). A systemR represents a joint protocolP in a contextγ if it consists of
all runs inΨ consistent withP in γ . (If P is a randomized protocol, essentially the sa
construction gives the set of runs consistent withP together with a probability distributio
on them; I omit the formal details here.)

The role of the context should become clearer in the examples in Section 3.

2.3. From game trees to systems

There is a great deal of flexibility in representing a game using a system. It de
on what the local states are. One possibility essentially directly emulates the exte
form representation. In this approach, each run in the system correspond to a play
game—i.e., a branch in the game tree. Thus, there is essentially one run for each t
node in the game tree. Under this representation, the environment state at a certa
is the node in the game tree (or, equivalently, the sequence of actions taken to rea
node); the environment state at points that correspond to terminal nodes would also
the payoff. An agent’s local state could then simply be his information set. A more n
representation of an agent’s local state might be the sequence of actions she recalls4

Note that if we represent a game this way, there is no information about strategie
as there is no information about strategies in the extensive-form representation. Thi
due to a lack of expressive power in the systems framework; rather, it is due to the
of local states.

Another choice is closer to the state-space representation. Each state in a stat
corresponds to a run in the system. The play of the game in the run is the play gen
by the strategy profile associated with the state. Again, the environment state could
node reached (and the payoff, if it is a terminal node). But now an agent’s local states
include a representation of the strategy she is using, what she recalls having se
far, and some representation of her beliefs about other agents’ strategies. If it is co
knowledge that agents do not switch strategies in the course of the game, this co
knowledge can be represented by considering systems that consist only of runs wh
players strategy does not change over time.

What happens if agents can switch strategies? Again, there is no difficulty mod
this in the framework. (But note that, strictly speaking, switching strategies should th
considered one of the actions in the game.) An agent’s local state would then inclu
current strategy (or perhaps the sequence of strategies she has used up the curren
we model the game in Fig. 3 using such a system, if the player knows that he will s

4 Some decision also has to be made as to the agent’s local state at nodes where the agent does
There are a number of reasonable choices; the one made does not affect the main points.
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from f to f ′ at x1, then at points in the system correspondingx3, he will know that he is
at x3 (because, according to his local state, he is using strategyf ′), while atx4, he will
know that he is atx4. If falls right out of the representation that agents that are allowe
switch strategies and know their current strategy will be able to simulate perfect rec

The key point is that the use of local states in the runs and systems framework
a modeler to be explicit about what an agent knows and does not know in a wa
drawing ellipses in the extensive-form representation or the state-space representat
not. This, in turn, can force some important discipline on the modeler of the game.
game in Fig. 3, for example, the modeler is forced to say whether the player allow
switch strategies and, if so, whether he keeps track of his current strategy. The an
this question is modeled in the player’s state. Whatever the answer to the question
will be no time inconsistency. (See (Halpern, 1997) for a more detailed discussion o
example and the notion of modeling games using the systems framework.)

3. Coping with failures and asynchrony

There is a great deal of work in the distributed systems literature on designing pro
to deal with certain paradigmatic problems. There is a lot of overlap in spirit bet
this work and much of the work in the game theory literature on mechanism de
There are, however, also significant differences. Game theory focuses on auton
agents and their strategic interests. In the distributed systems literature, the “agen
processes, which are given a protocol to run by a systems designer. The distributed s
literature focuses on what can go wrong and what makes running the protocols diffi
communication failures, process failures, asynchrony, and the complexity issues in
in dealing with large systems. All of these issues are, by and large, not discussed
game theory literature. In this section, I give examples of problems in which issu
failures and asynchrony arise. These examples also illustrate some other advant
using the systems representation.

3.1. Coordinated attack

The coordinated attack problem is a well-known problem from the distributed sys
folklore (Gray, 1978). The following description of the problem is taken from (Halp
and Moses, 1990); the discussion of it is taken from (Halpern, 1995).

Two divisions of an army are camped on two hilltops overlooking a common va
In the valley awaits the enemy. It is clear that if both divisions attack the en
simultaneously they will win the battle, whereas if only one division attacks it wil
defeated. The generals do not initially have plans for launching an attack on the e
and the commanding general of the first division wishes to coordinate a simulta
attack (at some time the next day). Neither general will decide to attack unless
sure that the other will attack with him. The generals can only communicate by m
of a messenger. Normally, it takes the messenger one hour to get from one encam
to the other. However, it is possible that he will get lost in the dark or, worse ye
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captured by the enemy. Fortunately, on this particular night, everything goes smo
How long will it take them to coordinate an attack?

In the language of game theory, the problem here is to design a mechanis
guarantees that the generals coordinate, despite the possibility of messages being lo
typically the case in distributed systems problems, there is no discussion of what the
is for generalA andB if both attack, neither does, or one does and the other does no
is there is any mention of probabilities (in particular, the probability that the mess
will arrive). While interesting issues certainly arise if strategic concerns and proba
are added (see, for example, Rubinstein’s (1989) lovely results), there are good r
why these issues are being ignored here. The coordinated attack problem is an att
understand the effect of possible communication failures on coordination. The gener
viewed as being on the same “team,” with identical utilities, playing against “nature” o
“environment,” which controls communication. We could capture the intuition behin
problem by giving each general payoffL if they do not coordinate, utilityM if neither
attacks, and utilityH if both attack, withL<M <H , but no new issues would arise if w
did so. The real interest here is not in the strategic behavior of the generals, but w
they can achieve coordination when playing against nature.

We could also add a probability that a message arrives. The problem is that, f
situations which the coordinated attack problem was intended to abstract, it is often
difficult to characterize this probability. For example, one reason that messages
arrive in real systems is message congestion, often caused by “hotspots.” The prob
of message congestion is extremely difficult to characterize.

Turning to the analysis of the problem, suppose that the messenger sent by GeA
makes it to GeneralB with a message saying “Attack at dawn.” Will GeneralB attack? Of
course not, sinceA does not know thatB got the message, and thus may not attack
B sends the messenger back with an acknowledgment. Suppose the messenger m
Will A attack? No, because nowB does not know thatA got the message, soB thinksA
may think that he (B) did not get the original message, and thus not attack. SoA sends the
messenger back with an acknowledgment. But of course, this is not enough either.

In terms of knowledge, each time the messenger makes a transit, thedepth of the
generals’ knowledge increases by one. More precisely, letE be the event “a message sayi
‘Attack at dawn’ was sent by GeneralA.” When GeneralB gets the message,B knowsE.
WhenA getsB ’s acknowledgment,A knows thatB knowsE. Every pair of subsequen
acknowledgment leads to one more level of “A knows thatB knows.” However, although
more acknowledgments keep increasing the depth of knowledge, it is not hard to sho
by following this protocol, the generals never attaincommon knowledge that the attack is
to be held at dawn, where common knowledge describes the event thatA knows thatB
knows thatA knows thatB knowsad infinitum.

What happens if the generals use a different protocol? That does not help eith
long as there is a possibility that the messenger may get captured or lost, then co
knowledge is not attained, even if the messenger in fact does deliver his messa
would take us too far afield here to completely formalize these results (see (Fagin
1995, Section 6.1) for details), but it is not hard to give a rough description. Acontext
γ displays unbounded message delays (umd) if, roughly speaking, for all systemsR that
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represent a protocolP run in contextγ , runsr ∈ R, and agentsi, if i receives a messag
at timem in r, then for allm′ > m, there is another runr ′ ∈ R that is identical tor
up to timem except that agenti receives no messages inr ′ between timesm andm′
inclusive, and no agent other than possiblei can distinguishr andr ′ up to timem′ (i.e.,
rj (m

′′)= r ′j (m′′) for m′′ �m′ andj 
= i). That is,r ′ looks the same asr up to timem′ to
each agent except possiblyi, and all messages thati receives inr between timesm and
m′ are delayed until after timem′ in r ′. We can think of umd as characterizing a prope
of the environment’s protocol in contextγ . Intuitively, it is the environment that decide
whether or not a message is delivered; in a context with umd, the environment is a
hold up messages for an arbitrary amount of time.

Theorem 3.1 (Halpern and Moses, 1990).If context γ displays umd and R is a system
that represents some protocol P in context γ , then at no point in R can it be common
knowledge that a message has been delivered.

This says that, in a context that displays umd, no matter how many messages
the generals cannot attain common knowledge that any message whatsoever h
delivered. Since it can never become common knowledge that a message ha
delivered, and message delivery is a prerequisite for attack, it is not hard to sho
it can never become common knowledge among the generals that they are attackin
precisely, letattack be the event that consists of the points where both generals attac

Corollary 3.2. If context γ displays umd and R is a system that represents some protocol P
in context γ , then at no point in R can attack be common knowledge among the generals.

Why is it relevant that the generals can never get common knowledge of the fa
they are attacking? Our interest here is not common knowledge, but coordinated
What does common knowledge have to do with coordinated attack? As the next
shows, a great deal. Common knowledge is a prerequisite for coordination. Let asystem
for coordinated attack be one that represents a protocol for coordinated attack.

Theorem 3.3 (Halpern and Moses, 1990).In a system for coordinated attack, when the
generals attack, attack must be common knowledge among the generals.

The statement of the coordinated attack problem assumes that the generals h
initial plans for attack. This can be formalized by assuming that, in the absen
messages, they will not attack. With this assumption, Corollary 3.2 and Theore
together give the following result.

Corollary 3.4. If context γ displays umd and R is a system that represents some protocol
for coordinated attack in context γ , then at no point in R do the generals attack.

Note that this result can be expressed in game theoretic terms: it is imposs
design a mechanism that guarantees coordinated attack. These results show not o
coordinated attack is impossible (a fact that was well known (Yemini and Cohen, 1
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but why it is impossible. The problem is due to a combination of (1) the unattainabili
common knowledge in certain contexts and (2) the need for common knowledge to p
coordination.

It is worth stressing the role of systems and contexts in stating these results. The
of “communication not being guaranteed” was formulated in terms of a conditio
contexts (umd). Theorem 3.1 show that common knowledge in any system that c
generated in a context satisfying umd. The need for common knowledge to coordi
also formulated in terms of systems. The framework of runs and systems is well su
formulating these conditions.

3.2. Byzantine agreement

The coordinated attack problem focused on communication problems.Byzantine
agreement is another paradigmatic problem in the distributed systems literature; it b
out issues of process failures as well as asynchrony. In this problem, there are assu
ben soldiers, up tot of which may be faulty (thet stands fortraitor); n andt are assumed
to be common knowledge. Each soldier starts with an initial preference, to either
or retreat. (More precisely, there are two types of nonfaulty agents—those that pr
attack, and those that prefer to retreat.) We want a protocol (i.e., a mechanism) w
following properties:

• All nonfaulty soldiers reach the same decision.
• If all the soldiers are nonfaulty and their initial preferences are identical, then the

decision agrees with their initial preferences.5

This problem has been studied in detail. There have been literally hundreds of
on Byzantine agreement and closely related topics. The problem was introduc
Pease et al. (1980); Fischer (1983) gives an overview of the state of the art
early 1980’s; Linial (1994) gives a more recent discussion; Chor and Dwork (1
survey randomized algorithms for Byzantine agreement. Whether the Byzantine agre
problem is solvable depends in part on what types of failures are considered, on w
the system issynchronous or asynchronous, and on the ratio ofn to t . Roughly speaking
a system is synchronous if there is a global clock and agents move in lockstep; a
in the system corresponds to a tick of the clock. In an asynchronous system, ther
global clock. The agents in the system can run at arbitrary rates relative to each
One step for agent 1 can correspond to an arbitrary number of steps for agent 2 a
versa. Synchrony is an implicit assumption in essentially all games. Although it is cer
possible to model games where player 2 has no idea how many moves player 1 ha
when player 2 is called upon to move, it is certainly not typical to focus on the effec

5 This condition simply prevents the obvious trivial solutions, where the soldiers attack no matter
or retreat no matter what. Similarly, the statement “The generals do not initially have plans to attack”
description of the coordinated attack problem is implicitly meant to prevent a similar trivial solution in the
of coordinated attack.
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synchrony (and its lack) in games. On the other hand, in distributed systems, it is typ
a major focus.

Byzantine agreement is achievable in certain cases. Suppose that the only ty
failures arecrash failures—a faulty agent behaves according to the protocol, except th
might crash at some point, after which it sends no messages. In the round in which a
fails, the agent sends only a subset of the messages that it is supposed to send acc
its protocol. Further suppose that the system is synchronous. (These two assumpti
be captured by considering the appropriate context; see (Fagin et al., 1995, p. 203).
case, the following rather simple protocol achieves Byzantine agreement:

• In the first round, each agent tells every other agent its initial preference.
• For rounds 2 tot + 1, each agent tells every other agent everything it has heard i

previous round. (Thus, for example, in round 3, agent 1 may tell agent 2 that it
from agent 3 that its initial preference was to attack, and that it (agent 3) heard
agent 2 that its initial preference is to attack, and it heard from agent 4 that its
preferences is to retreat, and so on. This means that messages get exponentia
but it is not difficult to represent this information in a compact way so that the
communication is polynomial inn, the number of agents.)

• At the end of roundt + 1, if an agent has heard from any other agent (including its
that its initial preference was to attack, it decides to attack; otherwise, it decid
retreat.

Why is this correct? Clearly, if all agents are correct and want to retreat, then the
decision will be to retreat, since that is the only preference that other agents hear
(recall that for now we are considering only crash failures). Similarly, if all agents p
to attack, the final decision will clearly be to attack. It remains to show that if some a
prefer to attack and others to retreat, then all the nonfaulty agents reach the sam
decision. So suppose thati andj are nonfaulty andi decides to attack. That means thai
heard that some agent’s initial preference was to attack. If it heard this first at some
t ′ < t + 1, theni will forward this message toj , who will receive it and thus also attac
On the other hand, suppose thati heard it first at roundt + 1 in a message fromit+1. Thus,
this message must be of the form “it said at roundt that . . . that i2 said at round 2 thati1
said at round 1 that its initial preference was to attack.” Moreover, the agentsi1, . . . , it+1
must all be distinct. Indeed, it is easy to see thatik must crash in roundk before sending
its message toi (but after sending its message toik+1), for k = 1, . . . , t , for otherwisei
must have gotten the message fromik, contradicting the assumption thati first heard at
roundt + 1 that some agent’s initial preference was to attack. Since at mostt agents can
crash, it follows thatit+1, the agent that sent the message toi, is not faulty, and thus send
the message toj . Thus,j also decides to attack. A symmetric argument shows thatj
decides to attack, then so doesi.

It should be clear that the correctness of this protocol depends on both the assum
made: crash failures and synchrony. Suppose instead thatByzantine failures are allowed
so that faulty agents can deviate in arbitrary ways from the protocol; they may “lie,”
deceiving messages, and collude to fool the nonfaulty agents in the most malicious w
this case, the protocol will not work at all. In fact, it is known that agreement can be re
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in the presence of Byzantine failures ifft < n/3, that is, iff fewer than a third of the agen
can be faulty (Pease et al., 1980). The effect of asynchrony is even more devasta
an asynchronous system, it is impossible to reach agreement using a deterministic p
even if t = 1 (so that there is at most one failure) and only crash failures are all
(Fischer et al., 1985). The problem in the asynchronous setting is that if none of the
have heard from, say, agent 1, they have no way of knowing whether agent 1 is
or just slow. Interestingly, there are randomized algorithms (i.e., behavior strategie
achieve agreement with arbitrarily high probability in an asynchronous setting (Be
1983; Rabin, 1983).

Finally, note that the protocol above usest + 1 rounds. This bound is achievable ev
with Byzantine failures, provided thatt < n/3 (Pease et al., 1980). Can we do better?
one sense, the answer is no. Even if only crash failures are considered,t + 1 rounds of
communication are required in runs where there are in fact no failures at all (Dole
Strong, 1982). To understand why, consider a simple situation wheret = 1, there are only
crash failures, all agents start with the same initial preference, say to attack, and
are in fact no failures. In this case, all the agents can tell each other in the first rou
communication that they want to attack. Since there are no failures, at the end of th
round, all the agents will know that all the other agents want to attack. Thus, the
know that the ultimate decision must be to attack, since all the agents have the sam
preference. Nevertheless, if they want to be sure to attack simultaneously, they mu
until the end of the second round to do so (sincet + 1 = 2 in this case).

Why is this the case? Results of Dwork and Moses (1990) give some insight here
show that common knowledge among thenonfaulty agents is necessary and sufficient
attain simultaneous Byzantine agreement (even though a nonfaulty agent may no
which of the other agents are faulty). The nonfaulty agents are what is called anindexical
set in the philosophy literature; a set whose membership depends on context. The
it takes two rounds to reach agreement even if there are no failures is that, althoug
agent knows that all the other agents had an initial preference to attack, this fact
yet common knowledge. For example, agent 1 might consider it possible that agent
faulty and crashed before sending a message to agent 3. In this case, agent 3 wo
know that everyone started with an initial preference to attack. Moreover, in this
agent 3 might consider it possible that agent 2’s initial preference was to retreat, an
agent 2 communicated this preference to agent 1. This argument can be extended
that agent 1 considers it possible that agent 3 considers it possible that agent 1 con
possible . . . that everyone’s initial preference was to retreat.

It might seem that if it takest + 1 rounds to reach simultaneous agreement in the
that there are no failures, then things can only get worse if there are failures. Ho
Dwork and Moses show that this intuition is misleading. They use their characteriz
of agreement to provide algorithms for simultaneous Byzantine agreement that
agreement as early as possible, as a function of the pattern of failures. Roughly sp
we can imagine an adversary witht “chips,” one for each possible failure. The advers
plays a chip by corrupting an agent. Dwork and Moses’ analysis shows that
adversary’s goal is to make the agreement happen as late as possible, then the ad
optimal strategy is, roughly speaking, to play no more than one chip per round.
adversary plays optimally, agreement cannot be attained before roundt + 1. Since not
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agents
corrupting any agent is an instance of optimal play, it follows that it requirest + 1 rounds
to reach agreement in runs where there are no failures. On the other hand, if the ad
plays allt chips in the first round and none of the faulty agents sends a message, th
correct agents will know at the end of the first round exactly which agents are faulty
be able to reach agreement in one more round. The adversary is best off by keep
agents as uncertain as possible as to which agents are faulty.

Byzantine agreement can be viewed as a game where, at each step, an agent c
send a message or decide to attack or retreat. It is essentially a game between two
the nonfaulty agents and the faulty agents, whose composition is unknown (at least
correct agents). To model it as a game in the more traditional sense, we could imagi
the nonfaulty agents are playing against a new player, the “adversary.” One of adve
moves is that of “corrupting” an agent: changing its type from “nonfaulty” to “faul
Once an agent is corrupted, what the adversary can do depends on the failure typ
considered. In the case of crash failures, the adversary can decide which of a co
agent’s messages will be delivered in the round in which the agent is corrupted; ho
it cannot modify the messages themselves. In the case of Byzantine failures, the ad
essentially gets to make the moves for agents that have been corrupted; in particula
send arbitrary messages.

In practice, crash failures occur quite regularly, as a result of hardware and so
failures. Another failure type considered isomission failures. An agent suffering from an
omission failure behaves according to its protocol, except that it may omit to se
arbitrary set of messages in any given round. Omission failures are meant to mode
communications problems (for example, a congested message buffer). Finally, Byz
failures represent the worst possible failures, where we can make no assumption
behavior of faulty agents. Byzantine failures are used to capture random behavior
part of a system (for example, messages getting garbled in transit), software erro
malicious adversaries (for example, hackers).

In the case of crash failures and omission failures (and for Byzantine failures th
meant to represent random behavior), it does not make sense to view the adve
behavior as strategic, since in these cases the adversary is not really viewed as
strategic interests. However, it would certainly make sense, at least in principle, to co
the probability of failure (i.e., the probability that the adversary corrupts an ag
But this approach has by and large been avoided in the literature. It is very di
to characterize the probability distribution of failures over time. Computer compo
can perhaps be characterized as failing according to an exponential distribution
done by Babaoglu (1987), in one of the few papers that I am aware of that ac
does try to analyze the situation probabilistically), but crash failures can be caus
things other than component failures (faulty software, for example). Omission failure
often caused by traffic congestion; as I mentioned before, this is extremely diffic
characterize probabilistically. The problems are even worse when it comes to mo
random Byzantine behavior.

With malicious Byzantine behavior, it may well be reasonable to impute stra
behavior to agents (or to an adversary controlling them). However, it is typically
difficult to characterize the payoffs of a malicious agent (and, indeed, there is often a
deal of uncertainty about what a malicious agent’s payoffs are). The goals of the
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may vary from that of simply trying to delay a decision to that of causing disagreem
It is not clear what the appropriate payoffs should be for attaining these goals. Thu
distributed systems literature has chosen to focus instead on algorithms that are gua
to satisfy the specification without making assumptions about the adversary’s payo
nature’s probabilities, in the case of omission failures and crash failures).

I believe that some interesting work can be done trying to combine failures, async
and strategic incentives. Some preliminary work has already been done—for ex
Monderer and Tennenholtz (1999a, 1999b) have considered timing issues in asynch
systems, as well as the structure of the network, and Eliaz (2000) has considered s
concepts that take failures into account. However, I believe that there is much mo
can be done.

4. Specification and mechanism design

Game theory has typically focused on “small” games: games that are easy to de
such as Prisoner’s Dilemma, Battle of the Sexes, and the Centipede game. The
has been on subtleties regarding basic issues such as rationality and coordination
extent that game theory is used to tackle larger, more practical problems, and esp
to the extent that it is computers, or software agents, playing games, rather than
a whole host of new issues arise. In many cases, the major difficulty may no long
conceptual problem of explicating what ought to be considered “rational.” It may be
obvious what the “rational” and optimal strategy is once we analyze the game. R
the difficulty is analyzing the game due to its size. Indeed, part of the difficulty m
even bedescribing the game. By way of analogy, 2n− 1 numbers are needed to describ
probability distribution on a space characterized byn binary random variables. Forn= 100
(not an unreasonable number in practical situations), it is impossible to write dow
probability distribution in the obvious way, let alone do computations with it. The s
issues will surely arise in large games. Computer scientists have developed techniq
Bayesian networks for manipulating probability measures on large spaces (Pearl,
similar techniques seem applicable to games. Since these techniques are discussed
by Koller and Milch (2001) and La Mura (2000), I do not go into them here.

A related but different problem is involved with dealing with “large” mechanisms. T
I expect, will be somewhat akin to writing large programs. It will be extremely impor
to specify carefully exactly what the mechanism must accomplish, and to find techn
for doing mechanism design in a modular way, so that mechanisms for solving dif
problems can be combined in a seamless way.

The design and specification of software is well known to be a critical and often dif
problem in computer science. The concern with specification has led to the develo
of numerousspecification languages, that is, formal languages for expressing carefully
requirements that a protocol must satisfy (see, for example, (Harel et al., 2000; M
1980; Manna and Pnueli, 1992)).6

6 Historically, the original work that my colleagues and I did on knowledge and common knowledge w
part motivated by the desire to find good tools for designing and specifying distributed protocols.
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It may seem that specification is not so hard. How hard is it, for example, to spe
division algorithm? It gets two inputsx andy and is supposed to returnx/y. Even in this
simple case, there are difficulties. Are we talking about integer division (so that the
are integers and the output is an integer, with the remainder ignored)? If we are t
about real division, how should the answer be represented? For example, if it is a de
what should the answer be ifx andy are 1 and 3, respectively? How is the infinite seque
0.333. . . to be represented? If answers can only be, say, 32 bits long, what happ
x = 1031 andy = 10−31? What should happen ify = 0? And what happens if the inpu
are not of the right type (i.e., they are letters instead of numbers)? The key point is
good specification will need to describe what should happen in all the “unexpected”

This can get particularly difficult once we try to take into account failures
asynchrony. Imagine trying to specify a good mechanism for a distributed au
The specification will need to take into account the standard distributed conce
asynchronous communication, failures, garbled communication, economic issue
failure to pay, and strategic issues (including strategic uses of computing difficu
such as pretending not to have received messages or to have received them late
its specification must address what should happen if a process fails in the mid
transmitting a bid, how to deal with agents bidding on slow lines, and so on.

Things get significantly more complicated if we try to specify notions like secu
What exactly does it mean that a mechanism is secure? What types of attacks
tolerated? For example, how should the mechanism behave if there is a denial-of-
attack? I suspect that questions regarding security and fault-tolerance will turn
be closely intertwined with strategic issues. Thus, finding appropriate technique
specifying mechanisms will not simply be a matter of lifting standard techniques
software specification.

5. Conclusions

I have focused on one set of issues at the interface of computer science and gam
here, which arise from work in distributed computing. As I hope this discussion has
clear, I think that game theorists need to take more seriously issues like fault tole
asynchrony, the representation of knowledge and uncertainty, the difficult in the desi
analysis of large mechanisms and games, and problems of specification. On the othe
I think computer scientists need to take strategic concerns more seriously in the des
analysis of distributed protocols. These issues are not just of theoretical interest. The
for example, when we consider the design of Internet agents. We will certainly need t
into account failures, and no company would want to claim to support software for a
that bid in auctions that has not been carefully specified.7 The specification of the agen

7 The correctness of the agents will also have to beverified somehow. Verification is yet another issue of gr
concern in computer science that may prove relevant to game theory. Much work has gone into finding (pr
automatic or semi-automatic) techniques to check that a protocol satisfies a specification (see, for exam
and Olderog, 1991; Clarke et al., 1999)).



130 J.Y. Halpern / Games and Economic Behavior 45 (2003) 114–131

ll be

tween
area of
mmon
holtz,
www.
nality

ruitful

oltz,

York.

s. ACM

n: Proc.

7–268.
In: Adv.

. (Ed.),

ilures.

e, MA.
73, Yale
tes in

faulty

. (Eds.),
Berlin.

. (Eds.),
ming,

. 3 (4),
will, in turn, depend on a careful specification of the mechanism in which they wi
participating.

These issues represent only part of the commonality in interests that I see be
computer science and game theory. I have already hinted at another important
commonality: that of finding compact representations of games. Other issues of co
interest include learning, mental-level modeling of beliefs (Brafman and Tennen
1997), qualitative decision theory (see the bibliography of over 290 papers at http://
medg.lcs.mit.edu/qdt/bib/unsorted.bib). With the growing awareness of the commo
between computer science and game theory, I look forward to a great deal of f
interaction between the fields in the coming years.
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