
VFCC: A Verification Framework of Cache Coherence using Parallel Simulation

Abstract A cache coherence protocol is a vital component of a
multiprocessor to maintain the data consistency. In this paper, 
we proposed VFCC, which is a simulation framework to
validate a cache-coherence protocol implementation of a 
commercial 64-bit superscalar multiprocessor. It exploits 
multiple-level parallelism to accelerate validation without
overheads among threads. Our experimental results 
demonstrate VFCC has a 5.0x speedup than a traditional 
simulator on a conventional 16-core host machine.

I. Introduction

A cache coherence protocol is a vital component of a
multiprocessor to maintain  the data consistency in local
caches and the main memory. It defines a set of rules 
coordinating processors, cache controllers, and memory 
controllers to ensure: the value returned by a read must be 
always the last value written to that location [1, 2]. Cache 
coherence protocols are notoriously difficu lt to design and 
verify [3]. Due to more and more complicated behavior of a 
multiprocessor, verifying the correctness of a cache 
coherence protocol is becoming a major task.

A survey presents three widely  accepted formal 
approaches to verify cache coherence protocols [4]. In  fact, 
these work focus on the protocol semantics rather than the
protocol implementation. In  order to ensure high 
performance and to accommodate manufacturing realities 
such as unordered coherence message networks, current 
protocols allow simultaneous or outstanding requests and 
split transactions. Therefore, the characteristics of a protocol 
implementation, such as parallel processing and out-of-order 
complet ion strategies, also play an important role in the 
correctness of execution results. Simulat ion is effective to 
validate the details of a protocol implementation [5].

In this paper, we proposed VFCC, a verification 
framework of a cache-coherence protocol implementation 
using parallel simulation. It is used to validate the RTL
(Register Transfer Level) design of the MOESI protocol 
[6,7]. In general, a cache-coherence protocol is composed of 
three components: a finite set of states, a finite set of events, 
and a transition relation. There are more details of a
cache-coherence protocol implementation, which involves
interactions between the protocol implementation and the 
cache or the main memory, one transaction split into multiple 
actions, concurrent requests and so on. VFCC validates the 
implementation details as well as protocol semantics. VFCC

is based on transaction-level [8] simulation technique. Its
VIP (Verification Intellectual Property) deals with a 
transaction by three units: a request generator, a protocol 
simulator and a request checker. The units form a p ipeline 
structure by mult ithread programming. VFCC also exploits
multip le VIPs to simulate mult iple requests from different 
cores concurrently. Another feature of VFCC is the 
parallelism between the simulator and the RTL, an overlap 
between simulat ion time and execution time. VFCC solves
the problems of communicat ion and synchronization [9] for 
each level of parallelis m without overheads. A 
transaction-level simulator is not cycle accurate. There may 
be inconsistence among checkpoints to be adjusted [10, 11].

The rest of this paper is organized as follows. Section 2 
discusses related work. VFCC description comes next in 
Section 3. Sect ion 4 shows the experiments and results.
Section 5 is our conclusion.

II. Related Work

In the last twenty years, some methods have been 
proposed to verify the correctness of a coherence protocol. A 
survey has shown that there are three major techniques based 
on state enumeration, (symbolic) model checking and 
symbolic state model [4]. These techniques characterize the 
protocol as some states and search all reachable states 
exhaustively. Moreover, some recent approaches [12-14]
have extended one of these methodologies to verify more
complex protocols, like adaptive or hierarchical protocol or 
directory-based protocols [15, 16]. In fact, these techniques
prove correctness of a protocol specification by focusing on 
the protocol semantics without any consideration of 
architectural behavior.

Dynamic verification approach has been proposed recently 
[17, 18]. It is a powerfu l error detection mechanism, but the 
existing coherence checkers are costly to implement. Another 
effective method to validate RTL design is simulat ion.
Worawan and Roland address three properties of a coherence 
protocol (safety, liveness and inclusion). They propose a 
specification-based parameter model interaction (SPMI) 
technique to detect these cases in a particular DSM cluster
simulator [19]. DSiMCluster is a sequential simulation 
model that runs parallel workloads by mult ithread 
interleaving  to emulate a mult ithreaded runtime environment.
Simulation time and accuracy are two key factors .
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Considering to the two features (concurrent and out-of-order 
requests) of a protocol implementation, parallel simulation is 
a powerful method to speed up validation and to ensure 
accuracy by simulating concurrent requests.

Simulation technology focuses on three aspects: stimuli
generation, simulation, and results checking. Stimuli can  be 
generated statically or dynamically. Static approach prepares
a large number of stimuli before simulat ion. This approach 
requires both generation time and storage space. Dynamic 
approach disperses stimuli generation throughout the 
simulation process to get an overlap. It also saves storage.

There are sequential simulation technique and parallel 
simulation technique. By sequential simulation we mean that 
all functional modules (a generator, a simulator and a
checker) from a framework work in time-sharing way. It is 
not suitable for a parallel design by interleaving, so
sequential simulat ion has a verification-space limitation [20].
Parallel simulation employs multithread programming. It can 
effectively construct a stimuli scenario for a design with 
parallel feature, but it faces the difficu lty of communication 
and synchronization.

According to the granularity of checking cycle, simulators 
can be cycle-accurate or checkpoint-accurate. Fig. 1(a) 
shows cycle-accurate simulation. It is suitable for a simulator 
which has to remain consistent with the design very cycle,
like the pipeline structure of a processor. However, it has a 
lot overhead. Fig. 1(b) shows checkpoint-accurate simulation.
It is suitable for a design focusing on transaction, like cache 
structure whose data or status to be changed at the end of a 
request. This approach avoids unnecessary overhead.

There are four kinds of simulators according to the 
combination of stimuli generation (static or dynamic) and 
simulation method (sequential or parallel): a static-sequential
simulator, a static-parallel simulator, a dynamic-sequential 
simulator and a dynamic-parallel simulator. Fig. 2(a) and Fig.
2(b) show the static generation method. It costs a lot of time 
to prepare the stimulus. Fig. 2(c) and Fig. 2(d) show the 
dynamic generation method. The overlap advantage of the 
method will be more obvious as the number of stimuli grows. 
Fig. 2(a) and Fig. 2(c) show sequential simulation method. 
There are two  drawbacks. The first one is that it takes longer 
to generate the stimuli one by one. The second one is that it
fails to verify the concurrent characteristic of the RTL. Fig.
2(b) and Fig. 2(d) show parallel simulation. Th is approach 
provides the situation of concurrent mult iple requests. Fig.
2(d) shows the way VFCC works in. The description of its 
implementation details is in the fo llowing parts.

Fig. 1 Cycle-accurate and checkpoint-accurate.

Fig. 2 Comparison among static-sequential simulation(a), static-
parallel simulation(b), dynamic-sequential simulation(c) and 
dynamic-parallel simulation(d).

III. VFCC: Verification Framework of Cache 
Coherence

We designed a cache coherence protocol component for a
commercial 64-bit superscalar quad-core multiprocessor. It 
employs MOESI protocol based on bus snoopy mechanism. 
It supports 10 concurrent requests and out-of-order requests 
complet ion strategies . Our goal is to fast validate the RTL 
implementation of the coherence-protocol component.

VFCC is a verification framework for the cache-coherence 
protocol RTL implementation. It consists of mult iple VIPs
and multiple peripheral models. Each  VIP consists of 
multip le functional units. The key part  of a VIP is a 
cache-coherence protocol simulator. In th is section, we first 
introduce the structure of VFCC, followed by  the three 
aspects of VFCC: firstly, mult i-level parallelis m of VFCC;
secondly, the solutions to deal with communicat ion and 
synchronization problem; finally, the methods to keep the
transaction-level simulator and the RTL design consistency.

A. Structure of VFCC

Fig. 3 shows the structure of VFCC. It consists of four 
parts. The key part of VFCC is a VIP. Each VIP simulates the 
behavior of a request from one core. A VIP consists of a 
request generator, a cache-coherence protocol simulator and 
a request checker. There are N VIPs in VFCC to simulate N 
requests from N cores. The second part of VFCC is a
memory model. It simulates the behavior of the main 
memory and the controller. The third part of VFCC is N
cache models. Each VIP gets one. The last part of VFCC is N
request records to save its requests and simulation results.
The design under test (DUT) is the RTL of protocol.
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Fig. 3. Structure of VFCC.

Multiple VIPs work concurrently in the same way. In a 
VIP, a request generator generates a random request first. 
The request generator sends the stimuli to the simulator and 
the RTL at the same t ime and saves the request in a record.
Then, it continues to generate a new request. We extract 
some constrains from the protocol to add into the generator. 
Therefore, the generator has a self-adjusting ability to
abandon an invalid request and prepare a new one. The 
cache-coherence protocol simulator is a h igh-level reference 
model for the RTL. The simulator processes the same request 
as the RTL and saves the simulation result in the record  for 
the checker. The checker compares the results at a check 
point. The simulation result and execution result refer to the 
changes of the cache models and the memory model.

The cache model exp lo its LRU (least recently used)
strategy with parameterized cache size and parameterized set 
number. The cache model p rovides a variety of interfaces for 
the RTL and the simulator, such as snooping status, reading 
and writ ing data, updating cache line and so on.

The memory  model simulates the behavior of accessing 
data by address as the main memory. It takes byte as a store
unit. The memory model also provides interfaces of reading 
and writ ing data.

B. Multi-Level of Parallelism

VFCC utilizes multi-level parallelis m to accelerate 
simulation. The first level parallelis m of VFCC is among the 
three functional units in a VIP. Each unit works in an 
independent thread. Multiple threads execute concurrently on 
a multiprocessor host machine. These threads process one 
request in order, but they form a pipelined structure to 
process different requests. This mechanis m increases the 
throughput and reduces the total verification time.

The second level parallelism of VFCC is among multiple 
VIPs. Each VIP works in one process. VFCC exploits
parameterized number o f concurrent VIPs to obtain a good 
scalability for RTL may execute different number of 
concurrent requests . Each VIP simulates and checks requests 
separately. This level of parallelis m creates a test situation
the same as a real mult iprocessor system. 

The last level parallelis m of VFCC is the overlap  between 
the protocol simulator and the RTL. VFCC h ides the stimuli 
generating time by utilizing a virtual p ipelined structure 
between the VIP and the RTL. The generator produces a new 
request while the RTL executes the prior one. Therefore, 
total verificat ion time is the sum of the t ime generating the 
first request, the time checking the last request and the time 
processing all the requests by the RTL.

VFCC utilizes multip rocessor host machine by exploit ing
a fine-grain parallelism. The first-level parallelis m reduces 
simulation t ime by a pipeline structure. The second-level 
parallelism promises verification accuracy by concurrent 
requests. The last-level parallelis m accelerates simulat ion by 
overlapping simulation and execution.

C. Communication and Synchronization

Two major overheads from parallel simulat ion are the 
communicat ion problem and the synchronization problem 
among multip le threads. This part introduces the solutions to 
reduce the overheads. 

Firstly, we introduce the first level parallelism of 
communicat ion and synchronization. Fig. 4 shows the data 
flow and the control flow among three threads in a VIP. A
request is generated by the generator thread and stored in a
request record for the simulator thread. The simulator thread 
keeps checking if a request is ready, and it processes the 
request if it is ready, or keeps waiting. In the simulation 
process, the simulator thread accesses the status and data of
the cache model or the data of the memory model. Then the 
simulator thread saves the simulation result into the record.
Meanwhile, the checker thread keeps checking if simulation 
fin ishes. The checker thread reads simulat ion result to
compare with the cache model and the memory model.

Therefore, there is no communication among threads
directly  except the data flow, which is an indirect kind of
communicat ion. In VFCC, requests and simulat ion results 
are in the form of a global shared variable stored in a request
record so that each thread accesses directly. Each thread 
accesses the cache model and the memory model through 
their interfaces directly, too.

The control flow is the synchronization among threads. 
Since multip le threads read the different ready bits to check 
if the request is available, it is safe for threads to access
shared variable direct ly without synchronization mechanism.

Fig. 4 Communication and synchronization in a VIP.
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Secondly, we introduce how to reduce communication and 
synchronization among VIPs. As we know, the key 
responsibility of cache coherence is to keep data consistent 
and up-to-date to every core. In  other words, for each core,
its read request gets the same data as others; its write request
assures that all cores can  get the latest data of this address in 
the next read. Therefore, only requests with the same address 
needs to be executed in sequential, irrelevant requests are 
safe to be executed concurrently, which means that multiple 
VIPs need not to communicate with others.

The synchronization among VIPs needs to be solved when 
requests with the same address or address conflict. We use an 
address table and priority flag to keep all the requests on-fly 
for the simulator threads. If a simulator thread checks an 
address confliction in the address table and it does not own 
the priority flag, it stops simulation. This kind of 
decentralized checking mechanism reduces synchronization 
overheads. VFCC also optimizes synchronization among 
VIPs by  a scheduling strategy. Fig . 5 shows two strategies to
synchronization among VIPs with address conflict. Fig. 5(a)
shows a blocking strategy. VIP 1 generates and simulates a 
request. If VIP 0 generates a request with address conflict 
this time, the simulator has to wait for VIP 1 until its 
complet ion. There is some performance loss for it becomes 
sequential simulation. Fig. 5(b) shows a scheduling strategy.
If VIP 0 generates a request with address conflict, VIP 0
blocks this conflict  request and schedules an irrelevant
request to process. The simulator checks whether the request
is still conflict after the irrelevant request completes. The 
simulator processes this request if it is conflict-free or 
schedules next irrelevant one until confliction disappears. 
Therefore, VFCC solves the problem of synchronization 
among VIPs by decentralized address conflict checking 
mechanis m and conflict request scheduling strategy.

Finally, we introduce the problem of communication and 
synchronization between a VIP and the RTL. A request
generator changes a request into signals and sends these 
signals to the RTL. This request flow is the communication 
between a VIP and the RTL. In this process, the RTL just 
waits for a request so that there are no overheads. Multiple 
VIPs communicate with the RTL in the same way.

Fig. 5 Two strategies to synchronization among multiple VIPs.

Fig. 6 Synchronization between a VIP and the RTL.

A VIP synchronizes RTL by a set of handshake signals. 
There may be changes of the cache model or the memory 
model at the end of each  request. To ensure accuracy, the 
simulator needs to start with the RTL simultaneously and the 
checker needs to check when the RTL completes a request.
Fig. 6 shows the synchronization between a VIP and the RTL. 
Fig. 6(a) shows a valid signal from the generator to the RTL
which signs a ready request. Fig. 6(b) shows a ready signal 
from the RTL to start the simulator. Fig. 6(c) shows a valid 
signal from the RTL to the checker, and it starts to compare 
the results. Fig. 6(d) shows a finish signal from a VIP to 
release the request. This synchronization mechanism is 
accurate and avoids overhead.

D. Solving inconsistence between RTL and the simulator

VFCC also focuses on simulation accuracy as well as 
speed. Fig. 7 shows an example of the simulator inconsistent
with the RTL. VFCC adds a self-adjusted mechanism to deal 
with that problem.

Fig. 7(a) describes a scenario of two requests from cores
under MOESI protocol. Core 0 sends a load request with 
address A. Later, core 1 sends a load request with address B.
To simplify  the description, we assume that the cache use
direct mapping strategy and address A, B are map to the 
same cache line. In core 0, the init ial cache state is invalid, 
shorted as I. And in core 1, the initial cache state is exclusive, 
shorted as E. The RTL receives request A and B in order.

Fig. 7(b) describes the simulat ion process. The simulator 
processes request A first. After simulation, in core 0, the 
cache state is S(shared). In core 1, the cache state is S, too. 
Both cache lines correspond to address A. After simulation
of request B, in core 0, the cache state is still S and the cache 
line stills corresponds to address A. In core 1, the cache state 
updates to E and the cache line corresponds to address B.

Fig. 7(c) describes the situation that RTL executes 
requests in the receiving order. The execution process of RTL
is same as that of the simulator. Their results are consistence.

Fig. 7(d) describes the situation that RTL executes request 
out of order. By out-of-order we mean that the RTL receives 
request A first, while it completes request B first. After 
execution of request B, in core 1, the cache state updates to E 
and the cache line corresponds to address B. In core 0, the 
cache line is still I. After execution of request A next, in core
0, the cache state updates to E and the cache line corresponds 
to address A. In this situation, the execution result of the 
simulator is inconsistent with the RTL.
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Fig. 7 An example of inconsistence between RTL and the simulator.

Fig. 8 Scan function in cache-update interface for self-adjusted.

The inconsistence comes from the different cache-update 
timing for the simulator simulates requests as the receiving 
order while the RTL executes requests out-of-order. And this 
inconsistence only happens on state E and state S, whose 
data is clean. VFCC adds a self-ad justed mechanism in 
cache-update to change the simulation result. Fig. 8 shows a 
scan function. There is an addit ional loop to scan the request 
record. If a request on-fly with the same address is in the 
record, it is already simulated and the state is E or S, the 
cache state needs to be updated to the new state. This 
mechanis m avoids checking inconsistence.

IV. Experiments and Results

VFCC is designed to validate a cache-coherence 
component of a commercial 64-bit superscalar processor. 
This fully synthesizable processor runs at about 1GHz under 
TSMC 65nm technology. In this part, we first evaluate the 
speed of VFCC by comparing VFCC with a static-sequential
simulator and a static-parallel simulator on the same host 
machine. Then, we analyze the parallelism impact and the 
dynamic generation impact on VFCC on two host machines. 
Finally, we illustrate the contributions of VFCC. TABLE I
lists the parameters of two host machines.

TABLE I Parameters of host machines.
Parameters Configuration Value

Host Machine A B
Physical CPU Num 2 2

CPU cores 4 2
Siblings 8 2

Processor Num 16 4
CPU GHz 1.6~2.4 2.0

OS Version Red Hat Enterprise 
Linux AS release 4

Red Hat Enterprise 
Linux AS release 4

We record the verification time of three simulators at the 
request number of 0.1 million to 2 million. Fig. 9 shows that 
VFCC gets a better performance than the other simulators.
As the number of testing requests goes on, the advantage of 
VFCC is more obvious, especially than the static-sequential
simulator. The dynamic-sequential simulator has a better 
performance than the static-sequential simulator for the 
overlap, but sequential simulation still has a limitation. When 
request number goes to 2 million, VFCC needs about 2.96 
hours to finish verification, while the dynamic-sequential
simulator needs 1.5 t imes longer than VFCC and the 
static-sequential simulator costs about 15.79 hours which is 
nearly 5.3 times.

We record the verification time of VFCC on two host 
machines with  the request number from 0.1 million to  2 
million. VFCC costs shorter time on host machine A for 
multithread programming. As shown in Fig. 10, the timing 
gap between two host machines gets larger as the request 
number grows. When the number of requests goes to 2
million, verificat ion time on host machine B is almost 4 
times as that on host machine A. It costs VFCC nearly 10.97 
hours to finish 2 million requests on host machine B.

Fig. 9 The simulation time of static-sequential simulator, 
dynamic-sequential simulator and VFCC on Server A

Fig. 10 Verification time of VFCC on host machine A and B.
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interface cache-update( int core_num, long address )

//CACHE UPDATE FUNCTION

//SCAN ADDRESS IN REQUEST_RECORD

for( every core ){

if( address in record[i] && record[i].sim && state is S or E){

for( every core )

request_record[i].cache[j ].state=cache[i].state;
}

}
}
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To analyze the impact of dynamic generation on VFCC,
we record request generation time and simulat ion time of the 
static-parallel simulator and VFCC.

TABLE II illustrates the comparison between a simulator 
and VFCC on host machine A and host machine B. The 
experimental results show that request generation time costs 
more than 52% of simulation t ime of the static-parallel 
simulator on host machine A and more than 33% on host 
machine B. Request generation is obviously the bottleneck of 
the static-parallel simulator. VFCC has 2.93 t imes speedup
on host machine B and 5.12 times speedup on host machine
A. As the number of cores grows, the advantage of VFCC is 
more obvious.

We also record the contributions of the static-sequential 
simulator and VFCC. The total number of bugs found by the 
static-sequential simulator is 15 while 52 bugs found by
VFCC. VFCC contributes more for it constructs parallel 
scenario to validate concurrent requests instead of one by 
one. VFCC also tests more random requests in the same 
execution time than the static-sequential simulator.

V. Conclusion

This paper presents a high efficient verification 
framework using parallel simulation to validate a 
cache-coherence protocol component of a mult iprocessor.
VFCC explo its mult i-level parallelis m by analyzing the 
features of the RTL of cache coherence: parallelis m among 
multip le function units in a VIP, parallelis m among multiple 
VIPs and the overlap between a VIP and the RTL.
Meanwhile, VFCC has effectively solved the communication 
and synchronization problem among mult i-level parallelism 
with no overheads. VFCC also concludes and solves the 
inconsistent problem between the protocol simulator and the 
RTL to ensure accuracy. The experiments show that VFCC 
can be at least 5 times faster than a traditional sequential 
simulator on the same host machine.
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TABLE II Comparison between two simulators on host A and B.
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Sim Speedup 2.93 2.93 2.95 2.95
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