
VFCC: A Verification Framework of Cache Coherence using Parallel Simulation

Abstract A cache coherence protocol is a vital component of a
multiprocessor to maintain the data consistency. In this paper,
we proposed VFCC, which is a simulation framework to
validate a cache-coherence protocol implementation of a
commercial 64-bit superscalar multiprocessor. It exploits
multiple-level parallelism to accelerate validation without
overheads among threads. Our experimental results
demonstrate VFCC has a 5.0x speedup than a traditional
simulator on a conventional 16-core host machine.

I. Introduction

A cache coherence protocol is a vital component of a
multiprocessor to maintain the data consistency in local
caches and the main memory. It defines a set of rules
coordinating processors, cache controllers, and memory
controllers to ensure: the value returned by a read must be
always the last value written to that location [1, 2]. Cache
coherence protocols are notoriously difficu lt to design and
verify [3]. Due to more and more complicated behavior of a
multiprocessor, verifying the correctness of a cache
coherence protocol is becoming a major task.

A survey presents three widely accepted formal
approaches to verify cache coherence protocols [4]. In fact,
these work focus on the protocol semantics rather than the
protocol implementation. In order to ensure high
performance and to accommodate manufacturing realities
such as unordered coherence message networks, current
protocols allow simultaneous or outstanding requests and
split transactions. Therefore, the characteristics of a protocol
implementation, such as parallel processing and out-of-order
complet ion strategies, also play an important role in the
correctness of execution results. Simulat ion is effective to
validate the details of a protocol implementation [5].

In this paper, we proposed VFCC, a verification
framework of a cache-coherence protocol implementation
using parallel simulation. It is used to validate the RTL
(Register Transfer Level) design of the MOESI protocol
[6,7]. In general, a cache-coherence protocol is composed of
three components: a finite set of states, a finite set of events,
and a transition relation. There are more details of a
cache-coherence protocol implementation, which involves
interactions between the protocol implementation and the
cache or the main memory, one transaction split into multiple
actions, concurrent requests and so on. VFCC validates the
implementation details as well as protocol semantics. VFCC

is based on transaction-level [8] simulation technique. Its
VIP (Verification Intellectual Property) deals with a
transaction by three units: a request generator, a protocol
simulator and a request checker. The units form a p ipeline
structure by mult ithread programming. VFCC also exploits
multip le VIPs to simulate mult iple requests from different
cores concurrently. Another feature of VFCC is the
parallelism between the simulator and the RTL, an overlap
between simulat ion time and execution time. VFCC solves
the problems of communicat ion and synchronization [9] for
each level of parallelis m without overheads. A
transaction-level simulator is not cycle accurate. There may
be inconsistence among checkpoints to be adjusted [10, 11].

The rest of this paper is organized as follows. Section 2
discusses related work. VFCC description comes next in
Section 3. Sect ion 4 shows the experiments and results.
Section 5 is our conclusion.

II. Related Work

In the last twenty years, some methods have been
proposed to verify the correctness of a coherence protocol. A
survey has shown that there are three major techniques based
on state enumeration, (symbolic) model checking and
symbolic state model [4]. These techniques characterize the
protocol as some states and search all reachable states
exhaustively. Moreover, some recent approaches [12-14]
have extended one of these methodologies to verify more
complex protocols, like adaptive or hierarchical protocol or
directory-based protocols [15, 16]. In fact, these techniques
prove correctness of a protocol specification by focusing on
the protocol semantics without any consideration of
architectural behavior.

Dynamic verification approach has been proposed recently
[17, 18]. It is a powerfu l error detection mechanism, but the
existing coherence checkers are costly to implement. Another
effective method to validate RTL design is simulat ion.
Worawan and Roland address three properties of a coherence
protocol (safety, liveness and inclusion). They propose a
specification-based parameter model interaction (SPMI)
technique to detect these cases in a particular DSM cluster
simulator [19]. DSiMCluster is a sequential simulation
model that runs parallel workloads by mult ithread
interleaving to emulate a mult ithreaded runtime environment.
Simulation time and accuracy are two key factors .

Qiaoli Xiong, Jiangfang Yi, Tianbao Song, Zichao Xie, Dong Tong

Microprocessor Research & Development Center, School of Electronics Engineering and Computer Science,
Peking University, Beijing, China, 100871
Tel : 010-6275-9129, Fax : 010-6275-6231

{xiongqiaoli, yijiangfang, songtianbao, xiezichao, tongdong}@mprc.pku.edu.cn

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

8D-1

705

Considering to the two features (concurrent and out-of-order
requests) of a protocol implementation, parallel simulation is
a powerful method to speed up validation and to ensure
accuracy by simulating concurrent requests.

Simulation technology focuses on three aspects: stimuli
generation, simulation, and results checking. Stimuli can be
generated statically or dynamically. Static approach prepares
a large number of stimuli before simulat ion. This approach
requires both generation time and storage space. Dynamic
approach disperses stimuli generation throughout the
simulation process to get an overlap. It also saves storage.

There are sequential simulation technique and parallel
simulation technique. By sequential simulation we mean that
all functional modules (a generator, a simulator and a
checker) from a framework work in time-sharing way. It is
not suitable for a parallel design by interleaving, so
sequential simulat ion has a verification-space limitation [20].
Parallel simulation employs multithread programming. It can
effectively construct a stimuli scenario for a design with
parallel feature, but it faces the difficu lty of communication
and synchronization.

According to the granularity of checking cycle, simulators
can be cycle-accurate or checkpoint-accurate. Fig. 1(a)
shows cycle-accurate simulation. It is suitable for a simulator
which has to remain consistent with the design very cycle,
like the pipeline structure of a processor. However, it has a
lot overhead. Fig. 1(b) shows checkpoint-accurate simulation.
It is suitable for a design focusing on transaction, like cache
structure whose data or status to be changed at the end of a
request. This approach avoids unnecessary overhead.

There are four kinds of simulators according to the
combination of stimuli generation (static or dynamic) and
simulation method (sequential or parallel): a static-sequential
simulator, a static-parallel simulator, a dynamic-sequential
simulator and a dynamic-parallel simulator. Fig. 2(a) and Fig.
2(b) show the static generation method. It costs a lot of time
to prepare the stimulus. Fig. 2(c) and Fig. 2(d) show the
dynamic generation method. The overlap advantage of the
method will be more obvious as the number of stimuli grows.
Fig. 2(a) and Fig. 2(c) show sequential simulation method.
There are two drawbacks. The first one is that it takes longer
to generate the stimuli one by one. The second one is that it
fails to verify the concurrent characteristic of the RTL. Fig.
2(b) and Fig. 2(d) show parallel simulation. Th is approach
provides the situation of concurrent mult iple requests. Fig.
2(d) shows the way VFCC works in. The description of its
implementation details is in the fo llowing parts.

Fig. 1 Cycle-accurate and checkpoint-accurate.

Fig. 2 Comparison among static-sequential simulation(a), static-
parallel simulation(b), dynamic-sequential simulation(c) and
dynamic-parallel simulation(d).

III. VFCC: Verification Framework of Cache
Coherence

We designed a cache coherence protocol component for a
commercial 64-bit superscalar quad-core multiprocessor. It
employs MOESI protocol based on bus snoopy mechanism.
It supports 10 concurrent requests and out-of-order requests
complet ion strategies . Our goal is to fast validate the RTL
implementation of the coherence-protocol component.

VFCC is a verification framework for the cache-coherence
protocol RTL implementation. It consists of mult iple VIPs
and multiple peripheral models. Each VIP consists of
multip le functional units. The key part of a VIP is a
cache-coherence protocol simulator. In th is section, we first
introduce the structure of VFCC, followed by the three
aspects of VFCC: firstly, mult i-level parallelis m of VFCC;
secondly, the solutions to deal with communicat ion and
synchronization problem; finally, the methods to keep the
transaction-level simulator and the RTL design consistency.

A. Structure of VFCC

Fig. 3 shows the structure of VFCC. It consists of four
parts. The key part of VFCC is a VIP. Each VIP simulates the
behavior of a request from one core. A VIP consists of a
request generator, a cache-coherence protocol simulator and
a request checker. There are N VIPs in VFCC to simulate N
requests from N cores. The second part of VFCC is a
memory model. It simulates the behavior of the main
memory and the controller. The third part of VFCC is N
cache models. Each VIP gets one. The last part of VFCC is N
request records to save its requests and simulation results.
The design under test (DUT) is the RTL of protocol.

Check Every Cycle

Check At Point

Simulation Time (a)

Simulation Time (b)

Simulator

RTL

Simulator

RTL

Test Bench

RTL

Test Bench 0

RTL

RTL

Test Bench 0

Test Bench 1

RTL

(a) Simulation Time

Generate and
Simulate Request

Check
Request

RTL Process
Request

(b) Simulation Time

(c) Simulation Time

(d) Simulation Time

Test Bench 1

Test Bench

8D-1

706

Fig. 3. Structure of VFCC.

Multiple VIPs work concurrently in the same way. In a
VIP, a request generator generates a random request first.
The request generator sends the stimuli to the simulator and
the RTL at the same t ime and saves the request in a record.
Then, it continues to generate a new request. We extract
some constrains from the protocol to add into the generator.
Therefore, the generator has a self-adjusting ability to
abandon an invalid request and prepare a new one. The
cache-coherence protocol simulator is a h igh-level reference
model for the RTL. The simulator processes the same request
as the RTL and saves the simulation result in the record for
the checker. The checker compares the results at a check
point. The simulation result and execution result refer to the
changes of the cache models and the memory model.

The cache model exp lo its LRU (least recently used)
strategy with parameterized cache size and parameterized set
number. The cache model p rovides a variety of interfaces for
the RTL and the simulator, such as snooping status, reading
and writ ing data, updating cache line and so on.

The memory model simulates the behavior of accessing
data by address as the main memory. It takes byte as a store
unit. The memory model also provides interfaces of reading
and writ ing data.

B. Multi-Level of Parallelism

VFCC utilizes multi-level parallelis m to accelerate
simulation. The first level parallelis m of VFCC is among the
three functional units in a VIP. Each unit works in an
independent thread. Multiple threads execute concurrently on
a multiprocessor host machine. These threads process one
request in order, but they form a pipelined structure to
process different requests. This mechanis m increases the
throughput and reduces the total verification time.

The second level parallelism of VFCC is among multiple
VIPs. Each VIP works in one process. VFCC exploits
parameterized number o f concurrent VIPs to obtain a good
scalability for RTL may execute different number of
concurrent requests . Each VIP simulates and checks requests
separately. This level of parallelis m creates a test situation
the same as a real mult iprocessor system.

The last level parallelis m of VFCC is the overlap between
the protocol simulator and the RTL. VFCC h ides the stimuli
generating time by utilizing a virtual p ipelined structure
between the VIP and the RTL. The generator produces a new
request while the RTL executes the prior one. Therefore,
total verificat ion time is the sum of the t ime generating the
first request, the time checking the last request and the time
processing all the requests by the RTL.

VFCC utilizes multip rocessor host machine by exploit ing
a fine-grain parallelism. The first-level parallelis m reduces
simulation t ime by a pipeline structure. The second-level
parallelism promises verification accuracy by concurrent
requests. The last-level parallelis m accelerates simulat ion by
overlapping simulation and execution.

C. Communication and Synchronization

Two major overheads from parallel simulat ion are the
communicat ion problem and the synchronization problem
among multip le threads. This part introduces the solutions to
reduce the overheads.

Firstly, we introduce the first level parallelism of
communicat ion and synchronization. Fig. 4 shows the data
flow and the control flow among three threads in a VIP. A
request is generated by the generator thread and stored in a
request record for the simulator thread. The simulator thread
keeps checking if a request is ready, and it processes the
request if it is ready, or keeps waiting. In the simulation
process, the simulator thread accesses the status and data of
the cache model or the data of the memory model. Then the
simulator thread saves the simulation result into the record.
Meanwhile, the checker thread keeps checking if simulation
fin ishes. The checker thread reads simulat ion result to
compare with the cache model and the memory model.

Therefore, there is no communication among threads
directly except the data flow, which is an indirect kind of
communicat ion. In VFCC, requests and simulat ion results
are in the form of a global shared variable stored in a request
record so that each thread accesses directly. Each thread
accesses the cache model and the memory model through
their interfaces directly, too.

The control flow is the synchronization among threads.
Since multip le threads read the different ready bits to check
if the request is available, it is safe for threads to access
shared variable direct ly without synchronization mechanism.

Fig. 4 Communication and synchronization in a VIP.

Core N Sim

Memory
Model

SCU

VIP 0

Request
Checker

Request
Generator

Protocol
Simulator

VIP1

Request
Checker

Request
Generator

Protocol
Simulator

VIP N

Request
Checker

Request
Generator

Protocol
Simulator

Verification Framework

N
1Request

Record 0
N

1Cache
Model 0

Generator
Thread

Request
Record

Request
Ready?

Simulator
Thread

Checker
Thread

Simulation
Finish?

N
1

Cache Model 0 Memory Model

Data Flow

N N

Y Y

Data Flow

Control
Flow

Data Flow

8D-1

707

Secondly, we introduce how to reduce communication and
synchronization among VIPs. As we know, the key
responsibility of cache coherence is to keep data consistent
and up-to-date to every core. In other words, for each core,
its read request gets the same data as others; its write request
assures that all cores can get the latest data of this address in
the next read. Therefore, only requests with the same address
needs to be executed in sequential, irrelevant requests are
safe to be executed concurrently, which means that multiple
VIPs need not to communicate with others.

The synchronization among VIPs needs to be solved when
requests with the same address or address conflict. We use an
address table and priority flag to keep all the requests on-fly
for the simulator threads. If a simulator thread checks an
address confliction in the address table and it does not own
the priority flag, it stops simulation. This kind of
decentralized checking mechanism reduces synchronization
overheads. VFCC also optimizes synchronization among
VIPs by a scheduling strategy. Fig . 5 shows two strategies to
synchronization among VIPs with address conflict. Fig. 5(a)
shows a blocking strategy. VIP 1 generates and simulates a
request. If VIP 0 generates a request with address conflict
this time, the simulator has to wait for VIP 1 until its
complet ion. There is some performance loss for it becomes
sequential simulation. Fig. 5(b) shows a scheduling strategy.
If VIP 0 generates a request with address conflict, VIP 0
blocks this conflict request and schedules an irrelevant
request to process. The simulator checks whether the request
is still conflict after the irrelevant request completes. The
simulator processes this request if it is conflict-free or
schedules next irrelevant one until confliction disappears.
Therefore, VFCC solves the problem of synchronization
among VIPs by decentralized address conflict checking
mechanis m and conflict request scheduling strategy.

Finally, we introduce the problem of communication and
synchronization between a VIP and the RTL. A request
generator changes a request into signals and sends these
signals to the RTL. This request flow is the communication
between a VIP and the RTL. In this process, the RTL just
waits for a request so that there are no overheads. Multiple
VIPs communicate with the RTL in the same way.

Fig. 5 Two strategies to synchronization among multiple VIPs.

Fig. 6 Synchronization between a VIP and the RTL.

A VIP synchronizes RTL by a set of handshake signals.
There may be changes of the cache model or the memory
model at the end of each request. To ensure accuracy, the
simulator needs to start with the RTL simultaneously and the
checker needs to check when the RTL completes a request.
Fig. 6 shows the synchronization between a VIP and the RTL.
Fig. 6(a) shows a valid signal from the generator to the RTL
which signs a ready request. Fig. 6(b) shows a ready signal
from the RTL to start the simulator. Fig. 6(c) shows a valid
signal from the RTL to the checker, and it starts to compare
the results. Fig. 6(d) shows a finish signal from a VIP to
release the request. This synchronization mechanism is
accurate and avoids overhead.

D. Solving inconsistence between RTL and the simulator

VFCC also focuses on simulation accuracy as well as
speed. Fig. 7 shows an example of the simulator inconsistent
with the RTL. VFCC adds a self-adjusted mechanism to deal
with that problem.

Fig. 7(a) describes a scenario of two requests from cores
under MOESI protocol. Core 0 sends a load request with
address A. Later, core 1 sends a load request with address B.
To simplify the description, we assume that the cache use
direct mapping strategy and address A, B are map to the
same cache line. In core 0, the init ial cache state is invalid,
shorted as I. And in core 1, the initial cache state is exclusive,
shorted as E. The RTL receives request A and B in order.

Fig. 7(b) describes the simulat ion process. The simulator
processes request A first. After simulation, in core 0, the
cache state is S(shared). In core 1, the cache state is S, too.
Both cache lines correspond to address A. After simulation
of request B, in core 0, the cache state is still S and the cache
line stills corresponds to address A. In core 1, the cache state
updates to E and the cache line corresponds to address B.

Fig. 7(c) describes the situation that RTL executes
requests in the receiving order. The execution process of RTL
is same as that of the simulator. Their results are consistence.

Fig. 7(d) describes the situation that RTL executes request
out of order. By out-of-order we mean that the RTL receives
request A first, while it completes request B first. After
execution of request B, in core 1, the cache state updates to E
and the cache line corresponds to address B. In core 0, the
cache line is still I. After execution of request A next, in core
0, the cache state updates to E and the cache line corresponds
to address A. In this situation, the execution result of the
simulator is inconsistent with the RTL.

Simulation Time (a)

Simulation Time (b)

VIP 0

VIP 1

(a) Stop Simulation (b) Schedule Simulation

VIP 0

VIP 1

Generate
Request

Simulate
Request

address-conflict
request

irrelevant request

Multi-core Connection RTL

Generator Simulator Checker

Request
Record

(a) (b) (c) (d)

Request
Flow

Handshake
Signals

VIP

8D-1

708

Fig. 7 An example of inconsistence between RTL and the simulator.

Fig. 8 Scan function in cache-update interface for self-adjusted.

The inconsistence comes from the different cache-update
timing for the simulator simulates requests as the receiving
order while the RTL executes requests out-of-order. And this
inconsistence only happens on state E and state S, whose
data is clean. VFCC adds a self-ad justed mechanism in
cache-update to change the simulation result. Fig. 8 shows a
scan function. There is an addit ional loop to scan the request
record. If a request on-fly with the same address is in the
record, it is already simulated and the state is E or S, the
cache state needs to be updated to the new state. This
mechanis m avoids checking inconsistence.

IV. Experiments and Results

VFCC is designed to validate a cache-coherence
component of a commercial 64-bit superscalar processor.
This fully synthesizable processor runs at about 1GHz under
TSMC 65nm technology. In this part, we first evaluate the
speed of VFCC by comparing VFCC with a static-sequential
simulator and a static-parallel simulator on the same host
machine. Then, we analyze the parallelism impact and the
dynamic generation impact on VFCC on two host machines.
Finally, we illustrate the contributions of VFCC. TABLE I
lists the parameters of two host machines.

TABLE I Parameters of host machines.
Parameters Configuration Value

Host Machine A B
Physical CPU Num 2 2

CPU cores 4 2
Siblings 8 2

Processor Num 16 4
CPU GHz 1.6~2.4 2.0

OS Version Red Hat Enterprise
Linux AS release 4

Red Hat Enterprise
Linux AS release 4

We record the verification time of three simulators at the
request number of 0.1 million to 2 million. Fig. 9 shows that
VFCC gets a better performance than the other simulators.
As the number of testing requests goes on, the advantage of
VFCC is more obvious, especially than the static-sequential
simulator. The dynamic-sequential simulator has a better
performance than the static-sequential simulator for the
overlap, but sequential simulation still has a limitation. When
request number goes to 2 million, VFCC needs about 2.96
hours to finish verification, while the dynamic-sequential
simulator needs 1.5 t imes longer than VFCC and the
static-sequential simulator costs about 15.79 hours which is
nearly 5.3 times.

We record the verification time of VFCC on two host
machines with the request number from 0.1 million to 2
million. VFCC costs shorter time on host machine A for
multithread programming. As shown in Fig. 10, the timing
gap between two host machines gets larger as the request
number grows. When the number of requests goes to 2
million, verificat ion time on host machine B is almost 4
times as that on host machine A. It costs VFCC nearly 10.97
hours to finish 2 million requests on host machine B.

Fig. 9 The simulation time of static-sequential simulator,
dynamic-sequential simulator and VFCC on Server A

Fig. 10 Verification time of VFCC on host machine A and B.

-| I

A| E

Core 0:

Core 1:

A
B

A| S

A| S

Core 0:

Core 1:

A

B

A| S

B| E

Core 0:

Core 1:

A

B

-| I

B| E

Core 0:

Core 1:

A
B

A| E

B| E

Core 0:

Core 1:

A
B

A| S

A| S

Core 0:

Core 1:

A
B

A| S

B| E

Core 0:

Core 1:

A
B

Request

Core0 Core1
Cache State

(a)scenario

(b)simulation

(c) RTL execution in order (d) RTL execution out of order

State ChangeProcess A

simulation
time

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ve
rif

ica
tio

n
Ti

m
e(

S)

Request Number (*105)

VFCC Dynamic-serial Simulator Static-serial Simulator

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ve
rif

ica
tio

n
Ti

m
e

(s
)

Simulation Requests Num(*105)

VFCC on server A VFCC on server B

interface cache-update(int core_num, long address)

//CACHE UPDATE FUNCTION

//SCAN ADDRESS IN REQUEST_RECORD

for(every core){

if(address in record[i] && record[i].sim && state is S or E){

for(every core)

request_record[i].cache[j].state=cache[i].state;
}

}
}

8D-1

709

To analyze the impact of dynamic generation on VFCC,
we record request generation time and simulat ion time of the
static-parallel simulator and VFCC.

TABLE II illustrates the comparison between a simulator
and VFCC on host machine A and host machine B. The
experimental results show that request generation time costs
more than 52% of simulation t ime of the static-parallel
simulator on host machine A and more than 33% on host
machine B. Request generation is obviously the bottleneck of
the static-parallel simulator. VFCC has 2.93 t imes speedup
on host machine B and 5.12 times speedup on host machine
A. As the number of cores grows, the advantage of VFCC is
more obvious.

We also record the contributions of the static-sequential
simulator and VFCC. The total number of bugs found by the
static-sequential simulator is 15 while 52 bugs found by
VFCC. VFCC contributes more for it constructs parallel
scenario to validate concurrent requests instead of one by
one. VFCC also tests more random requests in the same
execution time than the static-sequential simulator.

V. Conclusion

This paper presents a high efficient verification
framework using parallel simulation to validate a
cache-coherence protocol component of a mult iprocessor.
VFCC explo its mult i-level parallelis m by analyzing the
features of the RTL of cache coherence: parallelis m among
multip le function units in a VIP, parallelis m among multiple
VIPs and the overlap between a VIP and the RTL.
Meanwhile, VFCC has effectively solved the communication
and synchronization problem among mult i-level parallelism
with no overheads. VFCC also concludes and solves the
inconsistent problem between the protocol simulator and the
RTL to ensure accuracy. The experiments show that VFCC
can be at least 5 times faster than a traditional sequential
simulator on the same host machine.

Acknowledgments

This work was supported by the National High
Technology Research and Development Program of China
(Pro ject No.2009ZX01029-001-002).

TABLE II Comparison between two simulators on host A and B.
Req Num (*10000) 50 100 150 200

O
n

Se
rv

er
A

st
at

ic
-

pa
ra

lle
l Gen Time(s) 7333 15021 22237 29667

Sim Time(s) 6164 12311 18919 27207
Gen PCT(%) 54.3 55 54 52.2
Total Time(s) 13497 27332 41156 56874

VFCC Sim Time(s) 2621 5337 7946 10687
Sim Speedup 5.15 5.12 5.18 5.32

O
n

Se
rv

er
B

st
at

ic
-

pa
ra

lle
l Gen Time(s) 9779 19531 29302 39033

Sim Time(s) 18327 38192 57696 77696
Gen PCT(%) 34.8 33.8 33.7 33.4
Total Time(s) 28106 57723 86998 116729

VFCC Sim Time(s) 9588 19685 29449 39517
Sim Speedup 2.93 2.93 2.95 2.95

References

[1]. Archibald, P. A. and J. Baer, Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model , ACM
Transactions on Computer Systems, pp. 273-298, 1986.
[2]. Handy, J, The Cache Memory Book, Academic Press, 1993.
[3]. David L. Dill Andreas J. Drexler Alan J. Hu C. Han Yang,

Protocol Verification as a Hardware Des ign Aid , In Proceedings
of the ICCD Conference, pp. 522-525, 1992.
[4]. Pong, F. and M. Dubois, Verification techniques for cache
coherence protocols , ACM Computing Surveys, pp. 82-126, 1997.
[5]. M. Tomasevic, V.Milutinovic,

, In Proceedings of the Hawaii
International Conference on System Sciences, pp. 426-436, 1992.
[6]. P. Sweazy, A. J. Smith, A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE Futurebus ,
Proceedings of the 13th Annual International Symposium on
Computer Architecture, pp. 414-423, 1986.
[7]. on of

, Proc. Second Workshop Memory
Performance Issue, 2001.
[8]. Daniel Schwartz-Narbonne, Carven Chan, Yogesh Mahajan,
Sharad Malik, Supporting RTL Flow Compatibility in a
Microarchitecture-Level Design Framework , In Proceedings of the
CODES+ISSS Conference, pp, 343-352, 2009.
[9]. Dukyoung Yun, Jinwoo Kim, Sungchan Kim, Soonhoi Ha,

Simulation Environment Configuration for Parallel Simulation of
Multicore Embedded Systems , In Proceedings of the DAC
Conferenc, pp. 345-350, 2011.
[10]. G. Schirner and R. Dömer, Fast and accurate transaction level
models using result oriented modeling , In Proceedings of the
ICCAD Conference, pp. 363-368, 2006.
[11]. Shacham, O., Wachs, M., Solomatnikov, A., Firoozshahian, A.,
Richardson, S., Horowitz, M. Verification of chip multiprocessor
memory systems using a relaxed scoreboard , In Proceedings of the
MICRO Conference, pp. 294-305. 2008.
[12]. Sorin, D.J., M. Plakal, A.E. Condon, M.D. Hill, M.M.K.
Martin, D.A. Wood,

, IEEE Transactions
on Parallel and Distributed Systems, pp. 556-578, 2002.
[13]. Delzanno, G., -based verification of parameterized
cache coherence , Formal Methods in System Design,
pp.257-301, 2003.
[14]. Tasiran, S., Y. Yu, B. Batson,

, In DAC, pp.
356-361, 2003.
[15]. Lv, Y., H. Lin, H. Pan, Computing invariants for parameter
abstra , Proceedings of the International Conference on
Formal Methods and Models for Codesign, pp. 29-38, 2007.
[16]. Rajarshi Mukherjee, Yozo Nakayama, Toshiya Mima,

Verification of an Industrial CC-NUMA Server , In Proceedings of
ASP-DAC, pp. 747-752, 2002.
[17]. A. Meixner, D. J. Sorin,

,
Computer Architecture, pp. 482-493, 2005.
[18]. A. Meixner, D. J. Sorin,
Consistency in Cache-Coherent Multithreaded Computer
A ,
and Networks, 2006.
[19]. W. Marurngsith, -based
Verification in a Distribute ,
SIMULATION, p. 0037549709349843, 2009.
[20]. E. Viaud, F. Pecheux, A. Greiner, An efficient tlm/t modeling
and simulation environment based on conservative parallel discrete
event principles , In DATE, pp. 94-99, 2006.

8D-1

710

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

