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PAPER

Retransmission-Based Distributed Video Streaming with a
Channel-Adaptive Packet Scheduler

Young H. JUNG†a), Hong-Sik KIM††, Nonmembers, and Yoonsik CHOE††, Member

SUMMARY This paper describes a channel-adaptive packet scheduler
for improved error control performance in a peer-cooperative distributed
media streaming system. The proposed packet-scheduling algorithm was
designed for the case in which streaming server peers rely on an error-
recovery strategy using retransmission and application-layer automatic re-
peat request rather than error protection using forward error correction. The
proposed scheduler can maximize retransmission opportunities and reduce
the frame loss rate by using the observed channel status from each server
peer. Simulation results show that the proposed algorithm enhances error-
recovery performance in distributed multimedia streaming better than other
schedulers.
key words: error recovery, retransmission, ARQ, distributed media stream-
ing, peer-to-peer, stored-video streaming

1. Introduction

Video streaming over the Internet has been a great success in
the past decade. In general, video streaming requires a larger
bandwidth than other types of Internet services such as Web
browsing. This larger bandwidth requirement occasionally
causes network congestion and server overload, especially
for large-scale services. Distributed multimedia streaming
that is based on many-to-one transmission technology has
garnered much interest [1], [2] to prevent overloading the
streaming server and to use network resources effectively.

In distributed multimedia streaming technology, a
client peer receives segments of stream data from multiple
server peers using independent connections. Using multi-
ple channels provides fault tolerance, and network resources
can be used efficiently because peer-to-peer-like distributed
streaming exploits the upload bandwidth of each participat-
ing peer, which has never been used in traditional client-
server model-based streaming systems. However, the use of
these multiple channels and this segmented data stream can
also result in additional delay for frame reassembly depend-
ing on the transmission order of the segmented data packet
and the status of each channel. Additional delay for frame
reassembly during streaming usually requires the streaming
client to use more pre-roll buffering time or startup delay
before playback, and more rebuffering time during play-
back to avoid starving the playout buffer. Moreover, because
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this additional frame reassembly delay can also decrease re-
transmission opportunities for a lost packet when the video
streaming service uses error recovery, it can also reduce
the objective video quality. Therefore, a packet schedul-
ing scheme must be designed to guarantee minimum de-
lay for frame reassembly both to enhance loss recovery per-
formance and to reduce buffer starvation during distributed
multimedia streaming.

To this end, some avenues of research for segment
scheduling algorithms have been suggested. Xu et al. pro-
posed a content segmentation and allocation algorithm to
guarantee minimum pre-roll delay according to the band-
width that each server peer can provide [3]. Similarly,
Kwon and Yeom suggested fixed-length slotted schedul-
ing exploiting the heterogeneity of the upload contribution
among sender peers [4]. Nguyen and Zakhor proposed opti-
mal packet scheduling algorithms that can reduce the prob-
ability of packets arriving late at the receiver due to net-
work jitter [5]. Although these studies show the potential
of sophisticated packet scheduling in distributed streaming
environments to minimize the delay before streaming play-
back, they did not consider the status of each channel from
separate senders. Furthermore, the possibility of network
congestion and packet loss were not considered.

Nguyen and Zakhor [6] extended their previous work
[5] into a case using forward error correction (FEC) to over-
come transmission errors in each distributed channel. They
also considered redundant packets for FEC in the case of
a packet scheduling procedure. They minimized the prob-
ability of unrecoverable packet loss and guaranteed mini-
mum frame reassembly delay using this scheduling scheme.
However, in their algorithm, they assumed the availability
of sufficient bandwidth from each streaming server, as well
as prior knowledge of the channel information such as the
packet loss rate. In general, although FEC imposes no ad-
ditional delay, it does have the drawbacks of requiring addi-
tional bandwidth and prior knowledge of the channel status.
Moreover, because the bitstream with fixed FEC is assumed
to be allocated to multiple senders, it will be less efficient if
it is used by multiple senders in a heterogeneous and dynam-
ically varying channel environment. Therefore, especially in
a wireless environment that is less predictable and that gen-
erally has insufficient bandwidth for each user, FEC is less
efficient than automatic repeat request (ARQ). In particular,
in a peer-to-peer (P2P) service like distributed streaming, it
is more beneficial for each server peer to reduce its upload
bandwidth contribution by using ARQ rather than FEC [7].
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This paper proposes a channel-adaptive packet
scheduling algorithm designed to provide minimum delay
in frame reassembly and to enhance the ARQ-like error-
recovery performance in a distributed video streaming envi-
ronment. Although normal ARQ is not suitable for real-time
streaming applications, an enhanced version of ARQ called
delay-constrained ARQ or SoftARQ [8] works well because
it is based on a time-constrained selective ARQ principle.
Therefore, the objective of our work is to design a packet
scheduler based on the channel status and ARQ-like behav-
ior for better streaming quality in a distributed streaming
system. To achieve this, the client peer first observes the
channel status of multiple server peers. The scheduler in
the client peer determines the candidate server peer that is
to send each packet of the media stream according to the
expected packet arrival time of each packet. The expected
packet arrival time from each server is calculated based on
the upload bandwidth of the server peer and the observed
current channel status. After selecting the server peer for
each packet that yields the minimum expected packet arrival
time of all the candidate server peers, the packet schedul-
ing map for one group of pictures (GoP) is generated in the
distributed streaming client application. The delay in re-
assembling the frame can be minimized using this proposed
packet scheduling algorithm even in channel errors. More-
over, the reduced delay in frame reassembly helps to pro-
vide more retransmission opportunities for subsequent lost
packets. Eventually, the frame recovery performance can be
improved and overall frame distortion can be minimized by
the proposed scheduling algorithm.

The major contribution of this paper is to demonstrate
that error-recovery performance can be enhanced using a
sophisticated packet scheduler in a distributed stored-video
streaming system. Simulation results show that the pro-
posed scheduler can enhance the quality of service (QoS)
of streaming by reducing the probability of both packet and
frame loss. Therefore, the proposed algorithm is efficient
in applications such as mobile P2P streaming services that
have limited server peer upload bandwidth and dynamically
changing channel status.

The rest of the paper is organized as follows. We de-
fine the service system architecture and model with some
essential assumptions in Sect. 2. In Sect. 3, we present the
packet-scheduling problem and the error-recovery process.
In Sect. 4, we describe the role of the client and server in the
proposed system, and in Sect. 5, we explain the proposed
channel-adaptive scheduler in detail. We present the simu-
lation results in Sect. 6 and conclude in Sect. 7 with a dis-
cussion of areas for future study.

2. Network Model and Service Architecture

Here we present the service and system architecture consid-
ered in this paper along with the assumptions we made. In
this work, we supposed peer-cooperative distributed stream-
ing service which has the feature that each peer should act
as both server and client for the service activation. For this

Fig. 1 Service architecture for distributed stored-media streaming.

distributed streaming service, following assumptions are in-
troduced:

• Each peer caches certain amount of video data chunks
for uploading to others.
• Several peers who have been watching specific content

co-exist in the network.

Note that, in this research, we excluded other research top-
ics except for packet scheduling, such as finding appropri-
ate sending peer or optimally caching video data in dis-
tributed peers. We just focused on packet scheduling al-
gorithm for in-time packet delivery to enhance streaming
quality as a building-block of successful peer-cooperative
distributed streaming service.

As described in previous works [3], [5]–[7] and shown
in Fig. 1, our target service is also on-demand video stream-
ing from a pre-encoded video source. In general, this
stored-video streaming service uses pre-roll buffering time
or startup buffering and has fewer strict time constraints than
live video streaming. Because the video content is already
encoded and stored on server peers, the streaming client can
first obtain and exploit playback information such as the
number of packets per frame and the total number of frames.
For this distributed stored-video streaming service, we as-
sume that server peers that have requested the content are
distributed over the network and they have heterogeneous
upload bandwidth to serve streaming service for other peers.
From the transport layer perspective, User Datagram Proto-
col (UDP) and Real-time Transport Protocol (RTP) are used
with simple feedback control packets. From the perspec-
tive of the system architecture, we assume that the client
has the responsibility for the packet scheduling algorithm.
That is, the client makes a packet sending sequence called a
scheduling map for each sender, and the client delivers this
scheduling map to each sender using the feedback control
channel prior to playing each GoP.

Delay-constrained ARQ [8], [9] is used in this system
for error recovery of the video stream data. This includes
playout buffering, gap-based loss detection, and conditional
retransmission schemes. Playout buffering involves prior
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pre-roll buffering to display the received video stream data;
this process is already widely used in commercial media-
streaming applications. Gap-based loss detection means that
packet-loss detection is based on the gap between two suc-
cessive transmitted packets; it is not determined by a timer
and acknowledgment packet (ACK) for each transmitted
packet. Furthermore, conditional retransmission means that
retransmission of a lost packet is intentionally skipped if the
lifetime of the packet has already expired. In addition, we
assume that retransmission packets have a higher priority
than normal scheduled packets. This simplifies the evalua-
tion and implementation.

Since appropriate peer selection is another research
area, we assume that sufficient numbers of appropriate
server peers that have a unique sever identity (S ID) have
already been chosen. Moreover, we assume that the stream-
ing video profile containing the frame size and GoP struc-
ture has already been communicated to the client. As in [7],
we also assumed that each sender sends packets at a con-
stant rate and denote the time needed to send one packet as
one time unit. Furthermore we assumed that the state transi-
tion in the channel occurs at packet level discrete time unit
and that the steady-state packet loss probability is almost
constant. Therefore, each channel could be assumed to be a
Gilbert-Elliot channel, and it was also assumed that network
conditions for the channels of each sender are independent.

3. Frame Reassembling Delay during the Retransmis-
sion

Nguyen and Zakhor suggested a packet partitioning algo-
rithm (PPA) to minimize startup delay [6]. The PPA can
also result in a minimum delay for frame reassembly be-
cause the reassembly delay of the initial frame is the same
as the startup delay in that paper. We use the term “min-
imum delay for frame reassembly” rather than “minimum
startup delay” as we assume a fixed playout buffering delay
value.

The PPA is executed at individual servers using infor-
mation from the client with a relatively simple equation for
the expected packet arrival time. That is, sender i that has
the minimum expected packet arrival time Ai(n) in Eq. (1)
should be chosen to send the nth packet of the streaming
data.

Ai(n) = ni · Ti(1) + 2Di (1)

where ni is the number of packets already sent by sender i
up to packet n, Ti(1) is the unit time to send one packet for
sender i, and Di is the estimated delay from sender i to the
receiver. This is because it takes Di for the scheduling map
packet to arrive at the sender i through the feedback control
channel, ni · Ti for the nth packet to be sent by sender i, and
Di for it to arrive at the receiver.

This PPA can optimally schedule and allocate each
packet to the appropriate distributed sender while minimiz-
ing the frame reassembly delay because it leads to the min-
imum packet arrival time for each packet. However, if this

Fig. 2 Delay for frame reassembly with PPA scheduler.

Fig. 3 Desired delay for frame reassembly.

scheduling is used in conjunction with ARQ, then it will not
always produce the optimal scheduling solution. For exam-
ple, let us assume two senders that have equal sending band-
width (BW = 1) but quite different instantaneous loss rates
(0% versus 50%). With these senders, if one frame is com-
posed of seven packets (sequence ID 1-7), then the delay for
frame reassembly in the case of the PPA can be seven time
slots as shown in Fig. 2. If, however, we use a packet sched-
ule like that shown in Fig. 3 in the same environment, the
delay for frame reassembly can be reduced to five time slots.
Our objective is to find a near-optimal packet-scheduling al-
gorithm for a retransmission-based system that will provide
the minimum delay for frame reassembly. This reduced de-
lay for reassembling frames can also provide more opportu-
nities for the retransmission of subsequent lost packets and
may result in a lower video frame loss rate.

4. System Design

This section describes the role of the client and server in
the proposed retransmission-based streaming system. In the
system design, the functionality of packet retransmission
and packet scheduling is allocated to network adaptation
layer (NAL) application to avoid OS kernel change. This
NAL application is located in the middle of core streaming
application and transport layer. In this paper, we just de-
noted this NAL as an “application.”

The server peer application in this system has these rel-
atively simple functions:

• Store the scheduling map from the client peer.
• Send the stream packets assigned to it in the scheduling

map.
• Send retransmission packets with the highest priority

whenever it receives an ARQ from the client peer.

The client peer application in this system has more complex
functions than the server:

• Generate the scheduling map according to the proposed
algorithm.
• Observe the channel status parameters such as average
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loss rate or loss model transition probability.
• Check the sequence gap using received and expected

packet identity (P ID).
• Send the ARQ message to the server to which the lost

packet is allocated.
• Check the playout buffer (PoB) status and attempt re-

buffering when the PoB level falls below the predefined
threshold.

We use two different identities for each packet during
streaming to check for packet loss based on the sequence
gap and channel status. The P ID is used among whole
server peers, and therefore, each packet from server peers
contains a unique P ID. If a retransmission takes place, the
client sends an ARQ with this P ID and the server peer also
sends the packet with the requested P ID. Another identity,
the local sequence identity (LSEQ ID), is used locally by
each server peer. This LSEQ ID is incremented by one each
time the server peer sends a packet, for both normal and re-
transmission packets. The client peer can calculate the chan-
nel status from each server peer using this LSEQ ID. That
is, the gap of the LSEQ ID between two successive received
packets means the packet loss in the transmission channel.
By using this identity, the client peer counts the number of
good-to-bad and bad-to-good state transition event, and up-
dates the state transition probabilities, which will be used
for the scheduling algorithm.

5. Channel-Adaptive Packet Scheduler

To reflect the channel status during packet scheduling, the
packet scheduler first continuously observes the channel sta-
tus of each distributed channel. As mentioned in Sect. 2, we
modeled the packet erasure channel as a two-state Markov
channel, which is called the Gilbert-Elliot channel [10].
That is, each channel ci for sender i has the good-to-bad and
bad-to-good transition probability, pi and qi, respectively, as
shown in Fig. 4.

From the steady-state analysis, the average bad status
rate, Li, can be calculated as

Li =
pi

pi + qi
(2)

Let S 0
i be the status of channel ci for the packet under

scheduling consideration. If this packet is lost (i.e., assigned
“bad” status), at least one other packet must be transmitted
successfully for gap-based loss detection. After the detec-
tion of the packet loss by the sequence gap, the retransmis-

Fig. 4 Gilbert-Elliott channel model.

sion packet should be scheduled to be sent by the server be-
cause it is assumed that the ARQ packet is delivered im-
mediately from the client to the server. Let Gi(k) be the
probability that the client receives a packet successfully af-
ter k successive packet losses (Fig. 5). Then, Gi(k) can be
represented with the conditional probability.

Gi(k) = p[S k
i = G, S k−1

i = B, · · · , S 1
i = B, S 0

i = B]

= Liqi(1 − qi)
k−1, k ≥ 1 (3)

where S k
i is the status of channel ci after the kth time-slot

(k ≥ 1). Furthermore, G and B in Eq. (3) means transmis-
sion success state (Good) and fail state (Bad), respectively.
Then, we can calculate the probability Ri(k) that the first
lost packet will be successfully retransmitted after sending
k time-slots from the trellis of channel status by

Ri(k) = Gi(k − 1) × (1 − pi)

= Liqi(1 − qi)
k−2 × (1 − pi), k ≥ 2 (4)

The possible packet arrival time can be calculated from
the probability and the required time for each of two cases:
the case of successful transmission without retransmission
and the case of retransmission after several packet losses.
Therefore, the possible packet arrival time can be approxi-
mated as

Ai ≈ ni

⎡⎢⎢⎢⎢⎢⎣(1 − Li)(Ti(1) + 2Di)

+

K∑

k=2

Ri(k)(Ti(k + 1) + 2Di)

⎤⎥⎥⎥⎥⎥⎦ (5)

where K is the number of possible retransmission opportuni-
ties. Using this equation, we can reflect ARQ behavior in the
scheduling cost function; retransmission probability and its
expected time are applied to the estimated successful packet
reception time. Because we deployed delay-constrained
ARQ, the summation in Eq. (5) should be performed over
the period when the packet is still valid. Therefore, K can
be determined by the term of the estimated packet lifetime.
However, since the packet scheduler cannot accurately an-
ticipate the lifetime of a packet to be sent, the lifetime must
be estimated during the scheduling process. In our imple-
mentation, the lifetime of each packet is simply estimated
as

LT (sec) =
FPoB − Fcurr

1/ f r
(6)

where LT means the life-time of the packet under considera-
tion for scheduling, FPoB is the most recently received high-
est frame number, Fcurr is the most recently played frame

Fig. 5 Trellis for successful retransmission.
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number at the client, and f r is the frame rate of the video
stream. With this LT , we can determine K in Eq. (5) to sat-
isfy the following condition:

arg max
2≤k≤Rmax

(k(Ti(1) + 2Di) ≤ LT ) (7)

where Rmax means the service defined maximum retransmis-
sion number. Like the PPA [6], the sender i that has the min-
imum expected packet arrival time Ai(n) for packet n is se-
lected in the scheduling map. In our implementation of the
system, the packet scheduling map decision is performed
for every GoP during the streaming process to reflect the
updated channel status.

6. Simulation Results

We used network simulator, NS-2 [11] to demonstrate
the proposed packet scheduling algorithm and distributed
streaming system. Commercial MPEG-4 Simple Profile
video streams were used for the simulation. We grouped one
I-VOP and afterward successive P-VOPs as one GoP unit. In
addition, these video clips were generated to have the frame
rate of 30 fps. We used the case of two or three senders
with heterogeneous upload bandwidths and heterogeneous
channel characteristics. In this simulation, BWi refers to the
contributing upload bandwidth of server i. Furthermore, we
assumed that the average packet loss probability of the chan-
nel is constant which is denoted by CHi. We used the frame
loss rate as a key QoS measure to evaluate the performance
of the proposed system. We simulated three different sys-
tems for the performance comparison: the proposed system
with a channel-adaptive packet scheduler, the system with
the PPA [6] scheduler, and the system with a round-robin
packet scheduler.

6.1 Static Channel Error Case

To evaluate the performance of error recovery for the hetero-
geneity of contributing bandwidth among server peers, we
first simulated a simple two-sender case. This simple topol-
ogy was designed simply to examine the frame reassembly
delay and frame recovery performance of each scheduler ac-
cording to the heterogeneity of the upload bandwidth and
various sender channel error cases. For this case, we used
a test video sequence that had average and peak bitrates of
596 and 1007 kbps, respectively. The channel characteris-
tics and contributing bandwidth of the two senders were set
to the values shown in Table 1.

Figure 6 and Table 2 the result of each scheduler in

Table 1 Channel parameters.

pi qi Li UP BW
CH1 0.98–0.90 0.02–0.10 0.02–0.10 450 kbps–

630 kbps
CH2 0.98 0.02 0.02 450 kbps–

270 kbps

one representative case in which server peer1 has an up-
load bandwidth of 500 kbps and a channel with an aver-
age loss probability of 0.08 while server peer2 has an up-
load bandwidth of 400 kbps and a channel with an average
loss probability of 0.02. In Table 2, AVG D, DEV D and
MAX D mean the average, standard deviation and maxi-
mum delay for frame reassembly. In addition, FR LOS S
means average frame loss ratio as a quality measure. More-
over, RR, PPA, and PROP mean three comparative sys-
tems, round-robin scheduler, PPA scheduler and the pro-
posed scheduler, respectively. Figure 6 is a histogram of
the delay for frame reassembly measured using the differ-
ence between two packets of each frame: the first received
packet of the frame and the last received packet of the com-
plete frame. As shown in Fig. 6 and Table 2, the proposed
scheduler has a lower average frame reassembly delay and
a smaller standard deviation of frame reassembly delay than
the other schedulers. This reduced frame reassembly delay
contributes to increasing retransmission opportunities in this
retransmission-based streaming system and therefore, the
proposed scheduler enhances error recovery performance as
shown in Table 2.

In Figs. 7–9, the x-axis or K indicates the proportion
of the contributing bandwidth of two senders (BW1/BW2).
As the heterogeneity of the contributing bandwidth between
the two senders increases, the round-robin scheduler shows
severe degradation of video streaming quality. However,
the PPA and the proposed scheduler are affected less by
the bandwidth heterogeneity of the server peer. Overall,
the frame loss rate of PPA varied from 2.067% to 4.170%,
whereas that of the proposed scheduler varied from 1.069%
to 1.866%. This means that the proposed scheduler is more
error-resilient and is affected less by the contributing band-

Fig. 6 Histogram of the delay for frame reassembly.

Table 2 Simulation result. (BW1=500 kbps, BW2=400 kbps)

AVG D DEV D MAX D FR LOSS
(sec) (sec) (sec) (%)

RR 0.47827 0.62991 5.252764 17.5786
PPA 0.291652 0.397973 1.966457 3.9153
PROP 0.167424 0.217073 1.854653 0.7098
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Fig. 7 Frame loss ratio variations for bandwidth heterogeneity. (average
loss rate of CH1 = 0.04)

Fig. 8 Frame loss ratio variations for bandwidth heterogeneity. (average
loss rate of CH1 = 0.08)

Fig. 9 Frame loss ratio variations for bandwidth heterogeneity. (average
loss rate of CH1 = 0.10)

width heterogeneity of the server peer.
Various channel statuses can also produce an effect on

the performance of error recovery as described in Sect. 3. To
demonstrate this, we designed another simulation scenario
with the environment described in Table 1. That is, upload
bandwidth contribution, BW1 and BW2 are fixed in each
case and the average loss probability of CH1 varied from 2%
to 12% to model the case of a relatively error-prone channel.
Figures 10–12 shows a comparison of the frame loss rate

Fig. 10 Frame loss ratio over the variation of channel 1. (450 kbps–
450 kbps case)

Fig. 11 Frame loss ratio over the variation of channel 1. (550 kbps–
350 kbps case)

Fig. 12 Frame loss ratio over the variation of channel 1. (600 kbps–
300 kbps case)

for the various simulation cases. The contributing upload
bandwidth of server1 increases from 450 kbps (Fig. 10) to
600 kbps (Fig. 12). When the upload bandwidths of the three
server peers are the same as shown in Fig. 10 (i.e., the upload
bandwidth of the three server peers is homogeneous), the
round-robin scheduler and the PPA exhibit the same error-
recovery performance under various channel error scenar-
ios. That is because the PPA scheduler allocates packets to
each sender in a manner similar to the round-robin sched-
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Fig. 13 Simulation topology for congestion over wired network.

uler as the upload bandwidths of each server peer are closer
to the same value. Therefore, in cases of homogeneous up-
load bandwidth and high error rates (Fig. 12), the two sched-
ulers experience similar frame loss rates. However, in the
other cases when the upload bandwidth of the three peers is
heterogeneous, the proposed scheduler and the PPA signif-
icantly outperform the simple round-robin scheduler. This
simulation result shows that the error recovery performance
of conventional schedulers for distributed media streaming
systems depends heavily on both bandwidth heterogeneity
and the channel error rate of each server peer, whereas the
proposed scheduler shows consistently good error recovery
performance under various heterogeneous bandwidth and
channel error scenarios. Overall, the proposed scheduling
algorithm outperforms the PPA by 3.299% on average in the
simulation cases of greatest channel error.

6.2 Simulation of Congestion over a Wired Network

We created the realistic simulation scenario described in this
subsection to test the proposed scheduling algorithm. As
shown in Fig. 13, streaming servers for a distributed stream-
ing session were scattered over a backbone network and lo-
cal networks away from the streaming client. Cross-traffic
was generated using FTP sessions to create network con-
gestion and ultimately cause queue-drop in the L3 switches
of the local networks. The upload bandwidths of server1,
server2, and server3 were set to 200, 250, and 350 kbps,
respectively. Several cross-traffic flows in each local net-
work were generated: one in local network1, two in local
network2, and three to six in local network3. To emulate
random packet drop in a real-world network, we configured
a random-early-drop (RED) queue in the L3 switch for the
outgoing interface to the backbone router. RED parameters
were configured as a queue length of 250, drop probabil-
ity of 0.01 at the low threshold (20% of queue length), and
drop probability of 0.9 at the high threshold (80% of queue
length). The streaming session was started randomly within
a period of 10 s, and the simulation was repeated 100 times.

Figures 14–17 show the simulation results for the case
of router queue-drop events when the four cross-traffic flows
were generated in local network3. The average peak signal-
to-noise ratio (PSNR) of the proposed scheduler is higher
than that of the PPA scheduler by 0.52 dB. This relatively

Fig. 14 Original images. (90th, 700th, 710th, 720th, and 730th frames)

Fig. 15 Decoded images in the system with round-robin scheduler.

Fig. 16 Decoded images in the system with PPA scheduler.

Fig. 17 Decoded images in the system with the proposed scheduler.

small difference of PSNR between the PPA and the proposed
scheduler results from error concealment scheme which
was applied into the MPEG-4 decoder in these simulations.
However, we can verify that the subjective image quality of
the proposed scheduler is much better than that of the PPA
scheduler as shown in figures. Figure 18 shows the average
rebuffering occurrence of each scheduler for various cross-
traffic flows in local network3. The frame loss rate of the
round-robin scheduler was omitted from this figure because
it averaged 47.8%, much larger than the others. As the back-
ground FTP flows increased, the streaming systems using
each scheduler suffered more video frame loss. However,
the proposed scheduler always showed less frame loss than
others on average. Therefore, we confirmed that the pro-
posed algorithm would be useful in the case of wired net-
work congestion that causes queue-drop in the router with
RED queues. In addition, we configured a drop-tail queue
in the L3 switch of each local network. The drop-tail queue
size was limited to 150 packets and the same simulation
methodology was applied. In this experiment, the proposed
scheduler could not always guarantee better streaming qual-
ity during network congestion. This is because a drop-tail
queue does not use intentional dropping with a certain prob-
ability and therefore packet losses are temporarily correlated
[12]. Since the proposed algorithm performs channel esti-
mation within the GoP time interval (2 s in this simulation),
it can often fail to estimate the temporarily correlated chan-
nel status. Therefore, a shorter GoP interval would be used
for more precise estimation according to the queue-length
of a drop-tail queue in an actual network. However, its ap-
plication in real-world situations is not trivial.
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Fig. 18 Frame loss ratio under variation of cross-traffic flows in local
network3.

7. Conclusions

We proposed a channel-adaptive packet scheduler to en-
hance the error-recovery performance by minimizing the de-
lay for frame reassembly in distributed streaming. The pro-
posed scheduler observes distributed channels with the state
transition probability of the Gilbert-Elliot channel. Using
this observation, each stream packet is allocated to servers
to minimize the expected packet arrival time. We demon-
strated the effect of the packet scheduler on error-recovery
performance in a distributed streaming system using simula-
tions of various cases. Note that the proposed system shows
enhanced quality of streaming service, while the receiver in
the system should compute entire allocation of the packet
stream comparing to the original PPA. However, this com-
putational overhead was approximated enough to be per-
formed in real-time environment. Our future research will
be directed toward a more complex and complete architec-
ture of this retransmission-based P2P streaming system in-
cluding a packet scheduler, soft ARQ mechanism, and ARQ
target server derivation. Furthermore, since it can also de-
liver better streaming quality to reflect the importance of
video data in each packet, we will investigate a combinato-
rial framework that can deal with all of these considerations.
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