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Fractal Engine

An Affine Video Processor Core for Multimedia Applications

Abstract

The recent advances in VLSI technology, high-speed processor designs, Internet/Intranet
implementations, broadband networks (ATM and ISDN) and compression standards are
leading to the popularity of multimedia applications. In general, multimedia computing
presents challenges from the perspectives of both hardware and software. Each medium
in a multimedia environment requires different processes, techniques, algorithms and
hardware. Hence, it is crucial to design a generic processor architecture that meets the
computing requirements of the various media types. In another word, there is a need for a

bottom-up design strategy for meeting the computing needs of multimedia processing.

In this thesis, we propose the design of an affine video processor termed Fractal Engine.
We have first derived the fundamental operations involved in visual processing tasks and
designed the generic processing elements to map a majority of these operations. We have
chosen affine transformations as the target algorithm as it is expected to be increasingly
used in many visual-processing applications including latest video coding standard

MPEG4. We have chosen fractal block processing (FBP) as a candidate algorithm for the



design of target video processor, since it encompasses a variety of visual processing

operations including affine transforms.

Fractal Engine is capable of implementing the gamut of image/video processing
algorithms. Fractai Engine is a simple, modular, and scalable architecture that is
optimized to execute both low-level and mid-level operations. It is capable of
implementing a variety of visual processing tasks. Fractal Engine is an open architecture
and is therefore capable of adapting to the processing requirements of a variety of media
processing algorithms. The individual modules of the Fractal Engine have been
implemented in VHDL. A behavioral model of the circuit has been developed and fully
tested by using VHDL simulators. The model is synthesized using BiICMOS .8u ASIC
library cells and Xilinx/Altera FPGAs. We have chosen to demonstrate the real-time
execution capability of Fractal Engine by mapping specific visual processing algorithms
such as fractal block coding (FBC), vector quantization and motion estimation onto the

proposed architecture.
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1 Introduction

The recent advances in VLSI technology[1]-[2], high-speed processor designs[3],
Internet/Intranet implementationsf{4], broadband networks[S] (ATM and ISDN) and
compression standards [6] (JPEG [7], MPEG [8], H.261, H.263 and G.273) are leading to
the popularity of multimedia applications. Example applications include Multimedia
Information Systems [9], Digital Libraries [10], Remote Sensing and Natural Resources

Management [11] and Geographic Information System [12].

A variety of media processing techniques are typically used in multimedia processing
environments to capture, store, manipulate and transmit multimedia objects such as text,
handwritten data, audio objects, still images, 2D/3D graphics, animation and full-motion
video. Example techniques include speech analysis and synthesis, character recognition,
audio compression, graphics animation, 3D rendering, image enhancement and

restoration, image/video analysis and editing, and video transmission.

Visual media in a multimedia system contains a significant amount of information, and
correspondingly involves a large volume of data in contrast to the other media types.
Uncompressed digital video requires 250 Mb/s to support studio quality transmission of
NTSC images (480 lines x 720 pixels/line x 24 bits/pixel x 30 frames/s)[13]. Even a
simpler application such as video telephony (240 lines x 360 pixel/line x 16 bits/pixel x
10) requires 14 Mb/s to transmit the digital video signal in raw format. The bandwidth
and storage requirements of visual information typically make it difficult to manage the

data in its raw form. However, there is considerable redundancy in video data, both from

12



an information theoretic viewpoint as well as from the perspectives of structural content
and human perception. A number of image and video compression standards, e.g.,
MPEG-1[14], MPEG-2[15], MPEG-4[16],{17], H.261[18], and H.263[19] have been
recently proposed to compress the visual data for a variety of transmission and/or storage
applications. There is ongoing research and standardization efforts targeted towards
future multimedia applications with the objective of integrating compression and content
access functionality, including MPEG-7[20]. These techniques and standards will involve
execution of complex video processing tasks in real-time. The challenges can range from
waveform coding implementations to scene modeling and understanding. For example,
the principal objective of model-based image coding [21], [22] or intelligent image
coding is to understand the scene by modeling the objects in order to achieve a higher
level representation. In addition, there is an increasing interest in 3-D image and video
processing[23], [24]. An important processing task in most of these situations is affine
transformation[25], which includes operations such as rotation, transposition, scaling and
translation. For example, intelligent motion estimation in a video sequence requires
extraction of the motion of objects and camera operations, which could be represented

using affine parameters.

In general, multimedia computing presents challenges from the perspectives of both
hardware and software. Each media in a multimedia environment requires different
processes, techniques, algorithms and hardware. Hence, it is crucial to design a generic
processor architecture that meets the computing requirements of the various media types.

The complexity, variety of techniques and tools, and the high computation, storage and

13



I/O bandwidths associated with visual processing pose several challenges, particularly

from the viewpoint of real-time implementation.

Real-time implementation goal is the principal reason for the slant of most media
processor development[26] towards visual processing. Several processing solutions
ranging from multimedia extensions to general purpose processors such as the Intel
MMX([27], programmable DSP architectures such as the TI-MVP [28], Media processors
like the Philips TriMedia processor[29], and special purpose architectures such as the C-
Cube MPEG decoder chip-sets[30] have been proposed to implement a variety of
multimedia (particularly visual) processing operations. A detailed categorization of
available multimedia processing strategies is required in order to propose the optimum
architecture for target applications. In this thesis, we have designed a high performance
visual signal processor (VSP) called Fractal Engine, which is optimized to execute a

variety of both mid-level and low-level visual operations.

1.1 Motivation

The implementation of video processing algorithms or in general multimedia algorithms
demands systems of large computational capability with efficient VLSI implementation
of the various media processing algorithms. Real time video compression requires
processing power in the range of 100 MOPS to 100000 MOPS. The envisaged mass
application of digital multimedia demands fast and reduced size implementations, which
are potentially feasible due to recent advances in VLSI technology{31] specifically in the
areas of high density, and fast circuit implementations. VLSI technologies have now

advanced to the point where, for some applications, the processing power and memory
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required to perform these tasks can be incorporated into a few silicon chips. Individual
transistors switch faster and therefore circuits perform operations at a higher speed. The
transistors occupy less space and therefore more complicated design can be integrated
into a single chip. It is required to study various options in VLSI design and select the

best environment for target applications.

The advent of "hardware description languages such as VHDL (VHSIC Hardware
Description Language)[32] and re-configurable high density FPGAs[33] (Field
Programmable Gate Array) such as Altera[34] and Xilinx[35] have not only facilitated
rapid prototyping of digital designs, but also serve the needs for programmable and re-
configurable hardware design. Thus it makes possible quick assembly of pre-designed
generic processing elements into architectures that can be dedicated to execute specific
algorithms or a class of algorithms under the assumption that the generic processing
elements were designed to accommodate a variety of media processing requirements. A
specific configuration can also be chosen from a universal architecture using external
control signals assuming that the target processor is capable of organizing the generic
processing elements into various configurations. Hence, enabling VLSI technology
should be thoroughly studied and the best possible combinations of HDLs, ASICs

(Application Specific Integrated Circuits) and FPGAs have to be selected.

The main focus of the researchers for video processor design is the optimization of low-
level operations such as multiplication and accumulation. However, these developments
are not sufficient to overcome all the problems in implementing multimedia applications.

There is clearly a need for a bottom-up design strategy for meeting the computing needs
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of multimedia processing. We need to derive the basic operations involved in a variety of
image and video processing operations such as enhancement, restoration, compression
and analysis of images and video sequences. It is required to derive mid-level and high-
level operations in visual domain and design scalable and modular architectures for these
requirements. Since Fractal Block Processing (FBP)[36] encompasses a majority of
image processing operations[37],[38], including summation/accumulation, image
addition / subtraction, translation, stretching, shifting, scaling, rotation and pattern
matching, we have chosen this as the candidate algorithm for the design of the generic
video processing element. We note that the operations of translation, stretching, shifting,
scaling and rotation termed as affine transforms[39] are particularly important and are
extremely powerful in visual processing tasks such as image analysis and understanding
motion in video. It is our belief that most of the complex processing operations involved
in the next generation of visual processing tasks will involve some form of affine
transformation. We note that there is hardly any architectural solutions that emphasize
affine transform implementation in the context of general purpose video processing. The
choice of Fractal block processing as the candidate algorithm in our generic processing
element design is therefore based on the following two premises: (i) it contains a
reasonable super-set of the variety of processing tasks (including affine transformations)
typically found in visual (and multimedia) processing, and (ii) it is a computationally
intensive procedure and hence presents challenges from the perspective of real-time
implementation. Another important requirement in the design of multimedia processor
architectures is scalability. For example, visual processing tasks typically operate on a

variety of image sizes, resolutions, and frame rates, and it is therefore crucial to design

16



the generic processing element to be scalable. For a problem of complexity X which is
executed using N units in 7 seconds, scalability implies the following: (1) 7/M seconds
will be required to solve the problem using NM units, and/or (ii) A problem of complexity
XM is solved in T seconds using NM units. The first type of scalability requires a flexible
control design while the second type of scalability requires that the feature of scalability

be incorporated in the design of individual modules.

An important factor in designing a high performance video processor is to adopt the
promising features in existing architectures. This necessitates full investigation of a
variety of existing processors ranging from general purpose processors to dedicated

hardware modules used in multimedia applications.

1.2 Problem Statement

In this thesis, we propose the design of generic processing elements based on the
derivation of the fundamental visual processing operations in Fractal block processing.
An Affine Transform Processor (ATP), which is the core processor, and further a visual
signal processor based on ATP core are designed. The processor termed Fractal Engine is
capable of implementing the gamut of image/video processing algorithms. Fractal Engine
is a simple, modular, and scalable architecture that is optimized to execute both low-level
and mid-level operations. It is capable of implementing a variety of visual processing
tasks, including spatial filtering, contrast enhancement, frequency domain operations,
histogram calculation, geometric transforms, indexing, vector quantization, fractal block

coding, shot boundary detection, motion estimation, and camera operation detection.
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Fractal Engine is an open architecture and is therefore capable of adapting to the
processing requirements of a variety of media processing algorithms. The individual
modules of the Fractal Engine have been implemented in VHDL. A behavioral model of
the circuit has been developed and fully tested by using VHDL simulators. The model is
synthesized using BiCMOS .8y ASIC library cellsf40] and Xilinx/Altera FPGAs. We
have chosen to demonstrate the real-time execution capability of Fractal Engine by
mapping specific visual processing algorithms such as fractal block coding (FBC)[41],
vector quantization[42] and motion estimation[43] onto the proposed architecture. The

steps adopted in the design of the Fractal Engine are presented in Figure 1.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 presents the fundamental operations in
visual media processing. All of the visual algorithms are classified to four major
categories and six different classes. The basic operations of all groups are then
introduced. We propose that a general affine transformation is a mid-level fundamental
operation which involves low-level operations in image/video processing algorithms.
MPEG4 is used as an example to demonstrate the validity of our categorization. In
chapter 3, different aspects of enabling VLSI technology are reviewed. The different
options for VLSI implementation of video signal processors are then discussed. Hardware
description languages, logic synthesizers, and behavior compilers for multimedia
purposes are then explained and the necessary tools in our design methodology are
introduced. The design trends in multimedia processor architectures are detailed in

chapter 4.
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It is concluded that dedicated modules are suitable for critical units while programmable

modules are required to facilitate the adaptation of the architecture for various algorithms.

The individual modules of the proposed ATP core are presented in chapter 5, where basic
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operations in affine transformation are introduced and an optimal scalable architecture is
proposed. The detailed design of the Fractal Engine which is optimized. for executing
fractal block processing algorithm is presented in chapter 6. The mappimg of example
algorithms onto the Fractal Engine and area/timing analysis are also discussed in this
chapter. Since Fractal Engine is an open architecture, we have demnonstrated the
implementation of new algorithms such as generalized affine transform o©perations and
interpolation filter in chapter 7. The design is based on the augmentation in terms of
flexibility and programmability in Fractal Engine. Finally, conclusions andl directions for

future work are presented in Chapter 8 followed by the references.
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2 Fundamental Multimedia Operations

We note that a critical analysis of image and video tasks will result in the derivation of
the set of generic operations, which are typically employed in a variety of multimedia
applications. In this chapter, we first present the fundamentals of visual media processing.
We then summarize the various categories of operations in image and video processing
followed by the derivation of the generic operations for visual processing and a brief
introduction to affine transforms and fractal processing. The last section introduces
MPEG4, the new standard for multimedia applications. The principal objective is to
demonstrate that the candidate algorithm chosen for the design of the target architecture
encompasses a majority of the visual operations as well as presents challenges from the

perspective of real-time implementation.

2.1 Visual Media Basics

Video sequences are essentially a collection of individual frames (images). Hence, the

main part of this section deals with the definitions for digital images.

Image Components

A digital image is composed of discrete points with a quantized value assigned to each
point. In the case of gray-scale images this value represents the gray level of the point.
However, for color images, the quantized value represents the color component values of

the point.
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A digital image is created from a continuos-tone image after the two steps of sampliné
and quantization[44]. In the sampling process, the brightness values of particular
positions are sampled. In the quantization process, the sampled value is quantized to a
fixed length integer value which is usually 8-bits for gray-scale images and 24-bits for
color images. The 24-bit quantization known as true color representation consists of 3
independent 8-bit integer values describing the intensity of basic colors red, green and
blue. This representation is known as RGB format. In the case of gray scale images, this
value describes only the intensity value corresponding to the brightness of the point. A
quantized sample representing the brightness value for a specific position in the image is
called a pixel or a picture element. The combination of sampling and quantization

processes is referred to as image digitization.

An image is generally sampled into a rectangular array of pixels. Each pixel has an (x,y)
coordinate which describes its location in the image. The x-axis is the horizontal axis
from left to right while the y-axis is the vertical axis from top to bottom as shown in
Figure 2. The origin or location (0,0) is in the upper left comer of the image in this

representation. As an example, the pixel at location (50, 120) is marked in the Figure 2.

The number of columns or rows in an image (M and N respectively for an MxN image)
indicates the spatial resolution of the image which is directly related to the quality of the
image. Spatial resolution describes how many pixels are in the image. The more pixels in
the image, the better its quality and the larger its storage size. The number of pixels in a

digital image depends on how finely the image is sampled, or divided into discrete pixels.
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It is the sampling rate, which determines the number of pixels for a known physical size.
For example, 200 dpi (dot per inch) means that there are 200 pixels in an inch. The
maximum sampling rate is set by the digitizing device such as scanner, digital camera,
etc. From sampling theorem, the necessary sampling rate so that the digital image
adequately resolves all spatial details of the original continuous-tone image, is at least

twice as fast as the highest spatial frequency contained in the image (Nyquist rate).

If sampling occurs at a lower rate than that required by the sampling theorem, the higher
spatial frequency details will be lost in the digital image. Hence, the digital image will
appear to be not as sharp as the original image. In Figure 3, four different sampling rates
are employed to generate the illustrated digital pictures. It is clear that the picture (D)
doesn’t contain all the details of the picture (A) and the details of the picture are lost due

to pixel blocking effect.

On the other hand, if sampling occurs at a higher rate than Nyquist rate, extra pixels will
be created which theoretically do not contribute to improving image quality. However,
they can be used in future manipulations such as image resampling/interpolation and

feature extraction.
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Figure 3- Barbara image in 4 different sampling rates.

Frame Rate

This parameter which is employed in video sequences determines the temporal resolution
while the sampling rate determines the spatial resolution. The higher the frame rate, the

more accurate is the motion representation in a digitized video sequence.

Frame rate is a sampling terminology, which is applied to digital and other non-digital
forms of sequential image acquisition and display such as broadcast television. It is often
expressed as the number of frames per second (fps). For example, if the frame rate of a
system is 30 frames per second, an image frame is acquired (or displayed) every 1/30™ of
a second. If an object being imaged moves across the image frame at a faster rate, it may
never be captured in an individual image. Once again, we note that it is essential that the
frame rate is at least twice as fast as the highest frequency of motion in the video

sequence.



Inte-laced Versus Progressive Scan

The concept of frame rate for image display relates how often an image is updated on the
viewing display. Since the normal display mechanism is a video display monitor, images
must be repeatedly refreshed. The rate at which images are refreshed can cause display
flicker, and therefore human eye fatigue. Display flicker also depends on how the image
is scanned on the display monitor. Common broadcast television equipment uses a
technique known as interlaced scan[45] display, as shown in Figure 4. This means that
the odd-numbered lines of the image are displayed first, followed by the even-numbered
lines. The effect is to interleave, in time, the two interlaced halves of the image, one after
another. Interlacing gives the impression to the observer that a new frame is present twice
as often as it really is. This technique was used originally for television broadcast signals
since the display could be refreshed less frequently without noticeable image flickering
(although some minor line-to-line flicker does occur at certain instances). Systems using a
standard commercial broadcast television display monitor for image display typically

have a 30 frame per second frame rate and interlaced scan.

In motion image sequences, interlaced scan displays can show noticeable motion defects
because the odd and even halves of each image are separated in time by one-half the
frame rate. The result is a tearing effect that appears on objects with fast motion through

the image frame.
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Figure 4- Interlaced scan display.

In the non-interlaced method known as progressive method[46], the entire image is
displayed in one pass. In this case, the frame rate must be twice that of an equivalent
interlaced display, or image flickering will be noticeable. Progressive scan eliminates
line-to-line flicker and motion artifacts in displayed images. Systems using a progressive

scan display monitor for image display typically have a 72 frame per second frame rate.

Fidelity Criteria of Digital Images and Video Sequences

Fidelity criteria are applied to measure image quality and for comparing the performance
of different processing techniques. There are two types of criteria[38] that are used for
evaluation of image quality, subjective and quantitative. The subjective criteria use
human feeling about an image (or video sequence). Quantitative measures, try to describe

or compare the image/video quality by an analytic formula.

Mean square criterion is often used in image processing. It refers to the average (or sum)
of squares of the error between two images (# and «") and it could be described in three

different formats as follow:
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where the size of the image is MxN and E[] represents the mathematical expectation.
In many applications the mean square error is expressed in terms of a signal-to-noise ratio

(SNR), which is defined in decibels (dB) as follows:

SNR:IOlogm% , 6, =0,.0,,.0,

where o7 is the variance of the original image.

The alternative formula for SNR, called peak-to-peak SNR (PSNR) is defined as:

PSNR = 10log,, (peak - to - peak value ot: the reference image)~ 6. =6,.0,.0,
P

e

2.2 Digital Image and Video Processing Categories

Visual media processing involves operations to enhance, restore, compress and analyze
images and video sequences. Whatever the operation, a similar set of steps are followed:
A digital technique is applied to a digital image or video to form a digital result, such as a
processed image/video, a compressed bit-stream or a list of extracted features. The four

main categories of image/video processing tasks are now presented.
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Enhancement:

The quality enhancement is the primary goal in digital signal processing systems. Many
enhancement techniques are introduced to compensate for the effects of a specific (known
or estimated) degradation process for 2-D signals known as images. This approach,
known as image restoration, wiil be discussed in the next section. In image enhancement
methods, little or no attempt is made to estimate the actual degradation process that has
occurred on the picture. These include methods of modifying the intensity value, contrast
enhancement, edge enhancement, deblurring, and smoothing or removing noise. These
methods assume that certain general properties of the picture are degraded and attempt to
resolve these problems. For example, increasing the contrast is a reasonable enhancement
operation due to the attenuation of the picture, or deblurring is reasonable as shown in
Figure 5 because degradation usually blurs and smoothing is justifiable, since noise is

generally added to the original picture as shown in Figure 6.

Figure 5- Sharpening effect
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Figure 6- Noise removal using image enhancement techniques.

Image enhancement employs local correlation between adjacent pixels to enhance the

image quality.
Restoration:

Picture restoration is applied on images that have been degraded in the presence of one or
more sources of corruption. There are different kinds of degradations based on the
affected area. Point degradations only alter the intensity value or the color of individual
pixels while spatial degradations blur an area of the image. Other types generate
temporal degradation in video sequences. For example, the pictures obtained in remote
sensing and astronomy are degraded by atmospheric turbulence, aberrations of the optical
system and relative motion between the camera and the object. In image restoration, it is
assumed that the degraded image is a convolved version of the original image by the
degradation function plus additive noise. The goal is to obtain as good an estimate as
possible of the original picture. Obviously, any such estimation procedure requires some
form of knowledge concerning the degradation function. As a result, frequency domain
correlation is used to restore visual information. Examples include inverse filtering,

pseudo inverse filtering, etc.
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Compression:

The aim of digital data compression is to represent the data by as few bits as possible for
the purpose of transmission or storaée. The bandwidth and storage requirements of visual
data typically make it impossible to handle visual (digital) data in its raw form and hence,

a number of compression techniques have been developed.

Visual data compression methods fall into two common categories. In the first kind,
called lossless compression, the data could be restored completely after the compression
process. In this method, the redundancy of the image is exploited using source-coding
techniques[101] such as Huffman coding and arithmetic coding. In the second category,
called lossy techniques, higher compression rate is achieved at the expense of loosing
some insignificant information in the decoding stage. This compression technique results

in some distortion. Efficient compression techniques tend to minimize the distortion

perceived by human visual system.

Different image and video compression techniques[74] remove the existing redundancy

in different domains and hence, can be classified as follows:

Spatial based

In this class of compression techniques, the existing correlation within an image such
as predictability, randomness and smoothness is exploited. ADPCM (adaptive
differential pulse code modulation), vector quantization and fractal block coding

techniques are typical examples of this category.

Temporal based
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In this category, the existing correlation within a video sequence and between the
consecutive frames of the same shot is exploited and the redundancy is removed.

Motion estimation[95],[99] is the basic operation for these techniques.
Frequency based or transform coding

In transform coding techniques, a block of data is transformed so that a large fraction
of its total energy is condensed into a small part of the transformed data which are
quantized independently. DCT (discrete cosine transform){75] and DWT (discrete

wavelet transform}[94],[97] are typical digital transforms employed in this technique.

We note that the objective in all categories is to exploit the spatio-temporal correlation in

an image or video to reduce the redundancy and represent the data in a compressed form.

Image/Video Analysis:

Semantic correlation of the pixels is used for image and video understanding. Recently,
there is a tendency to represent multimedia objects using general object based
representations which provides content-based functionalities. The objective of model-
based image representation[21] or intelligent image understanding is to understand the
scene by modeling the objects, yielding a higher level representation. Applications of
model based image representation and image analysis include, automatic vehicle driving,
medical inspection, mobile robot navigation, mail sorting, label reading, global model
construction and low-bandwidth image coding. Semantic correlation of the pixels is used

for image and video understanding. Example operations involved in image and video
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analysis include, image segmentation, feature extraction, object classification, indexing,

scene cut detection, etc.

It can be deduced from the summary of the different categories of operations listed above
that the principal task is to exploit the different forms of correlations present in the visual
data. The individual operations encountered in visual processing are detailed in the

following section.

2.3 Fundamental Operations in Visual Processing

The fundamental operations in the four major categories of visual processing tasks are
listed below. The objective is to select the candidate algorithm, which will be employed
in the design of a high performance video processor. The selected kernel algorithm needs
to be represented by a majority of such operations. We now propose the categorization of
all individual operations in six classes as shown in Figure 7. The individual operations of
each class are detailed.

Stretching Shifting

Thresholding Geometric Scaling
Image Subtractio Rotation

Traaslaton o {Rcsampling

ovariance Fourier transform
orrelation . DCT transform
Image masking | Bl Block matching

M edian filtering Motion estimation

ow pass filtering rati
High pass filtering
orphological
M—_' Run code Histogram
7 Line 1-D DPCM MSE calculation
Line segmentation SNR calculation

Figure 7- Visual Media Operations
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Point operations

The resulting gray level at a pixel depends only on the input gray level of one point
(usually the gray level of the same point before applying the operation). Such operations
are used for gray scale manipulation and for segmentation by pixel classification. The
extension of these operations include dual image operations where the output level of a
pixel depends only on the set of input levels from the pixels at the same position. For
example, we may want to take the difference between two pictures. The operations in this

category are :

Translation

Description: Each image pixel is added to a constant translation factor.

O(xy) =l(xy) + tf
‘Where O(x,y) is the output image, I(x,y) is the input image and #ris the translation factor.
Applications: Brightening or darkening the image (an example is shown in Figure 8-B).
Category: Single-image.
Stretching

Description: Each image pixel is multiplied by a constant stretch factor (s).
O(x,y) = I(x,y) * s¢

Applications: Increasing or decreasing the contrast of the image (an example is shown in

Figure 8-C).

Category: Single-image.
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Thresholding

Description: Each image pixel is evaluated to be above or below a predetermined
threshold value (z,). If the pixel brightness is less than the threshold, the resuliing pixel

brightness is set to 0, otherwise it is set to the maximum value (e.g. 255 for 8 bit values).

O(x,y)=0 ifl(xy) <t,

O(xy) =255 ifl(xy)=t,

Applications: Creating a very high contrast image, segmenting the image by highlighting
an object of interest and separating it from its background (an example is shown in Figure

8-D).

Category: Single-image.

Image Subtraction / Addition

Description: One image is subtracted from or added on a pixel by pixel basis to a second

image.

O(xy) = I)(x,y) £ I)(x,y)

Applications: Removing common background image information, determining object
motion, Averaging over images of the same scene to reduce random noise, merging two

images.

Category: Dual-image.
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C) Stretching D) Thresholding

Figure 8- Example point operations

Local operations
The output of these operations depends only on the gray values in a neighborhood of a
particular pixel. Such operations are used for noise cleaning, edge and local feature

detection, etc. The following operations belong to this category:

Image Masking

Description: A finite impulse response (FIR) filter or mask is applied to the image to

perform a spatial image processing operation.
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O=m*]

where * indicates masking operation.

Applications: Low-pass filtering, unsharp masking, high-pass filtering, edge enhancement
and line detection.

Category: dual-image.

Median Filtering

Description: The filter is a ranking filter, where for example the fifth-ranked pixel
brightness value is selected as the output pixel brightness from a 3x3 input group of

pixels.

O(xy)=f(1)

where f is the nonlinear ranking and selecting function and 7 is the input group of pixels.
Applications: Removing impulse noise spikes from an image.

Category: single-image.

Morphological operations such as erosion and dilation

Description: The erosion operation reduces the size of bright objects on a dark
background in an image and the dilation operation increases the size of bright objects on a

dark background in an image (morphological process).
Applications: Image analysis, outlining, thinning, skeletonization and edge detection.

Category: single-image.
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Line operations

The inputs to these operations are pixel values which reside across a vertical or horizontal
line. Such operations are typically used in raster scan images. A typical example
operation is the grouping of one’s and zero’s in a line for run-length coding. Example

operations in this category include:

Run Length Coding

Description: Across each line of an image, pixel values are sequentially compared and
grouped together into runs of identical brightness.

Applications: image compression.

Category: Single image.

Differential Pulse-Code Modulation (DPCM) Coding

Description: Each pixel value is replaced by the difference value of it and its neighbor
and then represented by a lower-resolution value.

Applications: Lossy image compression.

Category: single-image.

Line segmentation

Description: Each line in an image is scanned and the white intervals are recognized to

segment each line from the image.

Application: Text recognition.

Category: single-image.
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Geometric operations

These operations are performed on a set of pixels defined by a geometrical transformation
or around a neighborhood of a specified point. This class includes the following

operations:

Up and Down Sampling

Description: Portion of image is resampled for another spatial resolution.
Applications: Image enhancement, zooming in and out, and image size adjustment.

Category: single-image.

Shifting

Description: The spatial location of image pixels is shifted linearly.
I(x,y) = O(x’,y’) where x’=x+1T, and y’=y+T,

Applications: Geometric adjustment of the location of an image.
Category: single-image.
Scaling

Description: The spatial size of image pixels is expanded or reduced linearly.
I(x,y) — O(x')y’) where x’=x.5x and y’'=y.S,

Applications: Geometric adjustment of the size of an image.

Category: single-image.

Rotation

Description: The image is rotated linearly about the origin.
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I(x,y) — O(x’,y’) where x’=x.cos(0)+y.sin(60) and y’= -x.sin(8)+y.cos(6)
Applications: Geometric adjustment of an image.
Category: single-image.
Block operations

A rectangular block of pixels with a typical size of 4x4, 8x8 or I6xI6 are grouped
together and processed. These operations may result in another block, a single value or a

vector of data. Example operations are:

Fourier Transform

Description: An image is transformed to frequency domain by a discrete Fourier

transform operation.

O(u,v) =Z(Il(xy))
where 7 is the Fourier transform.
Applications: Frequency filtering, removing periodic noise patterns and energy
compacting.
Category: single-image.
Discrete Cosine Transform (DCT) Coding

Description: Pixel blocks (8x8 pixels) are discrete cosine transformed and then the

frequency components are quantized.

O(uv) =D (I(xy))

where 2 is the discrete cosine transform.
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Applications: Lossy image compression.

Category: single-image.

Pattern Matching

Description: A block of image is compared to a set of blocks in terms of Euclidean

distance to determine the best match between the blocks.

Applications: Documentation analysis, object recognition, vector quantization, motion

estimation and fractal image compression.

Category: dual-image.

Image operations

The input for these operations consists of the intensity value of all the pixels (or the main

part) of an image. Typical examples of these operations include:

Image Covariance and Correlation

Description: Image is modeled by random field representation.

Cov(u(m,n),u(m’,n")) = E[(u(m, n) — w(m,n) Xu(m’,n") — u(m’, n’) )], u(m,n) = E[u(m, n)]
Applications: Image modeling and template matching.

Category: single-image.

Histogram calculation

Description: The relative frequency of each gray level in the image is calculated. The

graph of the frequency as a function of gray levels is called the histogram of image.

PAz) = number of pixels with gray level equal to z.
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Applications: Image segmentation, measurement of textual properties and image
comparison.

Category: single-image.
Huffman Coding

Description: Pixel values are replaced with variable-length codes based on their

frequencies of occurrence in the image.

Applications: image compression.

Category: single image.
Mean square error / SNR computation.

Description: An image is compared to a reference image with these quantitative criteria.

M N N .
MSE= Y > lum,m)—u'(m,n)* , SNR =1010g,, /} o

m=l n=|
Applications: image comparison.

Category: Dual image.
2.4 Fractal Processing

The principal task in all of four different categories of image operations is to exploit the
high correlation present in the visual data. Two new mathematical entities, namely
Fractals[41] and Wavelet Transforms[96], have been recently introduced to exploit the
correlation and self-similarities within an image or a sequence of images. Wavelet
transformation belongs to the category of transform coding techniques, which attempt to

exploit the correlation in an alternate domain rather than spatial domain. On the other
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hand, Fractal processing extracts existing self-similarity and seif-affine content within the

image.

A majority of the processing operations listed above is accommodated in Fractal Block
Processing (FBP)[38]. FBP is a computationally intensive procedure and involves
operations such as, summation/accumulation, image addition/subtraction, translation,
stretching, shifting, scaling, rotation and pattern matching. We have therefore chosen FBP
as the candidate algorithm for the design of the generic video processing element which is
detailed in chapter 6 of this thesis. The basic operations in FBP which are affine

transformations are discussed in chapter 5.

2.5 MPEG4 Multimedia Standard

An emerging standard that is expected to become popular in visual domain processing (as

well as other domains such as Audio) is MPEG4{16], [17]. MPEG4 is the third standard

in a series developed by the Motion Picture Expert Group. The first two standards
MPEGI1[8], [14] and MPEG2[15] address the coding and compression of frame based

video sequences and audio. MPEG1 was primarily used for Video-CD's with a resolution

of 352x240. MPEG?2 operated on a higher resolution (704x480) and has added support
for interlaced video. Later, higher levels of resolution were specified so that MPEG2
could support HDTV. MPEG2 now supports all resolutions and frame rates defined by
ATSC for digital television. MPEG4 was finalized in October 1998 as an ISO/IEC 14496
standard. MPEG4 differs from the previous standards in a number of ways. The new
standard allows interactivity, high compression and accessibility to the video content.
Video information in MPEG4 is no more specified as compressed frames but as
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compressed Video Objects (VO). In this section, by introducing this standard, we show

the validity of our categorization introduced in this chapter. We note that the operations

involved in affine transformations, motion estimation and wavelet transforms will form

important components in MPEG4. MPEG4 achieves a high performance by providing

standardized ways to:

represent units of aural, visual or audiovisual content, called "media objects". These
media objects can be of natural or synthetic origin; this means they could be recorded

with a camera or microphone, or generated with a computer as shown in Figure 9.

describe the composition of these objects to create compound media objects that form

audiovisual scenes;

multiplex and synchronize the data associated with media objects, so that they can be

transported over network channels.

interact with the audiovisual scene generated at the receiver’s end.

In addition,

(1) MPEG4 uses object based coding as opposed to frame and channel based coding of

previous standards. MPEG4 also defines how interactivity between user and objects
can be employed, in contrast to previous standards which allowed very limited
interactivity. Objects in MPEG4 are very important because they allow content based
interactivity. Objects are coded independently but grouped together to form a scene.
Interactivity is enabled by the representation of a scene as a collection of objects or

the composition. When the viewer selects or points to an object, actions that are
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predefined for the object can occur. An object in MPEG4 is a component of a scene or

the final audio-video presentation. Objects can be simple or compound.

audiovisual cbjects

multiplexed
upstream
controlldata

3D objects

: i
video K

audio
compesitor [ -
projection |

compositor
1
plane '

hypotheacal viewer

user viput

Figure 9 - An example of an MPEG-4 Scene

(2) MPEG4 allows the coding of objects as arbitrary shaped images or rectangular

images. Previous standards can code only rectangular area. In MPEG4, arbitrary

shapes are generated by coding a rectangular area and then adding a shape layer or

mask which defines the exact shape of the video object.



(3) MPEG4 provides different coding methods (also called toolboxes) for coding
different types of material. Computer generated or synthetic material can be coded
using methods that are more appropriate to that format. MPEG1 and MPEG2 only
addressed coding of natural material such as video or film. Normal video objects are
usually coded using DCT based compression methods in MPEG4 similar to those
used in MPEGI and MPEG2. The DCT based coding methods are optimized for
natural images that contain many shades of colors and smooth variations that
normally occur in the real world. Computer generated images can have very few
colors and many sharp transitions. DCT based coding methods do not compress these
types of images. MPEG4 provides alternate methods of coding images that are
computer generated. These objects are called synthetic objects to differentiate them
from natural video and audio objects. Since computer generated objects can be
created from sending commands to a rendering engine, one of the most efficient
methods of compressing computer generated objects is to compress the commands to
the rendering engine such as a text imager, 2D and 3D graphics rendering engine or

sound generators.

(4) Because of the independent coding of objects in MPEG4, a means to combine objects
in a scene is required. This is called composition and applies to both audio and video
objects. Composition is the layering of objects to produce the final displayed image.
Since objects can overlap depending on their size and position, it is required to
determine which object is visible at any point in the displayed image. Further more, if

a gray scale mask is used, the object being composited allows some of the underlying
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objects to be visible as well. MPEG4 allows 3D affine transformations on each
object before it is composited. This means that each object may be translated, scaled
and rotated in 3D space before composition. The affine transformation parameters for
each object can be modified during the presentation. Corﬁposition is defined by a
scene description object in the MPEG4 bitstream. The scene is expressed as a
hierarchy of nodes, which represent objects. The scene specifies audio-video
composition as well as relationships between objects and the actions that can occur

for each object.

(5) MPEG#4 is designed to be an evolving standard. As new methods of coding are
developed, they can be integrated in existing MPEG4 decoders so that they can

decode new material, coded using the new algorithms.

(6) MPEG4 broadens applications from mainly two-way videophone appliances to a

number of conceivable video communication or video entertainment devices.

(7) Since MPEG4 specifies the coding of natural and synthetic audio-video sources as
independent objects, additional objects can be added to the mainstream without
requiring the decoding and re-encoding. All the objects are combined in the decoder

to form the final audio and video presentation.

We note that the novelty of MPEG4 resides in object based techniques. Affine
transformations are among appropriate toolkits to achieve object based processing.

Fractal processing is also an appropriate candidate for coding synthetic objects in a scene.
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Wavelet coding is used to code texture information. In the next section, we present visual

coding techniques, which are introduced in MPEG4 standard.

O Coding of Visual Objects

Visual objects can be either of natural or of synthetic origin. Different coding techniques
are employed for different visual objects. In this section, we show that our proposed

candidate algorithm encompasses a majority of coding techniques in MPEG#4 standard.

2.5.1 Natural Textures, Images and Video

The tools for representing natural video in the MPEG4 visual standard aim at providing
standardized core technologies allowing efficient storage, transmission and manipulation

of textures, images and video data for multimedia environments.

The visual part of the MPEG4 standard will provide a toolbox containing tools and
algorithms bringing solutions to natural visual objects. It will give an efficient
representation of visual objects of arbitrary shape, with the goal to support so-called
content-based functionalities. Next to this, it will support most functionalities already
provided by MPEG-1 and MPEG-2, including the provision to efficiently compress
standard rectangular sized image sequences at varying levels of input formats, frame

rates, pixel depth, bit-rates, and various levels of spatial, temporal and quality scalability.
® Support for Conventional and Content-Based Functionalities

The MPEG-4 Video standard will support the decoding of conventional rectangular

images and video as well as the decoding of images and video of arbitrary shapes.
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The coding of conventional images and video is achieved similar to MPEG-1/2 coding
and involves motion prediction/compensation followed by DCT based texture coding. We
recall from section 2.4 that fractal/affine processing employs a super set of these

operations.

Global motion compensation is based on the transmission of static "sprite” which is a
possibly large still image describing panoramic background and motion vectors. For each
consecutive image in a sequence, only 8 global motion parameters describing camera
motion are coded to reconstruct the object. These parameters represent the appropriate

affine transform of the sprite transmitted in the first frame.
® Coding of Textures and Still Images

Efficient Coding of visual textures and still images is supported by the visual texture
mode of the MPEG4. This mode is based on wavelet transform that provides very high
coding efficiency over a very wide range of bitrates. Together with high compression
efficiency, it also provides spatial and quality scalabilities (up to 11 levels of spatial
scalability and continuous quality scalability) and also arbitrary-shaped object coding.
The wavelet formulation provides a scalable bitstream coding in the form of an image
resolution pyramid for progressive transmission and temporal enhancement of still
images. The coded bitstream is also intended for downloading the image resolution
hierarchy into the terminal to be formatted as ‘bitmap texture’ as used in 3D rendering
systems. This technology provides resolution scalability to deal with a wide range of
viewing conditions more typical of interactive applications and the mapping of imagery

into 2D and 3D virtual worlds.
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e Scalable Coding of Video Objects

MPEG4 supports the coding of images and video objects with spatial and temporal
scalability, both with conventional rectangular as well as with arbitrary shape. Scalability
refers to the ability to only decode a part of a bitstream and reconstruct images or image

sequences with:
reduced decoder complexity and thus reduced quality;
reduced spatial resolution;
reduced temporal resolution;
equal temporal and spatial resolution but with reduced quality.

This functionality is desired for progressive coding of images and video over
heterogeneous networks, as well as for applications where the receiver is not willing or

capable of displaying the full resolution or full quality images or video sequences.

2.5.2 Synthetic Objects

Synthetic objects form a subset of the larger class of computer graphics such as:
& 3 synthetic description of human face and body

= The shape, texture and expressions of the face are generally controlled by the
bitstream containing instances of Facial Definition Parameter (FDP) sets
and/or Facial Animation Parameter (FAP) sets. Upon construction, the Face
object contains a generic face with a neutral expression. This face can aiready

be rendered.
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animation streams of the face and body

The rendered face is capable of receiving the animation parameters from the
bitstream, which will produce animation of the face including expressions,
speech, etc. Body Animation is being designed into the MPEG4 fabric to work

in a thoroughly integrated manner with face/head animation.
static and dynamic mesh coding with texture mapping

A 2D mesh is a partition of a 2D planar region into polygonal patches. The
vertices of the polygonal patches are referred to as the node points of the
mesh. MPEG4 considers only triangular meshes where the patches are
tdangles. A 2D dynamic mesh refers to 2D mesh geometry and motion
information of all mesh node points within a temporal segment of interest. In
2D mesh based texture mapping, triangular patches in the current frame are
deformed by the movements of the node points into triangular patches in the
reference frame, and the texture inside each patch in the reference frame is
warped onto the current frame using a parametric mapping, defined as a
function of the node point motion vectors. For triangular meshes, affine
mapping is a common choice. Its linear form implies texture mapping with a
low computational complexity. Affine mappings can model translation,
rotation, scaling, reflection and shear, and preserve straight lines. The degrees
of freedom given by the three motion vectors of the vertices of a triangle
match with the six parameters of affine mapping. This implies that the original

2D motion field can be compactly represented by the motion of node points,
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from which a coatinuous, piece-wise afﬁt;e motion field can be reconstructed.
At the same time, the mesh structure constrains movements of adjacent image
patches. Therefore, meshes are well-suited to represent mildly deformable but
spatially continuous motion fields. The 2D object-based mesh representation
is able to model the shape (polygonal approximation of the object contour)
and motion of a VOP in a unified framework, which is also extensible to 3D
object modeling when data to construct such models is available. 2D mesh
modeling may be used for compression if one chooses to transmit texture
maps only at selected key frames and animate these texture maps (without
sending any prediction error image) for the intermediate frames. This is also
known as self-transfiguration of selected key frames using 2D mesh

information.
¢ Texture Coding for View Dependent applications

=> The view-dependent scalability enables streaming texture maps, which are used
in realistic virtual environments. It takes into account the viewing position in
the 3D virtual world in order to transmit only the most visible information. Only
a fraction of the information is then sent, depending on object geometry and
viewpoint displacement. This fraction is computed both at the encoder and at

the decoder. This scalability can be applied both with Wavelet and DCT based

encoders.
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2.6 Summary

We have summarized various categories of operations in image and video processing
followed by the derivation of generic operations for visual processing. Visual media
processing involves operations to enhance, restore, compress and analyze images and
video sequences. Image enhancement employs local correlation between adjacent pixels
to enhance the image quality. In image restoration, it is assumed that the degraded image
is a convolved version of the original image by a degradation function plus additive noise.
Image compression techniques decrease the number of bits, which represent the image.
Semantic correlation of pixels is used for image and video understanding in image/video
analysis. We then present all operations in image/video processing. Our goal is to derive
the fundamental operations and also a candidate algorithm to represent the majority of the

operations in visual domain. Operations in visual processing are classified as follows:

e Point operations

e Local operations

e Line operations

e Geometric operations

e Block operations

e Image operations

The principal task in all of different categories of image operations is to exploit the high
correlations present in the visual data using various operations. Fractal processing has
been recently introduced to exploit the correlation and self-similarities within an image or

a sequence of images. It is clearly shown in chapter 6 that fractal processing encompasses
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a majority of visual operations. FBP (Fractal Block Processing) is a computationally
intensive procedure and involves operations such as, summation/accumulation, image
addition/subtraction, translation, stretching, shifting, scaling, rotation and pattern
matching. Hence, we have chosen FBP as the candidate algorithm for the design of the
generic video processing element which is detailed in chapter 6 of this thesis. Finally we
have introduced novel techniques in the MPEG4 standard to show the validity of our
proposed categorization and also to demonstrate the implementations of affine
transformations. We now present enabling technologies for realization of Fractal Engine,

in VLSI (Very Large Scale Integrated Circuits).
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Ahrea
3 Review of VLSI Technology

Multimedia hardware architectures are increasingly emerging“ due to a&v&nced VLSI
technology. Today’s multimedia architectures are able to handle most of the required
processing tasks for all of the media including image and video. VLSI technology[1] has
grown exponentially in the last two decades. Powerful and integrated multimedia system
implementations are now feasible due to recent advances in the VLSI area. The design of
VLSI architectures for video processing is faced with a number of key choices. These
include Integration (single chip VLSI, LS], ezc.), Fabrication Process (full custom, semi
custom, etc.) and Design Tools (schematic capture, hardware description languages, ezc.).
We note that an efficient hardware design requires careful investigation of the state-of-
the-art technology and choosing the tools that best suit the requirements of multimedia

implementations.

3.1 Integration

VLSI (Very Large Scale Integration Circuit) is the technology of integrating million
transistors onto a single device. The systems that required hundreds of discrete ICs in the
past can now be designed into an IC that is about % inch square. We note that it is not
only the count of gates that determines the cost, but the number and types of ICs
employed and the interconnection required to implement a digital circuit. Increased
integration can offer reduced production costs as a result of high packing density, low
system component cost and simplified assembly. However lower power dissipation,

higher switching speeds and more system reliability are the other advantages.
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Currently, chips with sub-micron features are quite common. For example, the 200-MHz
Pentium Pro[58] and PowerPC 604e{59], [60], [61] have circuit features measuring only
0.35 micron across. The delivery of devices composed of 0.18-micron is now emerging.
The number of transistors that designers can pack on a chip has increased at a rapid rate.
For example, the logic density in the x86 processor family has increased 20 times in a

span of 10 years as shown in the Figure 10.

The basis of these ever-higher logic densities is increasing levels of sophistication in
photolithography[62]. Current lithographic processes employ a mercury light source
whose 0.365-micron wavelength creates the 0.35-micron features. Successfully achieving
the smaller 0.25-micron feature size requires the utilization of a krypton-fluoride
ultraviolet laser that has a 0.248-micron wavelength. Smaller features are handled by the
use of argon-fluoride lasers with a 0.193-micron wavelength. However, achieving 0.1-
micron feature size requires optical trickery, which involves masks that phase-shift the
light to improve the resolution. Building even-smaller chip features requires using light
sources with even shorter wavelengths. In doing so, chip designers have traversed the
electromagnetic spectrum from visible light, to ultraviolet light, and finally into X-ray

territory.

Since muitimedia processors require large number of devices to be packed onto a single
chip, this high integration technology is crucial to support the development of chip-sets

dedicated to this type of applications.
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Figure 10- IC transistor counts.

3.2 Fabrication Process

Designed chip-sets can be fabricated using either a full custom or semi-custom design
techniques[63]. The different choices include, full custom systems, cell-based syvstems,
gate arrays and field programmable logic devices. The last three options are wsually
considered as semi-custom techniques and are distinguished by the name ASIC
(Application Specific Integration Circuit). ASICs combined with new design tools (will
be discussed in 3.3), have transformed the VLSI technology and made it possible fo-r large
numbers of designers to develop integrated circuits tailored to their specific application.
Multimedia products are therefore made feasible due to this enabling technology. JIn this

chapter, we discuss different options in hardware design.
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3.2.1 Full Custom Design

Full custom design involves hand crafting of the chips at the silicon level and therefore
demands a considerable amount of skill and experience on the part of the designer. Every
individual transistor and connecting track has to be drawn in terms of basic geometric
shapes (polygons) corresponding to features that will eventually be reproduced on the
various mask levels for the silicon fabrication process. A typical process may require ten
or more such masks to be produced. Drawing of the polygons is usually achieved using a
graphics editor on a computer-aided engineering (CAE) workstation and is inevitably
time consuming and error prone. The designer must observe a set of geometric design
rules for the particular process that he/she is planning to use. At some stages it is
necessary to verify that the layout that has been drawn conforms to these rules. When the
layout of a cell is complete it is simulated at the transistor level. This process will include
computation of track capacitance that is extracted from the physical description to yield
accurate performance estimations. These steps are then iterated until satisfactory
performance is achieved. Full custom design offers by far the greatest degree of flexibility
of any of the techniques available. It gives the designer total freedom to decide what to
integrate onto the chip (e.g. mixed digital and analog, power devices, special-purpose
devices with integrated sensors). However, the time and effort involved can amount to
many man-years and is justifiable only if production volumes exceed 100,000 units.
Pentium MMX with extended multimedia instruction set is an example of this
technology. We note that, the cost and the timing of this approach is not justifiable for our

research.
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3.2.2 Gate Array and Cell-Based Design

Gate array design offers the advantages of a custom approach but yet removes the need
for labor-intensive transistor-level considerations, principally performance verification
and physical layout, from the customer. To achieve this the silicon vendor carefully
predetermines and characterizes a simple logic cell, typically having the potential to
realize a few basic gates, and then repeatedly locates instances in a regular matrix
covering most of the chip area. The gate array wafers are then fabricated as far as the
interconnecting layer, typically representing 90% of the whole process; it is then left to
the discretion of the user to determine a suitable pattern for a specific application. A
number of architectural forms are available, being characterized by the pattern of cell
layout and the amount of silicon explicitly devoted to interconnection paths. The gate
array market is dominated by CMOS devices, which typically offer a few thousand gates
with toggle rates up to about 350 MHz. Recent innovative families offer as many as
5,00,000 equivalent gates together with approximately 0.25 ns delay, and consequently
the gate array technique now offers a high degree of versatility. To summarize, gate arrays
achieve the objective of reducing design time compared to full custom devices, and
require only a reduced customized mask set. Consequently they are appropriate for
relatively small production volumes, typically a few thousand; in particular, prototyping
using this medium is often attractive. Turnaround time for designs is typically a few
months and a similar period is required if corrections are necessary. Consequently the
importance of ‘first-time cormect’ design is paramount. If sufficient turnover is
anticipated, then time delays from completing a design to receiving a chip are possibly the
major drawbacks associated with gate array design.
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Cell-based IC design can be viewed as an attempt to obtain the best of both worlds (full
custom and gate arrays). It offers the ease of design of gate arrays while retaining some of
the density and performance advantages of full custom design. As with the gate array, the
primary objective is to eliminate the need for the engineer to hand craft circuitry into
silicon at the individual component or transistor level. This is achieved by making
available to the chip designer a range of predefined and pre-characterized functional cells
(collectively referred to as a cell library) which can be used as building blocks to
construct any desired circuit. Cells can be drawn from the library as required and placed
virtually anywhere on the silicon. The ability to optimize the cells represents one of the
major advantages that cell-based systems have over gate arrays. We recall that the
components in gate array cells are fixed in size and position by the manufacturer and
consequently there is little or no scope for optimizing the manner in which these
components can be connected together to realize a particular function. It is invariably the
case that a given function implemented as a gate array cell will occupy a larger silicon
area and have inferior performance compared with a hand crafted cell in a cell library. In
terms of turn-around time a cell-based chip will demand equivalent effort to that required
in fabricating a full custom chip. Compare this with the situation for gate arrays where
almost one customized mask will normally be required to commit the array to a specific
task. We note that in our project, a standard cell based technology of BiCMOS .8 micron
is our primary selection for VLSI implementations of dedicated units. Fortunately this

technology is available through CMC for our Lab.
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3.2.3 Field Programmable Gate Arrays (FPGA)

The major disadvantages of gate array and cell-based design are the time taken to design
and fabricate such a chip and the necessity for first-time correct solutions to minimize
delays and costs. An attractive alternative allows for customization to occur in the field
when all masking stages are complete. Programmable logic devices (PLDs) offer such a
facility. They belong to the family known as “field programmable semi-custom”. They
consist of programmable logic gates that are connected through electronic fuses
(switches). Programming a field programmable device means blowing the fuses (turning
on the switch) along the path that must be disconnected (connected). Like traditional gate
arrays, FPGAs implement thousand of logic gates. Field programmability is obtained at a
cost in logic density and performance. FPGA capacity trails mask programmed gate array
capacity by a factor of 10 and its speed trails mask programmed gate arrays by a factor of

three.

On the other hand, a user can program an FPGA design in a few seconds or minutes,
rather than the weeks or months required for the production of mask-programmed parts.
Hence, FPGA design is a low risk design which makes FPGAs useful for rapid product
development and prototyping. In addition, FPGAs can be fully tested after programming
and hence user’s designs do not require test program generation, automatic test pattern
generation, and design for testability. Most FPGAs are now re-programmable and in the
case of a requirement for modifications, they can be re-programmed within a few

seconds.
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Many kinds of programmable logic products are referred to as FPGAs. Here, we use a
broad definition of the term, including not only devices with internal structure similar to
gate arrays, but also devices with internal structure similar to a collection of PLDs. The
term FPGA is often reserved for the former category, the latter are also called complex
PLDs (CPLDs) or programmable multilevel devices (PMDs). Three programming
technologies are commonly used for FPGAs. Each has associated area and performance
costs, and the device architectures reflect those costs. Thus, we can categorize FPGAs as

follows:

e Complex PLD (CPLD)

In a CPLD architecture, the user creates logic and interconnections by programming
EPROM (or EEPROM) transistors to form wide fan-in gates. A CPLD consists of a few
function blocks, each similar to a simple two-level PLD. Each function block contains a
PLD AND-array that feeds its macro-cells. The AND-array consists of a number of
product terms. The user programs the AND-array by turning on EPROM transistors that
allow selected inputs to be included in a product term. A macro-cell includes an OR gate

to complete the two-level AND-OR logic and may also include registers and an I/O pad.

e SRAM FPGAs

In an SRAM-programmed FPGA, programming of the device is stored in static memory
cells. In SRAM FPGA, logic functions are implemented as lookup tables made from the
memory cells, with function inputs controlling the address lines. Each lookup table of 2n
memory cells implements any function of n inputs. One or more lookup tables, combined

with flip-flops, form a configurable logic block (CLB). The CLBs are arranged in a two-
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dimensional array with interconnect segments in channels similar to gate array
architecture. SRAM FPGAs are inherently reprogrammable and can be updated in the
system, providing designers with new design options and capabilities, such as logic
updates that do not require hardware modification and time-shared virtual logic. Xilinx

FPGAs are typical example of an SRAM FPGA.

e Antifuse FPGAs

An antifuse is a two-terminal device that, when exposed to a high voltage, forms a
permanent short circuit between the nodes on either side. Individual antifuses are small,
so an antifuse-based architecture can have hundreds of thousands or millions of antifuses.
To simplify the architecture and programming , antifuse FPGAs usually consist of rows
of configurable logic elements with interconnect channels between them, much like

traditional gate arrays. Typical example of Anti-fuse FPGA is Actel FPGAs.

3.2.4 Selected device

In our design process, we employ FPGAs in the implementation of control unit of the
device which will bring flexibility and programmability to Fractal Engine. The selected

target architecture is Altera / Xilinx SRAM FPGAs.

3.3 Design Tools

One of the important enabling technologies for successful ASIC development is having
the proper design tools and a methodology that minimizes design errors at any level. In

this section different design tools are studied with an emphasis on logic synthesis. Logic
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synthesis is the design tool to analyze, verify, simulate and synthesize logic designs from

a behavioral description to silicon implementation.

3.3.1 VHDL Synthesis

Hardware description languages[64] have shown to be essential parts in Logic synthesis.
The rapid advances in integrated circuit technology over the past fifteen years have driven
the need for more capable design tools, and as those tools have developed, they in tarn
have made it possible to design larger and more complex ICs. In the 1980s, a number of
people within the electronics design community realized that conventional design tools
and methods would be inadequate to handle the growing complexity and size of
electronics systems. Two of the major advances to overcome that problem are the
development of Hardware Description Languages (HDLs), and their use with powerful

logic synthesis systems.

Logic synthesis is a process that is primarily intended to be used in the design of digital
ICs, and, in particular, ASIC devices such as gate arrays. Logic synthesis or design
automnation is the automatic synthesis of a physical design from some higher-level
behavioral specification which is much faster than manual design. It reduces the design
cycle considerably, and allows the designer to experiment with various designs to obtain
the optimal size/speed trade-off for a given application. Furthermore, as long as the
original specification is verified and simuiated, a synthesized circuit should not require
either verification or simulation. High level behavioral specifications (the input to logic
synthesis tools) are in general easier to write and to understand (and modify), less error-

prone, and faster to simulate. Hence, they considerably facilitate the design of complex
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systems. Today, synthesis is a growing industry, and commercial implementations of

synthesis systems are widely used for production-level design of digital circuits.
Different levels of Logic synthesis are as follows:

e High-level synthesis: converts a high level, program-like specification of the behavior
of a circuit into structural deign, in terms of an interconnected set of Register-Transfer
level (RTL) components, such as ALUs (Arithmetic-Logic Unit), registers, and

multiplexors.

e Logic synthesis: converts a structural design into optimized combinational (or
sequential) logic, and maps that logic onto the library of available cells in a particular

technology.

e Layout synthesis: converts an interconnected set of cells into the exact physical
geometry (layout) of the design. It involves both the placement of the cells as well as

their connection (routing).

An integrated synthesis system that covers all three synthesis levels is often referred to as
a silicon compiler. Such a tool would allow the design of electronic circuits from a high-

level, behavioral specification with little or no human intervention.

Hardware Description Languages (HDLs)[64] are used to describe the behavioral
description of a circuit which is considered as the input to a high-level synthesis tool.
Among all of HDLs, VHDL (VHSIC HDL)[32] has emerged as a standard for hardware
specification and simulation. The development of VHDL was sponsored by the US

government and the Air Force during the 1980s. In 1987, the VHDL language was
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adopted by IEEE as a standard hardware description language and has since achieved
wide spread industry acceptance. The VHDL language has powerful capabilities that have
several possible functions depending on its application. The language can be used to
describe and specify a variety of electronic systems, at levels of abstraction ranging from
pure behavioral down to gate and switch level details. In addition to the description
capability, systems modeled in VHDL can also be simulated at any of the levels in order
to verify their functional operation and performance parameters. A number of very
capable commercial VHDL simulators are available in the CAE marketplace. Finally, the
VHDL description of a desired logic function can also be used to drive the logic synthesis
process, with the constraint that the VHDL code be part of a fairly flexible but non-

standardized subset of the language.

3.3.2 IC Design Methodology

Two conflicting forces drive the IC design process: circuit quality and time to market. We
recall that semiconductor technology is undergoing exponential improvements, hence,
rather than a single stable IC design methodology we see rapidly changing paradigm

shifts as shown in the Figure 11.
e Transistor-Level Layout:

The premier IC design methods were focused on transistor level design coupled to layout.

In this approach transistor level layout entry and transistor level simulation are employed.
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Figure 11 - Evolution of IC Design Methodology

e Gate-Level Entry:

Transistor level design is a time consuming process. The introduction of Gate Arrays
(GAs), standard cells and Field Programmable Gate Arrays (FPGAs) brought comparable
benefits to the IC designers. These IC technologies are supported by automated place-
and-route systems. These systems take a net-list of cells from the library as input and

automatically place and route them in rows and columns.

The utilization of standard cells, GAs and FPGAs in this approach raised the level of
abstraction from the transistor level to the gate level. The primary design entry method is
gate-level schematic entry by means of a schematic editor. Other key tools in this
methodology are: gate-level simulation, automatic place-and-route tools and layout

editors.

e Synthesis Based Design
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We recall that the two important inventions of HDLs and logic synthesis systems
accomplished this approach of synthesis based design. We now present different steps in
synthesis based design process.

1. Behavioral Modeling:

For complex ICs, such as a high-performance microprocessor, a behavioral model of the
IC is first developed. Behavioral modeling proposes modeling the functionally correctly,
but without considering exact clock-cycle by clock-cycle behavior. This behavioral model

can be expressed in a hardware description language such as VHDL.

2. Simulation and Testing:

The ability to fully test a behavioral model of a design is achieved by VHDL simulators.
The code for the VHDL descriptions and test patterns will normally be typed as ASCII
text files which are the input source for the VHDL simulation tools. The reason that this
can be accomplished so quickly is that the synthesizable VHDL code is written at a fairly
high level compared with the gate by gate details required on a schematic, and this itself
takes much less time. Hence, with VHDL, the simulation begins immediately which

enables to find design problems in early stages.

3. Logic Synthesis:

Although synthesis is a fairly automated process, additional details must be provided to
the tools. First is the decision of which ASIC vendor will be used. Hence, the vendor
specific library of cells and parts are required in order to generate the gate level design.

This library normally contains the details of individual gate delays and the rules for
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computing loading delays due to inputs and estimated capacitance and wire length. The
second input to the synthesizer is information that is used to constrain the design based on
designer’s requirements. This typically includes the clock rate and pulse width,
assumptions about operating temperature, voltage, and process variations, output loading,
and limits on permissible propagation delays through critical paths. The outputs of the
synthesis tools typically include a vendor specific net-list, reports on timing, gate count
and area, critical paths and plotted schematic diagrams. Figure 12 shows the detailed

design flow for two different methods.
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Figure 12- Comparison of Design Flows

In this thesis, our goal is to obtain a VLSI system, which meets the performance and
specification requirements for real-time implementation of multimedia applications. To
achieve this objective, we have chosen to implement all hardware designs in behavioral
description in early stages using VHDL. Primary validation of functionality is assured by
VHDL simulators. Logic synthesis is then applied and vendor specific net-list is

generated (as shown in Figure 13). Real parasitic values, routing and propagation delays
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are then back-annotated and final simulation assures the functionality of the design. The
target VLSI technology is standard cell based for more critical modules and FPGA for the

programmable control unit.
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Figure 13 - VLSI Design Process

In the next chapter, architecture design trends are discussed in order to select the best

strategy for Fractal Engine.

3.4 Summary

The design of VLSI architectures for video processing is faced with a number of key
choices. These include Integration (single chip VLSI, LSI, ezc.), Fabrication Process (full
custom, semi custom, etc.) and Design Tools (schematic capture, hardware description
languages, etc.). High-density VLSI chip-sets require new design automation systems.
They can be fabricated using either a full custom or semi-custom design techniques. The
different choices include, full custom systems, cell based systems, gate arrays and field

programmable logic devices. In our research, we employ cell based system design
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techniques for dedicated units and field programmable gate arrays for programmable

units.

Logic synthesis using VHDL entry codes is our main design tool which minimizes design
errors at any level. Logic synthesis is the design tool to analyze, verify, simulate and

synthesize logic designs from a VHDL behavioral description to silicon implementation.

In addition to high density and fast VLSI systems, multimedia systems require new
advanced techniques in parallel processing. We present different aspects of multimedia
hardware architectures in the next chapter. Our goal is to find the best design scheme for

Fractal Engine.
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4 Design Trends in Multimedia Architectures

Multimedia system design presents challenges from the perspectives of both hardware
and software. Each media in a multimedia environment requires different processes,

techniques, algorithms and hardware implementations.

Multimedia applications require efficient VLSI implementations for various media
processing algorithms. Emerging multimedia standards and algorithms will result in
hardware systems of high complexity. In addition to recent advances in enabling VLSI
technology for high density and fast circuit implementations (discussed in Chapter 3),
special investigation of architectural approaches is also required. The important issues in

multimedia hardware design are listed below:

e Parallelization and Granularity: MIMD, SIMD, coarse grain such as multiprocessor

architectures and fine grain like superscalar and VLIW[87] architectures, etc.
e Processor (datapath) choices: DSP, RISC and CISC[65].

e Memory Interface Design: Support for EDO-DRAM, SDRAM, VRAM, RDRAM,

etc.
e Flexibility: Dedicated or programmable.

In this chapter, we investigate different architectures and categorize them. We note that
some categories are not restricted to muitimedia processors. After the review of all

architectures, we analyze advantages of each technique to be employed in Fractal Engine.
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4.1 Flexibility

In general, there are two different approaches for multimedia architecture design (Figure
14) as of any core processor namely: Dedicated and Programmabie. Combination of
dedicated and programmable modules in a multimedia architecture offers a compromise

between the two strategies as an adapted architecture for multimedia purposes.
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Figure 14- Multimedia Architecture Trends

A function specific (dedicated) implementation is a direct mapping of the multimedia
processing tasks to hardware modules optimized to execute the specific functions.
Matching of the individual hardware modules to the processing requirements results in
area efficient implementations. Multimedia programmable processors consist of
operational and memory modules, which enable the processing of different tasks under
software control. Combination of dedicated and programmable modules in a multimedia
architecture offers a compromise between the two strategies. As shown in Figure 14, the
architectures range from dedicated and adapted modules to fully programmable media

processors. A brief description of each category is presented in the following sections.

72



4.1.1 Dedicated Architectures

Based on available technologies, required computational achievement, production
quantity and the target algorithm the use of dedicated implementations could become the
best choice. For high volume consumer products, the optimization in silicon area and
timing of the device, which is brought by dedicated architectures, decreases the
production cost. Also, designing an specific function architecture for a well defined and
established standard algorithm is the best alternative. Dedicated processors differ in terms
of the ability of computations. They range from a small module for a specific small task
such as a DCT chip to a complete MPEG-2 encoder, which are discussed in the following

sub sections.

4.1.1.1 Distributed (Chip-Set) Implementation

In a chip-set, each major video processing module is configured as a separate chip such as
a DCT chip, Huffman coder chip, motion estimator chip, etc. Each module is designed by
a dedicated hardware architecture. In a distributed implementation, the designer is
responsible for the interconnection of the chips. The advantage of this approach is the
flexibility in selecting and connecting the different modules. The disadvantage is the
increase in area and therefore the size of the system. A typical distributed implementation
is shown in Figure 15. LSI Logic’s L64735 DCT Processor Chip and L64765 Color and

Raster/Block Converter Chip[89] are good examples of this approach.
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4.1.1.2 Unified Implementation

In this approach the whole system is designed in a single chip (or chip set) which results
in a low power dissipation and reduced silicon area. The main disadvantage of this
approach is the lack of the flexibility. Figure 16 shows a typical unified implementation.

An example of this approach is the C-Cube CL451[90].

Digitized Compressed
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MPEG-2
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Figure 16- Unified implementation example.

4.1.2 Adapted Architectures

The idea of designing a more flexible architecture for multimedia applications is
necessary because of the increasing number and variety of multimedia applications.
Dedicated architectures fail to respond to any change in the implemented algorithm. Most
dedicated architectures for multimedia processing applications achieve an increase in
flexibility by an adaptation of a programmable architecture to the algorithmic
requirements. Visual media being the most complex media in a multimedia environment,
has been the main target of architecture adaptation. Graphics and video chips have been

specifically designed the details of which are now discussed.
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4.1.2.1 Graphics/3D Accelerators

The graphics accelerator chip (or chip set) is designed to perform computationally
intensive tasks by providing hardware acceleration for the execution of low-level
graphics operations. Hence, they often function as a coprocessor in workstations and
personal computers. Newer chip sets often include hardware assistance for displaying 3-D
data and video streams. A typical system with a graphics accelerator is shown in Figure

17. An example of this category is the ViRGE/VX by S3 [92].
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Figure 17- A typical graphics accelerator system

4.1.2.2 Video Processors

Video processing tasks. such as DCT, motion estimation and variable block coding,
demand a high performance processor. Most processing units accomplish higher speeds
with the aid of a video coprocessor, which is capable of execution of above-mentioned
tasks. Recently, several video processors have appeared in the literature including the
VCP by 8x8 [91]. Figure 18 illustrates the utilization of a video processor in a complete

system.
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Figure 18- Video processor implementation

4.1.3 Programmable Architectures

In contrast to function specific approaches with limited flexibility, programmable
architectures implement different tasks by software control. The main advantage of
programmable architectures is the increased functionality. The design of a programmable
multimedia processor could be based on the design of a general purpose architecture or
performed independently for multimedia applications. In the former case, multimedia
capability add-ons are realized either in extending the instruction set or adding
multimedia hardware units. In the latter approach, a processor is specifically designed for

multimedia purposes. These alternatives are discussed in the following sub-sections.

4.1.3.1 General Purpose Processor with Extended Multimedia Instruction Set

Adapted architectures like graphics and video cards in workstations and personal
computers have the disadvantages of increased cost to the end user. General purpose
processors including RISC and DSP have significant computing power but are not

optimized for multimedia processing. Therefore, there is a strong desire among computer
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manufacturers to enhance existing architectures so that multimedia processing (video and
graphics processing) is integrated into the next generation processors just as 2D graphics
processing has been integrated into today’s architectures. Extended multimedia
instruction set which is introduced by Intel in MMX™([27] processors is an example of

this approach.

4.1.3.2 General Purpose Processor with Multimedia Hardware Units

The previous approach does not optimize the hardware for multimedia applications with
highly intensive computations. By using the enabling VLSI technology the alternative
solution is to add dedicated multimedia hardware units to the processor. The MediaGX
processor [93] is an example of this approach. MediaGX not only executes x86
instructions using a Cyrix CPU core, it also acts as a virtual video card resulting in a

highly integrated device with a lower cost and superior performance.

4.1.3.3 Media Processors

Media processors are a new category of logic devices defined as software-programmable
processors that are dedicated to simultaneously accelerating several multimedia data
types. Media processors meet three requirements:

1) software-enabled (not a multi-function fixed-function ASIC);

2) dedicated to multimedia (not muitimedia extensions to a CPU, like MMXT™);

3) capable of accelerating several multimedia functions simultaneously (not a DSP).
Recent advances in multimedia technologies such as DVD (MPEG-2 video, Dolby

Surround AC-3™ audio), 3D graphics, home movie editing (MPEG encoding), and
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video-phone, involve computationally intense operations and hence make it expensive
and difficult to design a dedicated chip or add-in boards for every new technology. Hence,
media processors are the target of new multimedia designers. A typical system
implementation by a media processor is shown in Figure 19. There are several vendors
now in the process of media processor design. TriMedia[29] by Philips is an example of a

media processor.
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Figure 19- Typical media processor system

In the following sections, other options in the design of a multimedia hardware
architectures are discussed. We note that these options mostly are applicable to

programmable multimedia processors and are used widely in today’s architectures.

4.2 Processor selection

Programmable architectures have several units in common. In general, every
programmable architecture consists of data path, memory, input/output and control path.
Data path is responsible for all the operations performed on data for the purpose of data
input, manipulation, analysis, processing and output. Control path is generating all

necessary signals to control the interaction between modules. There is always a contest
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between the complexity of these two parts in the design of a processor. The larger data

path leaves less space for control path and vise versa.

In this section, we investigate the possible options for the design of the processor[65] in a
multimedia system as shown in Figure 20. The categorization scheme is based on the

format of instruction-set, available registers and the structure of data path.
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Figure 20- Data path selection

CISC (Complex Instruction Set Computing) microprocessors with a more complex
instruction set provide more direct hardware support for a software developer than any
other architecture. Instructions in a CISC processor are very powerful in terms of
processing capability and support large numbers of registers and addressing modes.
Control path in CISC processors is more complex in order to execute instructions that are
more powerful. RISC (Reduced Instruction Set Computing) microprocessors offer faster
execution of individual instructions by optimizing the processor for a smaller instruction
set. DSP (Digital Signal Processing) microprocessors are optimized to perform digital
processing operations such as filtering. Multiply and Accumulate (MAC) instruction

occurs frequently in DSP algorithms and is performed in one cycle in DSP processors.
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4.2.1 CISC/CRISC

In early stages of microprocessor design, memory sub-systems were far slower than the
processor (this gap though narrower still continues today). In order to decrease the
memory access by CPU, engineers designed complex instruction sets. Each instruction
encapsulates several simple instructions, and hence the time spent retrieving the
instruction from memory was reduced. Another design key for CISC processors is
microprogramming. Microcode essentially acts as a translation layer between the
instructions and the data path. In a microprogrammed system, the main processor has
some built-in memory (typically ROM) which contains groups of microcode instructions
which correspond to each instruction. When an instruction is retrieved by the processor,
the processor executes the corresponding series of microcode instructions. Using
microprogramming, designers are able to update a processor with new instruction sets
without changing the hardware. Since the microcode memory can be much faster than
main memory, an instruction set can be implemented in microcode without loss of speed

over a purely hard-wired implementation.

The Characteristics of instruction sets in CISC processors include:

e Register to register, register to memory, and memory to register commands.

e Multiple addressing modes for memory, including specialized modes for indexing

through arrays.

e Variable length instructions, where the length often varies according to the addressing

mode.
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e Instructions which require multiple clock cycies to execute.

Two key features of CISC hardware architectures are:

e Complex instruction-decoding logic (complex control path)

o A small number of general purpose registers.

4.2.2 RISC

Analysis of the instruction mix generated by CISC shows that about 80% of the
instructions generated and executed uses only 20% of the instruction set. It is an obvious
conclusion that if this 20% of instructions is speeded up, the performance benefits would
be far greater. Further analysis shows that these instructions tend to perform the simpler
operations and use only the simpler addressing modes. Essentially, all the effort invested
in processor design to provide complex instructions and thereby reduce the compiler
workload is being wasted. Hence, if only simpler instructions are required, the processor
hardware required to implement them could be of reduced complexity. It therefore
follows that it is possible to design a more powerful processor with fewer transistors and
lower cost. This processor has a simpler instruction set and hence, executes its
instructions in a single clock cycle and synthesizes complex operations from sequences of

instructions. The main features of a RISC processor are as follows:

o All instructions will be executed in a single cycle.

o RISC processor must include pipelining techniques to segment instructions.

e Memory will only be accessed via load and store instructions.
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e All execution units will be hardwired with no microcoding.

e On-chip instructions and data cache stores often used to decrease memory access.

e Operations are register based.

» CRISC

The advent of new processors, which combines the advantages of both RISC and CISC
architectures, has made distinction between CISC and RISC architectures no longer clear-
cut. Now a processor capable of executing multiple instructions in a cycle contains a large
instruction set of over 200 instructions and therefore cannot be considered as a RISC

processor. Typical examples of this category are the PowerPC and Pentium processors.

4.2.3 DSP

DSP processors are optimized for digital processing operations which include multiply
and accumulate (MAC) operations. MAC operation r = b + a . x, requires multiple clock
cycles in CISC and RISC processors, while in a DSP it is executed in one clock cycle.

Some characteristics of a DSP processor include:

Multiple data and instruction buses.

Parallel execution of MAC operation.

Limited number of instructions.

Efficient loop control.
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4.3 Granularity

The granularity of a multimedia system defines the size of the individual processing units
by which tasks are executed. The granularity affects the number of processing units since,
in any parallel architecture there is a tradeoff between the size and the number of

Processors.

Coarse grain systems are formed by a small number of large and complex processing
units. In fine grain parallelism, there is large number of small processors. The
intermediate possibilities between these two extremes can be referred to as medium-grain
parallelism. Fine and medium grain parallelisms have the potential of being faster, but
they need more powerful control units to divide small tasks between the processing units
efficiently. Most of multimedia processors are categorized as fine/medium grain
processors. Each task is executed in parallel at the instruction level among several
processing units. We now present the scheme of parallelism employed in these machines

and we will present data level parallelism in section 4.4.
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Figure 21 - Granularity issue in multimedia architectures
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4.3.1 Instruction Scheduling — Super scalar

The objective of a super scalar[66]-[69] system is to execute more than one instruction in
each clock cycle. The basic idea is to build a processor whose data path includes multiple
functional units and a modified control path to divide each task among the functional
units and keep them busy as much as possible. For example, a data path is formed by
several adders and a couple of multipliers. Thus the processor is able to perform a number
of additions and multiplications at the same time. To achieve this, the control unit should
be able to analyze a sequence of instructions and decide when some of them can be
executed in parallel. In a super scalar machine, the central processing unit (CPU)
manages multiple instruction pipelines to execute several instructions concurrently during

a clock cycle.

4.3.2 Instruction Scheduling - VLIW

VLIW (Very Long Instruction Word) processors {69]-{71] achieve instruction level
parallelism through software control in contrast to super scalar architectures. A VLIW
instruction is a long string of bits (few hundred to few thousand bits) that directly controls
every individual processing element in the processor. Each bit could turn on or off a
particular element of the data path. Parailel execution is arranged simply by setting the
instruction bits that activate several functional units at the same time. The hardware does
no instruction scheduling; all decisions about controlling the functional units must be
made when the program is compiled. Hence, VLIW architectures are data path intensive

and require low control complexity.
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4.3.3 Data flow

Data flow architectures[72] achieve parallelism based on the concept of executing
program instructions as soon as their operands are ready, instead of following the
sequence dictated by instruction code. The data flow architectures could be massively
parallel. Control functions are placed on the data side (data-driven). The architecture can
eliminate the need for a processor clock and hence the processor has extremely low power
consumption. The architecture itself has power management functions so that it operates

only when data is present in the computational section.

4.4 Data distribution

We recall from Section 4.3 that in fine/medium grain systems, parallelism can be
achieved by either task distribution (instruction level parallelism) or data distribution. In
data distribution parallelism, the data is distributed among several processing units which
perform operations in parallel over the different data segments. Processors are classified
according to how they process the program instruction and data streams, namely (i) SISD
— Single Instruction Single Data, (11) MISD — Multiple Instruction Single Data, (iii) SIMD
— Single Instruction Multiple Data, (iv) MIMD — Multiple Instruction Multiple Data[86].
It is clear that the last two classes employ data distribution for parallelism and hence, they

are discussed in this section.

44.1 SIMD

In SIMD architecture, all processing units execute the same instruction in the same

machine cycle over different data. They include vector/array processors, associative and
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orthogonal processors. A control unit issues the executicn command to all processing

units and hence the control design is simple.

44.2 MIMD

A MIMD architecture typically achieves high utilization of all processing units. It needs
separate control units and instruction memories per parallel unit. Compared to SIMD, the
advantage of MIMD is greater flexibility and higher performance for complex algorithms
with highly data dependent control flow. On the other hand, MIMD requires a
significantly increased silicon area. Additionally, the access rate to the program memory

is increased, since several controllers have to be provided within program data.

4.5 Memory Selection

Multimedia applications with large volumes of data require very large memory
bandwidth. Hence, high density, fast and low power storage is an essential part of each
multimedia system. Also, the clock speed in processing units has been increased and a
fast memory is required to match the processing speed. In order to meet these
requirements, several approaches have emerged recently which increase the performance
of DRAM memories. These techniques include extended data out (EDO) DRAM,

synchronous DRAM (SDRAM), Rambus (RDRAM) Dram and video (VRAM) DRAM.
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Figure 22 - Available DRAM options

4.5.1 EDO RAM

In EDO (Extended Data Out) memories, output data can be maintained until the next
CAS (column address strobe) falling edge. This results in continuos memory accesses.
DRAM has a two-stage pipeline, which lets the memory controller read data off the chip,

while it is being reset for the next operation.

4.5.2 SDRAM

SDRAM (Synchronous DRAM) is another form of memory developed shortly after EDO.
Performance improvement of SDRAM is achieved by introducing synchronous operation
to DRAM. Because of being in sync with the processor, it eliminates timing delays and

makes the memory retrieval process much more efficient.

4.5.3 Rambus DRAM (RDRAM)

RDRAM is an interface design in order to provide an optimized solution for data transfer
between memory and processor. It adopts a 9-bit data bus, and there is no dedicated
address bus. Instead, packets including both command and address are first sent to the

chip via the Rambus channel. Following the request packets, an acknowledge packet and
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a data packet are sent from the chip back to the controller. After initial latency, data is

accessed at high speed.

454 VRAM

Graphics memory must work very quickly to update, or refresh, the screen (60-70 times a
second) in order to prevent screen flicker. At the same time, graphics memory must
respond very quickly to the CPU or graphics controller in order to change the image on
screen. With ordinary DRAM, the CRT and CPU must compete for a single data port,

causing a data traffic bottleneck.

VRAM (Video RAM) is a dual-ported memory that solves this problem by using two
separate data ports. One port is called the serial access memory (SAM) dedicated to the
CRT, for refreshing and updating the image on the screen. The second port which is the
random-access port is dedicated for use by the CPU or graphics controller, for updating

the image data stored in memory.

4.6 Multimedia Processors

In this section, we introduce example processors for multimedia applications. The
objective is to show the validity of categorizations discussed in this chapter. These
processors are designed for different target applications and one example is selected for

each application. Examples include:
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Application Example:

1. Multimedia Video Processor MVP by Texas

2. Generic Media Processor Mpact 2 by Chromatic

3. Generic Media Processor TriMedia by Philips

4. Embedded multimedia processor V830R/AV by NEC

5. Dataflow Media Processor DDMP by Sharp

6. General Purpose Processor Pentium with MMX technology by
Intel

7. Video codec for studio applications VideoRISC by C-Cube

8. Audio/Video codec (MPEG-2) L64002 by LSI-Logic
9. Graphic and video processor ViP by IBM
10. Video conferencing solution codec VCP by 8x8

I1.Image compression and motion|ICC and MEC by  Array

estimation Microsystems

Parallel processing techniques with multiple processing elements and memory system,
which typically communicate through an interconnection network are employed in these

architectures.
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4.6.1 TIMVP

In 1994, TI introduced the TMS320C80 single chip Multimedia Video Processor
(MVP)[76]. MVP combines, on a single semiconductor chip, multiple fully
programmable processors with multiple data streams connected to shared RAMs through
a crossbar network. Each of the independent processors can execute many operations in
parallel in every cycle. MVP has a scalable architecture with an overall performance of 2
MOPS (million operations per second). Figure 23 shows a block diagram of the major
functional blocks of the MVP. The Master Processor (MP) is a RISC processor with an
integral floating-point unit. MP is used primarily for host interface, sequential processing,

and management of multipie concurrent tasks operating on the entire MVP.

The MVP’s advanced DSPs have a unique parallel architecture optimized for image and
video computing. These DSPs have many powerful features not found in conventional

DSPs, such as:

¢ Long instruction words (64 bits): allowing up to 15 RISC-equivalent operations to be

specified in a single instruction.

e Single-cycle parallel accesses to the on-chip memory: allowing two 32-bit data

transfers per processor in every cycle, concurrent with data operations.

e Three-input 32-bit ALU, which can be optionally split into two 16-bit units or four 8-

bit units.

e 16x16 multiplier, which can also be split into two 8x8 units.



e Dedicated adders for address generation, which can also be used for arithmetic

operations.
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Figure 23- MVP Block Diagram
The MVP also includes 50 K-bytes of on-chip SRAM accessible in a single cycle. The

memory is organized as 25 blocks of 2 K-byte modules and each module used as an
instruction cache, data cache, data RAM, or parameter RAM. An instruction cache is
assigned to the MP and each of the DSPs, while the data cache is available only to the
MP. For the DSPs, the data RAM serves as the local storage area. While the cache
memory is serviced automatically in hardware by the Transfer Controller (TC) for
transfers to and from the external memory, the data RAM needs explicit management and
requests to the TC by the processors in software. Each DSP is associated with 8K-bytes of
on-chip RAM modules, although any processor can perform a single-cycle access to any
data or parameter RAM module via the crossbar. The TC is an intelligent DMA
controller, responsible for interfacing to the external memory system. It prioritizes

different types of data transfer requests from the MP and the DSPs, and transfers the data
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within or between the on-chip and external memories. It has numerous modes of transfer
operations, such as multi-dimensional transfers, table-guided transfers, fill-with- value,

and serial register transfers (SRT).

The processors and the memory modules are fully interconnected through the crossbar
which can be switched at the instruction clock rate (20 ns). Inter-processor
communication protocols such as message passing and pipelining can be easily
implemented in software, since each memory access takes only one cycle. In the case of
simultaneous access to the same location, the crossbar connections ensure that such

contentions are resolved through a priority-based scheduling.

The MVP also integrates the Video Controller (VC) for the generation of video timing
signals and VRAM memory transfer cycles, eliminating the need for external circuitry

and thus reducing the board space and the number of chips needed in video systems.

4.6.2 Chromatic Research Mpact 2

The block diagram of Mpact 2[77] is shown in Figure 24.
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Figure 24 - Mpact 2 block diagram
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Mpact 2 is a media processor designed for muitimedia applications in PC. The Mpact 2
chip consist of a signal processor and five DMA bus controls. Data is transferred
simultaneously between the memory and the bus system. It includes dual Rambus
channels capable of a date transfer rate of 1.2 Gigabytes per second. The is a VLIW
architecture with a SIMD control unit. Data paths are all 72 bits wide. There are on-chip
caches for instruction and data. Data cache is a multiport memory with six read and six

write ports. AGP and PCI interfaces are designed in this chip and are readily available.

4.6.3 Philips TriMedia TM-1000

TM-1000(29] is the first media processor from the family of TriMedia processors. The
core processor inside TM-1000 is a high performance VLIW-based CPU core. The core
incorporates 27 functional units. The selection of the functional units is based upon the
application. Every VLIW instruction is formed by a maximum of five operations. The
core has 128 general-purpose 32-bit registers. There are 15 read ports and five write ports

in the register file.

TM-1000 processor consists of memory, video, audio modem and PCI interfaces which

makes possible easy communication with multimedia devices as shown in Figure 25.
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Figure 25 - Block diagram of TM-1000

4.6.4 VS830R/AV by NEC

V830R/AV[78] is an embedded multimedia processor designed for low cost multimedia
oriented applications. It is targeted to support real-time video signal processing of
broadcast quality. Strong multimedia processing extensions are incorporated into V830
RISC engine, which is the base of V830R/AYV processor. The core architecture supports
32-bit MAC operations. The processor is based on a two-way superscalar architecture.
The two major execution units in the V830R CPU core namely, the 32-bit integer
execution unit and a 64-bit multimedia extension unit, can work in parallel to improve the
performance. This 64-bit multimedia coprocessor performs SIMD parallel operations on
eight bytes, four half-words, or two words packed in thirty-two 64-bit coprocessor
registers. The execution units are fully pipelined and have one clock throughput and fixed

4-clock latency. The key features of V830R include:
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e Dual-issue superscalar

e Rambus interface ready

e 16K four way instruction and data cache

e video/audio, DMA, A/D multiplexed bus and ICE interfaces.

The V830R CPU core has a six-stage pipeline structure. The whole pipeline is divided
into three pipelines: an Instruction pipeline (I-pipe), an integer pipeline (V-pipe) and a
multimedia pipeline (M-pipe). The processor is capable of executing MPEG-2 decoding

in the main profile at main level (MP@ML).

4.6.5 Sharp DDMP

DDMP[79] (Data-Driven Media Processor) is the first data flow processor designed for
multimedia applications. This device uses high-speed parallel processing techniques to
process massive amounts of multimedia information, including full-motion video,

graphics, and audio.

The DDMP puts control functions on the data side (data-driven) and eliminates the need
for a processor clock in contrast to conventional von-Neuman computers. The result is a
media processor with extremely low power consumption in which the architecture itself
has power management functions so that it operates only when data is present in the
computational section. The DDMP media processor consists of a number of cores,

controllers and I/O circuitry as shown in Figure 26.
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4.6.6 Pentium processor with MMX technology
The motivation behind MMX][27] is to provide additional capability to existing
processors without sacrificing backward compatibility. It has been added to existing

floating point and integer functional units as shown in Figure 27.

Figure 27 - Implementation of MMX technology

MMX technology processes several pieces of data with each instruction. Typical elements
of data are usually small, for example 8 bits for each pixel color component in an image
or 16 bits per element for audio samples. CPU Data in MMX technology are wide (i.e. 64
bits or more) and are composed of independent smaller size data elements called packed

data types. A rich set of MMX instructions are defined to perform the parallel operations
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on multipie data elements packed into new wide data types (for example 8 x 8-bit, 4 x 16-
bit). Processor extends the basic integer instructions into SIMD versions. MMX
instructions also support saturating arithmetic in which the overflow and underflow bit is
not truncated and the instruction results in the largest or smallest possible representable
number in the data type of operation. Sub-word paralielism on packed data types and
saturation arithmetic in MMX technology are useful in many multimedia applications
such as motion compensation and graphics algorithms like shading. MMX technology
also provides a parallel compare instruction for data dependent applications. In Intel
Pentium processors with MMX technology, MMX instructions are designed to run in the
integer pipelines of the CPU despite the use of the floating point registers to hold data.
MMX instructions with the exception of the multiply instructions execute in one cycle.
The multiply instructions have an execution latency of three cycles, but the multiply

unit’s pipelined design enables a new multiply instruction to start every cycle.

4.6.7 C-Cube’s VideoRISC Processor (VRP)

The VideoRISC [81] family consists of a series of video compression products for digital
television, consumer electronics, and multimedia computing applications. VideoRISC
products are a combination of micro-application software sets and microprocessor chips.
A different micro-application is supplied for each product and defines the functionality of
that product. For example, the CLM4500 is a real time MPEG-1 video encoder (for
consumer quality), while the CLM4200 is a real time H.261 video codec. Both the

CLM4500 and CLLM4200 processors are based on VideoRISC product.
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While each micro-application is different. all run on the same chip: C-Cube’s VideoRISC
Processor (VRP). The VRP is designed to compress and decompress digital video in real
time, and can be used individually or with other VRPs, depending on the performance
requirements of the micro-application. The CLM4600 MPEG-1 Video Encoder (for

broadcast quality) requires eight VRPs, while the CLM4500 requires only two.

Other members of the VideoRISC family include the desk-top-oriented CLM4100

Multimedia Accelerator and an MPEG-2 encoder.

As an example of this family, CLM4700 MPEG-2 digital video encoder chip-set [30]
encodes broadcast-resolution video into MPEG-2 Main Level/Main Profile format in real
time, using either frame encoding or adaptive field/frame encoding techniques. System

features include:

MPEG-2 Encoding

e Multi-resolution /Multi-mode Video Capability

e System Layer Support

e Support for Broadcast Applications

e Simplified Hardware Architecture

4.6.8 L64002 MPEG Audio/Video Decoder

L64002 is a single-chip MPEG-2 source decoder [82] that combines a video decoder that
is compliant to the MPEG standard Main Profile at Main Level with a two-channel

MPEG audio decoder. The L64002, however is more than just a single chip MPEG-2
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audio/video source decoder. The architectural elements of the device shown in Figure 28
were developed for implementation of compressed digital interactive television
applications. These architectural elements include a customized RISC engine and a video

display and graphics controller. Features of 1.64002 include:
e Audio Decoding Block

e Decodes Layer I and Layer I (MUSICAM) ISO 11172

e Decodes two channels of 5.1 channel bit-stream (ISO 13818)
e Output samples rates: 16, 22.05, 24, 32,44.1, 48 kHz

e Channel data rates of 8 KBits/sec to 448 KBits/sec

e Outputs 16-bit PCM audio

e Customized RISC Engine

e All microcode stored on-chip

e Serial or 8-bit parallel input

e Robust error concealment

e Checks for syntax errors at all layers of MPEG bit-stream
e Freeze frame for video; mute or repeat for audio

e Optimized Memory Architecture
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4.6.9 IBM Video Integration Processor

IBM introduced Video Integration Processor (ViP90S) [83] on a single 208-pin PQFP
module. ViP905 is designed in CMOS 0.5 micron, triple level metals, contains over
750,000 transistors, 250,000 gates, and provides 900 million operations per second. This
technology provides the ability to process a television-like RGB or YUV data stream
from a TV digitizer function or video CODEC (either Software [S/W] or Hardware
[H/W]) into computer memory for manipulation and display. The image can be scaled to
any desired size, from one pixel to four times (4X) the size of the original—in full
motion, on the fly. The extremely sophisticated scaling algorithms provide high-quality
images, without the artifacts introduced by other methods. The TV data stream can be

transformed into RGB24, RGB16, or RGB8 screen formats. Proprietary Dithering
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Algorithms improve the quality of RGB16 output to approximately RGB24 quality, and

improve the quality of RGB8 output to approximately RGB 16 quality.

The block diagram of ViP905 is shown in Figure 29. The Video Integration Processor
technology is capable of 60-Hz interlaced updates of the TV decoder video streams, or
30-Hz non-interlaced updates of both the TV decoder stream and the video CODEC
stream. Two video windows can overlay each other, as desired, with single pixel

granularity. In addition, graphics can be overlaid on the video windows with single pixel

granularity.
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Figure 29- VIP Block Diagram

4.6.10 8x8’s Video Communication Processor (VCP)

The 8x8 Video Communications Processor (VCP) is a single-chip programmable video
subsystem and multimedia communications processor [84]. It can implement a compiete

multimedia and video conferencing subsystem on a single circuit card with a
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programmable DSP chip and memory. The VCP performs a superset of the functions of
8x8’s Vision Controller and Vision Processor chips. For video conferencing applications
it can act as a full CIF resolution H.261 codec and provide forward error correction and
bit-stream multiplexing to the H.221 and H.242 standards. For video playback
applications the VCP can decode the MPEG-1 video and audio streams. In addition to
multiplexing and codec functions, the VCP provides programmable video pre- and post-
processing functions including format conversion, video scaling, temporal filtering,

output interpolation, color conversion and picture-in-picture.

4.6.11 Array Microsystems Video Compression Chip-set

Array Microsystems designed a two chip chip-set [85] for video compression
applications. The a77100 Image Compression Coprocessor (ICC) and a77300 Motion
Estimation Coprocessor (MEC) chip-set provides a programmable video compression

solution with reasonable performance and features for multimedia systems.

The ICC performs functions such as DCT, quantization, zero-run length coding, etc. The
MEC performs motion estimation and is required only in those systems implementing
MPEG-1 or H.261 motion compensated compression. The block diagrams of ICC and
MEC are shown in Figure 30. For increased flexibility, the host PC or an off-the-shelf
RISC microcontroller performs variable length coding and bit-stream control,
communicating with the ICC and MEC over their respective host bus interfaces. Input,
output, and scratchpad images are stored in DRAMs or VRAMSs connected to the ICC and

MEC video buses. This memory for example, supports the following at 30 fps:

e JPEG encoding or decoding of full resolution CCIR-601 (720h x 480v) images
102



e Simultaneous H.261 encoding and decoding of CIF (352h x 288v) images

e Full MPEG-I1 L,B,P encoding or decoding of SIF (352h x 240v) images.
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Figure 30- ICC and MEC block diagram

In the next section we present an analysis of the strengths of each processor in order to
create a model for an ideal multimedia processor. These ideas are considered in designing

the Fractal Engine.

4.7 Analysis

We now present the appropriate architectural solutions for multimedia applications based
on the analysis of multimedia data and processing as well as the analysis of architectural
approaches. We note that the designer has to decide upon the critical options based on

available VLSI technology, target application and environment.

e Multimedia processing and high throughput CPUs are employed not only in desktop
computing applications to enhance the computing power of advanced workstations
and servers but also in many embedded applications such as high-speed printers and

video game consoles. Hence:
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= There is no unique solution for all multimedia systems.
Most low and medium level algorithms have pre-determined memory access. Hence:

=> Partitioned memory architecture among data paths and a shared memory
architecture is sufficient for those operations (in contrast to complex multi-port

memories).
Real-time processing is stream based and has poor temporal locality. Hence:

=> The increased number of data cache misses coupled with the high communication
bandwidth between cache and register file degrades the system performance.

However, block transfer operations speeds up the entire process.

High throughput memory interfaces are required to maintain all the functional units

busy all the time. Hence:

= DMA interfaces are employed in multimedia processors. For example Mpact 2

has DMA interfaces.

= Rambus interface is more appropriate for data transfer. Therefore, V830R

implements RDRAM interface.

= On chip caches with multiple ports for simultaneous read and write increase data

bandwidth. Mpact 2 has a data cache with 6 ports for reading and for writing.
= State-of-the-art bus interfaces such as AGP, PCI should be implemented.

= Utilization of wide CPU words (i.e. 64 bit word) and data buses result in an

increase in data throughput.

104



The MAC operation is very common. Hence:

=> DSP arithmetic units are appropriate.

The conditional branch is not used very frequently. Hence:
= Superscalar, VLIW and pipeline architectures work well.
The operations have inherently high paralielism. Hence:

=> Compilers for VLIW processors extract the parallelism and generate efficient
code. This is the reason for most media processors such as Mpact 2 and TriMedia

being based on VLIW architecture.

There are high level and medium level applications in multimedia processing which
require increased compute power from the processor (in the range of million
operations per second) such as affine transformations, motion estimation and 3D

rendering. Hence:

=> hardware dedicated units are required. For example, Mpact 2 has a motion
estimation unit and an engine for 3D rendering. TriMedia has a variable length

decoder for MPEG decoding and a scaling unit for video post processing.
There are conditional execution of instructions in muitimedia algorithms. Hence:

= MIMD control structure enables each individual data path to adapt its execution

path accordingly. This approach is employed in MVP.

Most of the multimedia functions don’t require more precision than 8 or 16 bits.

Hence:
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= fine to medium grain architectures are more suitable.

=> Packed arithmetic is employed for concurrent execution of packed data in wide

data words like the parallelism in MMX technology for Pentium processors.
Floating point operations are commonly used in applications like 3D graphics. Hence:

=> Floating point units speedup the execution of these operations at the expense of

additional real estate in the chip as in the case of MVP and Pentium processors.

Concurrent execution on sub-words of data is possible in multimedia instructions

especially in wide data words (i.e. 64 bit)

= Multimedia extensions to individual instructions are justified to exploit sub-word
parallelism. This approach is employed in Pentium processors with MMX

technology.

Conditional branches which alter the path of execution and reduces pipeline
utilization are present in data dependant applications such as object recognition, video

compression and model-based representation. Hence:

=> Out-of-order execution and dynamic scheduling techniques which can be
incorporated in super-scalar architectures such as Pentium processors, are used to

enhance utilization factor of pipelines.

e High speed access rate are desired in multimedia processors to speedup the
operations. This results in high frequency clock rates and therefore result in

increased power consumption. Hence:
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= Data flow processors like DDMP without a clock signal decrease the power

consumption drastically.

4.8 Summary

Multimedia hardware architectures have evolved from simple extensions of digital signal
processors and small dedicated architectures to powerful parallel architectures. It is
necessary for the designer to investigate the various issues in this evolution before

embarking on a new hardware design.

In this chapter, first the issue of programmability has been studied. Different techniques
and approaches ranging from dedicated modules to full programmable media processors
have been presented. Based on available VLSI technologies, required computational
achievement, production quantity and the target algorithm, it is the designer who will
select the best VLSI implementation approach. In our proposed Fractal Engine we employ
both techniques in different modules. Critical hardware units are implemented in
maximum efficiency. Complex muitimedia processing tasks namely affine transforms are
directly mapped to these units. Control unit and other programmable units are
implemented using configurable FPGAs. Programmability feature exists in Fractal Engine

by communication with an external CPU which controls the operation of Fractal Engine.

Programmable processors for multimedia applications are increasingly becoming popular
due to the wide variety of multimedia applications, development of multimedia
technology, advancements in parallel processing techniques, availability of high speed

interconnection networks and memories and enabling VLSI technology. In this chapter,
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various aspects of a programmable multimedia processor have been presented. Finally,

different examples of available processors have been studied. The features of recent

programmable multimedia processors are summarized and tabulated in Table 1. We note

that although TI-MVP and Pentium-MMX are older than other architectures, they are

included in the table because of their high perforrmance and representation of advanced

techniques..
TE-MVP TriMedia Mpact MDMP V830R MMX
Processor RISC,DSP, RISC RISC RISC, DSP CRISC
CIsSC
Granularity Medium Fine-Medium Medium Medium Medium Medium
Parallelism LIwW VLIW VLIW Dataflow Superscalar Superscalar
Data MIMD SIMD SIMD MIMD-like SIMD SIMD
Distribution
Memory VRAM SDRAM RDRAM RDRAM EDO,
SDRAM

Table 1 - Features of multimedia processors.

In the next chapter we start the design of Affine transform processor which is the core of

the Fractal Engine. Affine transforms are first presented followed by derivation of two

fundamental affine transforms. The hardware implementation is discussed in the end of

the chapter.
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5 Affine Transform Processor

The core processing element for Affine processing is Affine Transform Processor (ATP)
which is a parallel and pipelined architecture. ATP is simple, modular, scaleable and is
optimized to execute both low level and mid level operations. Implementation of the
basic operations by ATP enables efficient execution of a majority of visual computing

tasks. ATP executes Affine transforms which are a geometric transformation.

The basis of geometric transformations[98] is the mapping of one coordinate system onto
another. This is defined by means of a spatial transformation (a mapping function that
establishes a spatial correspondence between all points in the input and output images).
With a spatial transformation, each point in the output image (x, y coordinates) maintains
the intensity value of its corresponding point in the input image («, v coordinates). The
correspondence is found using the spatial transformation mapping function (X(w,v) ,
Y(u,v)) to project the output point onto the input image. Figure 31 illustrates a typical

transformation.

i -

’ / Vx

Figure 31- Spatial Transformation.
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We note that in the Figure 31, the intensity values of the pixels are the same in the input
and output images. Depending on the application, spatial transformation mapping
functions may take on many different forms. Simple transformations may be specified by

analytic expressions including affine, projective, bilinear and polynomial transformations.

Affine transforms([39] are widely used in visual processing applications. A description of
affine transforms and derivation of the two fundamental operations are presented in the
next sections followed by an efficient method for implementing the two basic operations

which form the core of the proposed ATP.

5.1 Affine Transforms

Affine (linear) transforms, specified by analytic expression as a matrix multiplication, are
the most commonly used spatial transform in the area of image and video processing.
They map a 2-dimensional Euclidean space R’ onto itself as shown in Figure 32. Affine
mappings preserve existing parallelism (lines) in the original image. For affine

transformations the mapping functions are:

x=a,u+a,v+a, x a, apnlu| |a;
o = +
Y =a,u+a,Vv+ay, y Ay, Gy ||V ay;

Figure 32 - General Affine Transformation
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This accommodates translations, rotations. scale, and shear. Affine transformation is also
expressed using a 3x3 matrix for homogenous coordinates.
a aQn aju

=G G Ay Vv
0O o0 11

— < W

We note that the combinations of two consecutive affine transforms are easily expressed
by the product of their individual transform matrices (i.e. it is another affine transform). It
is also shown that any arbitrary affine transform can be expressed as a set of predefined

affine transforms, which include translation, scaling, shear, transposition and rotation.
S.1.1 Translation
All points are translated to new positions by adding offsets 7, and T, to « and v,

respectively. The translated transform is expressed in Equation (3) and is illustrated in

Figure 33.

Figure 33- Translation.
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5.1.2 Scale

All points are scaled by applying the scale factors S, and S, to the « and v coordinates,

respectively (Equation (4)).

x S, 0 Ofu
yl=|0 S, Ofv
1 0 0 1)1

If the scale factors are not identical, then the image proportions are altered resulting in a
disproportionate scaled image. Positive scale factors that are larger than unity result in
magnification while factors smaller than unity result in a reduction. Negative scale factors

cause the image to be reflected. An example of positive scaling is shown in Figure 34.

Figure 34- Scale.

5.1.3 Shear

By allowing a2 to be non-zero, x is made linearly dependant on both « and v, while y
remains identical to v. A similar operation can be applied along the v-axis to compute the
new values for y while x remains unaffected. This effect is called shear. The shear

transform along the u«-axis and v-axis are as follows:
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x 1 H Ofu x I 0 Ojju
vi={0 1 Ofv| Orjyj=|H, 1 Ofv
1 0 0 1]1 1 0O 0 It

An example of shear along x-axis is illustrated in Figure 35.

Figure 35- Shear.

5.1.4 Transposition

All points in the uv-plane are reflected so that the x-coordinate will correspond to v and y-

coordinate to u«.

— R
Il

o — O

o O ~

- O O

-~ < 8

An example of transposition is shown in Figure 36.

Figure 36- Transposition.
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5.1.5 Rotation

All points in the uv-plane are rotated about the origin through a counterclockwise angle 6.
The transform matrix is given in (7).

cos(0)

X —sin(@) Of u
y|=|sin(@) «cos(@) Ofv
1 0 0 11

Each point in the image is rotated, so that the distance of the point from the origin is a
constant (as shown in.

y

| 1
e

Figure 37- Rotation procedure.

An example of 45-degree rotation is illustrated in Figure 38.

Figure 38- Rotation.

The inverse of a rotation is also a rotation with the same degree but in the opposite

direction and can be simply expressed as:
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x cos(@) sin(8) Ofu
v|=|—sin(@) cos(@) Ofv
1 0 0 L1

Implementation of Rotation in Digital Domain is discussed in Chapter 7.

5.2 Fundamental Affine Operations

A set of special affine transforms typically used in several image and video processing
applications are applied on intensity values of a square block of pixels (L=MxM pixels).
We denote these operations by As", which consist of stretching (s), translation (¢) and

isometric transform (k).

If X is an L-dimensional vector, then

AL X)) =s1*(X)+u”
s>0;

(D

where s,z are integers from the sets S,7 and define stretching and translation mappings.

S= {S’;.s': 1,2,---.N,}
T={T,;r=12.--.N,}

I* is one of the isometric transforms given in the set /,
1={r*;k=12,--,n,}
and I° is an L-dimensional identity vector = [L1,---,1].

The following basic isometric transformations have been chosen among all isometric
transforms(41].

I, - Identity: This transform maps each pixel onto itself.
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I, - Reflection about the mid-vertical line: Each pixel with (x,y) coordinates is mapped

onto a pixel with (-x,y) coordinates.

I; - Reflection about the mid-horizontal line: Each pixel with (x,y) coordinates is mapped

onto a pixel with (x,-y) coordinates.

I, - Reflection about the first diagonal: This affine transformation swaps the coordinates
of each pixel and is also called transposition. A pixel with (x,y} coordinates is mapped
onto (y,x).

Is; - Reflection about the second diagonal: This isometric transform swaps the
coordinates of each pixel and also changes the sign of the values of coordinates. A pixel
with (x,y) coordinates is thus mapped onto (-y,-x).

I¢ - Rotation around the center by 90 degrees: This transformation rotates the picture 90
degrees to the left (counter clockwise). A pixel with (x,y) coordinates is hence mapped
onto (y,-x).

I; - Rotation around the center by 180 degrees: Each pixel in this transformation is
reflected about the center of the picture. A pixel with (x,y) coordinates is mapped onto (-
X,-y).

I; - Rotation around the center by 270 degrees: This transformation rotates the pictures
90 degrees to the right (clockwise). A pixel with (x,y) coordinates is thus mapped onto (-
v,X).

An example of the mapping of selected affine transforms is illustrated in Figure 39.
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Figure 39 - Example of isometric transforms.

We note that the combination of any pair of these transforms will result in another

transform from this set. For example, a reflection about the mid-horizontal line (/;)
followed by a rotation around the center by 90 degrees ([Ig) will result in a reflection

about the second diagonal (I5) (i.e. I5o1; =I5). Table 2 lists all possible combinations

in [.
Table 2

combl o poL I, L I, I, I
(9

., |, L I, I, I, I, I, 1,
L | L I I I, I, I, I, I
Lo\ oL 4@ L
Lo\ &I, L LI
7 I A A A A AR A A A
A VA A A AR A A A 4
L |6 nonLoIIn L1
L |4 I, I, I, I, I I, I

We propose to employ a chain of combinations of two simple isometric transforms, [
(Reflection about the mid-horizontal line) and I, ( Reflection about the first diagonal or

Transposition) to express all other transforms as follows.
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I, =1,

I,ol, =1

[ol,ol; =1,
I,ol,ol,ol,=1,
Iol,ol;ol,0l,=1,
I,ol,ol,ol;0l,0l,=1I
I,ol,ol,ol,0ol,0l,0l;=1I,
I,ol,ol,ol,ol,0l,0l,0l,=1

Hence, the two fundamental operations in selected affine transforms are transposition and
reflection about mid-horizontal line. This implies that the implementation of these two
transforms in a chain will result in all other transforms without explicitly implementing

them.

5.3 VLSI implementation of ATP

This module is capable of executing for each range block, all of the selected isometric
transforms on the domain blocks and selects the best transform corresponding to the
closest match. The basic isometric transforms are transposition and reflection. Hence, a
chain of these fundamental operations is implemented in AFM (Affine Module) in order

to execute all of the selected transforms in a systolic fashion as shown in Figure 40.

Input Vector

SEREERERBEE
—

distortion

[ CM (Comparator Module) | >

Figure 40- Affine Module Block Diagram
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Every unit in the chain has a built-in array adder (AR) and distance calculator (D) to
measure the distance between the transformed domain block and the range block stored in

the SRAM. The design of built-in array adder is detailed next.

5.3.1 Array Adder Unit (AR)

This module consists of two sets of M basic cells, where M is the number of rows or
columns of the input block (a 4x4 example is shown in Figure 42). The first basic cell
(accumulator (a;) shown in Figure 41) accumulates the partial distortion for the ith row of

the domain block with the corresponding row of the range block stored in the SRAM

(% r,j—(sd,-j +:)|). In the first M clock cycles, the absolute value of the difference between

the row elements of the domain block and corresponding elements of the range block is
accumulated. At the end of every M clock cycles, the accumulated value (S;) is ready to
be output.

The second set of basic cells (summation, s;) adds the partial distortion values to compute

the total distortion value. The block diagram of the cell is illustrated in Figure 41.

o

ccumulation summation
a; —S_> S—N Si D,=D_, +S5,
Xix | i i
X, =|sD., +0=R.,| T D,
a,=a,+X,,

Figure 41- Accumulation and Summation Cells

119



A, module *S‘module

1o b= s |

hl S

gy

1

e s |

ol

E

[

control

Figure 42- Array Adder for 4x4 blocks

5.3.2 Reflector Unit

The reflector unit shuffles the input columns of the data such that:

X fori=12,....M

Yi] T A My

Where X; is the input to the module and ¥;; is the output. This module delays the output

for M clock cycles to maintain the synchronization between the outputs of other modules.

5.3.3 Transposer Unit

A parallel and pipelined transposer architecture was proposed in [88]. Here, the basic cell
of the transposer architecture (as shown in Figure 43) has two modes of operation A and
B selected by a control signal C such that when

1.C=1 A OUTPUT = A INPUT (A mode )

2.C=0 B OUTPUT =B INPUT ( B mode )
We note that b indicates the data-bus width. The control signal is derived from the global
clock signal. Thus the communication is synchronous and the control is simple in

structure.
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Figure 43-Basic Transposer Cell

The unit also includes an array adder. The architecture of a transposer module is shown in
Figure 44. This module consists of L=M* basic cells. Figure 44 illustrates the design of
transposer for a 4x4 matrix (i.e. M=4).

An entire column (row) is loaded in and out of the module in each clock cycle. In the A-
mode, a column (initially the first column) of a block is loaded in parallel into the cells
T\ 1-Ti14. Meanwhile, the second column of data is perepared to be loaded into the
transposer module. In the second clock cycle, they are loaded into the cells T;;-T;4,
while the first column of data moves to the cells T>;-T>4. This procedure continues and at
the end of 4 clock cycles, all the columns of data are loa-ded into the transposer module.
As soon as the last column of data is loaded into the cells Ty ;-Ta 4, the cells are switched
to the B-mode of operatioh. In the next 4 clock cycles, the row elements of the input
block are drawn out of the transposer module through the outputs B; -B4 in the B-mode.

Note that this output data is essentially the transposed version of the input data.
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Figure 44- 4x4 Transposer Module

5.4 Summary

We reiterate that the ATP forms the core of the Fractal Engine architecture. Considerable
optimization has been applied in the design of ATP in VHDL. The derivation of two
fundamental affine transforms and the design of array adder units are the key factors that
lead to a highly parallel, pipelined and scalable architecture of ATP. The proposed
architecture for ATP is scalable and modular and is hence suitable for VLSI
implementation. In the next chapter, the design of the Fractal Engine and its associated

peripheral blocks are presented.
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6 Fractal Engine

The primary focus of the Fractal Engine is to implement both image and video based
algorithms and it is based on the affine processor core. In this chapter, fractal processing
algorithm is first introduced followed by the design of Fractal Engine. Example
algorithms from spatial domain where image and intra-frame calculations are considered
and temporal domain, where temporal correlations are exploited are presented. The
spatial and temporal operations are mapped onto the Fractal Engine. Finally, timing
analysis demonstrates the real-time execution potential of the algorithms using the Fractal

Engine.

6.1 Why Fractal?

We recall from chapter 2, that the choices of kernels used in our design were primarily
dictated by visual data processing requirements. We note that a majority of low level and
mid level visual data processing exists in fractal block processing (FBP). Fractals exploit
the high correlation and self-similarities present in the visual data within an image or a
sequence of images. Fractal processing extracts existing self-similarity and self-affine

within an image.

FBP encompasses a majority of image processing operations including, summation /
accumulation, image addition / subtraction, translation, stretching, shifting, scaling,
rotation and pattern matching. We have therefore chosen FBP as the candidate algorithm
for the design of the generic video processing element in the proposed architecture.

Furthermore, from the current trends in multimedia design, model based representation,
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complex motion analysis and image understanding are the most demanding tasks. These
will form the major requirements for a machine to interact meaningfully with its
environment. Hence, affine transforms are receiving increasing attention in recent
research including the MPEG4 standard. We note that fractal block processing is about
finding affine relations within the blocks or objects of an image and is an appropriate
candidate for future visual data processing applications. A detailed description of FBP is

presented in the following section.

6.2 Fractal Block Processing

The emergence of powerful hardware architectures is providing the possibility of using
FBP in image and video processing. Fractal based techniques are becoming increasingly
popular in visual processing. They have been applied in several areas of visual

processing, such as segmentation[47], analysis[48], [49], synthesis

[50], computer graphics[55] and compression[56], [57]. In the last few years, several
image compression methods using fractal theory have been developed. These methods
promise better compression performance. Since fractal images can be described and
generated by simple recursive mathematical equations operating on the entire image, the
basic idea is that an image can be reconstructed based on the self-similarity it contains.
During the analysis stage, the algorithm partitions the image into a number of square
blocks. For each block, FBP associates the transformation in the image, which can best
reconstruct the block. This information can be used in different areas. For instance, in

image coding, compression is obtained by storing only the description of these
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transformations. Expected compression ratios for moderate quality reconstruction are

about 100:1. Fractal processing offers the following advantages and strengths:

. Due to the existing self similarity in many parts of natural images, fractal processing

is suited for real world pictures.
The degree of analysis can be traded off against processing time.
After analyzing the image, reconstruction is very fast.

It provides scalability/resolution independence since the image is defined by a set of

equations which can be arbitrarily scaled.

However, fractal processing has the following disadvantages:

!\)

. Most natural images are not mathematically synthesizable. They are not self-

transformable at the level of the entire image.

The procedure to calculate and exploit the existing correlations within an image or
images is highly compute intensive which precludes real-time implementation of

fractal based algorithms.

To overcome the first problem, Fractal Block Processing (FBP) has been proposed in the

literature {41]. FBP assumes that visual correlation can be efficiently exploited through

piecewise self-transformability on a block-wise basis. The image is partitioned into non-

overlapping blocks called range blocks. For each range block, possible affine contractive

transforms are applied on all candidate (domain) blocks within the image. The goal is to

find the best match domain block for every range block. At the first level, larger range

blocks (typically 32x32) and larger domain blocks are considered. If a range block cannot



be approximated (within a given threshold) by the domain blocks in the image, it is
further divided into smaller size range blocks in the next level and the best match search
is repeated. We note that this technique is based on Partial Iterated Function Systems

(PIFS), in which the image is expressed using several equations and mappings.

The key element in FBP is affine contractive transforms. They are linear transforms
which map a 2-dimensional Euclidean space R® onto itself and are described as follows

(The detail of these transformations and an Affine Processor are presented in chapter 5) :

IR e MU HERE A

This indicates that the image will be formed of properly transformed parts of itself. The

<1 (9)

goal is to find the best set of affine transforms (W) which minimize the distortion between

the transformed image (W(f)) and original image (f).

W is a collection of maps w; identical to a pair of a range block and a domain block and

the parameters of the corresponding affine transform.

W=le, ie. W(f)=wl(f)Uw7(f)...UwN(f) and f is as close as possible to W(f) (10)
i 2

The execution time for QCIF (180x144), CIF (360x288) and CCIR 601 (720x480) video
sequences corresponding to a 100MHz clock (with the assumption that one operation is
executed every clock cycle) are 6.35, 101 and 1000 seconds, respectively. Hence, a

speedup factor ranging from 190 to 30000 is required for real-time processing. There are
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two basic operations involved in FBP namely affine transformation (discussed in chapter

5) and mean/variance computation, which is now presented.

6.2.1 Mean and Variance computation

To normalize each domain block before comparison with a range block, mean and
variance values of the blocks are calculated. These two mathematical entities are the basis

of all statistical operations in image processing and are expressed as follows:

- 1< N >
x=—2)x ,0 =— . —X)” 11
I, N2 D) (11)
We note that in these expressions, the calculation of mean value and variance of the block

are executed serially. However, the expressions in (3) can be rewritten for parallel

execution.

,=N2f—@nl

L
=le. , O YE (12)

- 1
x=—
N

We note that the fundamental operations involved in (4) are squaring, division and

accumulation which are implemented in a dedicated hardware unit in the Fractal Engine.

In the following section, the different modules of Fractal Engine are presented.

6.3 Fractal Engine

We propose a parallel and pipelined architecture based on ATP core called Fractal
Engine to implement the operations in FBP. Fractal Engine is simple, modular, scalable

and is optimized to execute both low level and mid level operations. We present the
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design of individual sections of the Fractal Engine — Dedicated module which is shown as

processing section in Figure 45.

Peripheral Section Processing Section

r—

4 el |
Controt
;1 > Unit
Output

RAM

Domain Block Ixd 4x4 .
Scale
Module [
Inteiligent x4 4x4
Memory
Interface Arithmetic
1 Module Affine Module

Figure 45- Fractal Engine Block Diagram

6.3.1 Processing Section

This unit essentially forms the dedicated module of Fractal Engine and performs all

calculations required in FBP. It consists of three modules:

o Affine Module (AFM): to execute isometric transforms and calculate the distortion
between the range and domain blocks.

e Scale Module (SCM): to execute scaling and translation.

e Arithmetic Module (ARM): to calculate the mean and variance of blocks.

In addition, the processing section has a built-in static RAM (SRAM) to store range

blocks.

6.3.1.1 Affine module (AFM)

This is the core processor of Fractal Engine detailed in chapter 5.
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6.3.1.2 Scale module (SCM)

The task of this module is to calculate the translated and scaled version of every domain
block and make it available for geometric transformations in AFM. Several paraliel units

are implemented to execute scaling and translation on different domain blocks in parallel.

6.3.1.3 Arithmetic module (ARM)

This module executes low level computing operations to calculate the mean and variance

of image blocks. One element of a block is pumped into the module at every clock cycle.

6.3.2 Scalability

Hardware scalability is an important feature in the design of an architecture. For a
problem of complexity X which is executed using N units in T seconds, scalability
implies:

® 7/M seconds will be required to solve the problem using NM units.

® A problem of complexity XM is solved in T seconds using NM units.

The first type of scalability requires a flexible control design, while the second type of
scalability requires that the feature of scalability be incorporated in the design of
individual modules. We illustrate the concept of scalability in Fractal Engine, where 8x8

block architectures have been built using 4x4 blocks.

6.3.2.1 Scalable array adder

An 8-element array adder is built using two 4-element array adders as shown in Figure

46.
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Figure 46- 4-element and 8-clement Array Adder

6.3.2.2 Scalable reflector

The procedure of reflection about mid horizontal line is straight forward. This module
only shuffles the input elements entering the module. We note that an Rg module can be

configured using two R4 modules as shown in Figure 47.

L |1 o, o,
L [ [0, >
1, —— B,
¥
I [
T O, — >
Lin 0, O .
L (O,
19 Oy
L o,
T o, -

Figure 47- Reflector Module

6.3.2.3 Scalable transposer

The proposed transposer is a modular and scalable architecture. To build an 8x8 matrix
transposer, we simply arrange four 4x4 matrix transposers together as shown in Figure
48. The transposition process is executed in 8 clock cycles. The only modification

required is in the frequency of the control signal.
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Figure 48- 8x8 Transposer Unit

6.3.2.4 Scalable affine module

The issue of the scalability of reflector and transposer has been discussed in previous
sections. We note that in order to design an affine module which performs all selected
affine transforms on either four 4x4 blocks or one 8x8 block, special data routing
mechanism is required. The module has two modes of operation:

e Operation on 4x4 blocks (x4 mode)

e Operation on 8x8 blocks (8x8 mode)

The configuration of module in each mode is illustrated in Figure 49 and Figure 50,

respectively.
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Figure 49- Affine Module for 4x4 blocks
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Figure 50- Affine module for 8x8 blocks

The reconfigurable architecture is shown in Figure 51.

We note that this reconfigurable architecture performs data routing in two different

modes. In the 4x4 mode, the module processes four 4x4 blocks and is configured as

shown in Figure 49. In 8x8 mode, the module processes one 8x8 block and is configured

as shown in Figure 50.
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Figure 51- Scalable Affine Module

6.4 Example Algorithms

In this section, we demonstrate the concept of generic processors, real-time execution
capability and scalability in Fractal Engine by implementing five examples of compute
intensive algorithms. These algorithms include Vector Quantization (VQ){42], Fractal
Block Coding (FBC){41] and Affine Transform Based Vector Quantization (ATVQ)[25]
from spatial domain, Motion Estimation[43] (ME) and Affine Motion Estimation (AME)
from temporal domain. These algorithms not only encompass a variety of operations
involved in both image and video processing, but also reflect the challenges in visual

computing applications from the perspectives of real-time implementation and scalability.

6.4.1 Vector Quantization (VQ)

In VQ[42], a set of representative images is decomposed into L-dimensional (MxM)
vectors. An iterative clustering algorithm such as the LBG algorithm [100] is used to

generate a codebook (CB) of size K. This codebook is then made available at both the
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transmitter and the receiver. In the encoding process, the image to be coded is
decomposed into L-dimensional vectors. For each input vector V;j (range block), CB is
searched using a nearest neighbor rule to find the closest codeword Wj. Compression is
achieved by transmitting the label j corresponding to W;. Reconstruction of images is
implemented by using j as an address to a table containing the codewords.

The existing high computational complexity in VQ has been an impediment in real-time
implementation in many applications. In this section, we demonstrate the real-time
implementation of VQ using Fractal Engine. The data flow diagram and the processing
architecture of Fractal Engine for VQ execution are illustrated in Figure 52 and Figure 53,

respectively.
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Figure 52 - Data flow in Fractal Engine for VQ Implementation

IMI fetches columns of data including range blocks and codewords from RAM and
provides data for AR module. To start with, the first range block is loaded in SRAM. An
entire column is loaded in and out of AR cells in each clock cycle. At the end of the first
eight clock cycles, the first codeword enters the accumulator module of AR;. In the
second eight clock cycles, the second codeword is loaded into AR;-ACC, while the

partial distortion values are added in AR;-SUM. The value of distortion between the first
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range block and the first codeword is available at the beginning of the third set of eight
clock cycles. In the next eight clock cycles, the distortion values are stored in CM; for
future comparisons. After an initial latency of 24 clock cycles, the utilization factor for
AR-1 and CM-1 cells is 100% and at every eight clock cycles, the codewords are

compared with the range block.

i
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[—codewods _l
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Figure 53 - Processing Section of Fractal Engine for VQ execution

6.4.2 Fractal Block Coding (FBC) Algorithm

Barnsely[36] has proposed an algorithm to compress fractal images with a very high
compression ratio (100-10000). This algorithm is based on Iterated Function Systems
(IFS). However, real life images are not self-transformable at the level of entire image. A
block based fractal image compression method or Fractal Block Coding has been
proposed by Jacquin[41] for real life images with a compression ratio ranging from 80 to
200. The proposed algorithm is based on Partial Iterated Function Systems (PIFS).

The sequence of operations in FBC illustrated in a flow chart format is now presented.
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A pool of domain blocks D; is made up of all blocks from the original image.

. For every range block (R;), the affine contractive transformation (z;) which minimizes
the distortion between R; and a domain block (D)) is searched.

If the distortion is less than a preset threshold, the best pair (D; , £;) is stored.

Otherwise, the range block is divided into smaller size range blocks and the search for

the best pair (D; , £;) is repeated.
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6.4.2.1 Implementation of FBC

The modules in Fractal Engine including AFM, SM and ARM are controlled by CU to
work in parallel for real-time implementation of FBC. IMI provides data for all units as
shown in Figure 54. The procedure consists of two different processes:

1. Mean and vaniance calculations of all 4x4 and 8x8& blocks.

2. Block matching and affine transformations.

We recall from Section 6, that these two tasks cannot be performed simultaneously on the
same frame. Hence, two consecutive frames (f; and f:.;) are stored in the RAM module.
While ARM is calculating the mean and variance values for the range and domain blocks
in fies, AFM and SCM determine the best candidate domain blocks with appropriate
affine transformation for every range block in f;. The latency is NxN clock cycles, where

N is the number of rows or columns of the frame.

domain
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RAM - Memory moduie
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domain and range block
5.1 - scale and translation tactar

Figure 54- Data flow in Fractal Engine for FBC Implementation.

e ARM process
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At every clock cycle, one element of the frame is loaded into ARM by IMIL. ARM
calculates the summation of the elements of a block and their squared values. In every
L=MxM clock cycles, where M is the size of the block, the mean and variance of one
block is determined and IMI stores the results in the RAM.

o AFM process

The modules of processing section in 8x8 mode are shown in Figure 55.
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Module : e e L e S B
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I Comparator j
Affine Module (AFM)

Figure 55- Processing Section in 8x8 mode for Execution.

To start with, the first range block is loaded in SRAM. An entire column is loaded in and
out of AFM and SCM in each clock cycle. A column of a domain block (initially the first
column) is loaded into SCM. At the end of the first eight clock cycles, the first
transformed domain block (B,) is loaded into R; -first reflector module- which is shown
in the cell (1,2) of Table 3 and the first affine transformed version of B; (B;(1)) enters the
accumulator module of AR, (1,10). In the second eight clock cycles, the second domain
block is loaded into R; (2,2) and the first transformed version (By(1)) into AR;-ACC
(2,10) B; moves to T, — the first transposer module— (2,3), the second affine transformed
of B; (Bi(2)) enters AR>-ACC (2,12) and the partial distortion values between range

block and B;(1) enter into AR;-SUM (2,11). The total value of distortion between the
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range block and first affine transformed domain block is available at the beginning of the
third set of eight clock cycles and is loaded into the first comparator module (3,26). In the
next eight clock cycles, while the total distortion value between the range block and the
second domain block is starting to get loaded into CM,; (4,26), the distortion value
between the second affine transformed version of B; and the range block is being
compared with the previous distortion value (4,27). This procedure continues for all the
domain blocks and the process is illustrated in Table 3.

After 72 (9M) clock cycles, the best affine transform which generates the least distortion
value between the first domain block (B;) and the range block is available at the output of
the comparator module (10,34). We note that the utilization factor after this initial latency
is 100%. After processing all the domain blocks, if the minimum distortion is within a
pre-specified threshold, the best domain block index and the corresponding affine

transform parameters are loaded out of AFM.
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] 2 3 4 5 6 7 8 9 loll 12 13 14 1 15 16 17 18 ] 19
Clock | iock | Block | Block | Block | Block | Block | Block | Block AR AR; AR AR ARs
eycle #inRy { #inT) { #inR2 | #inT, | #inRy | #inT) | #inRe | #inTy | ACC SUM | ACC SUM | ACC SUM | ACC | SUM | ACC | SUM

} 0-7 By Bi(1)

2 8-15 B; B Bal) | BN | Bi(2)

3 16-23 By B; By By(l) | Bal) | Ba2) | Bu2) | Bi(3)

4 24-31 By B; B, By Ba(1) | Bs{l) | Bx2) | Ba2) | Bx3) | Bi(3) | Bi(4)

5 32-39 Bs By B; B, By Bs(1) | Ba(}) | Ba(2) | Ba(2) | Bs(3) | BaA3) | Bal4) | By(d) | B

6 40-47 Bs Bs By B; B B, Be(l) | Bs(l) | Bs(2) | Ba(2) | Bs(3) | By(3) [ Ba(4) | Bad) [ BxAS) | Bu(5)

1 48-55 By By Bs By By By By By(1) | Be(l) | Ba(2) | Bs(2) | Bs(3) | By(3) | Ba(4) | Ba(d) | Bs(5) | BaAS)

8 56-63 By B; Bs Bs B4 B3 B; By | Bi(l) | Bo(l) | By(2) | Be(2) | Bs(3) { Bs(3) | Bs(4) | Ba(4) | B4(5) | B:(S)

9 64-71 By Bg B, Bs Bs By B; B; By(l) | Bg(1) | Ba(2) | By(2) | By(3) | Be(3) | Ba(4) | Bs(4) | Bs(S) | Ba(5)

10 72-79 B By By B, By Bs By Bx Bi(l | By(l) | Bs(2) { Be(2) | Ba(3) | Bi(3) | Ba(4) | Bs(4) | B«(5) | Bs(5)

1 80-87 B By By Bg By By Bs B4 Bu(l | Bl | Bin(2) | Bo(2) | Bu(3) | Ba(3) | Ba(4) | Ba(4) | By(S) | Ba(S)

20 21 22 1 23 2 25 26 1 27 ] 28 l 29 l 30 ] 31 ] kY) ] 33 34
ARs ARy ARg Comparator modules
S [acc [ [aec [ [acc [owe | P [t T T mote Toons [ ot [ ot | o
1 0-7
2 8-15
3 16-23 By(1)
4 24-31 Bal) | By(l-2)
5 32-39 By(1) | By(1-2) | By(1-3)
6 40-47 By(6) B4(1) By(1-2) | Ba(1-3) | By(l-4)
7 48-55 By(6) Bi(6) B«(7) Bs(1) | Ba(l-2) | Bs(1-3) | Ba(l-4) | By(l-5)
8 5663 | Bx6) | Ba6) | Bil) | Bi) | Bi®) Be(1) | Bs(1-2) | Ba(13) | Bx(l-4) | Bx1-5) | Bi(1-6)
9 64-71 By(6) Bs(6) By(7) By(7) By(8) By(8) Bi(1) | Ba(l-2) | Bs(1-3) [ By(1-4) | Bs(1-5) | Bu(1-6) { By(1-7)
10 72-79 Bs(6) B4(6) B4(7) By(7) By(8) B3(8) Ba(l) | By(1-2) | Bg(1-3) | Bs(1-4) | By(1-5) | Bs(1-6) | Ba1-7) | Bu(l-8) B,
N 80-87 | B«(6) | Bs(6) | Bs(7) | B«7) | B«8) | Ba8 | Bs(l) | Bs(1-2) | By(i-3) | Be(1-4) | Bs(1-5) | Be(1-6) | Bx1-7) | Bx1-8) | B;

Table 3 - Cell occupancy for the execution of FBC
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6.4.3 Affine Transform Based Vector Quantization

We propose a high performance video compression algorithm[31] which can be ideally
mapped onto the Fractal Engine. This algorithm is based on a2 combined affine transform
and vector quantization (ATVQ), where the intra-frame and inter-frame redundancy in a
video sequence are exploited through piecewise self-similarity on a block-wise basis
within a frame and between frames. In ATVQ, the best match for each vector of the input
image is searched among various affine transformed versions of the codewords in
addition to the non-transformed codewords (as in standard VQ). Hence, ATVQ can
reconstruct more input vectors using a smaller size codebook with a specified distortion
compared to conventional vector quantization. In this section, the ATVQ algorithm is
mapped onto the Fractal Engine. First, the ATVQ algorithm simulations and its coding
performance are discussed followed by the mapping of the algorithm onto the proposed

architecture. The timing analysis of the execution of the algorithm is presented in 6.5.1.

6.4.3.1 ATVQ Algorithm
An affine transform based vector quantizer can be defined as a composition of two

mappings Af, and O, where A,'i is as introduced in section 5.1, and Q is the conventional

vector quantizer which maps R into a finite subset Y of R- .

V=A4%-0
A%:RL 5 RE

Q.RL—>Y

where, Y; is an L-dimensional vector.



To start with, a universal codebook is generated which is available at both the transmitter
and receiver. The algorithm for codebook generation is detailed in [100]. We note that the
codebook generation process is executed only once and is hence executed off-line. The
training set for codebook generation includes frames from various video sequences. The

steps of the ATVQ algorithm follows:

Step-0. Consider the first frame as the input. (f=1)

Step-1. Partition the input frame into square blocks of size MxM.
Step-2. For each block X select the affine transform A%, and the vector Y_ from the

codebook such that:

d(Axf (X ),Yu) =min d (A‘fw(Xi ) YJ.) for all possible values of /,v,w and j
The algorithm to determine the best affine transform A% is now detailed.

For every codeword in the codebook:
a) Calculate the variance and the mean of the input block (ivar, imean) and the

variance and the mean of the selected codeword (cvar, cmean).

b) Assign the scaling factor 5= m and then quantize the value s to the
nearest number in the set S.

c) Assign the translation factor ¢ = cmean —s*imean . If it is not in the range of set

T, the nearest value in the set is selected.

d) Transform the input block to the scaled and translated version.

(ie. forall xof X;:  x=s*xx+1)
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e) Apply all transforms in the set I to X; and calculate the distortion between the
transformed block and the codeword.

Determine the least distortion value and store the corresponding values of k, s, ¢
and n.

Step-3. Assign the codeword [kstn] to X.

6.4.3.2 Simulation results

The performance of ATVQ is investigated using 4 test video sequences of 30 frames each
(namely, Football, Ping-Pong, Miss America and Salesman). The codebook is generated
using the sequences Football, Ping-Pong and Miss America. This codebook is used to
code all the test video sequences. Different sets of S and T with varying codeword sizes
are employed. The best values for N; (number of members of S), N; (number of members
of set T) and M (number of rows or columns of each codeword) have been chosen from
the results of simulations. The selected values are:

N,=15 , N,=25 , M=8=L=64
s ={1/3.1/2.2/3,3/4,4/5,5/6,7/8 1,8/7,6/5,5/4,4/3,3/2 2,3}
T ={-128,-127,---,0,1,2,---,127}

The performance of ATVQ is evaluated using the Rate-Distortion (R-D) criterion, where
the distortion is measured using the Peak Signal to Noise Ratio (PSNR) and is defined as:
PSNR =10log,,(255%255/MSE) dB
for 8 bit/pixel (256 gray level) images and MSE is the mean square error between the
original image and the reconstructed image. The bit rate for ATVQ is calculated as

follows:

Rmm[ = Rn+Rk+Rs+Rt
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Where R;, Ry, R and R, refer to the bitrate for the codeword label, isometric transform

index, scaling factor and translation factor respectively and are calculated as follows:

e R,=(log512/(8 *8)) =0.14 bpp

Ry = (logz 8 / (8 * 8)) = 0.04 bpp

R; = (logz 16 / (8 * 8)) = 0.06 bpp

e R,=(log; 256/ (8 * 8)) =0.12 bpp

Rioat = 38 bpp

The following diagram illustrates the distortion value for all of the test sequences at a

bitrate of .38 bpp.

—&— Miss America
—il— Ping Pong
—— Football
—>¢—Salesman

D20

Figure 56 - Performance chart of ATVQ

It can be seen that ATVQ outperforms VQ at the same bitrate.

6.4.3.3 Mapping of ATVQ on Fractal Engine
The architecture of Fractal Engine for ATVQ is similar to that for FBC. The difference
lies in the fact that domain blocks in ATVQ are codewords from the codebook while in

FBC, the domain blocks are formed from blocks in the same image (frame).
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Figure 57 - Processing Section of Fractal Engine for ATVQ execution

All modules in the engine work in parallel and pass data to determine the best match for

each range block. The communication between different modules of the Fractal Engine

for ATVQ execution is shown in

Figure 58.
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Figure 58 — Data flow diagram of Fractal Engine for ATVQ

In each clock cycle, one column of an MxM block from the video sequence enters AFM.
After M clock cycles, the distortion value between the input block and the stored

codeword is calculated and the reflected version of the input block is passed to the next
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chain in the cell. In the second M clock cycles, the second cell (which is a T-Cell)
transposes the input block and calculates its distortion value corresponding to the stored
codeword. Meanwhile, the second input block enters the module. Hence, after 9M clock
cycles the distortion values between the transformed codeword and the range block are
compared and the best transform is selected. This is fedback for comparison with other
distortion values for other codewords. All of the calculated distortion values are
compared by CM to determine the best affine transform parameters for each codeword in

the codebook.

6.4.4 Motion Estimation (ME)

ME[43] is widely used in inter-frame visual media processing particularly in video and
image sequences. ME-BMA (block matching algorithm) is typically used in inter-frame
motion-compensated (MC) processing. In BMA, motion of a block of pixels (usually
MxM), within a frame interval is computed. The range of the motion vector is constrained
by the search window. BMA assumes that all pixels within the block have uniform
motion. The goal is therefore to find the best match between the block in the current
frame (range block) and a corresponding block (domain block) in the previous frame
within a search window of size {(M+2m) x (M+2m)}. In H.261, MPEG-1, and H.263,
ME is based on (16x16) luminance blocks.

A variety of techniques have been proposed in literature for ME implementation. They
are typically compute intensive and are hence difficult to implement in hardware. Since
the core processor of Fractal Engine has been designed by optimizing the implementation
for a variety of multimedia operations, ME can be mapped ideally onto the Fractal Engine

and implemented in real-time.
146



We note that motion estimation is essentially a pattern matching process. This process has
been fully implemented (in parallel) in the Fractal Engine in the execution of VQ and
FBP. The difference here is that instead of codewords or domain blocks from the current
frame, the affine module is fed with blocks from the previous frame. Furthermore, affine
motion estimation (AME) is also possible in real-time using Fractal Engine. In AME,
each range block is also compared with the affine transformed version of the candidate
blocks in the previous frame. Hence, better match can be obtained using this process. In
the next sections, we demonstrate the real-time execution of Motion Estimation and

Affine Motion Estimation using the Fractal Engine.

6.4.4.1 Motion Estimation

The full search BMA-ME is implemented in the Fractal Engine. We recall that in BMA,
motion of a block of pixels (MxM), within a frame interval is investigated. The best
match between the range block and all possible domain blocks in a search window of size
{(M+2m) x (M+2m)} is searched by the Fractal Engine.

Full search implies that all blocks formed by any pixel displacement within the search
window have to be compared to the range block. In other words, (2m+1)x(2m+1) blocks
in previous frame are compared to the range block and the closest block is selected. Full
search ME is compute intensive and is hence difficult to implement in hardware. Fractal
Engine is capable of implementing full search ME-BMA in real-time which is

demonstrated for the case of M=8. The structure of Fractal Engine for ME is shown in

Figure 59.
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Figure 59 — Data flow diagram of Fractal Engine in ME process

The memory block is divided into two sub-blocks. Each sub-block stores the information
of one frame. After the first frame is stored in the first RAM block, motion estimation for
the second frame is started. At the same time, the data is stored in the second RAM block.
We note that at the end of motion estimation process for the blocks in the second frame
(current frame), the contents of the second block of RAM need not be copied to the first
RAM block. Instead, the Fractal Engine considers this RAM block as the previous frame

data and fills the first RAM block with the new (third frame) information.

6.4.4.2 Affine Motion Estimation

We recall that the main task in data analysis in video applications such as video coding,
indexing and compression is motion estimation. The idea is to exploit existing temporal
correlation among subsequent frames of a video shot. This kind of correlation exists
because in each shot, subsequent frames are taken from one single scenery at different
time instances. However, the variances in frames, which are called motion, are due to the

movement of objects and various camera operations. Traditional motion estimation
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techniques[99],[43] try to model the motion with one-dimensional shift function. This
assumption is not valid for complex motion where sophisticated motion functions are
required to model the temporal activity. Complex motion functions are not realizable in
real time using existing architectures. The affine motion functions capture complex
motions and are implementable in real-time using the affine processor of the Fractal
Engine. This makes possible analysis of motion in a shot more accurately and hence,
outperforms other motion estimation algorithms. In this section, we show the
implementation of affine motion function using the Fractal Engine. The basic idea is to
find the best match for a range block not only in the domain blocks in previous frame but

also in the affine transformed version of those blocks.

The structure of the Fractal Engine for the execution of AME is shown in Figure 60.
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Figure 60 — Data flow diagram of Fractal Engine in AME execution
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6.5 VHDL implementation And Timing Analysis

A behavioral VHDL description of the design has been implemented using the
synthesizable part of the VHDL language. The functionality of the design has been tested.
After an initial latency of 9M clock cycles (where M is the number of rows in a block),

the first result becomes available at the output of AFM.

Cell Po | Nets total Max. path delay
Its area* (ns)

SCM 27| 43 184 11.77
AR-ACC | 27} 56 288 20.72
AR-SUM | 29| 40 120 11.97

T-cell 26| 34 56 0.89

CcM 34| 48 113 9.17

Table 4- Timing and area analysis of the chip
* area 1s normalized to the equivalent of a nand2 gate.

The design, has been synthesized (translated and optimized) using BiCMOS .8u
technology. The resulting chip area and speed for the basic modules are shown in Table 4.
We note that the area and speed can be further improved by using advanced technology
libraries.
The minimum duration of the clock pulse is determined by the maximum of:

¢ The time taken by the AR-ACC to compute the partial distortion value.( 20.72

ns)

¢ The time taken by AR-SUM to add the partial values.( 11.97 ns )

¢ The time taken by the T-cell to load and transfer the data ( 0.89 ns )
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¢ The time taken by SCM to calculate the translated and scale version of one

element of data.(11.77 ns )

¢ The time taken by CM-cell to compare two distortion values. (9.17 ns)
Hence, the minimum duration of the clock pulse is 20.72 ns and the maximum frequency
of operation is f=1/20.72ns = 48MHz. We note that by using this specific clock frequency
for the Fractal Engine, real-time implementation of the example algorithms are possible.

The timing analysis for execution of the algorithms is detailed in next section.

6.5.1 Vector Quantization

The computational complexity of VQ for n range blocks of dimension L for an image of
size NxN, and a codebook size K is O(KLr). For example, a 512 x 512 image with vector
dimension of L = 64 (8x8 blocks) encoded using a codebook of size K = 256 requires
approximately 192 million arithmetic operations.

In the Fractal Engine, after an initial latency, at the end of every eight clock cycles, one
codeword is processed. Hence, K=2048 clock cycles are needed to output the codeword
label for each input vector. The number of clock cycles required to encode a frame is (V x
N/ MxM)x K=(512x512)/ (8 x 8) x 2048 = 8388608. Hence, each frame is encoded
in:

8388608 x 20.72ns = 0.17 seconds.

For a video sequence 30 frame/second, Fractal Engine implements the VQ algorithm in
real-time. We note that ATVQ algorithm is executed in Fractal Engine in exactly the

same time as VQ because all the transformations and comparisons for each codeword is
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processed in parallel along with the basic calculation. In other words, Fractal Engine is

capable of executing ATVQ algorithm in real-time.

6.5.2 Fractal Block Coding

We now calculate the number of operations involved in FBC algorithm based on general

values for the frame size, NxN, the block dimension, L=MxM and f=8 geometric

transforms in a general purpose processor.

The number of operations involved in FBC depends on the block size and is calculated as

follows:

n=WNxN)/L

nx(m-1)xL

nx{(n-1)xfxL

nx(m-1Dxfx2

nxL

nx (n-1) x (f-1)

number of blocks.

number of additions and multiplications in scaling and translation stage.

number of multiplications in the block matching process.

number of additions in block matching process.

number of integer additions and integer multiplications in mean and variance

calculation.

number of geometric transforms.

In the case of 128x128 pixel frames, the total number of operations are:

8x8 mode: 7.1x10’ additions + 3.76x10’ multiplications + 2.93x10’ integer additions.

4x4 mode: 2.85x10° additions + 1.5x10° multiplications + 1.17x10° integer additions.
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In the Fractal Engine, after an initial latency of 72 clock cycles, at each clock cycle one
column of 8x8 (or 4x4) blocks is processed in all of the sub modules of AFM. Hence, 8
(or 4) clock cycles are needed to output the distortion between a range block and all of
eight transformed versions of a normalized domain block. The number of clock cyéles
required to encode a frame is:
Bx(NxN)/(8x8)x(NxN)/(8x38) 8x8 mode
4x(NxN)/@4x4)x(NxN)/(4x4))/4 4x4 mode
If every operation is performed in one clock cycle in the general purpose processor, the
number of clock cycles required for encoding one frame will be: 1.38x/ 0% + p 5.52x10°,
where p is the percentage of remaining 4x4 blocks to be coded. For a typical value of
=90% and 40MHz clock signal, it takes 15.87 seconds to encode one frame in the
sequential processor while the Fractal Engine encodes each frame in .044 seconds. For a
video sequence containing frames of size 176x144 pixels with 10 frame/second (QCIF
format), Fractal Engine implements the FBC algorithm in real-time.
It is important to note that the scalable feature of Fractal Engine makes possible real-time
implementation of larger size and higher frame rate image and video sequences such as
CIF, CCIR 601 and HDTV. For example, real-time implgmentation of FBC for a
CCIR601 sequence can be achieved by simply cascading Fractal Engine modules. Fractal
Engine is an open architecture and hence can evolve, adapt, and expand to handle a
variety of computing tasks and challenges present in other media processing (including
visual processing) applications. We note that the performance analysis are based on.8u
BiCMOS technology and available today’s technology like .25u and .18 will increase

the performance both for area and speed resulting in smaller and faster modules.
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6.5.3 Motion Estimation

For an image size of NxN, with blocks of MxM and a search window of @m+1)x(2m+1),
(NXN/(MxM)x(2m+1)* block comparisons are required to detect motion vectors for all
blocks in a frame. In the Fractal Engine, after an initial latency, in the case of M=16, at
every sixteen clock cycles, one block is compared to a range block. Hence, for a QCIF
(common intermediate format) video sequence with a frame size of 176x144, M=16,
m=15 and clock frequency of 48MHz, 30 frames are processed in 0.95 seconds which

results in real-time execution.

6.5.4 Affine Motion Estimation

For an image size of NxN, with blocks of MxM and a search window of (2m+1)x(2m+1),
(NxNY/(MxM)x(2m+1)*x8 block comparisons are required to detect affine motion vectors
for all blocks in a frame. In the case of M=8, after an initial latency of 72 clock cycles, at
every eight clock cycles, eight affine transformed versions of one block are compared to a
range block. Hence, for a CIF video sequence with a frame size of 352x288, M=8, m=5
and a clock frequency of 48MHz, 30 frames are processed in 0.82 seconds which results

in real-time execution of AME by the Fractal Engine.

6.6 Summary

Fractals exploit the high correlation and self-similarities present in visual data within an
image or a sequence of images. Fractal Block Processing (FBP) has been proposed as an
algorithmic solution to implement the fractal operators for various images. We have
presented the design of a Fractal Engine based on an affine video processor, to meet the

real-time requirements of FBP. The highly parallel and pipelined architecture of Fractal
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Engine enables this processor to perform a variety of compute intensive visual processing
applications in real-time. Scalability and modularity issues are addressed in the design of
Fractal Engine. To demonstrate the computational power of Fractal Engine vector
quantization, fractal block processing, affine transform based vector quantization, motion
estimation and affine motion estimation algorithms are mapped onto the Fractal Engine
and have been shown to be implementable in real-time. In order to make the Fractal
Engine applicable to other applications which involve image and video operations that are
not captured by Fractal Processing, augmenting to the Fractal Engine is required. We

present examples of augmenting the Fractal Engine in the next chapter.
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7 Augmented Fractal Engine

In this chapter, the design of the augmented Fractal Engine is presented. In the design
process, we increase the functionality of the Fractal Engine by adding auxiliary modules,
which support flexibility of the design, the interface to peripherals and an interpolation
filter. Augmented Fractal Engine affords a level of programmability using external
control by an external CPU. It also performs all kinds of general linear filtering using the
interpolation filter module. First, interpolation in digital domain is detailed and the
interpolation filter design is presented. Finally, supporting architectures for

programmability features along with peripheral sections are discussed.

7.1 Interpolation in Digital Images

In digital images, the pixels, or picture elements, are limited to lie on a sampling grid,
taken to be the integer lattice. The individual pixels are passed through a mapping
function such as affine transforms, which generates the new coordinates corresponding to
the transform function. The new coordinates, unlike the input sampling points, do not
generally coincide with the integer lattice (for example in a rotation transform, if they are
not integer multiples of 90 degree rotations). Hence, the new coordinates can take
continuous values assigned by the mapping function. The problem is to locate the exact
intensity values of the pixel at the integer lattice points. This requires an interpolation
stage to fit a continuous surface through data samples, which may then be sampled at
arbitrary positions. The accuracy of interpolation has a significant impact on the quality

of the output image. Consequently, many interpolation functions have been investigated
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to reduce the computational complexity and improve the image quality. Popular
interpolation functions include linear, bilinear, nearest neighbor, etc. More sophisticated
and accurate methods[52] include, cubic spline interpolation and convolution with a sinc
function. Although the sinc function is an ideal candidate, it cannot be realized using a

finite number of neighboring elements.

In this section, we propose two modifications to classical interpolation methods to
maintain the quality along with performance enhancement. We note that whatever the
mapping functions and the algorithms of interpolation are, they can be implemented in

two different flavors, namely forward and inverse mapping[54], which are now detailed.

7.1.1 Forward Mapping

The forward mapping consists of copying each input pixel onto the output image at
positions determined by the X and Y mapping functions. Figure 61 illustrates forward
mapping. Each input pixel is passed through the spatial transformation where it is
assigned a new output coordinate value. Notice that the input pixels are mapped from a
set of integers to a set of real numbers. In the Figure 61, this corresponds to regularly

spaced input samples and irregular output distribution.

uv-plane xy-plane

Figure 61- Forward mapping.
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In the continuous domnain, where pixels may be viewed as points, the mapping is
straightforward. However, in discrete domain, pixels are taken to be finite elements
defined to lie on a (discrete) integer lattice. It is therefore inappropriate to implement the
spatial transformation as a point-to-point mapping. This can result in two types of
problems: holes and overlaps. Holes, or patches of undefined pixels, occur when mapping
contiguous input samples to sparse positions on the output grid. In Figure 61, C’ is a hole
since it is bypassed in the input-output mapping. In contrast, overlaps occur when
consecutive input samples collapse into one output pixel, as depicted in the figure by
output pixel E’.

The solution to the point-to-point problem is by using a four-corner mapping paradigm.
This considers input pixels as square patches that may be transformed into arbitrary

quadrilaterals in the output image.

uv-plane xy-plane

Figure 62- Four corner mapping.

An accumulator array is therefore required to appropriately integrate the input
contributions at each output pixel. It is achieved by determining which fragments
contribute to each output pixel and then integrating over all contributing fragments. The
partial contributions are handled by scaling the input intensity in proportion to the

fractional part of the pixel that it spans. Thus, each position in the accumulator array
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evaluates iw_ £ where f; is the input value, w; is the weight reflecting its coverage of the
i=0

output pixel, and N is the total number of deposits into the cell. Using the four-corner
mapping solution introduces time consuming intersection tests which precludes real-time

implementation for digital rotation.

To overcome this problem, we propose an area mapping aigorithm. In this algorithm the
point-to-point map is performed. Instead of using a four-comer mapping from the input to
the output image, we consider the output pixels as square blocks. The center of each

block is located on the coordinates of the mapped point in the output image.

e o °

e o °

e o °
uv-plane xy-plane

Figure 63- Area mapping.

An accumulator array is then used to evaluate the fractional part of the pixels that it

spans.

7.1.2 Inverse Mapping

In inverse mapping, each output coordinate is projected into the input image via U=X !
and V=Y". The value of the data sample at that point is copied onto the output pixel. This
is the most common method since no accumulator array is necessary, and output pixels
that lie outside a clipping window need not be evaluated. This method is useful when U

and V are readily available (as in the case of most affine transforms) and the input image
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can be stored entirely in the memory. Figure 64 illustrates the inverse mapping, with each
output pixel mapped back onto the input via the spatial transformation (inverse) mapping

function.

Figure 64- Inverse mapping.

Since the output pixels are projected to the input pixels with real-valued positions, an
interpolation stage must be introduced in order to retrieve input values at undefined (non-
integral) input positions. Again, area mapping is employed to calculate the intensity of the

input pixels at non-integer positions.
7.1.3 Interpolation

Interpolation[51] is the process of determining the values of a function at positions lying
between its samples. It achieves this process by fitting a continuous function through the
discrete input samples. This permits input values to be evaluated at arbitrary positions in
the input, not just those defined at the sample points. Interpolation reconstructs the signal
lost in the sampling process by smoothing the data samples with an interpolation

function. For equally spaced 1-D data, interpolation can be expressed as

N-L

fx) =Y ch(x—x,)
k=0
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where h is the interpolation kemel weighted by coefficients ¢, and applied to N data
samples, x;. Equation (13) formulates interpolation as a convolution operation. Generally,
h is a symmetric kemnel, i.e. h(-x)=h(x) and c; coefficients are the data samples. The
computation of one interpolated point is illustrated in Figure 65. The interpolating
function is centered at x, the location of the point to be interpolated. The value of that
point is equal to the sum of the values of the discrete input scaled by the corresponding
values of the interpolation kernel. The illustrated interpolation function extends over six
points. If x is offset from the nearest point by distance d, where d is between 0 and I, we

sample the kemel at h(-d), h(-1-d), h(-2-d), h(1-d), h(2-d) and h(3-d).

h(x)
fixy)

RYS AN
RV,

Xx

fix)=1
Figure 65- 1-D Interpolation.
Although interpolation has been presented in terms of convolution, it is rarely
implemented in this manner. Instead, it is simpler to directly evaluate the corresponding

interpolating polynomial at the resampling positions. The discussion of interpolation

kernels is necessary due to the comparison between different interpolation techniques.
7.1.4 Interpolation Kernels

The numerical accuracy and computational cost of interpolation algorithms are directly

tied to the interpolation kernel[52], [53]. Consequently, interpolation kernels are the
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target of design and analysis in the creation and evaluation of interpolation algorithms.

They are subject to conditions influencing the tradeoff between accuracy and efficiency.
7.1.4.1 Nearest Neighbor

The simplest interpolation algorithm from a computational standpoint is the nearest
neighbor algorithm, where each interpolated output pixel is assigned the value of the
nearest sample point in the input image as shown in Figure 66. This technique is

expressed by the following interpolating polynomial.

k-1 e X
F®)=F&x) L < xS T
/\

j

Figure 66- Nearest Neighbor Interpolation.

It can be achieved by convolving the image with a one-pixel width rectangle in the spatial

domain. The interpolation kernel for the nearest neighbor algorithm is defined as

. 1 0</|x<05
=10 05< |

Box filter, sample-and-hold function and Fourier window are alternative names for this
kernel. This kernel corresponds to multiplication with a sinc function in frequency
domain. Due to the prominent side lobes and infinite extent, a sinc function makes a poor

low-pass filter. Hence, the nearest neighbor algorithm has a poor frequency domain
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response. In this technique, shift errors of up to one-half pixel are possible. For large-
scale changes, nearest neighbor interpolation produces images with a blocky appearance.
The main advantage of this technique is the simplicity, which makes it possible to

implement using a general-purpose processor in real-time.

7.1.4.2 Linear Interpolation

Linear interpolation is a first-degree method that passes a straight line through every two
consecutive points of the input signal. Given an interval (xo, x;) and function values f, and

f1 for the endpoints, the interpolating polynomial is

_ X=Xy (.
f(x)—fo'*'xl_xo(fx fo)
The corresponding interpolation kemnel is

oo _[1-k oshd<
=10 1<)
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Figure 67- Linear interpolation.

Kemnel & is referred to as a triangle filter, tent filter, roof function, Chateau function, or
Bartlett window. This interpolation kernel corresponds to a reasonably good low-pass
filter in the frequency domain. The side lobes are far less prominent, indicating improved

performance in the stop-band. Linear interpolation is widely used for reconstruction since
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it produces reasonably good results at moderate cost. 2-D linear interpolation is achieved
by separable 1D interpolation as shown in Figure 67. In the first step, two linear
interpolations are executed to obtain the intensity value of B’ and B” pixels. Then in the
next step, another 1D linear-interpolation within these two pixels is performed to

calculate the intensity value of the desired pixel B.

7.1.4.3 2-D Area Based Interpolation

We recall from section 7.1.1 that a modified algorithm of four-corner mapping will
increase the speed while maintaining a similar performance. This algorithm is illustrated
for forward mapping in section 7.1.1. In this section, the algorithm is illustrated in Figure

68 for backward mapping.

Figure 68- 2D Area Based Interpolation.

As shown in the figure, the intensity value of the desired input pixel is easily obtained
using the fractional part of the pixels that it covers as a weighting function. The

justification of this method lies in the fact that the intensity value of each pixel in the
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lattice input grid is the average of the illumination received by the sampling device (e.g.

scanner).

7.1.5 Experimental Results

In this section, we propose a method to compare the results of different techniques. Since
none of interpolation techniques achieves the ideal solution, it is not possible to directly
compare the re-produced images. However, we propose to employ the original image as a
reference and apply different rotation algorithms as examples of general affine
transforms. We then derive the reconstructed image by applying the inverse rotation. The
integrity of the reconstructed image compared to the original image is used as a basic for

comparison.

The test 256x256 Lena image has 256 gray levels. The employed fidelity criteria are the

Mean Square Error (MSE) and Signal to Noise Ratio (SNR) which are defined in

Equation (17) and (18), respectively.

MSE = Yn 3, 3 (%= ¥;)* a7

The experimental results for three different interpolation techniques are tabulated in

Table 5.

Rotation MSE SNR(dB) MSE SNR(dB) MSE SNR (dB)

(deg.)
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30 58.26 2341 53.37 23.64 52.37 23.75

40 64.27 22.99 52.56 23.73 52.17 23.77
45 66.91 22.81 52.72 23.71 52.14 23.76
60 61.52 23.18 53.03 23.69 52.58 23.73

Table 5- Experimental Results.

Yin X, 2. (¥;)
SNR =10log i MSE (18)

It can be seen that the nearest neighbor technique is sensitive to the angle, while the
proposed area based and linear interpolation techniques maintain a similar quality for
different angles of rotation. The area based algorithm (which can be executed in 8.23

seconds) outperforms the linear interpolation (9.59 seconds) in terms of the speed of

operation.

7.1.6 Interpolation Filter Implementation

Interpolation filter belongs to the category of linear filters. We propose a general
implementation of these filters which then enables the Fractal Engine not only to perform
general interpolation tasks and affine transforms but also all other linear filtering such as

DCT and DWT. The general form of a linear filter is expressed in (19).

N-1
V=2 %0,
j=0
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The basic operations in linear filtering are multiplication and accumulation. We now

present a pipeline and scalable architecture for accumulation and multiplication.

7.1.6.1 Accumulation

The simple form of accumulation is expressed in (20).

Q«Q0+IN Atevery clock cycle (20)

We note that a simple pipeline adder is unsuitable for accumulator, since the adder will

stall for multiple clock cycles until the result of previous addition is available before

starting the new addition.

Our proposed architecture outputs the result in every clock cycle after an initial latency.

The basic cell of the accumulator is shown in

Figure 69. The cell is a fast, compact and simple adder with an 80 MHz frequency of

operation implemented in BICMOS .8y technology.

3
.
v
.
v
,
.

ACC
CELL

[

— 1

Figure 69 - Basic accumulator cell
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The accumulator consists of several ACC-CELL based om the data width. An example of
12 bit accumulator with three level pipeline is shown in Figure 70. We note that there are
also load and stop accumulation controls introduced in thhe design. Load control will set

the Q output for a specified value and stop halts the operattion of the module.

Carry
out
Del Del
IN@-11) T ay === oy D) :é:&
J —> a-11)
M- = Det — Acc
7 v cELL Del
ay = a7

IN(O- ACC
3) = Dl Dei

CELL
w =) oy =D ae-a)

Carry
in

Figure 70 - 12 bit, 3 level-pipelined a.ccumulator

Scalability

The accumulator is modular and scalable. To demonstrate the scalability of the design, we
show an example of constructing a 24-bit accumulator wvith 6 pipeline levels using two
12-bit accumulators and delay modules. The complete deszign is shown in Figure 71. After
the first 3 clock cycles, ACC-1 processes data and the partiial result is ready at point C and
carry out of the ACC-1 (point B) enters the second unit CACC-2). At the same time, the

input data is output from the delay module D1 at point A .and is ready to enter the second
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accumulator. After the next 3 clock cycles, the output is ready at points D and E and at

every clock cycle, the new output is processed.

Carry

out
: |
wazzy oG e
Q(12-23)
@) C)

IN(0-11) ) 12bit 3

Ace -1 Delays
oy = 0(o-11)

o © ®

Figure 71 - Scalable accumulator

7.1.6.2 Multiplier

We propose a fast pipelined multiplier based on a 4-bit multiplier. The synthesized 4-bit
unsigned multiplier in BICMOS .8y has a delay of 15 ns which corresponds to a
maximum frequency of 66MHz. This speed of operation is adequate for Fractal Engine

and hence, we utilize this cell to implement our multiplier. The block diagram of an 8-bit

multiplier is shown in Figure 72.
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Figure 72 - Block diagram of an 8-bit multiplier

We demonstrate the function of multiplier by an example shown in Figure 73. In the first
clock, cycle number A (nibbles al and a2) and number B (bl and b2) are entered into the
multiplier. In the next clock cycle, C and D enter the module followed by subsequent

operands. The partial results of multiplying the nibbles are shifted accordingly to produce

the result as shown in Figure 73.

After the first clock cycle, results al.bl at point D (Figure 72), al.b2 at point C and a2.b1
at point F are ready. In the next clock cycle, al.b2 plus a2.bl at point G, and a2.b2 at
point E are calculated. At this time, both of al.bl and a2.b2 are available in point H and
they are appropriately added. In the next clock cycle, the final resuit is computed and

output to point I After this initial latency of three clock cycles, at every clock cycle the

multiplication results are ready and output.
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Figure 73 - A multiplication example

7.2 Peripheral Section

Control, communication, storage and interface in the Fractal Engine are implemented in
the Peripheral Section. Programmability in the Fractal Engine is acquired by
communication between an external CPU with CPU-IF (CPU interface) module. This
module is implemented using an SRAM FPGA like an Altera 10K[34] device or Xilinx

4000[35] series.

7.2.1 Random access memory (RAM):

This module stores input data, intermediate results and output data. The description of

each item follows:

e Input Data
The input data essentially consists of the image or the frame to be coded. In the
Fractal Engine, two frames are processed simultaneously in different stages. While
the second frame enters the ARM for mean and variance calculations, the first frame
is loaded into AFM. Hence, two frames are required to be stored in the RAM module.

o Intermediate Results
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The mean and variance of every block in the frame are calculated in FBP by ARM.
The result is only used to normalize each domain block with respect to a range block
and is hence considered as an intermediate result. |
e  Qutput Data
The ultimate output of the system is the bit-streamn representing the input frame. For
each range block, the index of the closest domain block with the parameters of
selected affine transform is stored as output data.
In order to have the maximum speedup, it is important to distribute the data among all
modules for concurrent data access. This necessitates parallel and simultaneous accesses
to multiple memory elements. Existing architectures for multi-access memory modules
fall in two main categories namely multi-port RAM and multi-block RAM.
Multi-port memories with a large number of ports are quite expensive but are however
flexible. Parallel access to any combination of memory cells is possible in multi-port
memories. In a multi-block RAM architecture, several single port memory modules are
employed to store the different blocks of data. Although simultaneous accesses to the
memory cells within each block is not feasible, multi-block memory modules have a
simpler architecture and occupy less space than multi-port memory modules.
In our design, we present an efficient memory map which fulfills the requirement of all
simultaneous memory accesses in the Fractal Engine by using a multi-block memory
architecture.

Memory map configuration in the Fractal Engine is as follows:
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e One memory block is allocated as a buffer to store the frame data prior to the start of
fractal operations. This block has a 14-bit address bus and an 8-bit data bus. As soon
as data is loaded into this block, ARM starts the mean and variance calculation.

e The second memory block is allocated to store intermediate results such as the mean
and variance of range and domain blocks.

e The major block is allocated to store the image data. Each memory cell and hence, the
data bus width is 76x8 bits. Every 16 adjacent pixels are grouped together to form a
128-bit cell of the memory. At every clock cycle, 128 bits of data are read from the
memory or written into the memory. In 4x4 mode, every 32 bit segment of the
memory cell corresponds to a row of 4x4 blocks in the image and four rows are

processed in parallel in the Affine and Scale modules.

7.2.2 Control Unit (CU):

This module essentially consists of finite state machines with different inputs and outputs.
The state machines control SRAM, AFM and IML. It also broadcasts a global signal to all
modules to select between 8x8 or 4x4 modes of operation. The implementation of CU

and IMI are detailed in Chapter 7.

7.2.3 CPU-IF module

This module communicates with an external CPU to control the execution of Fractal

Engine. The CPU can write and read internal registers to and from the FPGA. These

registers include:
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Mode flag (write register): This flag is set by the CPU to indicate the 8x8 mode
operation for all modules in Fractal Engine. Resetting the flag to O implies 4x4
operation of the engine.

Affine flag (write register): This flag is set to high to indicate that the CM
(comparator module) compares the distortion between the affine transformed version
of blocks with the range block. When the flag is set to zero, CM compares the range
block with the domain blocks only.

Output register: This register is written by the Fractal Engine. CPU reads this register
through CPU_IF module. This register indicates the best candidate for the current
range block in process. It shows the domain block number and affine parameters
corresponding to the best match for the range block.

Error register: In addition to the output register, the CPU accesses error register to
determine the distortion value between the range block and the best candidate chosen
by the Fractal Engine. Based on the value for error threshold, the CPU either accepts
the affine parameters or rejects those values.

Address registers: CPU writes the start and end addresses for a burst transfer, which is

executed by the IMI module.

7.2.4 Intelligent memory interface (IMI):

It is important to match the YO and compute bandwidth in any processor design.

Operations must be carefully overlapped, balanced and sequenced to ensure the most

efficient use of all the modules in the processor. The IMI ensures that the required data

are delivered to the processing modules in parallel and on time. This module acts as a
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DMA (Direct Memory Access) device in the Fraactal Engine. There are 4 address
registers, 2 data registers and 2 counters in IMI for tw&o parallel access to the RAM. CPU
sets the start address and end address registers and EMI starts the burst transfer. After a
pipeline latency in each clock cycle, data is entered imnto the affine module of the Fractal
Engine. The external selected RAM module is a fas& asynchronous static RAM with an
access time of 15ns which allows clock frequencies up to 66 MHz. The timing diagram of

a typical burst transfer by IMI is shown in Figure 74.

1S ns 30 ns 4S5 ns

—

“:;:" Address - 0 Address - 1 Ad:-dress - 2 Address - 3
Clock ___J__]—]——L———-v-l_—_l———,—l

el S DATA- 0 DATA - 1 DATA - 2

Figure 74 - Burst transfer example feor a 66MHz clock

7.3 Summary

Fractal Engine is designed in order to accomplish mmajor multimedia task especially in
visual domain in an optimized manner. Several level af enhancements have been applied
on the engine. In this section the final stage of complettion the Fractal Engine is presented.
First, interpolation in digital domain and the interpolartion filter is proposed with the new
simple and pipelined architectures for accumulators @nd multipliers. Finally, supporting
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architectures for programmability features are added to Fractal Engine chipset. An FPGA
implementation for this module is selected due to reprogramability feature of the FPGA.

New revisions of FPGA are possible for further control of Fractal Engine.
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8 Conclusions

The demands for processing multimedia data in real-time using unified and scalable
architectures are ever increasing with the proliferation of multimedia applications.
Multimedia processing poses challenges from the perspectives of both hardware and
software. In this thesis, we have presented a summary of the various architectural
approaches for media processing. Since, visual media represents a significant chunk of
the multimedia information, it is crucial to design high performance processors that are
reasonably optimized for video processing applications. We have derived the fundamental
operations involved in visual processing tasks and designed the generic processing
elements to map a majority of these operations. Affine transformations are expected to be
increasingly used in many visual processing applications, and hence an affine transform
video processing core has been designed. Since Fractal Block Processing encompasses a
variety of visual processing operations, we have chosen FBP as the candidate algorithm
for the design of the video processor architecture called Fractal Engine. Fractal Engine,
which is based on the ATP core, is simple, modular, scalable and is optimized to execute
both low level and mid level operations. The individual modules of Fractal Engine have
been implemented in VHDL (VHSIC Hardware Description Language). The behavioral
description of the Fractal Engine in VHDL has been synthesized towards standard cell
ASIC and fast SRAM FPGAs. The function of the Fractal Engine has been demonstrated
by mapping popular video processing algorithms such as fractal block coding (FBC),
vector quantization and motion estimation. Fractal Engine is capable of processing intra-

frame / inter-frame video processing and other media processing applications.
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The new design ideas in multimedia architectures such as programmability, scalability

and critical dedicated hardware units have been incorporated in the design process of the

Fractal Engine.

8.1 Thesis Contributions
The overall contribution of this thesis is in the design of a novel, scalable and optimized

visual signal processor termed Fractal Engine. The main contributions are as follows:

8.1.1 Classification of Various Multimedia Operations
O Classification of fundamental operations in visual signal processing (section 2.3).
O Introduction of Fractal Processing as a candidate algorithm to design a visual

signal processor called Fractal Engine (section 2.4).

8.1.2 Design Trends in Multimedia Hardware Architectures

O Classification of different design issues including flexibility, processor design,

data distribution, memory and granularity (sections 4.1 - 4.5).
O Review of available multimedia processors (section 4.6).
O Analysis of the merits of existing muitimedia processors and investigation of the

shortcomings (section 4.7).

8.1.3 Hardware/ Software Co-design for VL.SI Implementation

O Review of enabling VLSI technology including fabrication process and design

tools (section 3.2 and 3.3).
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8.14

8.1.5

Definition of a new VLSI design methodology employed in the design of Fractal
Engine. The methodology is based on a combination of behavioral description of
the design (using hardware description languages) and synthesis tools (section

3.3.2).

Affine Transform Processor

Derivation of generic operations in affine transforms (section 5.2).
Design of optimized hardware for implementing the generic operations (section

5.3).

Fractal Engine

Hardware design of Fractal Engine - processing section including Affine module,

Scale module and Arithmetic module (section 6.3).
VLSI Implementation of scalable Affine Transform Processor (section 6.3.2).

Design of an Intelligent Memory Interface for communication between memory

modaules and all processing modules (section 7.2.4).

Augmentation of Fractal Engine by the addition of programmability feature into

Control Unit (section 7.2.3).

Interpolation Filter Implementation in Fractal Engine (section 7.1.6).
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8.2 Publications

The contributions of this thesis have been presented and appeared in several refereed
international conferences and journals [25], [88], [102]- [109]. An invited paper in the
IEEE Transactions on Circuits and Systems for Video Technology[110] is a highlight of

the contributions of this thesis.
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9 Future Work

Fractal Engine is capable of implementing a variety of visual media processing
applications. It is an open architecture and is therefore extendable to implement future
multimedia algorithms. Several challenges from the point of view of mapping new
algorithms as well as augmenting the Fractal Engine constitute the future work. We now
present a sampling of the promising directions of future implementations in the Fractal
Engine. In the first section, we present some of the existing multimedia algorithms, which
are implementable in the Fractal Engine. In the second session, we propose new
algorithms based on affine transforms and fractal processing. These algorithms can be

ideally mapped onto the Fractal Engine.

9.1 Multimedia Algorithms
0O Scene Cut Detection — optical flow

O The inputs to video processing algorithms are frames belonging to a shot.
However, a video sequence typically contains several shots. Scene cut
detection algorithms partition video into shots by detecting the shot
boundaries (scene cuts) using optical flow techniques (similar to motion

estimation) which can be directly mapped onto the Fractal Engine.

O Discrete Cosine Transform (DCT)

O DCT is widely used in image and video applications because it offers the

closest performance to the computationally expensive KL transform. DCT
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calculation is based on array multiplication and accumulation which can be

performed in parallel using the Fractal Engine.

O Discrete Wavelet Transform (DWT)

00 Recently, wavelet theory has emerged as a powerful technique for non-
stationary signal analysis. The implementation of DWT is very similar to sub-
band coding. Wavelets offer a variety of useful features in image and signal
processing. DWT calculation is based on array multiplication and

accumulation, which can be performed in parallel using the Fractal Engine.

C MPEG-4 and MPEG-7 standards

O Upcoming MPEG-4 and future MPEG-7 standards are éxpccted to involve a
variety of video signal processing algorithms including content based coding,
sprite coding, mesh and phase animation coding, affine transformations and
indexing. This would require a generic open architecture for video signal

processing implementation such as Fractal Engine.

9.2 New Affine Algorithms

C Affine Motion Estimation (AME)

O We recall from section 6.4.4.2 that complex motion estimation requires
implementation of sophisticated affine motion functions. AME algorithms are

implementable in real-time using the affine processor of the Fractal Engine.
O Fractal Video Compression
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O Fractal techniques are typically used in image processing applications. We
note that the basic element in fractal video algorithms is affine transform and

hence, the Fractal Engine is a perfect choice to execute these algorithms.
O Camera operation detection using affine transforms

O There are two sources for pixel displacement within the frames of any video
shot namely object motions and camera operations. Camera operaiions like
panning and zooming introduce sophisticated motion patterns in image
sequences. These patterns can be captured precisely using affine operations

and hence can be implemented in the Fractal Engine.
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