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Fractal Engine 

An Affine Video Processor Core for Multimedia Applications 

Abstract 

The recent advances in VLSI technology, high-speed processor designs, Intemethtranet 

implementations, broadband networks (ATM and ISDN) and compression standards are 

Ieading to the popularity of multimedia applications. In general, multimedia computing 

presents challenges from the perspectives of both hardwate and software. Each medium 

in a multimedia environment requires different processes, techniques, algoritiims and 

hardware. Hence, it is crucial to design a generic processor architecture that meets the 

computing requirements of the various media types. In another word, there is a need for a 

bottom-up design strategy for meeting the computing needs of multimedia processing. 

In this thesis, we propose the design of an affine video processor termed Fractal Engine. 

We have fmt derived the fundamentai operations involved in visual processing tasks and 

designed the generic processing elements to map a majority of these operations. We have 

chosen affine transformations as the target algorithm as it is expected to be increasingly 

used in many visual-processing applications including latest video coding standard 

MPEG4. We have chosen fractal block processing W P )  as a candidate algorithm for the 



design of target video processor, since it encompasses a variety of visual processing 

operations including affine transforrns. 

Fractal Engine is capable of implementing the gamut of imagefvideo processing 

algorithms. Fractai Engine is a simple, modular, and scalable architecture that is 

optimized to execute both low-level and mid-level operations. It is capable of 

implementing a variety of visual processing tasks. Fractal Engine is an open architecture 

and is therefore capable of adapting to the processing requirements of a variety of media 

processing algonthms. The individual modules of the Fractal Engine have been 

implemented in VHDL. A behavioral model of the circuit has been developed and fully 

tested by using VHDL simulators. The model is synthesized using BiCMOS .8p ASIC 

library cells and XilindNtera FPGAs. We have chosen to demonstrate the real-time 

execution capability of Fractal Engine by mapping specific visual processing algorithms 

such as fractal block coding (FBC), vector quantization and motion estimation ont0 the 

proposed architecture. 
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1 Introduction 

The recent advances in VLSI technology [ 11-[2], high-speed processor designs [3], 

Internetiïitra.net implementations[4], broadband networks [5] (ATM and ISDN) and 

compression standards [6] (JPEG 171, MPEG [8], H.26 1, H.263 and G.273) are leading to 

the popularity of multimedia applications. Exarnple applications include Multimedia 

Information S ystems [9], Digital Libraries [1 O], Remote Sensing and Natural Resources 

Management [ I l ]  and Geographic Information System [12]. 

A variety of media processing techniques are typically used in multimedia processing 

environments to capture, store, manipulate and transmit multimedia objects such as text, 

handwritten data, audio objects, still images, 2D/3D graphics, animation and full-motion 

video. Example techniques include speech andysis and synthesis, character recognition, 

audio compression, graphics animation, 3D rendering, image enhancement and 

restoration, imagehide0 analysis and editing, and video transmission. 

Visual media in a multimedia system contains a significant arnount of information, and 

correspondingly involves a large volume of data in contrast to the other media types- 

Uncompressed digitai video requires 250 Mb/s to support studio quality transmission of 

NTSC images (480 lines x 720 pixelslline x 24 bits/pixel x 30 frarnes/s)[l3]. Even a 

simpler application such as video telephony (240 lines x 360 pixelnine x 16 bitdpixel x 

10) requires 14 Mb/s to transmit the digital video signai in raw format. The bandwidth 

and storage requirernents of visual information typically make it difficult to manage the 

data in its raw form. However, there is considerable redundancy in video data, both from 



an information theoretic viewpoint as well as from the perspectives of stmctural content 

and human perception. A number of image and video compression standards, e.g., 

MPEG- 1 [ 141, MPEG-2[15], MPEG4[ 161,f 171, H.26 1 [18], and H-263 [19] have been 

recently proposed to compress the visual data for a variety of transmission and/or storage 

applications. There is ongoing research and standardization efforts targeted towards 

future multimedia applications with the objective of integrating compression and content 

access functionaiity, including MPEG-7[20]. These techniques and standards will involve 

execution of complex video processing tasks in real-tirne. The challenges can range from 

waveform coding implernentations to scene modeling and understanding. For example, 

the principal objective of model-based image coding [SI], [22] o r  intelligent image 

coding is to understand the scene by modeling the objects in order to achieve a higher 

level representation. In addition, there is an increasing interest in 3-D image and video 

processing[23], [24]. An important processing task in most of these situations is &ne 

transformation[25], which includes operations such as rotation, transposition, scaling and 

translation. For example, intelligent motion estimation in a video sequence requires 

extraction of the motion of objects and carnera operations, which could be represented 

using affine pararneters. 

In general, multimedia computing presents challenges from the perspectives of both 

hardware and software. Each media in a multimedia environment requires different 

processes, techniques, algorithms and hardware. Hence, it is crucial to design a generic 

processor architecture that meets the cornputing requirements of the various media types. 

The complexity, variety of techniques and tools, and the high computation, storage and 



VO bandwidths associated with visual processing pose several challenges, particularly 

from the viewpoint of real-time implementation. 

Red-time implementation goal is the principal reason for the slant of most media 

processor development[261 towards visuai processing. Several processing solutions 

ranging from multimedia extensions to general purpose processors such as the Intel 

MMX[27], programmable DSP architectures such as the TI-MW [28], Media processors 

like the Philips TriMedia processor[29], and special purpose architectures such as the C- 

Cube MPEG decoder chip-sets[30] have been proposed to implement a variety of 

multimedia (particularIy visud) processing operations. A detailed categorization of 

available multimedia processing strategies is required in order to propose the optimum 

architecture for target applications. In this thesis, we have designed a high performance 

visual signal processor (VSP) called Fractal Engïne, which is optimized to execute a 

variety of both mid-level and low-level visual operations. 

7.1 Motivation 

The implementation of video processing aigorithms or in generaI multimedia algorithms 

demands systems of large computationd capability with efficient VLSI implementation 

of the various media processing algorithms. Real time video compression requires 

processing power in the range of 100 MOPS to 100000 MOPS. The envisaged mass 

application of digital multimedia demands fast and reduced size implementations, which 

are potentially feasible due to recent advances in V U 1  technologyi3 11 specifically in the 

areas of high density, and fast circuit implementations. -1 technologies have now 

advanced ta the point where, for some applications, the processing power and memory 
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required to perform these tasks cm be incorporatecl h t o  a few silicon chips. Individual 

transistors switch faster and therefore circuits perform operations at a higher speed. The 

transistors occupy less space and therefore more complicated design can be integrated 

into a single chip. It is required to study various options in VLSI design and select the 

best environment for target applications. 

The advent of -hardware description ianguages such as VHDL (VHSIC Hardware 

Description Language){32] and re-configurable high density FPGAs[33] (Field 

Programmable Gate Amy) such as Altera[34] and X î h x [ 3 5 ]  have not oniy faciiitated 

rapid prototyping of digital designs, but also serve the needs for programmable and re- 

configurable hardware design. Thus it makes possible quick assembly of pre-designed 

generic processing elements into architectures that can be dedicated to execute specific 

algorithm or a ciass of algorïthms under the assumption that the generic processing 

elements were designed to accommodate a varïety of media processing requirements. A 

specific configuration can also be chosen fÏom a universal architecture using extemal 

control signals assuming that the target processor is capable of organizing the generic 

processing elernents into various configurations. Hence, enabling VLSI technology 

should be thoroughly studied and the best possible combinations of HDLs, ASICs 

(Application Specific Integrated Circuits) and FPGAs have to be selected. 

The main focus of the researchers for video processor design is the optirnization of iow- 

level operations such as multiplication and accumulation. However, these developments 

are not suffkient to overcome al l  the problems in implementing multimedia applications. 

There is clearly a need for a bottom-up design strategy for meeting the computing needs 



of multimedia processing. We need to derive the basic operations involved in a variety of 

image and video processing operations such as enhancement, restoration, compression 

and analysis of images and video sequences. It is required to derive mid-level and high- 

level operations in visual domain and design scalable and modular architectures for these 

requirements. Since Fractal Block Processing (FBP)[36] encompasses a major@ of 

image processing operations [37], [38], including surnrnation/accumulation, image 

addition / subtraction, translation, stretching, shifting, scaling, rotation and pattern 

rnatching, we have chosen this as the candidate algorîthm for the design of the genenc 

video processing element. We note that the operations of translation, stretching, shifüng, 

scaling and rotation termed as affine transforms[39] are particularly important and are 

extremefy powerful in visual processing tasks such as image analysis and understanding 

motion in video. It is our belief that most of the complex processing operations involved 

in the next generation of visual processing tasks will involve some form of affine 

transformation. We note that there is hardly any architectural solutions that emphasize 

affine transform implementation in the context of general purpose video processing. The 

choice of Fractal block processing as the candidate aIgorithm in Our generic processing 

element design is therefore based on the following two premises: (i) it contains a 

reasonabie super-set of the variety of processing tasks (including affine transformations) 

typically found in visual (and multimedia) processing, and (ii) it is a computationally 

intensive procedure and hence presents challenges from the perspective of real-time 

implementation. Another important requirement in the design of multimedia processor 

architectures is scalability. For example, visual processing tasks typically operate on a 

variety of image sizes, resolutions, and frame rates, and it is therefore crucial to design 



the generic processing element to be scaiable. For a problem of cornplexity X which is 

executed using N units in T seconds, scalability impiies the following: (i) T M  seconds 

will be required to solve the problem using NM units, andior (ii) A problem of complexity 

XM is solved in T seconds using NM units. The first type of scalability requires a flexible 

control design while the second type of scalability requires that the feature of scalability 

be incorporated in the design o f  individual modules. 

An important factor in designing a high performance video processor is to adopt the 

promising features in existing architectures, This necessitates full investigation of a 

variety of existing processors ranging from general purpose processors to dedicated 

hardware modules used in multimedia applications. 

7.2 Problem Staternent 

In this thesis, we propose the design of generic processing elements based on the 

derivation of the fundamental visual processing operations in Fractal block processing. 

An Affine Transform Processor (ATP), which is the core processor, and further a visual 

signal processor based on ATP core are designed. The processor termed Fractd Engine is 

capable of implementing the garnut of imagehide0 processing algorithms. Fractal Engine 

is a simple, modular, and scalable architecture that is optirnized to execute both low-level 

and mid-level operations. Tt is capable of implementing a variety of visud processing 

tasks, including spatial filtering, contrast enhancement, frequency domain operations, 

histogram calculation, geometric transforms, indexing, vector quantization, fractal block 

coding, shot boundary detection, motion estimation, and camera operation detection. 



Fractal Engine is an open architecture and is therefore capable of adapting to the 

processing requirernents of a variety of media processing algorithms. The individual 

modules of the Fractal Engine have been irnplemented in VHDL. A behavioral mode1 of 

the circuit has been developed and fully tested by using VHDL sirnulators. The mode1 is 

synthesized using BiCMOS .8p ASKC library cells[40] and X i l i n f l t e r a  FPGAs. We 

have chosen to demonstrate the real-time execution capability of Fractal Engine by 

rnapping specific visual processing algorithms such as fractal block coding (FBC)[41], 

vector quantization[42] and motion estimation[43] ont0 the proposed architecture. The 

steps adopted in the design of the Fractai Engine are presented in Figure 1. 

1.3 Outline of the Thesis 

The thesis is organized as follows. Chapter 2 presents the fundamental operations in 

visual media processing. Al1 of the visual algorithms are classified to four major 

categones and six different classes. The basic operations of al1 groups are then 

introduced. We propose that a general affine transformation is a mid-level fundamental 

operation which involves low-level operations in imagehide0 processing algorithms. 

MPEG4 is used as an example to demonstrate the validity of our categorization. In 

chapter 3, different aspects of enabling VLSI technology are reviewed. The different 

options for VLSI irnplementation of video signal processors are then discussed. Hardware 

description languages, logic synthesizers, and behavior compilers for multimedia 

purposes are then explained and the necessary tools in our design methodoIogy are 

introduced. The design trends in multimedia processor architectures are detailed in 

chapter 4. 
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Figure 1 - The design approach for the Fractal Engine 

It is concluded that dedicated modules are suitable for critical units while programmable 

modules are required to facilitate the adaptation of the architecture for various algorithms. 

The individual modules of the proposed ATP core are presented in chapter 5, where basic 
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operations in affine transformation are introduced and an optimal scalable architecture is 

proposed. The detailed design of the Fractai Engine which is optimized for executing 

fractai block processing algorithm is presented in chapter 6.  The mappimg of example 

aigorithms ont0 the Fractal Engine and arealtiming analysis are dso discussed in this 

chapter. Since Fractal Engine is an open architecture, we have demonstrated the 

implementation of new algorithms such as generalized affine transform mperations and 

interpolation filter in chapter 7, The design is based on the augmentation in te- of 

flexibility and programmability in Fractal Engine. Finally, conclusions a n d  directions for 

future work are presented in Chapter 8 followed by the references. 



2 Fundamental Multimedia Operations 

We note that a critical analysis of image and video tasks will result in the denvation of 

the set of generic operations, which are typically employed in a variety of multimedia 

applications. In this chapter, we frrst present the fundamentals of visual media processing. 

We then sumrnarize the various categories of operations in image and video processing 

followed by the derivation of the generic operations for visual processing and a brief 

introduction to affine transforms and fractal processing. The last section introduces 

MPEG4, the new standard for multimedia applications. The principal objective is to 

demonstrate that the candidate algorithm chosen for the design of the target architecture 

encompasses a majority of the visual operations as well as presents challenges from the 

perspective of real-time implernentation. 

2.1 Visual Media Basics 

Video sequences are essentidly a collection of individual frarnes (images). Hence, the 

main part of this section deals with the definitions for digital images. 

Image Components 

A digital image is composed of discrete points with a quantized value assigned to each 
\ 

point. In the case of gray-scale images this value represents the gray level of the point. 

However, for color images, the quantized value represents the color component values of 

the point. 



A digital image is created from a continuos-tone image after the two steps of sampling 

and quantization[44]. In the sampling process, the brïghmess values of particular 

positions are sarnpled. In the quantization process, the sampled value is quantized to a 

fixed length integer value which is usually %bits for gray-scale images and 24-bits for 

color images. The 24-bit quantization known as m e  color representation consists of 3 

independent &bit integer values describing the intensiw of basic colors red, green and 

blue. This representation is known as RGB format In the case of gray scale images, d u s  

value describes only the intensity value corresponding to the brighmess of the point. A 

quantized sample representing the brightness value for a specific position in the image is 

called a pire1 or a picture element. The combination of sarnpling and quantization 

processes is referred to as image digitization. 

An image is generally sampled into a rectangular array of pixels. Each pixel has an (x,y) 

coordinate which describes its location in the image. The x-axis is the horizontal axis 

from left to rïght while the y-axis is the vertical axis from top to bottom as shown in 

Figure 2. The origïn or location (0,O) is in the upper Ieft corner of the image in this 

representation. As an example, the pixel at location (50, 120) is marked in the Figure 2. 

The nurnber of colurnns or rows in an image (M and N respectively for an MxN image) 

indicates the spatial resolution of the image which is directly related to the quaiity of the 

image. Spatial resolution describes how many pixels are in the image. The more pixels in 

the image, the better its quality and the larger its storage size. The number of pixels in a 

digital image depends on how finely the image is sampled, or divided into discrete pixels. 



Figure 2- Image Coordinates 

It is the sarnpling rate, which detemiines the number of pixels for a known physical size. 

For example, 200 dpi (dot per inch) means that there are 200 pixels in an inch. The 

maximum sampIing rate is set by the digitizing device such as scanner, digital camera, 

etc. From sarnpling theorem, the necessary sarnpling rate so that the digital image 

adequately resolves al1 spatial details of the original continuous-tone image, is at least 

twice as fast as the highest spatial frequency contained in the image (Nyquist rate). 

If sarnpling occurs at a lower rate than that required by the sampling theorem, the higher 

spatial frequency details will be Iost in the digital image, Hence, the digital image will 

appear to be not as sharp as the original image. In Figure 3, four different sampling rates 

are employed to generate the illustrated digitai pictures. It is clear that the picnire (D) 

doesn't contain al1 the details of the picture (A) and the details of the picture are lost due 

to pixel blocking effect. 

On the other hand, if sampling occurs at a higher rate than Nyquist rate, extra pixels will 

be created which theoretically do not contribute to improving image quality. However, 

they can be used in future manipulations such as image resarnplinghnterpolation and 

feature extraction. 



A) 96 dpi B) 72 dpi 

C) 48 dpi D) 24 dpi 

Figure 3- Barbara image in 4 different sampiing rates. 

Frame Rate 

This parameter which is employed in video sequences determines the temporal resolution 

while the sampling rate determines the spatial resolution- The higher the frame rate, the 

more accurate is the motion representation in a digitized video sequence. 

Frame rate is a sampling terminology, which is applied to digital and other non-digital 

forms of sequential image acquisition and display such as broadcast television. It is often 

expressed as the number of frames per second (fps). For exarnple, if the frame rate of a 

system is 30 frames per second, an image frarne is acquired (or displayed) every 1/30" of 

a second. If an object being imaged moves across the image frarne at a faster rate, i t  may 

never be captured in an individual image. Once again, we note that it is essential that the 

frarne rate is at least twice as fast as the highest frequency of motion in the video 

sequence. 
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Interlaced Versus Progressive S can 

The concept of frarne rate for image display relates how often an image is updated on the 

viewing display. Since the normal display mechanism is a video display monitor, images 

must be repeatedly refreshed. The rate at which images are refreshed c m  cause display 

flicker, and therefore human eye fatigue. Display flicker dso  depends on how the image 

is scanned on the display monitor. Common broadcast television equipment uses a 

technique known as interlaced scan[45] display, as shown in Figure 4. This means that 

the odd-numbered Iines of the image are displayed first, followed by the even-numbered 

Iines. The effect is to interleave, in time, the two interlaced halves of the image, one after 

another. Interlacing gives the impression to the observer that a new frame is present twice 

as often as it really is. This technique was used originally for television broadcast signals 

since the display could be refreshed less frequently without noticeable image flickering 

(although some rninor line-to-line flicker does occur at certain instances). Systerns using a 

standard commercial broadcast television display monitor for image display typicalIy 

have a 30 frarne per second frarne rate and interlaced scan. 

in morion image sequences, interlaced scan displays can show noticeable motion defects 

because the odd and even halves of each image are separated in time by one-half the 

frame rate. The resuIt is a tearing effect that appears on objects with fast motion through 

the image frame. 



Start of odd field Star& of even fieId 

-i 
/ \ 

End of cxid field End of even field 

Figure 4- Interlaced scan display. 

In the non-interlaced method known as  progressive method[46], the entire image is 

displayed in one pass. In this case, the frarne rate must be twice that of an equivalent 

interlaced display, or image flickering wiII be noticeable. Progressive scan eliminates 

line-to-Iine flicker and motion artifacts in displayed images. Systems using a progressive 

scan display monitor for image display typically have a 72 frame per second frarne rate. 

Fideiity Criteria of Digital Images and Video Sequences 

Fidelity cnteria are applied to measure image quality and for cornparhg the performance 

of different processing techniques. There are two types of critena1381 that are used for 

evaluation of image quality, .subjective and quantitative. The subjective critena use 

human feeling about an image (or video sequence). Quantitative rneasures, try to describe 

or compare the irnagelvideo quality by an analytic formula. 

Mean square cntenon is often used in image processing. It refers to the average (or sum) 

of squares of the error between two images (u and u') and it could be described in three 

different formats as follow: 



LM N 

Average least square: a,' = )/MN Iu(m, n) - ur(m, n)12 
m=l n=I 

Mean square error: O,' = YMN ~[Iu(rn, n) - u'(m, n)12] 

6f N 

Average rnean square: ou ' = YMN 7 ~ [ l u ( r n ,  n) - d ( m ,  n)lz] 
-1 n=l 

where the size of the image is MxN and E[] represents the mathematical expectation. 

ui many applications the mean square error is expressed in tems of a signal-to-noise ratio 

(SNR), which is defined in decibels (dB) as foIlows: 

where d is the v 

Sm = IO log,, 

ance of the original image. 

The alternative formula for SNR, called peak-to-peak SNR (PSNR) is defined as: 

(Peak - to - peak value of the reference image)' 
PSNR = 10 log,, cc = ~ a I ~ m J J t r  

oc2 

2.2 Digital Image and Video Processing Ca tegories 

Visual media processing involves operations to enhance, restore, compress and analyze 

images and video sequences. Whatever the operation, a similar set of steps are followed: 

A digital technique is applied to a digital image or video to form a digital result, such as a 

processed imagehideo. a cornpressed bit-stream or a list of extracted features. The four 

main categories of imagehide0 processing tasks are now presented. 



Enhancement: 

The quality enhancement is the primary goal in digital signal processing systems. Many 

enhancement techniques are introduced to cornpensate for the effects of a specific (known 

or estimated) degradation process for 2-D signais known as images. This approach, 

known as image restoration, will be discussed in the next section. In image enhancement 

methods, little or no attempt is made to estimate the actual degradation process that has 

occürred on the picture. These inciude methods of modiQing the intensity value, contrast 

enhancement, edge enhancement, deblumng, and smoothing or removing noise. These 

methods assume that certain general properties of the pictue are degraded and attempt to 

resolve these problems. For example, increasing the contrast is a reasonable enhancement 

operation due to the attenuation of the picture, or debIumng is reasonable as shown in 

Figure 5 because degradation usually blurs and smoothing is justifiable, since noise is 

generdly added to the original picture as shown in Figure 6- 

Figure 5- Sharpening effect 



Figure 6- Noise removai using image enhancement techniques. 

Image enhancement employs local correlation between adjacent pixels to enhance the 

image quaiity, 

Restoration: 

Picture restoration is applied on images that have been degraded in the presence of one or 

more sources of corruption. There are different kinds of degradations based on the 

affected area. Point degradarions only alter the intensity value or the color of individual 

pixels whiIe spatial degradations blur an area of the image. Other types generate 

temporal degradation in video sequences. For exarnple, the pictures obtained in remote 

sensing and astronomy are degraded by atmospheric turbulence, aberrations of the optical 

system and relative motion between the camera and the object. In image restoration, it is 

assumed that the degraded image is a convolved version of the origind image by the 

degradation function plus additive noise. The goai is to obtain as good an estimate as 

possible of the original picture. Obviously, any such estimation procedure requires some 

form of knowledge concerning the degradation function. As a result, frequency domain 

correlation is used to restore visual information. Examples include inverse filtering, 

pseudo inverse filtering, etc. 



Compression: 

The aim of digital data compression is to represent the data by as few bits as possible for 

the purpose of transmission or storage. The bandwidth and storage requirernents of visual 

data typically make it impossible to handle visual (digital) data in its raw form and hence, 

a number of compression techniques have been developed. 

Visual data compression methods f a  into two common categories. In the fmt kind, 

cailed lmsless compression, the data could be restored completely after the compression 

process. In this method, the redundancy of the image is exploited using sourcecoding 

techniques[lOl] such as Huffinan coding and arithmetic coding. In the second category, 

c d e d  lossy techniques, higher compression rate is achieved at the expense of loosing 

some insignifcant information in the decoding stage. This compression technique results 

in some distortion. Efficient compression techniques tend to minimize the distortion 

perceived by human visual system. 

Different Mage and video compression techniques[74] remove the existing redundancy 

in different domains and hence, can be classified as follows: 

Spatial based 

In this class of compression techniques, the existing correlation within an image such 

as predictability, randomness and smoothness is exploited. ADPCM (adaptive 

differentid pulse code modulation), vector quantization and fractal block coding 

techniques are typical examples of this category. 

Temporal based 



In this category, the existing correlation within a video sequence and between the 

consecutive frames of the same shot is exploited and the redundancy is removed. 

Motion estirnation[95].[99] is the basic operation for these techniques. 

Frequency based or transform coding 

In transform coding techniques, a block of data is transfomed so that a large fraction 

of its total energy is condensed into a small part of the transfomed data which are 

quantized independently. DCT (discrete cosine transform)[75] and DWT (discrete 

wavelet transform)[94],[97] are typical digital transforms employed in this technique. 

We note that the objective in al1 categories is to exploit the spatio-temporal correlation in 

an image or video to reduce the redundancy and represent the data in a compressed form. 

ImageNide0 Analysis: 

Semantic correlation of the pixels is used for image and video understanding. Recently, 

there is a tendency to represent multimedia objects using generai object based 

representations which provides content-based functionalities. The objective of model- 

based image representation[21] or intelligent image understanding is to understand the 

scene by modeling the objects, yielding a higher level representation. Applications of 

mode1 based image representation and image analysis include, automatic vehicle dnving, 

medical inspection, mobile robot navigation, mail sorting, label reading, global model 

construction and low-bandwidth image coding. Semantic correlation of the pixels is used 

for image and video understanding. Example operations involved in image and video 



analysis indude, image segmentation, feature extraction, object ~Iassification, indexing, 

scene cut detection, etc. 

It can be deduced from the summary of the different categories of operations listed above 

that the principd task is to exploit the different forrns of correlations present in the visual 

data The individual operations encountered in visud processing are detailed in the 

foIIowing section. 

2.3 Fundamental Operations in Visual Processing 

The fundamental operations in the four major categories of visual processing tasks are 

listed be1ow. The objective is to select the candidate algorithm, which will be employed 

in the design of a high performance video processor. The selected kemeI algorithm needs 

to be represented by a majority of such operations- We now propose the categorization of 

dl individual operations in six classes as shown in Figure 7. The individual operations of 

each class are detailed. 

Operatio Image Subtractio 

Fourier uansform 
DCT transform 

I m a g e  masking Block matchine 
Motion estimation 

L o w  pass filtering 
High pass filtering 

Figure 7- Visual Media Operations 



Point operations 

The resulting gray levei at a pixel depends only on the input gray Ievel of one point 

(usudIy the gray level of the same point before applying the operation). Such operations 

are used for gray scale manipulation and for segmentation by pixel classification. The 

extension of these operations inchde dual image operations where the output level of a 

pixel depends onIy on the set of input levels from the pixels at the same position. For 

example, we may want to take the difference between two pictures. The operations in this 

category are : 

Description: Each image pixel is added to a constant translation factor. 

O(x.y) = I(x,y) + + 
'' 

- Where O(x,y) is the output image, I(x,yi is the input image and t/. is the translation factor. 

Applications: Brightening or darkening the image (an example is shown in Figure 8-B). 

Category: S ingle-image. 

Stretch ing 

Description: Each image pixel is multiplied by a constant stretch factor (sf)- 

Applications: Increasing or decreasing the contrast of the image (an example is shown in 

Figure 8-C). 

Category: S ingle-image. 



Description: Each image pixel is evaluated to be above or below a predetermined 

threshold vaiue (t,). If the pixel brightness is less than the threshold, the resulting pixel 

brightness is set to O, otherwise it is set to the maximum v d u e  (e-g- 255 for 8 bit values). 

Applications: Creating a very high contrat image. segrnenting the image by highlighting 

an object of interest and separating it from its background (an example is shown in Figure 

8-D). 

Category: Single-image. 

Image Subtraction /Addition 

Description: One image is subtracted from or added on a pixel by pixel basis to a second 

image. 

Applications: Removing comrnon background image information, determining object 

motion, Averaging over images of the sarne scene to reduce random noise, merging two 

images. 

Category: Duai-image. 



A) original image B) Traslation 

C )  Stretching D) Thres ho Ming 

Figure 8- Example point operations 

Local operations 

The output of these operations depends only on the gray values in a neighborhood o f  a 

particular pixel. Such operations are used for noise cleaning, edge and local feature 

detection, etc. The following operations belong to this category: 

Image Masking 

Description: A fïnite impulse response (FIR) filter or rnask is applied to the image to 

perform a spatial image processing operation. 
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w here * indicates mas king operation. 

Applications: Low-pass filtering, unsharp masking, high-pass filtering, edge enhancement 

and line detection. 

Category: dual-image. 

Median Filtering 

Description: The filter is a ranking filter, where for example the fifth-radced pixel 

brightness value is selected as the output pixel brightness from a 3x3 input group of 

pixels. 

where f is the nonlinear ranking and seIecting function and 1 is the input group of pixels. 

Applications: Removing impulse noise spikes from an image. 

Category: single-image. 

MorphoZogical operations such as erosion and dilation 

Description: The erosion operation reduces the size of bright objects on a dark 

background in an image and the dilation operation increases the size of bright objects on a 

dark background in an image (morpho1ogicaI process). 

Applications: Image analysis, outlining, thinning, skeletonization and edge detection. 

Category: single-image. 



Line operations 

The inputs to these operations are pixel values which reside across a vertical or horizontal 

line. Such operations are typically used in raster scan images. A typical example 

operation is the grouping of one's and zero's in a line for run-length coding. Exarnple 

operations in this category include: 

Run Length Coding 

Description: Across each line of an image, pixeI values are sequentially compared and 

grouped together into mns of identical brightness. 

Applications: image compression. 

Category: Single image. 

Differenrial Pulse-Code Moduhtion ( . C M )  Coding 

Description: Each pixel value is replaced by the difference value of it and its neighbor 

and then represented by a lower-resolution value. 

Applications: Lossy image compression. 

Category: single-image. 

Line segmentation 

Description: Each line in an image is scanned and the white intervais are recognized to 

segment each line from the image. 

Application: Text recognition. 

Category: single-image. 



Geometric operations 

These operations are performed on a set of pixels defined by a geometrical transformation 

or around a neighborhood of a specified point. This cIass includes the following 

operations: 

Up and Down Sampling 

Description: Portion of image is resampled for another spatial resohtion. 

Applications: Image enhancement, zoorning in and out, and image size adjustment. 

Category: single-image. 

Shifh'ng 

Description: The spatial location of image pixels is shifted linearly. 

AppIications: Geometric adjustment of the location of an image- 

Category: single-image. 

Scaling 

Description: The spatial size of image pixels is expanded or reduced Iinearly. 

l (xpy)  + O(x ',y ') rvhere x'=x.S, and y '=y.% 

Applications: Geornetric adjusmient of the size of an image. 

Category: single-image. 

Rotation 

Description: The image is rotated linearly about the origin. 



I(x,y) + O(x'.y ') ivhere x'=x-cos(O)+y.sin(8) and y '= -x.sin(6)+y.cos(6) 

Applications: Geometric adjustment of an image. 

Category: single-image- 

BIock operations 

A rectangular block of pixels with a typicai size of 4x4, 8x8 or 16x16 are grouped 

together and processed. These operations may result in another block, a single value or a 

vector of data, Example operations are: 

Fourier Transfom 

Description: An image is transformed to frequency domain by a discrete Fourier 

transform operation. 

O ( W )  = 7 ( 4 ~ s ~ )  ) 

where 7 is the Fourier transfom. 

AppIications: Frequency filtering, removing periodic noise patterns and energy 

compacting. 

Category: single-image. 

Discrete Cosine Transfom (DCT) Coding 

Description: Pixel blocks (8x8 pixels) are discrete cosine transfomed and then the 

frequency components are quantized. 

where V is the discrete cosine transform. 



Applications: Lossy image compression. 

Category: single-image- 

Paîtern Mafching 

Description: A block of image is compared to a set of blocks in terms of Euclidean 

distance to determine the best match between the blocks. 

Applications: Documentation analysis, object recognition, vector quantization, motion 

estimation and fractal image compression. 

Category: dual-image. 

Image operations 

The input for these operations consists of the intensity value of d l  the pixels (or the main 

part) of an image. Typicd examples of these operations include: 

Image Covariance and Correlation 

Description: Image is modeIed by randorn field representation. 

~ov(cdm,n) ,u(d  n')) = ~ [ ( u ( m ,  n) -p(m,n)Xu(mr,n') - p(rnr,n'))], p(rn,n) = ~ [ u ( r n , n ) ]  

Applications: Image modeling and template matching. 

Category: single-image. 

Histograrn calculation 

Description: The relative frequency of each gray Ievel in the image is calculated. The 

gaph of the frequency as a function of gray levels is called the histograrn of image. 

PAZ) = nurnber of pixels wifh gray levez equal to z. 



Applications: Image segmentation, measurement of tertual properties and image 

comparison. 

Category: single-image. 

Description: Pixel values are replaced with variable-length codes based on their 

frequencies of occurrence in the image, 

Applications: image compression. 

Category: single image. 

Mean square error / SNR computation. 

Description: An image is compared to a reference image with these quantitative criteria. 

M iV 

MSE = yMN ~u(rn, n) - uT(rn, n)[' , SNR = 10 log,, gxSE 
m i l  n=l 

Applications: image comparison. 

Category: Dual image. 

2.4 Fractal Processing 

The principal task in al1 of four different categones of image operations is to exploit the 

high correlation present in the visual data. Two new mathematical entities, narnely 

Fractals[41] and Wavelet Transforms[96], have been recently introduced to exploit the 

correlation and self-sirnilarities within an image or a sequence of images. Wavelet 

transformation belongs to the category of transform coding techniques, which attempt to 

exploit the correlation in an altemate domain rather than spatial domain. On the other 



hand, Fractal processing extracts existing self-sirnilarity and self-affine content within the 

image. 

A majority of the processing operations Iisted above is accommodated in Fractal Block 

Processing (FBP)[38]. FBP is a computationally intensive procedure and involves 

operations such as, summation/accumulation, image additionkubtraction. translation, 

stretching, shifting, scaling, rotation and pattern matching. We have therefore chosen FBP 

as the candidate algorithm for the design of the generic video processing element which is 

detailed in chapter 6 of this thesis. The basic operations in FBP which are affine 

transformations are discussed in chapter 5. 

2.5 MPEG4 Multimedia Standard 

An ernerging standard that is expected to become popular in visual domain processing (as 

well as other domains such as Audio) is MPEG4[16], [17]. MPEG4 is the third standard 

in a series developed by the Motion Picture Expert Group. The first two standards 

MPEG1[8], [14] and MPEG2[15] address the coding and compression of frame based 

video sequences and audio. MPEGl was pnmarily used for Video-CD's with a resolution 

of 352x240. MPEG2 operated on a higher resolution (704x480) and has added support 

for interlaced video. Later, higher levels of resolution were specified so that MPEG2 

could support HDTV. MPEG2 now supports al1 resolutions and frame rates defined by 

ATSC for digital television. MPEG4 was finalized in October 1998 as an ISO/IEC 14496 

standard. MPEG4 differs from the previous standards in a number of ways. The new 

standard allows interactivity, high compression and accessibility to the video content. 

Video information in MPEG4 is no more specified as compressed frames but as 
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cornpressed Video Objects (VO). In this section, by introducing this standard, we show 

the validity of our categorization introduced in this chapter. We note that the operations 

involved in affine transformations, motion estimation and wavelet transforms will form 

important components in MPEG4. MPEG4 achieves a high performance by providing 

standardized ways to: 

represent units of aural, visual or audiovisual content, called "media objects". These 

media objects c m  be of naniral or synthetic ongin; this means they could be recorded 

with a carnera or microphone, or generated with a computer as shown in Figure 9. 

descnbe the composition of these objects to create compound media objects that form 

audiovisual scenes; 

multiplex and synchronize the data associated with media objects, so that they can be 

transported over network channels. 

interact with the audiovisual scene generated at the receiver's end. 

In addition, 

(1) MPEG4 uses object based coding as opposed to frarne and channel based coding of 

previous standards. MPEG4 also defines how interactivity between user and objects 

c m  be employed, in convast to previous standards which allowed very limited 

interactivity. Objects in MPEG4 are very important because they allow content based 

interactivity. Objects are coded independently but grouped together to form a scene. 

Interactivity is enabled by the representation of a scene as a collection of objects or 

the composition. When the viewer selects or points to an object, actions that are 



predefined for the object can occur. An object in MPEG4 is a component of a scene or 

the final audio-video presentation. Objects can be simple or compound. 
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Figure 9 - An exarnple of an MPEG-4 Scene 

(2) MPEG4 allows the coding of objects as arbitrary shaped images or rectangular 

images, Previous standards c m  code only rectangular area. In MPEG4, arbitrary 

shapes are generated by coding a rectangular area and then adding a shape layer or 

mask which defines the exact shape of the video object- 



(3) MPEG4 provides different coding methods (also called tooiboxes) for coding 

different types of material. Cornputer generated or synthetic material can be coded 

using methods that are more appropriate to that format- MPEGl and MPEG2 only 

addressed coding of natural material such as video or film. Normal video objects are 

usuaily coded using DCT based compression methods in MPEG4 sirnilar to those 

used in MPEGl and MPEG2. The DCT based coding rnethods are optirnized for 

natural images that contain many shades of colors and smooth variatims that 

normdly occur in the red  world. Computer generated images c m  have very few 

colors and many sharp transitions. DCT based coding methods do not compress these 

types of images. MPEG4 provides alternate methods of coding images that are 

computer generated- These objects are calIed synthetic objects to differentiate thern 

from natural video and audio objects. Since computer generated objects can be 

created from sending commands to a rendering engine, one of the most efficient 

methods of compressing cornputer generated objects is to compress the commands to 

the rendenng engine such as a text imager, 2D and 3D graphics rendering engine or 

sound generators. 

(4) Because of the independent coding of objects in MPEG4, a means to combine objects 

in a scene is required. This is called composition and applies to both audio and video 

objects. Composition is the layering of objects to produce the final displayed image. 

Since objects can overIap depending on their size and position, it is required to 

determine which object is visible at any point in the displayed image. Further more, if 

a gray scale mask is used, the object being composited allows some of the underlying 



objects to be visible as well. MPEG4 dlows 3D Srne transformations on each 

object before it is cornposited. This means that each object may be translated, scaled 

and rotated in 3D space before composition. The affine transformation parameters for 

each object cm be modified during the presentation. composition is defined by a 

scene description object in the MPEG4 bitsueam. The scene is expressed as a 

hierarchy of nodes. which represent objects. The scene specifies audio-video 

composition as well as reIationships between objects and the actions that can occur 

for each object. 

(5) MPEG4 is designed to be an evolving standard. As new methods of coding are 

developed, they can be integrated in existing MPEG4 decoders so that they can 

decode new matenal, coded using the new algorithms. 

(6) MPEG4 broadens applications from mainly two-way videophone appliances to a 

number of conceivable video communication or video entertainment devices. 

(7) Since MPEG4 specifies the coding of naturd and synthetic audio-video sources as 

independent objects, additional objects can be added to the mainstrearn without 

requirïng the decoding and re-encoding. Ail the objects are combined in the decoder 

to form the final audio and video presentation. 

We note that the novelty of MPEG4 resides in object based techniques. 

transformations are among appropnate toolkits to achieve object based processing. 

Fractal processing is also an appropnate candidate for coding synthetic objects in a scene. 



Wavelet coding is used to code texture information. In the next section, we present visual 

coding techniques, which are introduced in MPEG4 standard. 

17 Coding of Visual Objects 

Visual objects cm be either of natural or of synthetic origin. Different coding techniques 

are employed for different visual objects. In this section, we show that Our proposed 

candidate algorithm encompasses a majority of coding techniques in MPEG4 standard- 

25.1 Natural Textures, Images and Video 

The tools for representing natural video in the MPEG4 visud standard aim at providing 

standardized core technologies allowing efficient storage, transmission and manipulation 

of textures, images and video data for multimedia environments. 

The visual part of the MPEG4 standard wiIl provide a toolbox containing toois and 

algorithms bringing solutions to natural visuai objects. It wiil give an efficient 

representation of visual objects of arbitrary shape, with the goal to support so-called 

content-based functionalities. Next to this, it will support most functionalities already 

provided by MPEG-1 and MPEG-2, including the provision to efficiently compress 

standard rectangular sized image sequences at varying levels of input formats, frame 

rates, pixel depth, bit-rates, and various levels of spatial, temporal and quality scdability. 

Support for Conventional and Content-Based Functionalities 

The MPEG-4 Video standard will support the decoding of conventional rectangular 

images and video as well as the decoding of images and video of arbitrary shapes. 



The codùig of conventional images and video is achieved similar to MPEG-1/2 coding 

and involves motion predictionlcompensation foiiowed by DCT based texture coding. We 

recail fiom section 2.4 that fiactai/affine processing employs a super set of these 

operatiom. 

Global motion compensation is based on the transmission of static "sprite" which is a 

possibly large still image describing panoramic background and motion vectors. For each 

consecutive image in a sequence, only 8 global motion parameters describing camera 

motion are coded to reconshuct the object. These parameters represent the appropriate 

affine transform of the sprite transmitted in the first fkme. 

Coding of Textures and Still Images 

Efficient Coduig of visual textures and still images is supported by the visual texture 

mode of the MPEG4. This mode is based on wavelet transform that provides very high 

coding efficiency over a very wide range of bitrates. Together with high compression 

eficiency, it aiso provides spatial and quality scalabilities (up to 11 levels of spatial 

scalability and continuous quality scalability) and also arbitrq-shaped object coding. 

The wavelet formulation provides a scalable bitstream coding in the form of an image 

resolution pyramid for progressive transmission and temporal enhancement of still 

images. The coded bitstream is also intended for downloading the image resolution 

hierarchy into the terminal to be formatted as 'bitmap texture' as used in 3D rendering 

systems. This technology provides resolution scalability to deal with a wide range of 

viewing conditions more typical of interactive applications and the mapping of irnagery 

into 2D and 3D virhial wodds. 



ScalabIe Coding of Video Objects 

MPEG4 supports the coding of images and video objects with spatial and temporal 

scalabiiity, both with conventional rectan,@ar as well as with arbitraiy shape. Scdability 

refers to the ability to o d y  decode a part of a bitstream and reconstruct images or image 

sequences with: 

reduced decoder complexity and thus reduced quali ty ; 

reduced spatial resolution; 

reduced temporal resolution; 

equal temporal and spatial resolution but with reduced quality. 

This functionality is desired for progressive coding of images and video over 

heterogeneous networks, as well as for applications where the receiver is not willing or 

capable of displaying the full resolution or full quality images or video sequences. 

2.5.2 Synthetic Objects 

Synthetic objects f o m  a subset of the larger class of coniputer graphics such as: 

a synthetic description of human face and body 

=, The shape, texture and expressions of the face are generally controlled by the 

bitstream containing instances of Facial Definition Parameter (FDP) sets 

and/or Facial Animation Parameter (FAP) sets. Upon construction, the Face 

object contains a generic face with a neutral expression. This face can already 

be rendered. 



animation streams of the face and body 

a The rendered face is capable of receiviag the animation parameters from the 

bitstream, which wdl produce animation of the face including expressions, 

speech, etc. Body Animation is being designed into the MPEG4 fabric to work 

in a thoroughly integrated manner with facehead animation, 

static and dynamic mesh coding with texture mapping 

A 2D mesh is a partition of a 2D planar region into polygonal patches. The 

vertices of the polygonal patches are referred to as the node points of the 

mesh- MPEG4 considers only triangular meshes where the patches are 

triangles. A 2D ciynamic mesh refers to 2D mesh geometry and motion 

information of al1 mesh node points within a temporal segment of interest. In 

2D mesh based texture mapping, triangular patches in the current frame are 

deformed by the movernents of the node points into triangular patches in the 

reference frame, and the texture inside each patch in the reference h e  is 

warped ont0 the current frame using a parametnc mapping, defmed as a 

fuaction of the node point motion vectors. For triangular meshes, affine 

mapping is a common choice. Its linear form implies texture mapping with a 

low computational complexity. Affine mappings can mode1 translation, 

rotation, scaling, reflection and shear, and preserve straight lines. The degrees 

of freedom given by the three motion vectors of the vertices of a triangle 

match with the six parameters of affine mapping. This implies that the original 

2D motion field c m  be compactly represented by the motion of node points, 



Corn which a continuous, piece-wise affine motion field can be reconstructed. 

At the same time, the mesh structure constrains movements of adjacent image 

patches. Therefore, meshes are well-suited to represent mildly deforrnable but 

spatidy continuous motion fields. The 2D object-based mesh representation 

is able to mode1 the shape (polygonal approximation of the object contour) 

and motion of a VOP in a unified M e w o r k ,  which is also extensible to 3D 

object modeling when data to constnict such models is available. 2D mesh 

modeiing may be used for compression if one chooses to fransmit texture 

maps only at selected key h e s  and mimate these texture maps (without 

sending any prediction error image) for the intermediate -es. This is also 

known as self-transfiguration of selected key frames using 2D mesh 

information. 

Texture Coding for View Dependent applications 

The view-dependent scaiability enables streaming texture maps, which are used 

in realistic virtual environments. It takes into account the viewlng position in 

the 3D virtud world in order to transmit only the most visible information. Only 

a fraction of the information is then sent, depending on object geometry and 

viewpoint displacement. This fraction is computed both at the encoder and at 

the decoder. This scalability can be applied both with Wavelet and DCT based 

encoders. 



2.6 Summary 

We have summarïzed various categories of operations in image and video processing 

followed by the derivation of generic operations for visual processinp. Visual media 

processing involves operations to enhance, restore, cornpress and andyze images and 

video sequences. Image enhancement employs locai correlation between adjacent pixels 

to enhance the image quality. In image restoration, it is assurned that the degraded image 

is a convoIved version of the original image by a degradation function pIus additive noise. 

Image compression techniques decrease the nurnber of bits, which represent the image. 

Semantic correlation of pixels is used for image and video understanding in imagehide0 

analysis. We then present al1 operations in imagehide0 processing. Our goal is to derive 

the fundamental operations and also a candidate algorithm to represent the majority of the 

operations in visual domain. Operations in visud processing are classified as folIows: 

Point operations 

Local operations 

Line operations 

Geometric operations 

Block operations 

Image operations 

The principal task in al1 of different categories of image operations is to exploit the high 

correIations present in the visual data using various operations. Fractd processing has 

been recently introduced to exploit the corre!ation and self-similarities within an image or  

a sequence of images. It is clearly shown in chapter 6 that fractal processing encompasses 



a majority of visual operations. FBP (Fractal Block Processing) is a computationally 

intensive procedure and involves operations such as, surnmationlaccumuIation, image 

additiodsubtraction. translation, stretching, shifiing, scaling, rotation and pattern 

rnatching. Hence, we have chosen FBP as the candidate dgorithm for the design of the 

generic video processing eiement which is detailed in chapter 6 of this thesis. Finally we 

have introduced novel techniques in the MPEG4 standard to show the validity of our 

proposed categorization and also to dernonstrate the irnpkmentations of affine 

transformations. We now present enabling technologies for realization of Fractal Engine, 

in VLSI (Very Large Scaie Integrated Circuits). 
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3 Review of VLSI Technology 

Multimedia hardware architectures are increasingly emerging due to advaxed VLSZ 

technology. Today's multimedia architectures are able to handle most of the required 

processing tasks for al1 of the media including image and video. VLSI technology[l] has 

grown exponentially in the last two decàdes. Powerfùl and integrated multimedia system 

irnplementations are now feasible due to recent advances in the VLSI area. The design of 

VLSI architectures for video processing is faced with a number of key choices. These 

include Integration (single chip VLSI, LSI, etc.), Fabrication Process (full custom, semi 

custom, etc.) and Design Tools (schematic capture, hardware description languages, etc.). 

We note that an efficient hardware design requires careful investigation of the state-of- 

the-art technology and choosing the tools that best suit the requirements of multimedia 

implernentations- 

3.1 lntegration 

VLSI (Very Large Scale Integration Circuit) is the technology of integrating million 

transistors ont0 a single device. The systems that required hundreds of discrete ICs in the 

past cm now be designed into an IC that is about JA inch square. We note that it is not 

only the count of gates that determines the cost, but the number and types of ICs 

ernployed and the interconnection required to implement a digital circuit. Increased 

integration cm offer reduced production costs as a result of high packing density, low 

system cornponent cost and simplified assembly. However Iower power dissipation, 

higher switching speeds and more system reliability are the other advantages. 
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Cur~ent ly~ chips with sub-micron features are quite common. For example, the 200-MHz 

Pentium Pro[58] and PowerPC 604e[59], [60], [61] have circuit features measuring only 

0.35 micron across. The delivery of devices composed of 0.18-micron is now emerging. 

The number of transistors that designers can pack on a chip has increased at a rapid rate. 

For example, the logic density in the x86 processor family has increased 20 times in a 

span of 10 years as shown in the Figure 10. 

The basis of these ever-higher logic densities is increasing levels of sophistication in 

photolithography[62]. Current Iithographic processes employ a mercury light source 

whose 0.365-micron wavelength creates the 0.35-micron features. Successfully achieving 

the smaller 0.25-micron feature size requires the utilization of a krypton-fluoride 

ultraviolet laser that has a 0.248-micron wavelength. Smaller features are handled by the 

use of argon-fluoride Iasers with a 0.193-micron wavelength. However, achieving 0.1- 

micron feature size requires optical trickery, which involves masks that phase-shift the 

light to improve the resolution. Building even-smailer chip features requires using light 

sources with even shorter wavelengths. In doing so, chip designers have traversed the 

electromagnetic spectrum from visible light, to ultraviolet light, and finally into X-ray 

tenitory. 

Since multimedia processors require large number of devices to be packed onto a single 

chip, this high integration technology is crucial to support the development of chip-sets 

dedicated to this type of applications. 



Figure IO- IC transistor counts. 

3.2 Fabrication Process 

Designed chip-sets can be fabricated using either a full custom or semi-custom design 

techniques[63]. The different choices include, full custom systems, cell-based systems, 

gate arrays and field programmable logic devices. The 1 s t  three options are usually 

considered as serni-custom techniques and are distinguished by the name ASIC 

(Application Specific Integration Circuit). ASICs combined with new design tools (will 

be discussed in 3.3), have transformed the VLSI technology and made it possible fo-r large 

numbers of designers to develop integrated circuits tailored to their specific appiication. 

Multimedia products are therefore made feasible due to this enabling technology. In this 

chapter, we discuss different options in hardware design. 



3.2.1 Full Custom Design 

Full custom design involves hand crafting of the chips at the silicon level and therefore 

demands a considerable amount of ski11 and experïence on the part of the designer. Every 

individual transistor and connecting track has to be drawn in terms of basic geometric 

shapes (polygons) corresponding to features that will eventually be reproduced on the 

various mask Ievels for the silicon fabrication process. A typical process may require ten 

or more such masks to be produced. Drawing of the polygons is usudly achieved using a 

graphics editor on a cornputer-aided engineering (CAE) workstation and is inevitably 

time consuming and error prone. The designer must observe a set of geometric design 

rules for the particular process that he/she is planning to use. At some stages it is 

necessary to verify that the Iayout that has been drawn confonns to these d e s .  When the 

Iayout of a ceIl is complete it is simulated at the transistor level. This process will include 

computation of track capacitance that is extracted from the physicd description to yield 

accurate performance estimations. These steps are then iterated until satisfactory 

performance is achieved. Full custom design offers by far the greatest degree of fiexibility 

of any of the techniques available- It gives the designer total freedom to decide what to 

integrate ont0 the chip (e-g. rnixed digital and analog, power devices, special-purpose 

devices with integrated sensors). However, the time and effort involved can arnount to 

many man-years and is justifiable only if production volumes exceed 100,000 units. 

Pentium MMX with extended multimedia instruction set is an example of this 

technology. We note that, the cost and the timing of this approach is not justifiable for Our 

researc h. 



3.2.2 Gate Array and Celi-Based Design 

Gate a r r q  design offers the advantages of a custom approach but yet removes the need 

for labor-intensive transistor-level considerations, principally performance verifkation 

and physical layout, frorn the customer. To achieve this the silicon vendor carefully 

predetemines and characterizes a simple logic cell, typically having the potential to 

realize a few basic gates, and then repeatedly locates instances in a regular matrix 

covering most of the chip area. The gate array wafers are then fabrïcated as far as the 

interconnecting layer, typically representing 90% of the whole process; it is then lefi to 

the discretion of the user to determine a suitable pattern for a specific application. A 

number of architectural forms are available, being characterized by the pattern of ceil 

layout and the amount of silicon explicitly devoted to interconnection paths. The gate 

array market is dominated by CMOS devices, which typically offer a few thousand gates 

with toggIe rates up to about 350 MHz. Recent innovative families offer as many as 

5,00,000 equivalent gates together with approximately 0.25 ns delay, and consequently 

the gate array technique now offers a high degree of versatility. To summarize, gate arrays 

achieve the objective of reducing design time compared to full custorn devices, and 

require only a reduced customized mask set. Consequentiy they are appropriate for 

relatively small production volumes, typically a few thousand; in particular, prototyping 

using this medium is often attractive. Tumaround time for designs is typically a few 

months and a sirnilar period is required if corrections are necessary. Consequently the 

importance of 'first-time correct' design is paramount. If suficient turnover is 

anticipated, then time delays from completing a design to receiving a chip are possibly the 

major drawbacks associated with gate array design. 

5s 



Cell-based IC design can be viewed as an attempt to obtain the best of both worlds (full 

custom and gate arrays). It offers the ease of design of gate arrays while retaining some of 

the density and performance advantages of full custom design. As with the gate array, the 

primary objective is to elirninate the need for the engineer to hand craft circuitry into 

silicon at the individual cornponent or transistor level. This is achieved by making 

available to the chip designer a range of predefined and pre-characterized functional cells 

(collectively referred to as a ce11 library) which cm be used as building blocks to 

construct any desired circuit. Cells can be drawn from the library as required and placed 

virtually anywhere on the silicon. The ability to optirnize the cells represents one of the 

major advantages that ceII-based systems have over gate arrays. We recaII that the 

components in gate array cells are fixed in size and position by the manufacturer and 

consequently there is little or no scope for optimizing the rnanner in which these 

cornponents can be connected together to realize a particular function. It is invariably the 

case that a given function implemented as a gate array ce11 will occupy a larger silicon 

area and have infenor performance compared with a hand crafted ce11 in a ce11 library. In 

tems of tum-around tirne a cell-based chip will demand equivalent effort to that required 

in fabncating a full custom chip. Compare this with the situation for gate arrays where 

almost one custornized mask wiil normally be required to commit the array to a specific 

task. We note that in Our project, a standard ce11 based technology of BiCMOS -8 micron 

is our primary selection for VLSI implementations of dedicated units. Fortunately this 

technology is available through CMC for Our Lab. 



3.2.3 Field Programmable Gate Arrays (FPGA) 

The major disadvantages of gate array and cell-based design are the Ume taken to design 

and fabricate such a chip and the necessity for first-time correct solutions to minirnize 

delays and costs. An attractive alternative allows for customization to occur in the field 

when al1 masking stages are complete, Programmable logic devices (PLDs) offer such a 

facility. They belong to the family known as "field programmable serni-custom". They 

consist of programmabIe logic gates that are connected through eiectronic fuses 

(switches). Programming a fieId programmable device rneans blowing the fuses (turning 

on the switch) d o n g  the path that must be disconnected (connected). Like traditional gate 

arrays, FPGAs implement thousand of Iogic gates. Field programmability is obtained at a 

cost in logic density and performance. FPGA capacity trails mask programrned gate array 

capacity by a factor of 10 and its speed trails mask prograrnrned gate arrays by a factor of 

three, 

On the other hand, a user can program an FPGA design in a few seconds or minutes, 

rather than the weeks or months required for the production of mask-programmed parts. 

Hence, FPGA design is a low risk design which makes FPGAs usehl for rapid product 

development and prototyping. In addition, FPGAs can be fully tested after programming 

and hence user's designs do not require test program generation, automatic test pattern 

generation, and design for testability. Most FPGAs are now re-programmable and in the 

case of a requirement for modifications, they can be re-prograrnmed within a few 

seconds. 



Many kinds of programmable Iogic products are referred to as FPGAs. Here, we use a 

broad definition of the term, including not only devices with intemal structure sirnilar to 

gate arrays, but also devices with interna1 structure similar to a collection of Pms. The 

term FPGA is ofien reserved for the former category, the latter are also called cornplex 

PLDs (CPLDs) or programmable multilevel devices (PMDs). Three prograrnming 

technologies are cornmonly used for FPGAs. Each has associzted area and performance 

costs, and the device architectures reflect those costs. Thus, we can categorke FPGAs as 

foIlows: 

Cornplex PLD (CPLD) 

In a CPLD architecture, the user creates logic and interconnections by programming 

EPROM (or EEPROM) transistors to form wide fan-in gates. A CPLD consists of a few 

function blocks, each similar to a simple two-level PLD. Each function block contains a 

PLD AND-array that feeds its macro-cells- The AND-array consists of a number of 

product terrns, The user prograrns the AND-array by turning on EPROM transistors that 

allow seIected inputs to be included in a product term. A macro-ceII includes an OR gate 

to cornpiete the two-level AND-OR logic and may also include registers and an y0 pad. 

SRAMFPGAs 

In an SRAM-progarnmed FPGA, programming of the device is stored in static mernory 

cells. In SRPLM FPGA, logic functions are implemented as Iookup tables made from the 

memory cells, with function inputs controlling the address lines. Each lookup table of 2n 

memory cells implements any function of n inputs. One or more lookup tables, combined 

with flip-flops, form a configurable logic block (CLB). The CLBs are arranged in a two- 



dimensional array with interconnect segments in channels similar to gate array 

architecture. SRAM FPGAs are inherently reprogrammable and can be updated in the 

system, providing designers with new design options and capabilities, such as logic 

updates that do not require hardware modification and time-shared virtual logic. Xiiinx 

FPGAs are typical exarnple of an SRAM FPGA. 

Antifuse FPGAs 

An antifuse is a two-terminal device that, when exposed to a high voltage, forrns a 

permanent short circuit between the nodes on either side. Individual antifuses are srnail, 

so an antifuse-based architecture cm have hundreds of thousands or millions of antifuses. 

To simplify the architecture and prograrnming , antifuse FPGAs usualIy consist of rows 

of configurable logic elements with interconnect channels between them, rnuch like 

traditional gate arrays. Typical exarnple of Anti-fuse FPGA is Actel FPGAs. 

3.2.4 Selected device 

In our design process, we employ FPGAs in the implementation of control unit of the 

device which will bnng flexibility and prograrnmability to Fractal Engine. The selected 

target architecture is Altera / Xilinx SRAM FPGAs- 

3.3 Design Tools 

One of the important enabling technologies for successful ASIC development is having 

the proper design tools and a methodology that rninimizes design errors at any level. In 

this section different design tools are studied with an emphasis on logic synthesis. Logic 



synthesis is the design tool to anaiyze, veri@, simulate and synthesize logic designs from 

a behaviord description to silicon implementation- 

Hardware description lanpages[64] have s h o w  to be essentid parts in Logic synthesis. 

The rapid advances in integrated circuit technology over the past frfteen years have dnven 

the need for more capabIe design tools, and as those tools have developed, they in tum 

have made it possible to design larger and more complex ICs- In the 1980s, a number of 

people within the electronics design community realized that conventional design tools 

and methods would be inadequate to handle the growing complexity and size of 

electronics systems. Two of the major advances to overcome that problern are the 

development of Hardware Description Languages (HDLs), and their use with powefil 

Iogic synthesis systems. 

Logic synthesis is a process that is primarily intended to be used in the design of digital 

ICs, and, in particular, ASIC devices such as gate arrays. Logic synthesis or design 

automation is the automatic synthesis of a physical design from some higher-ievel 

behavioral specification which is much faster than rnanual design. It reduces the design 

cycle considerably, and d o w s  the designer to experiment with various designs to obtain 

the optimal sizekpeed trade-off for a given appkation. Furthermore, as long as the 

original specification is verified and simuiated, a synthesized circuit should not require 

either verification or simulation. High level behavioral specifications (the input to logic 

synthesis tools) are in generai easier to write and to understand (and modify), less error- 

prone, a d  faster to simulate. Hence, they considerably facilitate the design of complex 



systems. Today, synthesis is a growing industry, and commercial implementations of 

synthesis systems are wideiy used for production-Ievel design of digital circuits. 

Different levels of Logic synthesis are as follows: 

High-level qnthesis: converts a high levelr program-like specification of the behavior 

of a circuit into structurai deign. in terms of an interconnected set of Register-Transfer 

leveI (RTL) componen ts, such as ALUs (Anthmetic-Logic Unit), registers, and 

multiplexors. 

Logic synthesis: converts a structural design into optirnized combinational (or 

sequential) logic, and maps that logic ont0 the library of available cells in a particular 

technology, 

Layout synthesis: converts an interconnected set of ceUs into the exact physical 

geometry (layout) of the design. It involves both the placement of the cells as well as 

their connection (routing). 

An integrated synthesis system that covers al1 three synthesis levels is often referred to as 

a silicon compiler. Such a tool wouid allow the design of electronic circuits from a high- 

level, behavioral specification with little or no human intervention- 

Hardware Description Languages (HDLs) [64] are used to descri be the behavioral 

description of a circuit which is considered as the input to a high-level synthesis tool. 

Arnong d i  of HDLs, VHDL (VHSIC HDL)[32] has emerged as a standard for hardware 

specification and simulation. The development of VHDL was sponsored by the US 

government and the Air Force dunng the 1980s. h 1987, the VHDL language was 



adopted by lEEE as  a standard hardware description language and has since achieved 

wide spread industry acceptance. The VHDL language has powerful capabilities that have 

several possible functions depending on its application. The language c m  be used to 

descnbe and speciQ a varïety cf electronic systems, at levels of abstraction ranging fiom 

pure behavioral down to gate and switch level details. In addition to the description 

capability, systems modeled in VHDL c m  aiso be simulated at any of the Ievels in order 

to verify their functional operation and performance parameters. A number of very 

capable commercial VHDL simulators are available in the CAE marketplace. Finally, the 

VHDL description of a desired logic function c m  also be used to drive the logic synthesis 

process, with the constraint that the VHDL code be  part of a fairly flexible but non- 

standardized subset of the language. 

3.3.2 IC Design Methodology 

Two conflicting forces drive the IC design process: circuit qudity and time to market. We 

recail that semiconductor technology is undergoing exponential improvements, hence, 

rather than a single stable IC design methodology we see rapidly changing paradigrn 

shifts as shown in the Figure 1 1. 

Transistor-Level Layout: 

The premier IC design methods were focused on transistor level design coupled to layout. 

in this approach transistor level layout entry and transistor level simulation are employed. 
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Figure 1 1 - Evolution of IC Design Methodology 

Gate-Level Entry: 

Transistor level design is a time consuming process. The introduction of Gate Arrays 

(GAs), standard cells and Field Programmable Gate Arrays (FPGAs) brought comparable 

benefits to the IC designers. These IC technologies are supported by automated place- 

and-route systems. These systems take a net-list of cells from the library as input and 

automatically place and route them in rows and columns. 

The utilization of standard cells, GAs and FPGAs in this approach raised the IeveI of 

abstraction from the transistor level to the gate level. The primary design entry method is 

gate-Ievel schematic entry by means of a schematic editor. Other key tools in this 

methodology are: gate-level simuiation, automatic place-and-route tools and layout 

editors. 

Synthesis Based Design 



We recdl that the two important inventions of HDLs and logic synthesis systems 

accomplished this approach of synthesis based design. We now present different steps in 

synthesis based design process, 

I - Behavioral Modeling: 

For complex ICs, such as a high-performance microprocessor, a behavioral model of the 

IC is fxst developed- Behavioral modeling proposes modeling the functionally correctly, 

but without considering exact dock-cycle by dock-cycle behavior- This behavioral mode1 

can be expressed in a hardware description language such as VHDL. 

2. Simulation and Testing: 

The ability to fully test a behavioral model of a design is achieved by VHDL simuiators- 

The code for the VHDL descriptions and test patterns wiIl normally be typed as ASCII 

text files which are the input source for the VHDL simulation tools. The reason that this 

c m  be accomplished so quickly is that the synthesizable VHDL code is written at a fairly 

high level compared with the gate by gate details required on a schematic, and this itself 

takes much less time. Hence, with VHDL, the simulation begins irnrnediately which 

enables to find design problems in early stages. 

3- Logic Synthesis: 

Although synthesis is a fairly autornated process, additional details must be provided to 

the tools. First is the decision of which ASIC vendor wiII be used. Hence, the vendor 

specific library of cells and parts are required in order to generate the gate level design- 

This library normally contains the details of individual gate delays and the rules for 



computing loading delays due to inputs and estimated capacitance and wire length. The 

second input to the synthesizer is information that is used to constrain the design based on 

designer's requirements. This typically includes the dock rate and puIse width, 

assumptions about operating temperature, voltage, and process variations, output loading, 

and lirnits on permissible propagation delays through critical paths. The outputs of the 

synthesis tools typically include a vendor specific net-kt, reports on timing, gate count 

and area, critical paths and plotted schematic diagrams. Figure 12 shows the detailed 

design flow for two different methods. 

Schematic l Entr-Y l 
Genention l NediSc l 
Gate Level 

Logic Simulation i 

Coding I"i 
Simulation s 

Logic 
S ynthesis 

+ 
Conventional Method VHDL S ynthesis Method 

Figure 12- Cornparison of Design Flows 

In this thesis, our goal is to obtain a VLSI system, which meets the performance and 

specification requirements for rd-time implementation of multimedia applications. To 

achieve this objective, we have chosen to implement al1 hardware designs in behavioral 

description in early stages using VHDL. Primary validation of functionality is assured by 

VHDL simulators. Logic synthesis is then applied and vendor specific net-list is 

generated (as shown in Figure 13). Real parasitic values, routing and propagation delays 
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are then back-annotated and final simulation assures the functionality of the design. The 

target VLSI technology is standard ce11 based for more critical modules and FPGA for the 

programmable control unit. 

Figure 13 - VLSI Design Process 

In the next chapter, architecture design trends are discussed in order to select the best 

strategy for Fractal Engine. 

3.4 Sumrnary 

The design of VLSI architectures for video processing is faced with a number of key 

choices. These include Integration (single chip VLSI, LSI, erc. ), Fabrication Process (full 

custom, semi custom, etc.) and Design Tools (schematic capture, hardware description 

languages, etc.). High-density VLSI chip-sets require new design automation systems. 

They can be fabricated using either a full custorn or semi-custom design techniques. The 

difTerent choices include, full custom systems, ce11 based systems, gate arrays and field 

programmable logic devices. In Our research, we employ ce11 based system design 



techniques for dedicated uni& and field programmable gate arrays for programmable 

units- 

Logic synthesis using VKDL entry codes is Our main design tool which minimizes design 

errors at any Ievel. Logic synthesis is the design tool to anaiyze, venfy, simulate and 

synthesize logic designs from a VHDL behavioral description to silicon implementation. 

In addition to hi& density and fast VLSI systems, multimedia systems require new 

advanced techniques in parallel processing. We present different aspects of multimedia 

hardware architectures in the next chapter. Our goal is to find the best design scheme for 

Fractai Engine. 



4 Design Trends in Multimedia Architectures 

Multimedia system design presents challenges from the perspectives of both hardware 

and software. Each media in a multimedia environment requires different processes, 

techniques, algonthms and hardware implementations. 

Multimedia applications require efficient VLSI irnplementations for various media 

processing algorithms. Ernerging multimedia standards and algorithms will result in 

hardware systems of high complexity. In addition to recent advances in enabling VLSI 

technology for high density and fast circuit implementations (discussed in Chapter 3), 

special investigation of architectural approaches is also required. The important issues in 

multimedia hardware design are listed below: 

Parallelization and Granularity: MJMD, SIMD, coarse grain such as multiprocessor 

architectures and fine gain like superscalar and VLIW[87] architectures, etc. 

Processor (datapath) choices: DSP, RISC and CISC[65]. 

Memory Interface Design: Support for EDO-DRAM, S D M ,  VRAM, RDRAM, 

etc. 

Flexibility: Dedicated or programmabIe. 

In this chapter, we investigate different architectures and categorize them. We note that 

some categories are not restricted to multimedia processors. M e r  the review of all 

architectures, we andyze advantages of each technique to be empioyed in Fractal Engïne. 



In general, there are two different approaches for mukirnedia architecture design (Figure 

14) as of any core processor narnely: Dedicated and Programmabie. Combination of 

dedicated and programmable modules in a multimedia architecture offers a compromise 

between the two strategies as an adapted architecture for multimedia purposes. 

Figure 1 4- Multimedia Architecture Trends 

A function specific (dedicated) implementation is a direct mapping of the multimedia 

processing tasks to hardware modules optimized to execute the specific functions. 

Matching of the individual hardware modules to the processing requirements results in 

area efficient implementations. Multimedia programmable processors consist of 

operational and memory modules, which enabIe the processing of different tasks under 

software control. Combination of dedicated and programmable modules in a multimedia 

architecture offers a compromise between the two strategies. As shown in Figure 14, the 

architectures range from dedicated and adapted modules to fully programmable media 

processors. A brief description of each category is presented in the following sections. 



4-1.1 Dedicated Architectures 

Based on available technologies, required computational achievement, production 

quantity and the target algorithm the use of dedicated implementations could become the 

best choice. For high volume consumer products, the optimization in silicon area and 

timing of the device, which is brought by dedicated architectures, decreases the 

production cost. Ako, designing an specific function architecture for a well defined and 

established standard idgorithm is the best dternative- Dedicated processors differ in terms 

of the ability of computations. They range from a small module for a specific srnaIl task 

such as a DCT chip to a complete MPEG-2 encoder, which are discussed in the following 

sub sections. 

4.1.1.1 Dismmbrcted (Chip-Set) Implementation 

In a chip-set, each major video processing module is configured as a separate chip such as  

a DCT chip, Kuffman coder chip, motion estimator chip, etc. Each module is designed by 

a dedicated hardware architecture. In a distributed implementation, the designer is 

responsible for the interconnection of the chips. The advantage of this approach is the 

flexibility in selecting and connecting the different modules. The disadvantage is the 

increase in area and therefore the size of the system- A typical distnbuted implementation 

is shown in Figure 15. LSI Logic's L64735 DCT Processor Chip and L64765 Color and 

Raster/Block Converter Chip[89] are good examples of this approach. 



Figure 15- Distnbuted implementation example. 

In this approach the whole system is designed in a single chip (or chip set) which results 

in a low power dissipation and reduced silicon area. The main disadvantage of this 

approach is the lack of the flexibility. Figure 16 shows a typical unified implementation. 

An example of this approach is the C-Cube CL45 1 [go]. 

Figure 16- Unified implementation exarnple. 

4.1.2 Adapted Architectures 

The idea of designing a more flexible architecture for multimedia applications is 

necessary because of the increasing number and variety of multimedia applications. 

Dedicated architectures fail to respond to any change in the implemented algorithm. Most 

dedicated architectures for multimedia processing applications achieve an increase in 

flexibility by an adaptation of a programmable architecture to the algorithmic 

requirements. Visud media being the most complex media in a multimedia environment, 

has been the main target of architecture adaptation. Graphics and video chips have been 

specifically designed the details of which are now discussed. 



4.1.2.1 Graphicd3D Accelera fors 

The graphics accelerator chip (or chip set) is designed to perform computationally 

intensive tasks by providing hardware acceleration for the execution of Iow-level 

graphics operations. Hence, they often function as a coprocessor in workstations and 

personal computers, Newer chip sets often include hardware assistance for displaying 3-D 

data and video strearns. A typical system with a graphics accelerator is shown in Figure 

17. An example of this category is the ViRGE/VX by S3 [92], 
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Figure 17- A typical graphics accelerator system 

4.1.2.2 Video Processors 

Video processing tasks. such as DCT, motion estimation and variable block coding, 

demand a high performance processor. Most processing units accomplish higher speeds 

with the aid of a video coprocessor, which is capable of execution of above-mentioned 

tasks. Recently, several video processors have appeared in the literature including the 

VCP by 8x8 [91]. Figure 18 illustrates the utilizatioi? of a video processor in a complete 

system. 
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Figure 18- Video processor implementation 

4.1.3 Programmable Architectures 

In contrat to function specific approaches with limited flexibility, programmable 

architectures implement different tasks by software control. The main advantage of 

programmable architectures is the increased functionality. The design of a programmable 

multimedia processor could be based on the design of a general purpose architecture or 

perforrned independently for multimedia applications. In the former case, multimedia 

capability add-ons are realized either in extending the instruction set or adcling 

multimedia hardware units. In the latter approach, a processor is specifically designed for 

multimedia purposes. These alternatives are discussed in the following sub-sections. 

4.1.3.1 General Purpose Processor with Extended Multimedia Instruction Set 

Adapted architectures Iike graphics and video cards in workstations and personal 

computers have the disadvantages of increased cost to the end user. General purpose 

processors including RISC and DSP have significant computing power but are not 

optimized for multimedia processing. Therefore, there is a strong desire arnong computer 



manufactures to enhance existing architectures so that multimedia processing (video and 

graphics processing) is intepted into the next generation processors just as 2D graphics 

processing has been integrated into today's architectures. Extended multimedia 

instruction set which is inuoduced by Intel in MMXTM[27] processon is an example of 

this approach. 

4.1.3.2 General Purpose Processor with Multimedia Hardware Units 

The previous approach does not optimize the hardware for multimedia applications with 

highly intensive computations. By using the enabling V U 1  technology the alternative 

solution is to add dedicated multimedia hardware units to the processor. The MediaGX 

processor [93] is an example of this approach- MediaGX not only executes x86 

instructions using a Cyrix CPU core. it aiso acts as a virtual video card resulting in a 

highly integrated device with a lower cost and supenor performance. 

4.1.3.3 Media Processors 

Media processors are a new category of Iogic devices defined as software-programmable 

processors that are dedicated to simultaneousIy accelerating several multimedia data 

types. Media processors meet three requirements: 

1) software-enabled (not a multi-function fixed-function ASIC); 

2) dedicated to multimedia (not multimedia extensions to a CPU, like MMXTM); 

3) capable of accelerating severai multimedia functions simultaneously (not a DSP). 

Recent advances in multimedia technologies such as DVD (MPEG-2 video, Dolby 

Surround AC-3TM audio), 3D graphics, home movie editing (MPEG encoding), and 



video-phone, involve computationally intense operations and hence make it expensive 

and difficult to design a dedicated chip or add-in boards for every new technology. Hence, 

media processors are the target of new multimedia designers- A typical system 

implementation by a media processor is shown in Figure 19. There are several vendors 

now in the process of media processor design, TriMedia[29] by Philips is an exarnple of a 

media processor. 
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Figure 19- Typical media processor systern 

In the following sections, other options in the design of a multimedia hardware 

architectures are discussed. We note that these options mostly are applicable to 

programmable muhimedia processors and are used widely in today's architectures. 

4.2 Processor selection 

Programmable architectures have severd units in common. In general, every 

programmable architecture consists of data path, memory, input/output and controi path. 

Data path is responsible for al1 the operations performed on data for the purpose of data 

input, manipulation, analysis, processing and output. Control path is generating al1 

necessary signals to control the interaction between modules. There is always a contest 



between the complexity of these two parts in the design of a processor. The larger data 

path leaves less space for control path and vise versa, 

In this section, we investigate the possible options for the design of the processor[65] in a 

multimedia system as shown in Figure 20- The categorization scheme is based on the 

format of instruction-set, available registers and the structure of data path. 

Figure 20- Data path selection 

CISC (Cornplex Instruction Set Computing) microprocessors with a more complex 

instruction set provide more direct hardware suppoa for a software developer than any 

other architecture. Instructions in a CISC processor are very powerîùl in terms of 

processing capability and support large numbers of registers and addressing modes. 

Control path in CISC processors is more complex in order to execute instructions that are 

more powerful. RISC (Reduced Instruction Set Computing) microprocessors offer faster 

execution of individual instructions by optimizing the processor for a smaller instruction 

set. DSP (Digital Signal Processing) microprocessors are optimized to perform digitai 

processing operations such as filtering. Multiply and Accumulate (MAC) instruction 

occurs frequently in DSP algorithms and is performed in one cycle in DSP processors. 



In eariy stages of microprocessor design, memory sub-systems were far slower than the 

processor (this gap though narrower stiIi continues today). In order to decrease thc 

mernory access by CPU, engineers designed complex instruction sets. Each instruction 

encapsulates several simple instructions, and hence the time spent retrieving the 

instruction from memory was reduced. Another design key for CISC processors is 

microprogramming. Microcode essentially acts as a translation layer between the 

instructions and the data path. In a rnicroprograrnrned systern, the main processor has 

some built-in memory (typically ROM) which contains groups of rnicrocode instructions 

which correspond to each instruction, When an instruction is retrieved by the processor, 

the processor executes the corresponding senes of microcode instructions. Using 

rnicroprogramrning, designers are able to update a processor with new instruction sets 

without changing the hardware. Since the microcode memory can be rnuch faster than 

main memory, an instruction set c m  be implemented in rnicrocode without Ioss of speed 

over a purely hard-wired implementation. 

The Characteristics of instruction sets in CISC processors include: 

Register to register, register to mernory, and memory to register commands. 

Multiple addressing modes for memory, incIuding specialized modes for indexing 

through arrays. 

Variable length instructions, where the length often varies according to the addressing 

mode. 



Instructions which require multiple dock cycles to execute. 

Two key features of CISC hardware architectures are: 

Complex instruction-decoding Iogic (complex control path) 

A small number of general purpose registers. 

Anaiysis of the instruction mix generated by CISC shows that about 80% of the 

instructions generated and executed uses only 20% of the instruction set. It is an obvious 

conclusion that if this 20% of instructions is speeded up, the performance benefits would 

be far greater. Further analysis shows that these instructions tend to perform the sirnpler 

operations and use only the simpler addressing modes. Essentially, ai1 the effort invested 

in processor design to provide complex instructions and thereby reduce the compiler 

workload is being wasted. Hence, if only simpler instructions are required, the processor 

hardware required to implement them could be of reduced complexity. It therefore 

follows that it is possible to design a more powerful processor with fewer transistors and 

lower cost. This processor has a simpier instruction set and hence, executes its 

instructions in a single clock cycle and synthesizes complex operations from sequences of 

instructions. The main features of a RISC processor are as follows: 

Al1 instructions will be executed in a single cycle. 

RISC processor must include pipelining techniques to segment instructions. 

Mernory wiI1 only be accessed via load and store instructions. 



Al1 execution units wiil be hardwired with no rnicrocoding. 

On-chip instructions and data cache stores often used to decrease memory access. 

Operations are register based. 

The advent of new processors, which combines the advantages of both RISC and CISC 

architectures, has made distinction between CISC and EUX architectures no longer clear- 

cut. Now a processor capable of executing multiple instructions in a cycle contains a large 

instruction set of over 200 instructions and therefore cannot be considered as a RISC 

processor. Typical examples of this category are the PowerPC and Pentium processors. 

4.2.3 DSP 

DSP processors are optimized for digital processing operations which include multiply 

and accumulate (MAC) operations. MAC operation r = b + a . x, requires multiple clock 

cycles in CISC and RISC processors, whiIe in a DSP it is executed in one clock cycle. 

Some characteristics of a DSP processor include: 

Multiple data and instruction buses. 

Parallel execution of MAC operation. 

Lirnited nurnber of instructions. 

Efficient loop control. 



4.3 Granularity 

The granularity of a muItimedia system defines the size of the individual processing units 

by which tasks are executed, The granuIarity affects the number of processing units since, 

in any parallel architecture there is a tradeoff between the size and the number of 

processors. 

Coarse grain systems are formed by a small number of large and complex processing 

units, In fine grain parallelism, there is large number of small processors. The 

intermediate possibilities between these two extremes can be referred to as medium-grain 

pardIelism. Fine and medium grain parallelisms have the potentid of being faster, but 

they need more powerfuI control units to divide small tasks between the processing units 

eff~ciently. Most of multimedia processors are categorized as fme/medium grain 

processors. Each task is executed in parailel at the instruction level arnong several 

processing units. We now present the scheme of parallelism employed in these machines 

and we will present data Ievel parallelism in section 4.4- 

Figure 2 1 - Granularity issue in muItimedia architectures 



4.3.1 Instruction Scheduling - Super scaiar 

The objective of a super scalar[66]-[69] system is to execute more than one instruction in 

each clock cycle. The basic idea is to build a processor whose data path includes multiple 

functional units and a modified control path to divide each task among the functional 

units and keep them busy as much as possible. For exarnple, a data path is formed by 

several adders and a couple of multipliers. Thus the processor is able to perform a number 

of additions and multiplications at the sarne time. To achieve this, the control unit should 

be able to anatyze a sequence of instructions and decide when some of them can be 

executed in parallel. In a super scaiar machine, the central processing unit (CPU) 

manages multiple instruction pipelines to execute several instructions concurrently during 

a clock cycle. 

4-3.2 Instniction Scheduling - VLIW 

VLIW (Very Long Instruction Word) processors [69]-1711 achieve instruction level 

parallelism through software control in contrast to super scalar architectures. A VLIW 

instruction is a long string of bits (few hundred to few thousand bits) that directly controls 

every individual processing element in the processor. Each bit could turn on or off a 

particular element of the data path. Parallel execution is arranged simply by setting the 

instruction bits that activate several functional units at the same time. The hardware does 

no instruction scheduling; al1 decisions about controlling the functional units m u t  be 

made when the program is compiled. Hence, VLIW architectures are data path intensive 

and require low control cornplexity. 



43.3 Data flow 

Data flow architecturesC721 achieve parallelism based on the concept of executing 

prograrn instructions as soon as their operands are ready, instead of following the 

sequence dictated by instruction code. The data flow architectures could be massively 

parallel. Control functions are placed on the data side (data-dliven). The architecture can 

elirninate the need for a processor dock and hence the processor has extremely low power 

consumption. The architecture itself has power management functions so that it operates 

only when data is present in the computational section. 

4.4 Data distribution 

We recall from Section 4.3 that in fine/medium grain systems, parallelism can be 

achieved by either task distribution (instruction level parallelism) or data distribution. In 

data distribution pardlelism, the data is distributed arnong several processing units which 

perform operations in parallel over the different data segments. Processors are classified 

according to how they process the prograrn instruction and data streams, narnely (i) SISD 

- Single Instruction Single Data, (ii) MTSD -Multiple Instruction Single Data, (iii) SIMD 

- Single Instruction Multiple Data, (iv) MIMD - Multiple Instruction Multiple Data[86]. 

It is clear that the last two classes ernploy data distribution for parallelism and hence, they 

are discussed in this section. 

4.4.1 SIMD 

In SIMD architecture, al1 processing units execute the sarne instruction in the same 

machine cycle over different data. They include vector/array processors, associative and 



orthogonal processors. A control unit issues the executicn command to al1 processing 

units and hence the control design is simple. 

4.4.2 MIMD 

A MIMD architecture typically achieves high utilization of al1 processing units. It needs 

separate control uni& and instruction mernories per paralle1 unit. Compared to SIMD, the 

advantage of MIMD is greater flexibility and higher performance for complex algonthms 

with highly data dependent control flow. On the other hand, MIMD requires a 

significantly increased silicon area. Additionally, the access rate to the program memory 

is increased, since several controllers have to be provided within program data. 

4.5 Memory Selection 

Multimedia applications with large volumes of data require very large memory 

bandwidth. Hence, high density, fast and low power storage is an essential part of each 

multimedia system. Also, the dock speed in processing units has been increased and a 

fast memory is required to match the processinp speed. In order to meet these 

requirements, several approaches have emerged recently which increase the performance 

of DRAM rnemones. These techniques include extended data out (EDO) DRAM, 

synchronous DRAM (SDRAM), Rarnbus (RDRAM) Dram and video (VRAM) DRAM. 



Figure 22 - Available DRAM options 

4.5.1 EDO RAM 

In EDO (Extended Data Out) mernories, output data can be maintained until the next 

CAS (column address strobe) fdling edge. This results in continuos mernory accesses. 

DRAM has a two-stage pipeline, which lets the memory controller read data off the chip, 

while it is being reset for the next operation. 

4.5.2 SDRAM 

SDRAM (Synchronous DRAM) is another form of rnernory developed shortly after EDO. 

Performance improvement of SDRAM is achieved by introducing synchronous operation 

to DRAM. Because of being in sync with the processor, it elirninates timing delays and 

makes the memory retrievd process much more efficient- 

RDRAM is an interface design in order to provide an optimized solution for data transfer 

between memory and processor. It adopts a 9-bit data bus, and there is no dedicated 

address bus. Instead, packets including both command and address are first sent to the 

chip via the Rambus channel- Following the request packets, an acknowledge packet and 



a data packet are sent from the chip back to the conuoller- After initia1 latency, data is 

accessed at high speed, 

Graphics memory must work very quickly to update. or refresh, the screen (60-70 times a 

second) in order to prevent screen flicker. At the same time, graphics memory must 

respond very quickly to the CPU or graphics controller in order to change the image on 

screen. With ordinary DRAM, the CRT and CPU must compete for a single data port, 

causing a data trafic bottleneck- 

VRAM (Video RAM) is a dual-ported memory that solves this problern by using two 

separate data ports. One port is called the serial access memory (SAM) dedicated to the 

CRT, for refreshing and updating the image on the screen. The second port which is the 

random-access port is dedicated for use by the CPU or graphics controller, for updating 

the image data stored in memory. 

4.6 Multimedia Processors 

In this section, we introduce example processors for multimedia applications. The 

objective is to show the validity of categorizations discussed in this chapter. These 

processors are designed for different target applications and one exampIe is selected for 

each application. Examples include: 



Application 

1. Multimedia Video Processor 

1 2. Generic Media Processor 

3. Generic Media Processor P 
1 4. Ernbedded multimedia processor 

5. Dataflow Media Processor 

6. General Purpose Processor 

7. Video codec for studio applications 

8, AudioNideo codec (MPEG-2) 

9. Graphic and video processor 

10. Video conferencing solution codec 

1 1. Image compression 

estimation 

Example: 

MVP by Texas 

Mpact 2 by Chromatic 

TriMedia by Philips 

V830EUAV by NEC 

DDMP by Sharp 

Pentium with MMX technology by 

ViP by IBM 

VCP by 8x8 

- 

ICC and MEC by ~ m i  
Microsystems 

Parallel processing techniques with multiple processing elernents and memory systern, 

which typically communicate through an interconnection network are employed in these 

architectures. 



In 1994, TI introduced the TMS320C80 single chip Multimedia Video Processor 

(MVP)[76]. MVP combines, on a single serniconductor chip, multiple hlly 

programmable processors with multiple data strearns connected to shared RAMs through 

a crossbar network. Each of the independent processors can execute many operations in 

parallel in every cycle. MVP has a scalable architecture with an overall performance of 2 

MOPS (million operations per second). Figure 23 shows a block diagram of the major 

functional blocks of the MVP. The Master Processor (MP) is a RISC processor with an 

integral floating-point unit. MP is used pnmady for host interface, sequential processing, 

and management of multiple concurrent tasks operating on the entire MVP. 

The MW's advanced DSPs have a unique parallel architecture optirnized for image and 

video computing. These DSPs have many powerful features not found in conventional 

DSPs, such as: 

Long instruction words (64 bits): allowing up to 15 RISC-equivalent operations to be 

specified in a single instruction. 

Single-cycle parallel accesses to the on-chip memory: allowing two 32-bit data 

transfers per processor in every cycle, concurrent with data operations. 

Three-input 32-bit ALU, which can be optionally split into two 16-bit units or four 8- 

bit units. 

16x16 multiplier, which c m  also be split into two 8x8 units. 



Dedicated adders for address generation, which c m  aIso be used for arithmetic 

operations. 

Figure 23- MVP Block Diagram 

The MVP also includes 50 K-bytes of on-chip SRAM accessible in a single cycle. The 

memory is organized as 25 blocks of 2 K-byte modules and each module used as an 

instruction cache, data cache, data RAM, or parameter RAM. An instruction cache is 

assigned to the MP and each of the DSPs, while the data cache is available only to the 

MP- For the DSPs, the daca RAM serves as the local storage area. While the cache 

memory is serviced automatically in hardware by the Transfer Controller (TC) for 

transfers to and frorn the external memory, the data RAM needs explicit management and 

requests to the TC by the processors in software. Each DSP is associated with 8K-bytes of 

on-chip RAM modules, although any processor can perform a single-cycle access to any 

data or parameter RAM module via the crossbar. The TC is an intelligent DMA 

controller, responsible for interfacing to the extemal memory system. It prioritizes 

different types of data transfer requests from the MP and the DSPs, and transfers the data 
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within or between the on-chip and external mernones- It has numerous modes of transfer 

operations, such as rnulti-dimensional transfers, table-guided transfers, fill-with- value, 

and senal register transfers (SRT)- 

The processors and the memory modules are fûlly interconnected through the crossbar 

which can be switched at the instruction clock rate (20 ns). Inter-processor 

communication protocols such as message passing and pipelining can be easily 

impiemented in software, since each memory access takes only one cycle. In the case of 

simultaneous access to the sarne location, the crossbar connections ensure that such 

contentions are resolved through a pnority-based scheduling. 

The M W  ais0 integrates the Video Controller (VC) for the generation of video timing 

signals and VRAM memory transfer cycles, elirninating the need for extemal circuitry 

and thus reducing the board space and the number of chips needed in video systems. 

4.6.2 Chromatic Research lMpact 2 

The block diagram of Mpact 21771 is shown in Figure 24. 

4 PCI Bu8 or AGP 

Figure 24 - Mpact 2 block diagram 



Mpact 2 is a media processor designed for multimedia applications in PC. The Mpact 2 

chip consist of a signal processor and five DMA bus controls. Data is transferred 

simultaneously between the memory and the bus system. It includes dual Rambus 

channels capable of a date transfer rate of 1.2 Gigabytes per second. The is a VLlW 

architecture with a SIMD control unit. Data paths are al1 72 bits wide- There are on-chip 

caches for instruction and data. Data cache is a multiport rnemory with six read and six 

wnte ports. AGP and PCI interfaces are designed in this chip and are readily avaiiable. 

4.6.3 Philips TriMedia TM-1000 

TM-lOOO[29] is the first media processor from the farnily of TnMedia processors, The 

core processor inside TM-1000 is a high performance VW-based  CPU core. The core 

incorporates 27 functional units. The selection of the functional units is based upon the 

application. Every VLIW instruction is formed by a maximum of five operations. The 

core has 128 general-purpose 32-bit registers. There are 15 read pas and five write ports 

in the register file. 

TM-1000 processor consists of memory, video. audio modem and PCI interfaces which 

makes possible easy communication with multimedia devices as shown in Figure 25. 
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Figure 25 - Block diagram of TM- 1000 

4-64 V830R/AV by NEC 

V830R/AV[78] is an embedded multimedia processor designed for low cost multimedia 

onented applications. It is targeted to suppon real-time video signal processing of 

bmadcast quality. Strong multimedia processing extensions are incorporated into V830 

RISC engine, which is the base of V830WAV processor. The core architecnire supports 

32-bit MAC operations. The processor is based on a two-way superscaiar architecture. 

The two major execution units in the V830R CPU core narnely, the 32-bit integer 

execution unit and a 64-bit multimedia extension unit, can work in parailel to improve the 

performance. This 64-bit multimedia coprocessor performs SIMD parailel operations on 

eight bytes, four half-words, or two words packed in thirty-two 64-bit coprocessor 

registers. The execution units are fully pipelined and have one clock throughput and fixed 

4clock latency. The key features of V830R include: 



Dual-issue superscalar 

Rarnbus interface ready 

16K four way instruction and data cache 

video/audio, DM& A/D multipiexed bus and ICE interfaces. 

The V830R CPU core has a six-stage pipeline structure. The whole pipeline is divided 

into three pipelines: an Instruction pipeline (1-pipe), an integer pipeline (V-pipe) and a 

multimedia pipeline (M-pipe). The processor is capable of executing MPEG-2 decoding 

in the main profile at main Ievel (MP@ML). 

4.6.5 Sharp DDMP 

DDMP[79] (Data-Driven Media Processor) is the first data flow processor designed for 

multimedia applications. This device uses high-speed paralle1 processing techniques to 

process massive amounts of multimedia information, including full-motion video, 

graphies, and audio. 

The DDMP puts control functions on the data side (data-driven) and eliminates the need 

for a processor clock in contrast to conventional von-Neuman cornputers. The result is a 

media processor with extrernely Io w power consumption in which the architecture itself 

has power management functions so that it operates only when data is present in the 

computational section. The DDMP media processor consists of a number of cores, 

controllers and I/O circuitry as shown in Figure 26. 
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Figure 26 - Block Diagrarn of DDMP 

4.6.6 Pentium processor with MMX technology 

The motivation behind .MMX[27] is to provide additional capabiiity to existing 

processors without sacrificing backward cornpatibility. It has been added to existing 

floating point and integer functional units as shown in Figure 27. 

Figure 27 - Implementation of MMX technology 

MMX technology processes several pieces of data with each instruction. Typical elements 

of data are usually small, for example 8 bits for each pixel color component in an image 

or 16 bits per element for audio samples. CPU Data in MMX technoiogy are wide (Le. 64 

bits or more) and are cornposed of independent smailer size data elements called packed 

data types. A nch set of MMX instructions are defined to perform the parallel operations 
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on multiple data elements packed into new wide data types (for example 8 x 8-bit, 4 x 16- 

bit). Processor extends the basic integer instructions into SlMD versions. MMX 

instructions also support sanirating arithmetic in which the overfiow and underfiow bit is 

not truncated and the instruction results in the largest or smallest possible representable 

number in the data type of operation. Sub-word paraiIelism on packed data types and 

saturation arithmetic in MMX technoiogy are usefûl in many multimedia applications 

such as motion compensation and graphics algorithms like shading. MMX technology 

also provides a parallel compare instruction for data dependent applications. In Inte1 

Pentium processors with MMX technology, MMX instructions are designed to mn in the 

integer pipelines of the CPU despite the use of the floating point registers to hold data 

MMX instructions with the exception of the multiply instructions execute in one cycle. 

The multiply instructions have an execution latency of three cycles, but the rnultiply 

unit's pipelined design enables a new multipfy instruction to start every cycle. 

4.6-7 C-Cube's VideoRISC Processor (VRP) 

The VideoRISC [8 11 family consists of a series of video compression products for digital 

television, consumer electronics, and multimedia computing applications. VideoEUSC 

products are a combination of micro-application software sets and microprocessor chips. 

A different micro-application is supplied for each product and defines the functionality of 

that product. For exarnple, the CLM4500 is a real time IIIIPEG-Z video encoder (for 

consumer quality), while the CLM4200 is a real time H.261 video codec- Both the 

CLM45ûû and CLM4200 processors are based on VideoRISC product. 



While each micro-application is different, al1 run on the same chip: C-Cube's VideoRISC 

Processor (VRP). The VRP is designed to compress and decornpress digital video in real 

time, and can be used individually or with other W s ,  depending on the performance 

requirernents of the micro-application. The CLM4600 MPEG-1 Video Encoder (for 

broadcast qudity) requires eight VRPs, while the CLM4500 requires only two. 

Other members of the VideoRISC farnily include the desk-top-oriented CM4100 

Multimedia Accelerator and an MPEG-2 encoder. 

As an exarnple of this farnily, CLM4700 MPEG-2 digital video encoder chip-set [30] 

encodes broadcast-resolution video into MPEG-2 Main LeveVMain Profile format in real 

time, using either frarne encoding or adaptive fieldframe encoding techniques. System 

features inciude: 

MPEG-2 Encoding 

Multi-resolution /Multi-mode Video Capability 

S ystem Layer Support 

Support for Broadcast Applications 

S implified Hardware Architecture 

4.6.8 L64002 MPEG Audio/Video Decoder 

L64002 is a single-chip MPEG-2 source decoder [82] that combines a video decoder that 

is cornpliant to the MPEG standard Main Profile at Main Level with a two-channel 

MPEG audio decoder. The L64002, however is more than just a single chip MPEG-2 
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audio/video source decoder. The architectural elements of the device shown in Figure 28 

were developed for implementation of cornpressed digital interactive television 

applications. These architectural eiements include a customized RISC engine and a video 

dispIay and graphics controller. Features of L64002 include: 

Audio Decoding Block 

Decodes Layer 1 and Layer I I  (MUSICAM) ISO 1 1 172 

Decodes two channels of 5.1 channel bit-strearn (BO 138 18) 

Output samples rates: 16,22.05, 24, 32,44.Z, 48 kH2 

Channel data rates of 8 KBits/sec to 448 KBitdsec 

Outputs 16-bit PCM audio 

Customized RISC Engine 

AI1 microcode stored on-chip 

Serial or 8-bit parallel input 

Robust error concealment 

Checks for syntax errors at al1 layers of MPEG bit-stream 

Freeze tiame for video; mute or repeat for audio 

Optimized Memory Architecture 



Figure 28- L64002 Block Diagram 

4.6.9 IBM Video Integration Processor 

IBM introduced Video Integration Processor (ViP905) [831 on a single 208-pin PQFP 

module. ViP905 is designed in CMOS 0.5 micron, triple leveI rnetals, contains over 

750,000 transistors, 250,000 gates, and provides 900 million operations per second. This 

technology provides the ability to process a television-like RGB or YUV data stream 

from a TV digitizer function or video CODEC (either Software [SI"]  or Hardware 

CH/WI) into computer rnemory for manipulation and display. The image can be scaled to 

any desired size, from one pixel to four times (4X) the size of the original-in fi111 

motion, on the fly. The extremely sophisticated scaling algorithms provide high-quality 

images, without the artifacts introduced by other methods. The TV data stream can be 

transformed into RGB24, RGB 26, or RGB8 screen formats. Proprietary Dithering 



Algonthms improve the quality of RGB16 output to approximately RGB24 quality, and 

improve the quality of RGB8 output to approximately RGB 16 quality. 

The block d i a ~ a m  of ViP905 is shown in Figure 29. The Video Integration Processor 

technology is capable of 60-Hz interlaced updates of the TV decoder video strearns, or 

30-Hz non-interlaced updates of both the TV decoder stream and the video CODEC 

strearn. Two video windows can overlay each other, as desired, with single pixel 

granularity. In addition, graphics c m  be overlaid on the video windows with single pixel 

granularity. 

Rsg&canlm( 

HNI CODEC rirsitr 

Figure 29- VIP Block Diagram 

4.6.10 8x8's Video Communication Processor (VCP) 

The 8x8 Video Communications Processor (VCP) is a single-chip programmable video 

subsysrem and multimedia communications processor [84]. It can implement a conplete 

multimedia and video conferencing subsystem on a single circuit card with a 



programmable DSP chip and mernory. The VCP performs a superset of the functions of 

8x8's Vision Controller and Vision Processor chips. For video conferencing applications 

it c m  act as a Fi111 C F  resolution H.261 codec and provide forward error correction and 

bit-strearn multiplexing to the H.221 and H.242 standards. For video playback 

applications the VCP c m  decode the MPEG-1 video and audio strearns- In addition to 

multiplexing and codec functions, the VCP provides programmable video pre- and post- 

processing functions including format conversion, video scaling, temporal filtering, 

output interpolation, color conversion and picture-in-picture. 

4.6.11 Array Microsystems Video Compression Chip-set 

Array Microsystems designed a two chip chip-set [85] for video compression 

applications. The a77100 Image Compression Coprocessor (ICC) and a77300 Motion 

Estimation Coprocessor (MEC) chip-set provides a programmable video compression 

solution with reasonable performance and feaiures for multimedia systems. 

The ICC performs hinctions such as DCT, quantization. zero-run length coding, etc. The 

MEC performs motion estimation and is required only in those systems implernenting 

MPEG-1 or H.261 motion cornpensated compression. The block diagrams of ICC and 

MEC are shown in Figure 30. For increased flexibility, the host PC or an off-the-shelf 

RISC microcontroller performs variable length coding and bit-strearn control, 

cornmunicating with the ICC and MEC over their respective host bus interfaces. Input, 

output, and scratchpad images are stored in DRAMs or VRAMs connected to the ICC and 

MEC video buses. This mernory for exarnple, supports the following at 30 Fps: 

JPEG encoding or decoding of full resolution CCIR-601 (720h x 480v) images 
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Simultaneous H.261 encoding and decoding of CIF (352h x 288v) images 

Full MPEG-1 I,B,P encoding or decoding of SIF (352h x 240v) images. 

Figure 30- ICC and MEC block diagram 

In the next section we present an analysis of the strengthc of each processor in order to 

create a mode1 for an ideal multimedia processor. These ideas are considered in designing 

the Fractal Engine. 

4.7 Analysis 

We now present the appropriate architectural solutions for multimedia applications based 

on the anaIysis of multimedia data and processing as well as the analysis of architecturai 

approaches. We note that the designer has to decide upon the criticai options based on 

avaiiable VLSI technology, target application and environment. 

Multimedia processing and high throughput CPUs are employed not only in desktop 

computing applications to enhance the computing power of advanced workstations 

and servers but dso in many embedded applications such as high-speed printers and 

video game consoles. Hence: 



There is no unique solution for al1 multimedia systems. 

Most low and medium level algonthms have pre-determïned memory access. Hence: 

* Partitioned memory architecture among data paths and a shared memory 

architecture is sufficient for those operations (in contrast to complex multi-port 

mernories). 

Real-time processing is stream based and has poor temporal locality. Hence: 

a The increased number of data cache misses coupled with the high communication 

bandwidth between cache and register file degrades the system performance. 

However, block transfer operations speeds up the entire process- 

High throughput memory interfaces are required to maintain al1 the functional un is  

busy al1 the time. Hence: 

DMA interfaces are employed in multimedia processors. For exarnple Mpact 2 

has DMA interfaces, 

Rarnbus interface is more appropriate for data transfer. Therefore, V830R 

implements RDRAM interface. 

* On chip caches with multiple ports for simultaneous read and write increase data 

bandwidth. Mpact 2 has a data cache with 6 ports for reading and for writing. 

State-of-the-art bus interfaces such as AGP, PCI should be implemented. 

-. Utilization of wide CPU words (Le. 64 bit word) and data buses result in an 

increase in data throughput. 
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The MAC operation is very common. Hence: 

a DSP arithmetic units are appropriate. 

The conditional branch is not used very frequently. Hence: 

Superscalar, VLJW and pipeline architectures work well. 

The operations have inherently high parallelism. Hence: 

a Compilers for VLIW processors extract the paralIelism and generate efficient 

code. This is the reason for most media processors such as Mpact 2 and TriMedia 

being based on VLW architecture. 

There are high level and medium level applications in multimedia processing which 

require increased compute power from the processor (in the range of million 

operations per second) such as affine transformations, motion estimation and 3D 

rendering. Hence: 

hardware dedicated units are required. For exarnple, Mpact 2 has a motion 

estimation unit and an engine for 3D rendering. TriMedia has a variable length 

decoder for MPEG decoding and a scaling unit for video post processing. 

There are conditional execution of instructions in multimedia algorithms. Hence: 

MIMD control structure enables each individual data path to adapt its execution 

path accordingly. This approach is employed in MVP. 

Most of the multimedia functions don? require more precision than 8 or 16 bits. 

Hence: 



a fine to medium g a i n  architectures are more suitable. 

-s Packed arithmetic is empioyed for concurrent execution of packed data in wide 

data words like the paralleIisrn in MMX technology for Pentium processors. 

Floating point operations are cornrnonly used in applications like 3D graphies. Hence: 

* Floating point units speedup the execution of these operations at the expense of 

additional real estate in the chip as in the case of MVP and Pentium processors. 

Concurrent execution on sub-words of data is possible in multimedia instructions 

especially in wide data words (Le. 64 bit) 

Multimedia extensions to individual instructions are justified to exploit sub-word 

parallelism. This approach is employed in Pentium processors with MMX 

technology. 

Conditional branches which alter the path of execution and reduces pipeline 

utilization are present in data dependant applications such as object recognition, video 

compression and model-based representation. Hence: 

=S Out-of-order execution and dynamic scheduling techniques which c m  be 

incorporated in super-scalar architectures such as Pentium processors, are used to 

enhance utilization factor of pipelines. 

High speed access rate are desired in multimedia processors to speedup the 

operations. This results in high frequency dock rates and therefore result in 

increased power consumption. Hence: 



Data flow processors like DDMP without a clock signal decrease the power 

consumption drastically. 

4.8 Summary 

Multimedia hardware architectures have evoived from simple extensions of digital signal 

processors and small dedicated architectures to powerful parallel architectures. It is 

necessary for the designer to investigate the various issues in this evolution before 

ernbarking on a new hardware design. 

ln this chapter, first the issue of programrnability has been studied- Different techniques 

and approaches ranging from dedicated modules to full programmable media processors 

have been presented- Based on available VLSI technologies, required computational 

achievement, production quantity and the target algorithrn, it is the designer who will 

select the best VLSI implementation approach. In Our proposed Fractal Engine we employ 

both techniques in different moduIes. Cntical hardware units are implemented in 

maximum efficiency. Cornplex multimedia processing tasks narnely affine transforms are 

directly mapped to these units. Control unit and other programmable units are 

implemented using configurable FPGAs. Programmability feature exists in FractaI Engine 

by communication with an externai CPU which controls the operation of Fractai Engine. 

Programmable processors for multimedia applications are increasingly becoming popular 

due to the wide variety of multimedia applications, development of multimedia 

technology, advancements in parallel processing techniques, availability of high speed 

interconnection networks and mernories and enabling VLSI technology. In this chapter, 



various aspects of a programmable multimedia processor have been presented. Finally, 

different exarnples of available processors have been studied. The features of recent 

programmable multimedia processors are sumrnarized and tabulated in Table 1. We note 

that although TE-MW and Pentium-MMX are older than other architectures, they are 

included in the table because of their high performance and representation of advanced 

techniques.. 

TI - MVP TriMedia 

Distribution r"" 

RISC 
I 

Granularïty 

Memory M 

Processor RISC,DSP. 

iMedium 

Mpact 

Fine-Medium 

RISC 

LMDMP 

'Medium 

RXSC, DSP 

V W  

V830R 

CRISC 

,Medium 

SIMD 

Table 1 - Features of multimedia processors. 

In the next chapter we start the design of transform processor which is the core of 

MMX 

Dataflow 

I 

RDRAi i  

the Fractal Engine. Affine transforms are first presented followed by derivation of two 

fundamental affine transforms. The hardware implementation is discussed in the end of 

the chapter. 

Medium 

MIMD-like 

iMedium 

Supencalar 

RDRAM 

Supencalar 

Sih4D 

EDO. 

S [MD 



5 Affine Transform Processor 

The core processing element for Affine processing is Afine Transfonn Processur (ATP) 

which is a parallel and pipelined architecture. ATP is simple, modular, scaleable and is 

optirnized to execute both low level and mid level operations. Implementation of the 

basic operations by ATP enables efficient execution of a majority of visual computing 

tasks. ATP executes Affine transforms which are a geometric transformation. 

The basis of geometric transformations[98] is the mapping of one coordinate system ont0 

another. This is defined by means of a spatial transformation (a mapping function that 

establishes a spatiai correspondence between al1 points in the input and output images). 

With a spatial transformation, each point in the output image (x, y coordinates) maintains 

the intensity value of its corresponding point in the input image (ri, v coordinates). The 

correspondence is found using the spatial transformation mapping function (X(u,v) , 

Y(u,v)) to project the output point ont0 the input image. Figure 31 illustrates a typicaI 

transformation. 

Figure 3 1 - Spatial Transformation. 



We note that in the Figure 3 1, the intensity values of the pixels are the same in the input 

and output images- Depending on the application, spatial transformation mapping 

functions may take on many different forms. Simple transformations rnay be specified by 

analytic expressions including affine, projective, bilinear and polyriomial transformations. 

Affine transformsp9] are widely used in visual processing applications. A description of 

affine transforms and derivation of the two fundamental operations are presented in the 

next sections foIlowed by an efficient method for implementing the two basic operations 

which form the core of the proposed ATP. 

5.1 Affine Transforms 

Affine (linear) transforms. specified by analytic expression as a matrix multiplication, are 

the most comrnonly used spatial transform in the area of image and video processing. 

They map a 2-dimensional Euclidean space 2 ont0 itself as shown in Figure 32. Affine 

mappings preserve existing parallelism (lines) in the original image. For affine 

transformations the mapping functions are: 

x = u,,u +a,,v + a,, 
4-+ 

y = a,,u + a,v + a, 

Figure 32 - General Affine Transformation 



This accommodates translations, rotations. scde, and shear. Affine transformation is also 

expressed using a 3x3 matrix for homogenous coordinates. 

We note that the combinations of two consecutive affine transforms are easily expressed 

by the product of their individual transform matrices (i.e. it is another affine transform). It 

is also shown that any arbitrary affine transfom can be expressed as a set of predefined 

affine transforms, which include translation, scaling, shear, transposition and rotation. 

5.1.1 Translation 

Al1 points are translated to new positions by adding offsets Tu and TV to rt and v, 

respectively. The translated transform is expressed in Equation (3) and is illustrated in 

Figure 33. 

Figure 33- Translation. 



5.1.2 Scale 

Al1 points are scaied by applying the scale factors S. and Sv to the ri and v coordinates, 

respectively (Equation (4)). 

If the scale factors are not identical, then the image proportions are altered resulting in a 

disproportionate scaled image. Positive scale factors that are larger than unity result in 

magnification while factors smaller than unity result in a reduction. Negative scde factors 

cause the image to be reflected. An exarnple of positive scaling is shown in Figure 34. 

Figure 34- Scale. 

5.1.3 Shear 

By allowing al2 to be non-zero, x is made linearly dependant on both rc and v, while y 

remains identical to v. A sirnilar operation can be applied along the v-axis to compute the 

new values for y while x remains unaffected. This effect is caIIed shear. The shear 

transform along the ti-axis and v-axis are as follows: 



An example of shear alongx-axis is illustrated in Figure 35. 

Figure 35- Shear. 

5.1.4 Transposition 

Al1 points in the UV-plane are reflected so that the x-coordinate will cornespond to v and y- 

coordinate to u. 

An example of transposition is shown in Figure 36. 

Figure 36- Transposition. 



5.1.5 Rotation 

Ai1 points in the UV-plane are rotated about the origin through a counterclockwise angle 8. 

The transforrn matnx is given in (7). 

Each point in the image is rotated, so that the distance of the point from the origin is a 

constant (as shown in, 

Figure 37- Rotation procedure. 

An example of 45-degree rotation is illustrated in Figure 38. 

Figure 38- Rotation. 

The inverse of a rotation is also a rotation with the same degree but in the opposite 

direction and c m  be simply expressed as: 



hplementation of Rotation in Digital DornaÏn is discussed in Chapter 7. 

5.2 Fundamental Affine Operations 

A set of special -ne transfotms typicdly used in several image and video processing 

applications are applied on intensity values of a square block of pixels (L=MxM pixels). 

W e  denote these operations by A: which consist of stretching (s), translation ( t )  and 

isometric transforrn (k), 

If X is an L-dimensional vector, then 

where s,t are integers from the sets S, T and define stretching and translation rnappings. 

1' is one of the isometric transforms given in the set 1, 

I = { I k ; k  = 12.---. N , }  

and I* is an L-dimensional identiw vector = [1,1,- -,II. 

The following basic isometric transformations have been chosen among al1 isometric 

transforms [4 1 1. 

1, - Identity: This transfonn maps each pixel ont0 itself. 



1, - Reflection about the mid-vertical Iine: Each pixel with (x,y) coordinates is mapped 

ont0 a pixel with (-..,y) coordinates, 

I ,  - Reflection about the rnid-horizontal line: Each pixel with cr,y) coordinates is mapped 

ont0 a pixel with (x,-y) coordinates. 

I,  - Reflection about the first diagonal: This affine transformation swaps the coordinates 

of each pixel and is also cdled transposition- A pixel with (x,y) coordinates is mapped 

onto (y,x), 

I,  - Reflection about the second diagonal: This isornetric transform swaps the 

coordinates of each pixel and also changes the sign of the values of coordinates. A pixel 

with (..,y) coordinates is thus mapped ont0 (-y,-x), 

- Rotation around the center by 90 degrees: This transformation rotates the picture 90 

degrees to the Ieft (counter clockwise). A pixel with (x,y) coordinates is hence mapped 

ont0 (y, -x). 

I7 - Rotation around the center by 180 degrees: Each pixel in this transformation is 

refiected about the center of the picture. A pixel with (.r,y) coordinates is mapped ont0 (- 

-r, -y)- 

I ,  - Rotation around the center by 270 degrees: This transformation rotates the pictures 

90 degrees to the right (clockwise). A pixel with (XJ) coordinates is thus mapped ont0 (- 

? P d .  

An example of the mapping of selected affine transforms is illustrated in Figure 39. 



Figure 39 - Example of isornetric transfonns. 

We note that the combination of any pair of these transforms will result in another 

transform from this set. For example, a reflection about the mid-horizontal line (1,) 

followed by a rotation around the center by 90 degrees (16 ) will result in a reflection 

about the second diagonal ( I,  ) (Le. I, 0 I3 = I ,  ). Table 2 lists d l  possible combinations 

in I. 

Table 2 

We propose to employ a chain of combinations of two simple isometric transforms, I3 

(Reflection about the mid-horizontal line) and I, ( Reflection about the first diagonal or 

Transposition) to express al1 other transforms as follows. 



Hence, the two fundamental operations in selected affine transforms are transposition and 

reflection about mid-horizontal line. This implies that the implementation of these two 

transforms in a chain will result in al1 other transforms without explicitly implementing 

them. 

5.3 VLSllmplementation of ATP 

This module is capable of executing for each range block, d l  of the selected isometric 

transforms on the domain blocks and selects the best transform corresponding to the 

closest match. The basic isometric transforms are transposition and reflection. Hence, a 

chain of these fundamental operations is implemented in AFM (Affine Module) in order 

to execute al1 of the selected transfonns in a systolic fashion as shown in Figure 40. 

Vrctor 

Figure 40- Affine Module Block Diagram 



Every unit in the chah  has a built-in array adder (AR) and distance calculator @) to 

measure the distance between the uansformed domain block and the range block stored in 

the SRAM. The design of built-in array adder is detailed next- 

5.3.1 Array Adder Unit (AR) 

This module consists of two sets of M basic cells, where M is the number of rows or 

columns of the input block (a 4x4 example is shown in Figure 42). The first basic ce11 

(accumulator (ai) shown in Figure 41) accumulares the partial distortion for the ith row of 

the domain block with the corresponding row of the range block stored in the SRAM 

(zlcj - (sdG + I )  ). In the first M dock  cycles, the absolute value of the difference between 
f I 

the row elements of the domain block and corresponding elements of the range block is 

accumulated. At the end of every M clock cycles, the accumulated value (Si) is ready to 

be output. 

The second set of basic cells (summation, si) adds the partial distortion values to compute 

the total distortion value. The block diagram of the ce11 is illustrated in Figure 41. 

Figure 4 1- Accumulation and Summation Cells 



A ,  m o d u l e  4 s .  m o d u l e  

Figure 42- Amay Adder for 4x4 blocks 

5.3.2 Reflector Unit 

The reflector unit shuffles the input cofurnns of the data such that: 

Where X, is the input to the module and Y, is the output This moduie delays the output 

for M clock cycles to maintain the synchronization between the outputs of other modules. 

5 3 3  Transposer Unit 

A parallel and pipelined transposer architecture was proposed in [88]. Here, the basic ceil 

of the transposer architecture (as shown in Figure 43) has two modes of operation A and 

B seiected by a control s ipa l  C such that when 

1. C=l A OUTPUT = A INPUT (A mode ) 

2. C=û B OUTPUT = B INPUT ( B mode ) 

W e  note that b indicates the data-bus width. The control signal is derived frorn the global 

clock signal. Thus the communication is synchronous and the control is simple in 

structure. 



A input 1-1 A output 

controt C u 
6 input 
b lines 

Figure 43-Basic Transposer CeIl 

The unit also includes an array adder. The architecture of a transposer module is shown in 

Figure 44. This module consists of L=M' basic cells. Figure 44 illustrates the design of 

transposer for a 4x4 matnx (Le. M=4). 

An entire column (row) is loaded in and out of the module in each clock cycle. In the A- 

mode, a column (initially the first column) of a bIock is Ioaded in parallel into the ceils 

TI,I-T~.$. Meanwhile, the second column of data is prepared to be loaded into the 

transposer module. In the second clock cycle, they are loaded into the cells T~ . J -T~ ,~ ,  

while the first column of data moves to the cells Tu-Tz4. This procedure continues and at 

the end of 4 clock cycles, di the colurnns of data are loaded into the transposer module- 

As soon as the last column of data is loaded into the cells TJ.1'T3,&, the cells are switched 

to the B-mode of operation. In the next 4 clock cycles, the row elements of the input 

block are drawn out of the transposer module through t h e  outputs BI  -Bq in the B-mode. 

Note that this output data is essentially the transposed version of the input data. 



A- mode B-=e - 
Figure 44- 4x4 Transposer Module 

5.4 Summary 

We reiterate that the ATP forrns the core of the Fractal Engine architecture. Considerable 

optimization has been applied in the design of ATP in VHDL. The denvation of two 

fundamental affine transforms and the design of array adder units are the key factors that 

lead to a highly parallel, pipelined and scalable architecture of ATP. The proposed 

architecture for ATP is scalable and modular and is hence suitable for VLSI 

implementation. In the next chapter, the design of the Fractal Engine and its associated 

peripherai blocks are presented. 



6 Fractai Engine 

The primary focus of the Fractal Engine is to implement both image and video based 

algorithms and it is based on the affine processor core. In this chapter, fractal processing 

algorithm is fiat introduced followed by the design of Fracral Engine. Exarnple 

algorithms from spatial domain where image and intra-frarne calculations are considered 

and temporal domain, where temporal correlations are exploited are presented. The 

spatial and temporal operations are mapped onto the Fractal Engine. Finally, timing 

analysis demonstrates the real-time execution potenriai of the algorithms using the Fractal 

Engine. 

6.7 Why Fractal? 

We recall from chapter 2, that the choices of kernels used in our design were prirnady 

dictated by visual data processing requirernents. We note that a majonty of low level and 

mid level visual data processing exists in fractal block processing (FBP). Fractals exploit 

the hi& correlation and self-similarities present in the visual data within an image or a 

sequence of images. Fractal processing extracts existing self-sirnilarity and self-affine 

within an image. 

FBP encompasses a majority of image processing operations including, summation I 

accumulation, image addition / subtraction, translation, stretching, shifting, scding, 

rotation and pattern matching. We have therefore chosen FBP as the candidate dgorithm 

for the design of the generic video processing element in the proposed architecture. 

Furthemore, from the current trends in multimedia design. mode1 based representation, 
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complex motion analysis and image understanding are the most demanding tasks. These 

wiI1 form the major requirements for a machine to interact meanina@ly with its 

environment. Hence, aff~ne transforms are receiving increasing attention in recent 

research including the MPEG4 standard. We note that fractal block processing is about 

finding affine relations within the blocks or objects of an image and is an appropriate 

candidate for future visuai data processing applications. A detailed description of FBP is 

presented in the following section. 

6.2 Fractal Block Processing 

The emergence of powerfül hardware architectures is providing the possibility of using 

FBP in image and video processing. Fractal based techniques are becorning increasingly 

popular in visual processing. They have been applied in several areas of visud 

processing, such as segmentation[47], analysis[48], [49], synthesis 

[SOI, cornputer graphics [55] and compression[56], [57]. In the last few years, several 

image compression methods using fractal theory have been developed- These methods 

promise better compression performance. Since fractal images can be described and 

generated by simple recursive mathematid equations operating on the entire image, the 

basic idea is that an image can be reconstructed based on the self-similarity it contains. 

Dunng the andysis stage, the dgonthm partitions the image into a number of square 

blocks. For each block, FBP associates the transformation in the image, which can best 

reconstruct the block. This information c m  be used in different areas. For instance, in 

image coding, compression is obtained by storing only the description of these 



transformations- Expected compression ratios for moderate quality reconstmction are 

about 100: 1. Fractal processing offers the following advantages and strengths: 

1. Due to the existing self similarity in many parts of naturd images, fractal processing 

is suited for real world pictures. 

2. The degree of analysis can be traded off against processing tirne. 

3. After analyzing the image, reconstruction is very fast. 

4- It provides scaIabiIity/resolution independence since the image is defined by a set of 

equations which c m  be arbitrarily scded. 

However, fractal processing has the following disadvantages: 

1, Most natural images are not rnathematically synthesizable. They are not self- 

transformable at the Ievel of the entire image. 

2. The procedure to calculate and exploit the existing correlations within an image or 

images is highly compute intensive which prechdes red-time implementation of 

fractal based algorithms- 

To overcome the first problem, Fractal Block Processing (FBP) bas been proposed in the 

literature [41]. FBP assumes that visual correlation can be efficiently exploited through 

piecewise self-transformability on a block-wise bais-  The image is partitioned into non- 

overlapping blocks called range blocks. For each range block, possible affine contractive 

transforms are applied on al1 candidate (domain) blocks within the image. The goal is to 

find the best match domain block for every range block. At the first level, Iarger range 

blocks (typically 32x32) and larger domain blocks are considered, If a range block cannot 



be approxirnated (within a given threshold) by the domain blocks in the image, it is 

further divided into smaller size range blocks in the next level and the best match search 

is repeated. We note that this technique is based on Partial Iterated Function Systems 

(PIFS), in which the image is expressed using several equations and mappings. 

The key elernent in FBP is affine contractive transforms. They are linear transfonns 

which map a 2-dimensional Euclidean space ont0 itself and are descnbed as follows 

(The detail of these transformations and an Affine Processor are presented in chapter 5) : 

This indicates that the image wiIl be formed of properly transformed parts of itself. The 

goal is to f k d  the best set of affine transforms (W) which minimize the distortion between 

the transformed image (Wm)  and original image V). 

W is a coIIection of maps wi identical to a pair of a range block and a domain block and 

the parameters of the corresponding affine transforrn- 

W = U W .  i.e. W( f) = tvl (f) U *v7 (f )...U rv (f) and f is as close as possible to W( f )  ( 10 ) 
i ' - N 

The execution time for QCIF (180x144), CF (360x288) and CCIR 601 (720x480) video 

sequences corresponding to a IOOMHz clock (with the assumption that one operation is 

executed every dock cycle) are 6.35, 101 and 1000 seconds, respectively. Hence, a 

speedup factor ranging from 190 to 30000 is required for real-time processing. There are 



two basic operations involved in FBP namely &ne transformation (discussed in chapter 

5) and mean/variance computation, which is now presented. 

6.2.1 Mean and Variance computation 

To normalize each domain block before cornparison with a range block, mean and 

variance values of the blocks are caiculated. These two mathematicai entities are the basis 

of al1 statisticai operations in image processing and are expressed as follows: 

We note that in these expressions, the calculation of mean value and variance of the block 

are executed serially. However, the expressions in (3) can be rewrinen for parallel 

execution. 

We note that the fundamental operations involved in (4) are squaring, division and 

accumulation which are implemented in a dedicated hardware unit in the Fracral Engine. 

In the following section, the different modules of Fractal Engine are presented. 

6.3 Fractal Engine 

We propose a parallel and pipelined architecture based on ATP core called Fractal 

Engine to implement the operations in FBP. Fractai Engine is simple, modular, scalable 

and is optimized to execute both low levei and mid level operations. We present the 



design of individual sections of the Fractal Engine - Dedicated module which is shown as 

processing section in Figure 45. 

Peripheral Section h-ocessing Section 

Figure 45- Fractal Engine Block Diagram 

6.3.1 Processing Section 

This unit essentiaily forms the dedicated module of Fractal Engine and performs al1 

calculations required in FBP. It consists of three modules: 

Affine Module (AFM): to execute isometric transforms and calculate the distortion 

between the range and domain blocks. 

Scale Module (SCM): to execute scaling and translation. 

Aithmetic Module (ARM): to calculate the mean and variance of blocks. 

In addition, the processing section has a built-in static RAM (SRAM) to store range 

blocks. 

6.3.1.1 ADne nodule (AFM) 

This is the core processor of Fractal Engine detailed in chapter 5. 



6.3.1.2 Scale module (SCM) 

The task of this module is to calculate the translated and scaled version of every domain 

block and make it available for geometric transformations in AFM. Several paraliel units 

are implemented to execute scaling and translation on different domain blocks in parallei. 

6.3.I.3 Anthmetic module (W) 

This module executes low level computing operations to calculate the mean and variance 

of image blocks. One element of a biock is pumped into the module at every clock cycle. 

6.3.2 Scalability 

Hardware scalability is an important feature in the design of an architecture. For a 

problem of complexity X which is executed using N units in T seconds, scalability 

implies: 

T M  seconds will be required to solve the problem using NM units. 

A problem of complexity XM is solved in T seconds using NM units. 

The first type of scalability requires a flexible control design, while the second type of 

scalability requires that the feature of scalability be incorporated in the design of 

individual modules. We illustrate the concept of scalability in Fractal Engine, where 8x8 

block architectures have been built using 4x4 blocks. 

6.3.2.1 Scalable array adder 

An Selement array adder is built using two Celement array adders as shown in Figure 

46- 



A, module 4S4 module 

Figure 46- 4-element and 8-element Array Adder 

6.3.2.2 Scalable remctor 

The procedure of reflection about mid horizontal line is straight forward, This module 

only shuffles the input elements entenng the module. We note that an Rs module can be 

configured using two & modules as shown in Figure 47. 

Figure 47- Reflector Module 

6.3.2.3 Scahble transposer 

The proposed transposer is a modular and scalable architecture. To build an 8x8 matrix 

transposer, we simply arrange four 4x4 rnatrix transposers together as shown in Figure 

48. The transposition process is executed in 8 dock cycles. The only modification 

required is in the fiequency of the control signal. 



Figure 48- 8x8 Transposer Unit 

6.3.2.4 Scahble afJSne module 

The issue of the scalability of reflector and transposer has been discussed in previous 

sections. We note that in order to design an affine moduIe which performs al1 selected 

transforms on either four 4x4 blocks or one 8x8 block, special data routing 

mechanism is required. The module has two modes of  operation: 

Operation on 4x4 blocks (4x4 mode) 

Operation on 8x8 blocks (8x8 mode) 

The ~ o ~ g u r a t i o n  of module in each mode is illustrated in Figure 49 and Figure 50, 

respectively . 



Figure 49- M i n e  Module for 4x4 blocks 

Figure 50- Affine module for 8x8 blocks 

The reconfigurable architecture is shown in Figure 5 1. 

We note that this reconfigurable architecture performs data routing in two different 

modes. In the 4x4 mode, the module processes four 4x4 blocks and is configured as 

s h o w  in Figure 49. In 8x8 mode, the module processes one 8x8 block and is configured 

as shown in Figure 50. 



4x4 Mode 8x8 Mode 

Figure 51- Scalable Affine Module 

6.4 Example Algorithms 

In this section, we demonstrate the concept of generk processors, red-time execution 

capability and scalability in Fractal Engine by implementing five examples of compute 

intensive algorithms. These algonthms include Vector Quantization (VQ)p2], Fractal 

Block Coding (FBC)[41] and Mine Transfomi Based Vector Quantization (ATVQ)[25] 

from spatial domain, Motion Estimation[43] (ME) and Affine Motion Estimation (AME) 

from temporal domain. These algorithms not only encompass a varïety of operations 

involved in both image and video processing, but also reflect the challenges in visual 

computing applications from the perspectives of real-tirne implementation and scalability. 

6.4.1 Vector Quantization (VQ) 

In VQ[42], a set of representative images is decomposed into L-dimensional (MxM) 

vectors. An iterative clustering algorithm such as the LBG algorithm Cl001 is used to 

generate a codebook (CB) of size K. This codebook is then made available at both the 
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trammitter and the receiver. In the encoding process, the image to be coded is 

decomposed into L-dimensionai vectors. For each input vector Vi (range block), CI3 is 

searched using a nearest neighbor rule to fïnd the closest codeword Wj- Compression is 

achieved by transrnitting the label j corresponding to Wk Reconstruction of images is 

implemented by using j as an address to a table containing the codewords. 

The existing high computationai complexity in VQ has been an impedirnent in reai-time 

implementation in many applications- In this section, we demonstrate the real-time 

implementation of VQ using Fractal Engine. The data fiow diagram and the processing 

architecture of Fractal Engine for VQ execution are illustrated in Figure 52 and Figure 53, 

respectively. 

Figure 52 - Data flow in Fractal Engine for VQ Implementation 

IMI fetches columns of data including range blocks and codewords from RAM and 

provides data for AR module. To start with, the frrst range block is loaded in SRAM. An 

entire column is loaded in and out of AR cells in each c h k  cycle. At the end of the first 

eight clock cycles, the e s t  codeword enters the accumulator module of AR1. In the 

second eight clock cycles, the second codeword is loaded into AR1-ACC, while the 

partial distortion values are added in ARi-SUM- The value of distortion between the first 



range block and the fust codeword is available at the beginning of the third set of eight 

clock cycles. In the next eight clock cycles, the distortion values are stored in CMi for 

future comparisons. After an initial latency of 24 clock cycles, the utilization factor for 

AR-1 and CM-I cells is 100% and at every eight clock cycles, the codewords are 

compared with the range block- 

Figure 53 - Processing Section of Fractal Engine for VQ execution 

6.4.2 Fractal Block Coding WC) Algorithm 

Barnsely[36] has proposed an algorithm to cornpress fractal images with a very high 

compression ratio (100-10000)- This algorithm is based on Iterated Function Systems 

(IFS). However, real life images are not self-transfonnable at the level of entire image. A 

block based fractal image compression method or Fractai Block Coding has been 

proposed by Jacquin[41] for real life images with a compression ratio ranging fiom 80 to 

200. The proposed algorithm is based on Partial Iterated Function Systems (PIFS). 

The sequence of operations in FBC illustrated in a flow chart format is now presented. 



TES 

r i s  

An original nxn monochrome image f is partitioned into non-overlapping range 

blocks, Ri. 

A pool of domain blocks Dj is made up of al1 blocks from the original image. 

For every range block (Ri), the affine contractive transformation (ti) which minirnizes 

the distortion between Ri and a domain block (Di) is searched. 

If the distortion is less than a preset threshold, the best pair (Di , fi) is stored. 

Otherwise, the range block Is divided into smaller size range blocks and the search for 

the best pair (Di , ti) is repeated. 



6.4.2. I ~mplemenhztion of FBC 

The modules in Fractal Engine including AFM, SM and ARM are controlled by CU to 

work in paraflel for real-time implementation of FBC. IMI provides data for ail units as 

s h o w  in Figure 54. The procedure consists of two different processes: 

1- Mean and variance calculations of al1 4x4 and 8x8 blocks. 

2, Block matching and affine transformations. 

We recall from Section 6, that these two tasks cannot be performed simuItaneously on the 

same frame- Hence, two consecutive fiames V; andAl)  are stored in the RAM module. 

While ARM is calculating the mean and variance values for the range and domain blocks 

in hl, AFM and SCM detennine the best candidate domain blocks with appropriate 

affine transformation for every range block in fi- The latency is NxN dock cycles, where 

N is the number of rows or colurnns of the m e .  

RAY - Memory module 
IYI  - Intelligent Yemory Interface 
SCH- Scala module 
ARM - Arithmetic module 
AFM - Alline module 
SRAU - static R A Y  
dl. d. xD. xR - varlance and average of 
domain and range block 
-cale and translallon Iactor 

Figure 54- Data flow in Fractal Engine for FBC Irnplementation. 



At every clock cycle, one element of the h e  is loaded into ARM by IML ARM 

calculates the summation of the elements of a block and their squared values. In every 

LFMM clock cycles, where M is the size of the block, the mean and variance of one 

block is detennined and M I  stores the results in the RAM. 

AFMprocess 

The modules of processing section in 8x8 mode are shown in Figure 55. 

Figure 55- Processing Section in 8x8 mode for Execution. 

U 

To start with, the first range block is loaded in SRAM. An entire column is loaded in and 

! Cornparator I 
Affine Module (AFM) 

A 

out of AFM and SCM in each clock cycle. A column of a domain block (initially the first 

column) is loaded into SCM. At the end of the first eight dock cycles, the fxst 

transformed domain bIock pl) is loaded into RI -fust reflector module- which is shown 

in the ce11 (1,2) of Table 3 and the first affine transformed version of Bi (BI(l)) enters the 

accumulator module of AR1 (1,lO). In the second eight dock cycles, the second domain 

block is loaded into Ri (2,2) and the fust transformed version (Bz(1)) into ARI-ACC 

(2,lO) BI moves to Tl - the first transposer module- (2,3), the second affine transformed 

of BI (B1(2)) enters AR2-ACC (2,12) and the partial distortion values between range 

block and BI(l) enter into ARl-SUM (2,ll). The totai value of distortion between the 



range block and fiat transfomed domain block is available at the beginning of the 

third set of eight dock cycles and is loaded into the fust comparator module (3,26). In the 

next eight clock cycles. while the total distortion value between the range block and the 

second domain block is starting to get loctded into CMi (4,26), the distortion value 

between the second affine transfomed version of BI and the range block is being 

compared with the previous distortion value (4,27). This procedure continues for all the 

domain blocks and the process is flustrated in Table 3. 

After 72 (9M) dock cycles, the best affine transform which generates the least distortion 

value between the fmt domain block (BI) and the range block is available a? the output of 

the comparator module (10,34). We note that the utilization factor after this initizl latency 

is 100%- After processing al1 the domain blocks, if the minimum distortion is within a 

pre-specified threshold, the best domain block index and the corresponding affine 

transfonn parameters are loaded out of AFM. 
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Table 3 - Ce11 occupancy for the execution of FBC 
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6.43 Affine T r d o r m  Based Vector QuanfEzation 

We propose a high performance video compression algorithmDl] which can be ideally 

mapped ont0 the Fractal Engine. This algorithm is based on a combined Srne transform 

and vector quantization (ATVQ), where the intra-fiame and i n t e r - h e  redundancy in a 

video sequence are exploited through piecewise self-similarity on a block-wise bais 

within a frame and between M e s .  In ATVQ, the best match for each vector of the input 

image is searched among various affine transforrned versions of the codewords in 

addition to the non-transfonned codewords (as in standard VQ). Hence. ATVQ can 

reconstmct more input vectors using a smaller size codebook with a specified distortion 

compared to conventional vector quantization. In this section, the ATVQ algonthm is 

mapped onto the Fractal Engine. Fust, the ATVQ aigorithm simulations and its coding 

performance are discussed followed by the mapping of the algorithm onto the proposed 

architecture. The timing analysis of the execution of the algorithm is presented in 6.5.1. 

An affine transform based vector quantizer can be defined as a composition of hwo 

rnappings A: and Q , where A: is as introduced in section 5.1, and Q is the conventional 

vector quantizer which maps into a finite subset Y of . 

where, Y, is an L-dimensional vector. 



To start with, a universal codebook is generated which is available at both the trammitter 

and receiver. The algorithm for codebook generation is detailed in [100]. We note that the 

codebook generation process is executed only once and is hence executed off-line. The 

training set for codebook generation includes frames fiom various video sequences. The 

steps of the AWQ algorithm follows: 

Step-O. Consider the b t  frame as the input. el) 

Step-1, Partition the input frame into square blocks of size M M  

Step2. For each block Xi select the affine transform A:, and the vector Y, from the 

codebook such thatr 

~ ( A Û  (x, ), Y,) = M n  d(& (x, ), Y,) for aii possible values of I ,  v, w and j 

The algorithm to determine the best affiine transform A: is now detailed. 

For every codeword in the codebook: 

a) Calculate the variance and the mean of the input block (ivar, imean) and the 

variance and the mean of the selected codeword (cvar, cmean). 

b) Assign the scaling factor s = ,/= and then quantize the value s to the 

nearest number in the set S. 

c) Assign the translation factor t = cmean - s*imean . If it is not in the range of set 

T, the nearest value in the set is selected. 

d) Transform the input block to the scaled and translated version. 

(i.e. foraiixofXi: x = s * x + t )  



e) Apply al1 transfomis in the set I to Xi and calculate the distortion between the 

transforrned block and the codeword- 

Determine the least distortion value and store the corresponding values of S s, t 

and n. 

Step-3. Assign the codeword [k s t n] to Xi . 

6.4.3.2 Simulation results 

The performance of ATVQ is investigated using 4 test video sequences of 30 frames each 

(namely, Football, Ping-pong, Miss Ameica and Salesman). The codebook is generated 

using the sequences Football, Ping-pong and Miss Amenca This codebook is used to 

code al1 the test video sequences. Different sets of S and T with varying codeword sizes 

are employed. The best values for Ns (number of members of S), Nt (number of members 

of set 7) and M (number of rows or columns of each codeword) have k e n  chosen frorn 

the results of simulations- The selected values are: 

The performance of ATVQ is evduated using the Rate-Distortion (R-D) cnterion, where 

the distortion is measured using the Peak Signal to Noise Ratio (PSNR) and is defined as: 

PSNR = 10 log,, (255 x 255 / MSE) dB 

for 8 bit/pixel (256 gray level) images and MSE is the mean square error between the 

original image and the reconstmcted image. The bit rate for ATVQ is caiculated as 

follows: 



Where R, Rk, Rs and RI refer to the bitrate for the codeword label, isometrïc traosform 

index, scaling factor and translation factor respectively and are caiculated as follows: 

The following diagram iilustrates the distortion value for a i i  of the test sequences at a 

bitrate of .38 bpp. 

I + Ping Pong 
-A- Football I 

Figure 56 - Performance chart of ATVQ 

It c m  be seen that ATVQ outperforms VQ at the sarne bitrate. 

6.4.3.3 Mapping of ATVQ on Fractaï Engine 

The architecture of Fractal Engine for ATVQ is similar to that for FBC. The difference 

lies in the fact that domain blocks in ATVQ are codewords from the codebook while in 

FBC, the domain blocks are formed from blocks in the same image ( M e ) .  
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Figure 57 - Processing Section of Fractal Engine for ATVQ execution 

Al1 modules in the engine work in parallel and pass data to determine the best match for 

each range block- The communication between different modules of the Fractal 

for ATVQ execution is s h o w  in 

Figure 58. 

Engine 

\ ARM 1 

Figure 58 - Data flow diagram of Fractal Engine for ATVQ 

In each clock cycle, one column of an MxM block from the video sequence enters AFM. 

After M clock cycles, the distortion value between the input block and the stored 

codeword is calculated and the reflected version of the input block is passed to the next 
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chah in the cell. In the second M clock cycles, the second ce11 (which is a T-Cell) 

transposes the input block and calculates its distortion value corresponding to the stored 

codeword. Meanwhile, the second input block enters the module. Hence, after 9M clock 

cycles the distortion values between the transformed codeword and the range block are 

compared and the best transform is selected. This is fedback for comparison with other 

distortion values for other codewords. All of the calculated distortion vdues are 

compared by CM to determine the best affine transform parameters for each codeword in 

the codebook. 

6.4.4 Motion Estimation (ME) 

ME14331 is widely used in i n t e r - h e  visual media processing paaicularly in video and 

image sequences. ME-BMA (block matching algorïthrn) is typically used in inter-fiame 

motion-compensated (MC) processing. In BMA, motion of a block of pixels (usually 

MxM), within a frame interval is computed- The range of the motion vector is constrained 

by the search window. BMA assumes that al1 pixels within the block have uniform 

motion. The goal is therefore to find the best match between the block in the current 

frame (range block) and a corresponding block (domain block) in the previous frarne 

within a search window of size ((M+2rn) x (M+2m)). In H.261, MPEG-1, and H.263, 

ME is based on (16x16) luminance blocks. 

A variety of techniques have been proposed in literature for ME implementation. They 

are typically compute intensive and are hence dmcult to implement in hardware. Since 

the core processor of Fractal Engine has been designed by optimizing the implementation 

for a variety of multimedia operations, ME can be mapped ideally onto the Fractal Engine 

and implemented in real-time. 
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We note that motion estimation is essentiaily a pattern matching process. This process has 

k e n  fully implemented (in parallel) in the Fractal Engine in the execution of VQ and 

FBP. The difference here is that instead of codewords or domain blocks fiom the current 

frame, the affine module is fed with blocks from the previous fiame. Furthemore, affine 

motion estimation (AME) is also possible in real-time using Fractal Engine- In AME, 

each range block is also cornpared with the affine transformed version of the candidate 

blocks in the previous frame. Hence, better match can be obtained using this process. In 

the next sections, we demonstrate the real-tirne execution of Motion Estimation and 

Affine Motion Estimation using the Fractal Engine. 

6.4.4.1 Motion Estimafion 

The full search BMA-ME is implemented in the Fractal Engine. We recdl that in BMA, 

motion of a block of pixels (MxM), within a h e  interval is investigated, The best 

match between the range block and al1 possible domain blocks in a search window of size 

{(M+2m) x (M+2m)) is searched by the Fractd Engine. 

Full search implies that al1 blocks fomed by any pixel displacernent within the search 

window have to be compared to the range block. h other words, (2m+l)x(2m+I) blocks 

in previous frarne are compared to the range block and the closest block is selected. Full 

search ME is compute intensive and is hence difficult to implement in hardware. Fractal 

Engine is capable of implementing full search ME-BMA in real-time which is 

demonstrated for the case of M=8. The structure of Fractal Engine for ME is shown in 

Figure 59. 



domain block 

Figure 59 - Data flow diagrarn of Fractal Engine in ME process 

The memory block is divided into two sub-blocks. Each sub-block stores the information 

of one frame. After the fust h e  is stored in the fust RAM block, motion estimation for 

the second Erame is started. At the sarne time, the data is stored in the second RAM block. 

We note that at the end of motion estimation process for the blocks in the second frame 

(current irame), the contents of the second block of RAM need not be copied to the first 

RAM block. Instead, the Fractal Engine considers this RAM block as the previous fiame 

data and fills the first RAM block with the new (third frame) information. 

64.42 Amne Motion Estimation 

We recail that the main task in data analysis in video applications such as video coding, 

indexing and compression is motion estimation. The idea is to exploit existing temporal 

correlation among subsequent frames of a video shot. This kind of correlation exists 

because in each shot, subsequent frames are taken from one single scenery at different 

time instances. However, the variances in frames, which are called motion, are due to the 

movement of objects and various camera operations. Traditional motion estimation 
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techniques [99], 1431 try to model the motion with one-dimensional shift function. This 

assumption is not valid for complex motion where sophisticated motion functions are 

required to model the temporal activity. Cornplex motion functions are not realizable in 

real time ushg existing architectures. The affine motion functions capture complex 

motions and are implementable in real-time using the affine processor of the Fractal 

Engine. This makes possible analysis of motion in a shot more accurately and hence, 

outperforms other motion estimation dgorithms. In this section, we show the 

implementation of motion function using the Fractal Engine. The basic idea is to 

find the best match for a range block not only in the domain blocks in previous frame but 

also in the affine transformed version of those blocks. 

The structure of the Fractal Engine for the execution of AME is s h o w  in Figure 60. 

I 
-1 col. of O A T h  transforme 

Figure 60 - Data fiow diagram of Fractal Engine in AME execution 



6.5 VHDL lmplementation And Timing Analysis 

A behavioral VHDL description of the design has k e n  implemented using the 

synthesizable part of the VHDL language. The fûnctionaiïty of the design has been tested- 

After an initial latency of 9M clock cycles (where M is the number of rows in a block), 

the first result becomes available at the output of AFM. 

1 CeU 1 Po 1 Nets 1 total 1 Max. path delay 

AR-ACC 27 288 20.72 

1 

Table 4- Timing and area analysis of the chip 

AR-SUM 

* area is normalized to the equivalent of a nand2 gate. 

The design, has been synthesized (translated and optimized) using BiCMOS .8p 

technoIogy. The resulting chip area and speed for the basic modules are shown in Table 4. 

We note that the area and speed can be further improved by using advanced technology 

libraries. 

The minimum duration of the dock pulse is determined by the maximum of: 

4 The tirne taken by the AR-ACC to cornpute the partial distortion value.( 20.72 

ns 

+ The time taken by AR-SUM to add the partial values.( 11.97 ns ) 

The time taken by the T-ce11 to load and transfer the data ( 0-89 ns ) 

29 40 120 1 1.97 



4 The time taken by SCM to calculate the translated and scale version of one 

element of data(l1-77 ns ) 

+ The time taken by CM-cell to compare two distortion values. (9.17 ns) 

Hence, the minimum duration of the clock pulse is 20.72 ns and the maximum fiequency 

of operation is f=1/20.72ns = 48MHz. We note that by using this specific dock fiequency 

for the Fractal Engine, reaI-time implementation of the exarnple dgorithms are possible. 

The timing analysis for execution of the algorithms is detailed in next section. 

6 Vector Quantization 

The computational complexity of VQ for n range blocks of dimension L for an image of 

size M N ,  and a codebook size K is O(KLn). For exarnple, a 512 x 512 image with vector 

dimension of L = 64 (8x8 blocks) encoded using a codebook of size K = 256 requires 

approximately 1 92 million arithmetic operations. 

In the Fractal Engine, after an initiai latency, at the end of every eight dock cycles, one 

codeword is processed. Hence, K=2048 dock cycles are needed to output the codeword 

label for each input vector. The number of clock cycles required to encode a frame is (N x 

N) / (Mx M) x K = (512 x 512) / (8 x 8) x 2048 = 8388608. Hence, each frame is encoded 

in: 

8388608 x 20.72ns = 0.17 seconds. 

For a video sequence 30 frame/second, Fractal Engine irnplements the VQ algorithm in 

real-time. We note that ATVQ algorithm is executed in Fractal Engine in exactly the 

same time as VQ because al1 the transformations and cornparisons for each codeword is 



processed in paralle1 dong with the basic calculation. In other words, Fractal Engine is 

capable of executing AWQ algorithm in red-time. 

6.5.2 Fractal Block Coding 

We now calculate the number of operations involved in FBC algorithm based on general 

values for the frarne size, NxN, the block dimension, L=MxM and f=8 geornetric 

transfoms in a general purpose processor. 

The number of operations involved in FBC depends on the bIock size and is calculated as 

foliow s: 

n = (N x N) / L number of blocks. 

n x (n-1) x L number of additions and multiplications in scaling and translation stage. 

n x (n-1) x f x L number of multiplications in the block matching process- 

n x (n-1) x f x 2 nurnber of additions in block matching process. 

nxL number of integer additions and integer multiplications in mean and variance 

calculation- 

n x (n-1) x (f-1) number of geometric transforms. 

In the case of 128x128 pixel frarnes, the total number of operations are: 

8x8 mode: 7.1~10' additions + 3.76~10' multiplications + 2.93~10' integer additions. 

4x4 mode: 2.85~108 additions + I .SX I@ multiplications + 1.1 7x108 integer additions. 
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h the FractaI Engine, after an initial latency of 72 clock cycles, at each dock cycle one 

column of 8x8 (or 4x4) blocks is processed in all of the sub modules of AFM. Hence, 8 

(or 4) clock cycles are needed to output the distortion between a range block and al1 of 

eight transformed versions of a normalized domain block. The number of dock cycles 

required to encode a h e  is: 

~ x ( N x N ) / ( ~ x ~ ) x ( N x N ) / ( ~ x ~ )  8x8 mode 

( 4 x ( N x N ) / ( 4 ~ 4 ) x ( N x N ) / ( 4 ~ 4 ) ) / 4  4x4mode 

If every operation is performed in one clock cycle in the general purpose processor, the 

number of clock cycles required for encoding one frame will be: 1 . 3 8 x ~ d  + p 5.52x1@, 

where p is the percentage of remaining 4x4 blocks to be coded. For a srpical value of 

p=90% and 40MHz clock signal, it takes 15.87 seconds to encode one frame in the 

sequential processor while the Fractal Engine encodes each frarne in -044 seconds- For a 

video sequence containing frames of size 176x144 pixels with 10 frarndsecond (QCIF 

format), Fractal Engine implements the FBC algorithm in rd-tirne. 

It is important to note that the scaiable feature of Fractal Engine makes possible red-time 

implementation of larger size and higher frame rate image and video sequences such as 

CIF, CCIR 601 and HDW. For example, real-time implementation of FBC for a 

CCIR601 sequence c m  be achieved by simply cascading Fractal Engine modules. Fractal 

Engine is an open architecture and hence can evolve, adapt, and expand to handle a 

variety of computing tasks and challenges present in other media processing (including 

visual processing) applications. We note that the performance analysis are based o n . 8 ~  

BiCMOS technology and available today's technology like .2Sp and .18p will increase 

the performance both for area and speed resulting in smdler and faster modules. 
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6.53 Motion Estimation 

For an image size of NxN, with blocks of M a  and a search window of (2m+I)x(2m+ 1), ' 

( N ~ N ) / ( M X M ) X ( Z ~ + ~ ) ~  block cornparisons are required to detect motion vectors for all 

blocks in a fiame. In the Fractal Engine, after an initiai latency, in the case of M=16, at 

every sixteen clock cycles, one block is compared to a range block. Hence, for a QCIF 

(cornnion intermediate format) video sequence with a frame size of 176x144, M=16, 

m=15 and clock fiequency of 48MHz, 30 fiames are processed in 0.95 seconds which 

results in real-tirne execution, 

65.4 M m e  Motion Estimation 

For an image size of NxN, with blocks of MxM and a search window of (2m+I)x(2rn+I), 

(NXN)/(MXM)X(~~+~)~XS block cornparisons are required to detect affine motion vectors 

for al1 blocks in a frarne. in the case of M=8, after an initial latency of 72 clock cycles, at 

every eight dock cycles, eight affine transformed versions of one block are compared to a 

range block. Hence, for a CIF video sequence with a frarne size of 352x288, M=8, m=5 

and a clock fiequency of 48MHz, 30 frames are processed in 0-82 seconds which results 

in real-time execution of A M .  by the Fractal Engine. 

6.6 Summary 

Fractals exploit the high correlation and self-sirdarities present in visual data within an 

image or a sequence of images. Fractal Block Processing (FBP) has been proposed as an 

algorithmic solution to implement the fractd operators for various images. We have 

presented the design of a Fractal Engine based on an affine video processor, to meet the 

real-time requirements of FBP. The highly parallel and pipelined architecture of Fractal 
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Engine enables this processor to perfonn a variety of compute intensive visual processing 

applications in real-time. Scalability and modularity issues are addressed in the design of 

Fractal Engine. To dernonstrate the computational power of Fractal Engine vector 

quantization, fracta1 block processing, &ne transform based vector quantization, motion 

estimation and affine motion estimation algorithms are mapped ont0 the Fractal Engine 

and have been shown to be implementable in real-tirne, In order to make the Fractal 

Engine applicable to other applications which involve image and video operations that are 

not captured by Fractal Processing, augmenting to the Fractal Engine is required. We 

present examples of augmenting the Fractal Engine in the next chapter. 



7 Augmented Fractal Engine 

In this chapter, the design of the augmented Fractal Engine is presented. In the design 

process, we increase the functionality of the Fractal Engine by adding auxiliary modules, 

which support fiexibility of the design, the interface to peripherds and an interpolation 

filter. Augmented Fractal Engine affords a level of programmability using external 

control by an externd CPU. It also performs d l  kinds of general Iinear filtering using the 

interpolation fdter module. First, interpolation in digital domain is detailed and the 

interpolation filter design is presented. Finally, supporting architectures for 

programmability features dong with peripheral sections are discussed. 

7.7 Interpolation in Digital Images 

In digital images, the pixels, or picture elernents, are lirnited to lie on a sampling grid, 

taken to be the integer lattice. The individud pixels are passed through a mapping 

function such as affine transfomis, which generates the new coordinates corresponding to 

the transform function. The new coordinates, unlike the input sampIing points, do not 

generally coincide with the integer lattice (for example in a rotation transfonn, if they are 

not integer multiples of 90 degree rotations). Hence, the new coordinates can take 

continuous values assigned by the mapping function- The problem is to locate the exact 

intensity values of the pixel at the integer lattice points. This requires an interpolation 

stage to fit a continuous surface through data sarnples, which may then be sampled at 

arbitrary positions. The accuracy of interpolation has a significant impact on the quality 

of the output image. Consequently, many interpolation functions have been investigated 
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to reduce the computational complexity and improve the image quality. Popular 

interpolation functions include linear, bilinear, nearest neighbor, etc. More sophisticated 

and accurate methods[52] include, cubic spline interpolation and convolution with a sinc 

fünction. Although the sinc function is an ideal candidate, it cannot be realized using a 

finite number of neighboring elernents. 

In this section, we propose two modifications to classical interpolation methods to 

maintain the quality dong with performance enhancement We note that whatever the 

mapping functions and the algorïthms of interpolation are, they can be implemented in 

two different flavors, narnely forward and inverse mapping[54], which are now detailed. 

7.1.1 Forward Mappiag 

The forward mapping consists of copying each input pixel onto the output image at 

positions determined by the X and Y mapping functions. Figure 61 illustrates forward 

mapping. Each input pixel is passed through the spatial transformation where it is 

assigned a new output coordinate value. Notice that the input pixels are mapped from a 

set of integers to a set of red numbers. In the Figure 61, this corresponds to regularly 

spaced input samples and irregular output distribution, 

UV-plane xy-plane 

Figure 6 1 - Forward mapping. 



In the continuous domain, where pixels may be viewed as points, the mapping is 

straightforward. However, in discrete domain, pixels are taken to be finite elements 

defïned to lie on a (discrete) integer lattice. It is therefore inappropnate to implement the 

spatial transformation as a point-to-point rnapping. This can result in two types of 

problems: holes and overlaps. Holes, or patches of undefined pixels, occur when mapping 

contiguous input samples to sparse positions on the output grid. In Figure 61, C' is a hole 

since it is bypassed in the input-output mapping In contrast, overlaps occur when 

consecutive input samples collapse into one output pixel, as depicted in the figure by 

output pixel E' . 

The solution to the point-to-point problem is by using a four-corner mapping paradigm. 

This considers input pixels as square patches that may be transformed into arbitrary 

quadrilaterals in the output image, 

Figure 62- Four corner mapping. 

An accumulator array is therefore required to appropriately integrate the input 

contributions at each output pixel. It is achieved by determuling which fragments 

contribute to each output pixel and then integrating over al1 contributing fragments. The 

partial contributions are handled by scaling the input intensity in proportion to the 

fractional part of the pixel that it spans. Thus, each position in the accumulator array 



evaluates iw-f, wheref;- is the input value, wi is the weight reflecting its coverage of the 
I I 

i=O 

output pixel, and N is the total number of deposits into the cell. Using the four-corner 

mapping solution introduces time consuming intersection tests which precludes real-time 

implementation for digital rotation. 

To overcome this probIem, we propose an area mapping aigorithm. In this algorithm the 

point-to-point map is performed. Instead of using a four-corner mapping frorn the input to 

the output image* we consider the output pixels as square blocks. The center of each 

block is located on the coordinates of the mapped point in the output image. 

m e o r n o  m o e e o  

uv-plane xy-plane 

Figure 63- Area mapping. 

An accumulator array is then used to evduate the fractional part of the pixels that it 

7.12 Inverse Mapping 

In inverse mapping, each output coordinate is projected into the input image via U=X' 

and v=Y'. The value of the data sample at that point is copied onto the output pixel. This 

is the most common method since no accumulator array is necessary, and output pixels 

that lie outside a clipping window need not be evaluated. This method is useful when U 

and V are readily available (as in the case of most affine transfomis) and the input image 



can be stored entirely in the memory. Figure 64 illustrates the inverse mapping, with each 

output pixel mapped back ont0 the input via the spatial transformation (inverse) mapping 

function. 

Figure 64- Inverse mapping. 

Sirice the output pixels are projected to the input pixels with real-valued positions, an 

interpolation stage must be introduced in order to retrieve input values at undefined (non- 

integrai) input positions. Again, area mapping is employed to calculate the intensity of the 

input pixels at non-integer positions. 

7.1.3 Interpolation 

Interpolation[Sl] is the process of determining the values of a function at positions Iying 

between its samples. It achieves this process by fitting a continuous function through the 

discrete input samples. This permits input values to be evaluated at arbitrary positions in 

the input, not just those defined at the sample points. Interpolation reconstiucts the signal 

lost in the sarnpling process by smoothing the data samples with an interpolation 

function. For equally spaced I -D data, interpolation can be expressed as 



where h is the interpolation kemel weighted by coefficients ck and applied to N data 

sarnples, xk. Equation (13) formulates interpolation as a convolution operation. GenerdIy, 

h is a symmetric kernel, i-e- h(-x)=h(x) and c k  coefficients are the data sarnples. The 

computation of one interpolated point is illustrated in Figure 65. The interpolating 

function is centered at x, the Iocation of the point to be interpolated. The value of that 

point is equal to the sum of the values of the discrete input scaled by the corresponding 

values of the interpolation kernel, The illustrated interpolation function extends over six 

points. E x  is offset from the nearest point by distance d, where d is between O and 1, we 

sanipie the kernel at h(-d). h(-1-d), h(-2-4, h(l-d), h(2-d) and h(3-d)- 

Figure 65- 1-D Interpolation. 

Although interpolation has been presented in terms of convolution, it is rarely 

implemented in this manner. Instead, it is simpler to directly evaluate the corresponding 

interpolating polynomial at the resarnpling positions. The discussion of interpolation 

kernels is necessary due to the cornparison between different interpolation techniques. 

7-1.4 InterpoIation Kernels 

The numerical accuracy and computational cost of interpolation algorithms are directly 

tied to the interpolation kemel[52], [53]. Consequently, interpolation kemels are the 



target of design and analysis in the creation and evaluation of interpolation algorithms. 

They are subject to conditions influencing the tradeoff between accuracy and efficiency. 

7-1-4.1 Nearest Netetgh bor 

The simplest interpolation algorithm from a computational standpoint is the nearest 

neighbor algorithm, where each interpolated output pixel is assigned the value of the 

nearest sample point in the input image as shown in Figure 66. This technique is 

expressed by the following interpolating polynomial. 

Figure 66- Nearest Neighbor Interpolation. 

It can be achieved by convolving the image with a one-pixel width rectangle in the spatial 

domain. The interpolation kemel for the nearest neighbor algorithm is defined as 

Box filter, sarnple-and-hold function and Fourier window are alternative narnes for this 

kemel. This kernel corresponds to multiplication with a sinc function in frequency 

domain. Due to the prominent side lobes and infinite extent, a sinc function makes a poor 

low-pass filter. Hence, the nearest neighbor algorithm has a poor frequency domain 
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response. In this technique, shift errors of up to one-haif pixel are possible. For large- 

scaie changes, nearest neighbor interpolation produces images with a blocky appearance. 

The main advantage of this technique is the simplicity, which makes it possible to 

irnplement using a general-purpose processor in reai-the. 

Linear interpolation is a first-degree method that passes a straight line through every two 

consecutive points of the input signal. Given an interval (xo, x,) and fûnction values fo and 

fi for the endpoints. the interpolating polynomial is 

The corresponding interpolation kernel is 

Figure 67- Linear interpolation. 

Kernel h is referred to as a triangle filter, tent filter, roof function, Chateau function, or 

Baalett window. This interpolation kernel corresponds to a reasonably good low-pass 

filter in the frequency domain. The side lobes are far less prominent, indicating improved 

performance in the stop-band. Linear interpolation is widely used for reconstruction since 
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it produces reasonably good results at moderate cost. 2-D linear interpolation is achieved 

by separable ID interpolation as shown in Figure 67. In the fmt step, two linear 

interpolations are executed to obtain the intensity value of B' and B" pixels. Then in the 

next step, another 1D Linear-interpolation within these two pixels is perfomed to 

caIcuIate the intensity value of the desired pixel B. 

7.1.4.3 2-D Area Based Interpoultion 

W e  recall from section 7-1.1 that a modified algorithm of four-corner mapping will 

increase the speed while maintaining a similar performance. This algorithm is illustrated 

for forward mapping in section 7.1.1. In this section, the algorithm is illustrated in Figure 

68 for backward mapping- 

f =  
C fi- Ai 

C Ai 

Figure 68- 2D Area Based Interpolation. 

As shown in the figure, the intensity value of the desired input pixel is easily obtained 

using the fiactional part of the pixels that it covers as a weighting function. The 

justification of this method lies in the fact that the intensity value of each pixel in the 



lattice input grid is the average of the illumination received by the sarnpling device (e.g, 

scanner). 

7.1.5 Experimental R e d  ts 

In this section, we propose a method to compare the results of different techniques. Since 

none of interpolation techniques achieves the ideal solution, it is not possible to directly 

compare the re-produced images. However, we propose to employ the original image as a 

reference and apply different rotation dgorithms as examples of general a s n e  

transforrns. We then derive the reconstructed image by applying the inverse rotation. The 

integrity of the reconstructed image compared to the original image is used as a basic for 

cornparison- 

The test 256x256 Lena image has 256 gray levels. The employed fidelity criteria are the 

Mean Square Error (MSE) and Signal to Noise Ratio (SNR)  which are defined in 

Equation (1 7) and (1 8), respectively. 

The expenmental results for three different interpolation techniques are tabulated in 

Table 5- 

MSE 



Table 5- Experimentai Results. 

SNR = 1010~ 

It can be seen that the nearest neighbor technique is sensitive to the angle, while the 

proposed area based and linear interpolation techniques maintain a similar quality for 

different angles of rotation, The area based algorithm (which c m  be executed in 8.23 

seconds) outperforxns the linear interpolation (9.59 seconds) in terms of the speed of 

operation. 

7.1.6 Interpolation Filter Implementation 

Interpolation filter belongs to the category of linear filters. We propose a general 

implementation of these filters which then enables the Fractal Engine not only to perforrn 

general interpolation tasks and affine transfonns but also dl other linear filtering such as 

DCT and DWT. The general form of a linear filter is expressed in (19). 



The basic operations in linear fütering are multiplication and accumulation. We now 

present a pipeline and scalable architecture for accumulation and multiplication. 

7.1.6.1 AccumuI;aîion 

The simple form of accumulation is expressed in (20). 

Q c - Q t I N  At every dock cycle (20) 

We note that a simple pipeIine adder is unsuitable for accumulator, since the adder will 

stdl for multiple clock cycles until the result of previous addition is available before 

starting the new addition. 

Our proposed architecture outputs the result in every clock cycle after an initial latency. 

The basic ce11 of the accumulator is shown in 

Figure 69. The ce11 is a fast, compact and simple adder with an 80 MHz frequency of 

operation implemented in BiCMOS .8p technology. 

Figure 69 - Basic accumulator cell 



The accumulator consists of several ACC-CELL based om the data width. An example of 

12 bit accumulator with three level pipeline is s h o w  in Figure 70. We note that there are 

also load and stop accumulation controls introduced in the design. Load control will set 

the Q output for a specified value and stop halts the operation of the module. 

Figure 70 - 12 bit, 3 level-pipelined atccurnulator 

Scalability 

The accumulator is modular and scalabte. To demonstrate the scalability of the design, we 

show an example of constmcting a 24-bit accumulator with 6 pipeline levels using two 

12-bit accumulators and delay modules. The complete design is shown in Figure 7 1. After 

the first 3 clock cycles, ACC-1 processes data and the partial result is ready at point C and 

carry out of the ACC-I (point B) enters the second unit CACC-2). At the same time, the 

input data is output from the delay module D l  at point A .and is ready to enter the second 



accumulator. After the next 3 clock cycles, the output is ready at points D and E and at 

every dock cycle, the new output is processed. 

Carry 
out 

3 

+ DeIays > 12 bit 
DI v ACC - 2 - 

@, - 
12 bit 3 

ACC - 1 - 
u Delays - D2 Q(0-i 

Carry 
in 

Figure 71 - Scalable accumulator 

7.1.6.2 Multiplier 

We propose a fast pipelined multiplier based on a Cbit multiplier. The synthesized 4-bit 

unsigned multiplier in BiCMOS .8p has a delay of 15 ns which corresponds to a 

maximum frequency of 66MHz. This speed of operation is adequate for Fractal Engine 

and hence, we utilize this ce11 to implement Our multiplier. The block diagram of an 8-bit 

multiplier is shown in Figure 72. 



1 -1- 

Figure 72 - Block diagram of an 8-bit multiplier 

We demonstrate the function of multiplier by an example shown in Figure 73. In the first 

clock, cycle number A (nibbles al and a2) and number B @1 and b2) are entered into the 

multiplier. In the next clock cycle, C and D enter the module followed by subsequent 

operands. The partial results of rnultiplying the nibbles are shifted accordingly to produce 

the result as shown in Figure 73. 

After the first clock cycle, results al .b 1 at poh t  D (Figure 72), a l  .b2 at point C and a2.b 1 

at point F are ready. In the next clock cycle, alh2 plus a2.bl at point G, and aZb2 at 

point E are calculated. At this tirne, both of al-bl and &.b2 are available in point H and 

they are appropriately added. In the next clock cycle, the final result is computed and 

output to point 1. After this initial latency of three dock cycles, at every clock cycle the 

multiplication results are ready and output- 



Figure 73 - A multiplication example 

7.2 Peripheral Section 

Control, communication, storage and interface in the Fractal Engine are implemented in 

the Peripheral Section. Programmability in the Fractal Engine is acquired by 

communication between an external CPU with CPU-IF (CPU interface) module. This 

module is implemented using an SRAM FPGA like an Altera 10K[34] device or Xilinx 

4000[35] series. 

7.2.1 Random access memory (RAM): 

This module stores input data, intermediate results and output data The description of 

each item follows: 

Input Data 

The input data essentially consists of the image or the frarne to be coded. In the 

Fractal Engine, two fiames are processed simultaneously in different stages. While 

the second frame enters the ARM for mean and variance calculations, the first frame 

is loaded into AFM. Hence, two frames are required to be stored in the RAM module. 

Intermediate Results 
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The mean and variance of every block in the fiame are cdculated in FBP by ARM. 

The result is only used to normalize each domain block with respect to a range block 

and is hence considered as an intermediate result- 

Output Data 

The ultimate output of the system is the bit-stream representing the input frarne. For 

each range block, the index of the closest domain biock with the parameters of 

selected f i n e  transform is stored as output data, 

In order to have the maximum speedup, it is important to distribute the data among all 

modules for concurrent data access. This necessitates parallel and simultaneous accesses 

to multiple memory elements. Existing architectures for multi-access memory modules 

fail in two main categorîes namely multi-port RAM and rnulti-block RAM. 

Multi-port mernories with a large number of ports are quite expensive but are however 

flexible. Parallel access to any combination of memory cells is possible in multi-port 

mernories. In a multi-block RAM architecture, severai single port memory modules are 

employed to store the different blocks of data, Although sirnultaneous accesses to the 

memory celis within each block is not feasible, multi-block memory modules have a 

simpIer architecture and occupy less space than multi-port memory modules. 

In Our design, we present an efficient memory map which fulfills the requirement of all 

simultaneous memory accesses in the Fractal Engine by using a multi-block memory 

architecture. 

Memory map configuration in the Fractal Engine is as follows: 



One memory block is allocated as a buffer to store the frame data prïor to the s t a a  of 

fractal operations. This btock has a 14-bit address bus and an 8-bit data bus. As soon 

as data is Ioaded into this block, ARM starts the mean and variance calculation. 

The second memory block is allocated to store intemediate results such as the mean 

and variance of range and domain blocks, 

The major block is allocated to store the image data. Each memory ce11 and hence, the 

data bus width is 16x8 bits. Every 16 adjacent pixels are grouped together to forrn a 

128-bit ce11 of the memory. At every clock cycle, 128 bits of data are read from the 

memory or written into the memory. h 4x4  mode, every 32 bit segment of the 

memory ce11 corresponds to a row of 4 x 4  blocks in the image and four rows are 

processed in parallel in the Affine and Scale modules. 

7.2.2 Control Unit (CU): 

This module essentially consists of finite state machines with different inputs and outputs. 

The state machines control SRAM, AFM and M L  It also broadcasts a global signal to al1 

modules to select between 8x8 or 4x4 modes of operation. The implementation of CU 

and IMI are detailed in Chapter 7. 

7.2.3 CPU-IF module 

This module communicates with an extemal CPU to control the execution of Fractal 

Engine- The CPU c m  write and read intemal registers to and from the FPGA. These 

regis ters include: 



Mode flag (write register): This flag is set by the CPU to indîcate the 8x8 mode 

operation for al1 modules in Fracta1 Engine. Resetting the flag to O hnplies 4x4 

operation of the engine. 

Affine flag (write register): This flag is set to high to indicate that the CM 

(comparator module) compares the distortion between the affine transformed version 

of blocks with the range block. When the flag is set to zero, CM compares the range 

block with the domain blocks only. 

Output register: This register is -en by the Fractal Engine. CPU reads this register 

through C P U  module. This register indicates the best candidate for the current 

range block in process. It shows the domain block number and affine parameters 

corresponding to the best match for the range block. 

Error register: In addition to the output register, the CPU accesses error register to 

determine the distortion value between the range block and the best candidate chosen 

by the Fractal Engine. Based on the value for error threshold, the CPU either accepts 

the affine parameters or rejects those values. 

Address registers: CPU writes the start and end addresses for a burst transfer, which is 

executed by the MI module- 

7.2.4 Intelligent memory interface (IMI): 

It is important to match the VO and compute bandwidth in any processor design. 

Operations must be carefully overlapped, balanced and sequenced to ensure the most 

efficient use of al1 the modules in the processor. The IMI ensures that the required data 

are delivered to the processing modules in parallel and on time. This module acts as a 



DMA (Direct Memory Access) device in the Fraictal Engine. There are 4 address 

registers, 2 data registers and 2 counters in IMI for two paralle1 access to the RAM. CPU 

sets the start address and end address registers and EMI starts the burst transfer. After a 

pipeline latency in each ciock cycle, data is entered ïmto the affine module of the Fractal 

Engine. The external selected RAM module is a fast asynchronous static RAM with an 

access time of 15ns which allows clock fiequencies u p  to 66 MHz. The timing diagram of 

a typical burst transfer by IMI is shown in Figure 74. 

Clock l I Il I I 

Figure 74 - Burst transfer example faor a 66MHz clock 

7.3 Summary 

Fractd Engine is designed in order to accomplish major multimedia task especially in 

visual domain in an optirnized manner. Several level mf enhancements have been applied 

on the engine. In this section the finai stage of completfion the Fractal Engine is presented. 

First, interpolation in digitai domain and the interpolaion filter is proposed with the new 

simple and pipelined architectures for accumulators and multipliers. Finally, supporting 
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architectures for programmability features are added to FractaI Engine chipset. An FPGA 

implementation for this module is selected due to reprogramability feature of  the FPGA. 

New revisions of FPGA are possible for further control of Fractai Engine, 



Conclusions 

The demands for processing multimedia data in real-tirne using unified and scalable 

architectures are ever increasing with the proliferation of multimedia applications. 

Multimedia processing poses challenges from the perspectives of both hardware and 

software. In this thesis, we have presented a summary of the various architectural 

approaches for media processing. Since, visual media represents a significant chunk of 

the multimedia information, it is crucial to design high performance processors that are 

reasonably optimized for video processing applications. We have denved the fundamental 

operations involved in visual processing tasks and designed the generic processing 

elements to map a majority of these operations. Affine transformations are expected to be 

increasingly used in many visual processing applications, and hence an affine transform 

video processing core has been designed. Since Fractal Block Processing encompasses a 

variety of visual processing operations, we have chosen FBP as the candidate algorithm 

for the design of the video processor architecture called Fractal Engine. FractaI Engine, 

which is based on the ATP core, is simple, modular, scalable and is optirnized to execute 

both low level and mid level operations. The individual modules of Fractal Engine have 

been implemented in VHDL (VHSIC Hardware Description Language). The behavioral 

description of the Fractal Engine in MIDL has been synthesized towards standard ce11 

ASIC and fast SRAM FPGAs. The function of the Fractal Engine has been demonstrated 

by mapping popular video processing algorithm such as fractal block coding W C ) ,  

vector quantization and motion estimation. Fractal Engine is capable of processing intra- 

frame I inter-frame video processing and other media processing applications. 
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The new design ideas in multimedia architectures such as programmability, scdability 

and critical dedicated hardware units have been incorporated in the design process of the 

Fractal Engine. 

8.1 Thesis Contributions 

The overd  contribution of this thesis is in the design of a novel, scalable and optimized 

visual signal processor termed Fractal Engine. The main contributions are as follows: 

8.1.1 Classification of Various Multimedia Operations 

Cl Classification of fundamental operations in visual signal processing (section 2.3). 

O Introduction of Fractal Processing as a candidate algorithm to design a visual 

signal processor cded Fractal Engine (section 2.4). 

8.1.2 Design Trends in Multimedia Hardware Architectures 

O Classification of different design issues including flexibility, processor design, 

data distribution, memory and granularity (sections 4.1 - 4.5). 

O Review of available multimedia processors (section 4.6). 

O Analysis of the merits of existing multimedia processors and investigation of the 

shortcornings (section 4.7). 

8.1.3 Hardware / Software Co-design for VLSI Implementation 

fl Review of enabling VLSI technology including fabrication process and design 

tools (section 3.2 and 3.3). 



O Definition of a new VLSI design methodology employed in the design of Fractal 

Engine. The methodology is based on a combination of behavioral description of 

the design (using hardware description languages) and synthesis tools (section 

3-3.2). 

8.1.4 M i e  Transform Processor 

O Derivation of genenc operations in affine transforms (section 5.2). 

Design of optimized hardware for implementing the generic operations (section 

5-3). 

8-15 Fractal Engine 

O Hardware design of Fractal Engine - processing section including AiThe module, 

Scale module and Arithmetic module (section 6-3). 

O VLSI Implementation of scalable Affine Transform Processor (section 6.3.2)- 

O Design of an Intelligent Memory Interface for communication between memory 

modules and al1 processing modules (section 7.2.4). 

[7 Au-mentation of Fractal Engine by the addition of prograrnmability feature into 

Control Unit (section 7.2.3). 

0 Interpolation FiIter Implementation in Fractal Engine (section 7.1.6). 



8-2 Publications 

The contributions of this thesis have been presented and appeared in several refereed 

international conferences and journals [25], [88], [102J- [109]. An invited paper in the 

IEEE Transactions on Circuits and Systems for Video Technology[l10] is a highlight of 

the contributions of this thesis. 



9 Future Work 

Fractai Engine is capable of implementing a variety of visual media processing 

applications. It is an open architecture and is therefore extendable to implement future 

multimedia algorithms- Several challenges frorn the point of view of mapping new 

algorithms as well as augmenting the Fractal Engine constitute the future work. We now 

present a sampling of the promising directions of future implementations in the Fractal 

Engine. In the Fust section, we present some of the existing multimedia algorithms, which 

are impiementable in the Fractal Engine. In the second session, we propose new 

algorithms based on affine transforms and fractal processing. These algorïthms can be 

ideally mapped ont0 the Fractal Engine. 

9.1 Multimedia Algorithms 

Cl Scene Cut Detection - optical flow 

@ The inputs to video processing algorithms are frames belonging to a shot. 

However, a video sequence typicdly contains several shots. Scene cut 

detection algorithms partition video into shots by detecting the shot 

boundaries (scene cuts) using optical flow techniques (sirnilar to motion 

estimation) which can be directly mapped ont0 the Fractal Engine. 

CI Discrete Cosine Transfonn (DCT) 

Ci DCT is widely used in image and video applications because it offers the 

closest performance to the computationally expensive KL transfom. DCT 



calculation is based on array multiplication and accumulation which can be 

performed in parallel using the Fractal Engine. 

Ci Discrete Wavelet Transform (DWT) 

Ci Recently, wavelet theory has emerged as a powerW technique for non- 

stationary signal analysis. The implementation of DWT is very similar to sub- 

band coding. Wavelets offer a variety of usefuI features in image and signal 

processing. D m  calculation is based on array multiplication and 

accumulation, which can be performed in parallel using the Fractal Engine. 

17 MPEG-4 and MPEG-7 standards 

C1 Upcoming MPEG-4 and future MPEG-7 standards are expected to involve a 

variety of video signal processing algorithms including content based coding, 

sprite coding, mesh and phase animation coding, affine transformations and 

indexing. This would require a generic open architecture for video signal 

processing implementation such as Fractal Engïne. 

9.2 New Affine Algorithms 

E Affine Motion Estimation (AME) 

I7 We recall from section 6.4.4.2 that complex motion estimation requires 

implementation of sophisticated affine motion functions. AME algonthms are 

implementable in rd- t ime using the affine processor of the Fractal Engine. 

Cl Fractal Video Compression 



Fractal techniques are typically used in image processing applications. We 

note that the basic element in fractal video algorithms is f i m e  transform and 

hence, the Fractal Engine is a perfect choice to execute these algorithms. 

17 Camera operation detection using affine transfoms 

O There are two sources for pixel displacement within the -es of any video 

shot narnely object motions and carnera operations- Camera operaiions Iike 

panning and zooming introduce sophisticated motion patterns in image 

sequences, These patterns c m  be captured precisely using affine operations 

and hence can be impIemented in the Fractal Engine. 
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