
Université d'Ottawa University of Ottawa

Fractai Engine:

An Affine Video Processor Core for Multimedia Applications

Ornid Faterni

A Dissertation

Submitted to the School of Graduate Studies and Research

in fulfillment of the requirements

for the Degree of

Ph.D. in Electrical and Computer Engineering

Ottawa-Carleton Institute of Electrical Engineering

Department of Electrical Engineering

School of Information Technology and Engineering

University of Ottawa

September, 1999

OOmid Faterni

National Library 1+1 o f m a d a
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa ON K1A O N 4 Onawa ON K1A ON4
Canada Canada

Yow lS(e votre référence

our fi& leotre réfaence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microfom,
paper or electronic formats.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la foxme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

-31 ... I
.) e

In the Name of Aiiah

To Mahdi (AJ),

Acknowledgements

Al1 praise is due to AIlah, the Lord of the Worlds, the Beneficent, the Merciful. Who is the

creator, who taught with the pen and who taught man what he knew not. And my thanks to his

representative in this world. the Imam of the tirne, Mahdi (AJ) who is the source of al1 Cavors and

knowledge.

It is my pleasure to acknowledge and thank d l persons who have influenced me in the course of

this research. First, 1 express my to rny supervisor Dr. Sethurarnan Panchanathan for

introducing me to the exciting fields of multimedia, video and image processing, paralIel

processing and VLSI and for his continued support and encouragement dunng my thesis work. 1

would also Iike to express my gratitude to my CO-supervisor Dr. Sunil R. Das for his continuos

support-

1 would like to thank al1 the past and present members of the Visual Computing and

Communications Laboratory, especially Mahmoud Reza Hashemi for his help and cooperation.

My specid thanks are due to dl the support staff rnembers of School of Information Technology

and Engineering for their help, especially Michele Roy and Lucette Lepage.

The generous financial support of Ministry of Culture and Higher Education of the Islamic

Republic of Iran and NSERC that made this research possible is also ,o;ratefutIy acknowledged,

My beloved wife showed constant understanding and support. A mere acknowiedgrnent by no

rneans compensates the hardship she had to go through on the account of my research work.

Last, but not least, speciai thanks to my dear parents who always supported me in the wonderfil

world of science and encouraged me in getting over al1 the difficulties.

Fractal Engine

An Affine Video Processor Core for Multimedia Applications

Abstract

The recent advances in VLSI technology, high-speed processor designs, Intemethtranet

implementations, broadband networks (ATM and ISDN) and compression standards are

Ieading to the popularity of multimedia applications. In general, multimedia computing

presents challenges from the perspectives of both hardwate and software. Each medium

in a multimedia environment requires different processes, techniques, algoritiims and

hardware. Hence, it is crucial to design a generic processor architecture that meets the

computing requirements of the various media types. In another word, there is a need for a

bottom-up design strategy for meeting the computing needs of multimedia processing.

In this thesis, we propose the design of an affine video processor termed Fractal Engine.

We have fmt derived the fundamentai operations involved in visual processing tasks and

designed the generic processing elements to map a majority of these operations. We have

chosen affine transformations as the target algorithm as it is expected to be increasingly

used in many visual-processing applications including latest video coding standard

MPEG4. We have chosen fractal block processing W P) as a candidate algorithm for the

design of target video processor, since it encompasses a variety of visual processing

operations including affine transforrns.

Fractal Engine is capable of implementing the gamut of imagefvideo processing

algorithms. Fractai Engine is a simple, modular, and scalable architecture that is

optimized to execute both low-level and mid-level operations. It is capable of

implementing a variety of visual processing tasks. Fractal Engine is an open architecture

and is therefore capable of adapting to the processing requirements of a variety of media

processing algonthms. The individual modules of the Fractal Engine have been

implemented in VHDL. A behavioral model of the circuit has been developed and fully

tested by using VHDL simulators. The model is synthesized using BiCMOS .8p ASIC

library cells and XilindNtera FPGAs. We have chosen to demonstrate the real-time

execution capability of Fractal Engine by mapping specific visual processing algorithms

such as fractal block coding (FBC), vector quantization and motion estimation ont0 the

proposed architecture.

(Blank Page)

Table of Contents

TABLE OF FIGURES-..-. 8

.... 1 INTRODUCTION 12

2 FUNDAMENTAL MULTIMEDIA OPERATIONS ... 21

2.1 VISUAL MEDIA BASICS21
IMAGE COMPONENTS ... 21

FRAME RATE .. 24

WERLACED VERSUS PROGRESSIVE SCAN 25

F~DELJTY CR~TERIA OF DIGITAL IMAGES AND VIDEO S:EQUENCES .. 26

2.2 DIGITAL IMAGE AND VIDEO PROCESSING CATEGORIES ... 27

COMPRESSION: 30

IMAGE~VIDEO ANALYSIS: .. 3 1

23 FUNDAMENTAL OPERATIONS IN VISUAL PROCESSING .. 32
... POINT OPERATIONS 33

... LOCAL OPERATIONS 35

... LINE OPERA~ONS 37

.. GEOMETEUC OPERATIONS 38

... BLOCK OPERA~ONS 39

.. IMAGE O P ~ T I O N S 40

2.4 FRA= PROCESS~G ... 41

2 5 MPEG4 MULTIMEDLA STIUlDm ... 42

.. NATIRAL TEXTUFES, MAGES AND VIDEO 47

.. S m c OBJECTS 49

2.6 SUMMARY .. 52

..... 3 REVLEW OF VLSI TECHNOLOGY,...............,

INTEGRATION-...........................-.........r.r..............54

FABRICATION PROCESS 56

FULL CUSTOM DESIGN ... 57

GATE &RAY ASD CELL-BASED DESIGN ... 58

FIELD PROGRAMMABLE GATE ARRAY s (FPGA) .. 60

.. SELECTED DEVICE 62

DESIGN TOOLS 62

VHDL SYNTHESIS ... 63

IC DESIGN M ~ O D O L O G Y ... 65

SUMMARY .. 69

3

......................... 4 DESIGN TRENDS IN MULTIMEDIA ARCHITECTURES ..,............... 71

... DSP ... 82

.. GRANUJLARITY 83

............... .. INSTRUCTION SCHEDULING - SUPER SCALAR .. 84

... I N S T R U ~ O N SCHEDULING - VLIW 84

.. DATA FLOW 85

......................... DATA DISTRIBUTION ... 85

.. SIMD 85

MlMD .. 86

MEMORY SELECTION ... 86

EDO RAM ... 87

SDRAM ... 87

.. RAMBUS DRAM (RDRAM) 87

... WWM 88

.................... MULTIMEDIA PROCESSORS 88

.. TI M V P 90

CHROMATIC RESEARCH MPACT 2 .. 92

... PWS TRIMEDIA TM- 1000 93

V83ORfAV BY NEC ... 94

S HARP DDMP 95

l?ENTIUM PROCESSOR WiTH MMX TECHNOLOGY .. 96

C-CUBE' s VIDEORISC PROCESSOR (VRP) ... 97

L64002 MPEG AmroNr~~o DECODER 98

IE3M VIDEO INTEGRA~ON PROCESSOR ... 1 0 0

8x8's VDEO COMMUNICATION PROCESSOR (VCP) .. 101

ARRAY MIcROSYSTEMS VIDEO COMPRESSION CHIP-SET 102

5 AFFINE TRANSFORM PROCESSOR ... 109

5.2 FUNDAMENTAL AFFINE OPERATIONS 115

..............*...................... 5.3 VLSI ~MPLEMENTATION OF ATP 118

5.3.1 ARRAY ADDER UNIT (AR) ... 119

W m FRACTAL? .. 123

FRACTAL BLOCK PROCESSING 124

... MEAN AND VARIANCE COMPUTATION 127

... FRACTAL ENGINE 127

.. PROCESSING SELTION 128

.. SCALABILITY 129

EXAMPLE ALGORITHMS 133
... VECïOR QUA~\'TIZATION (VQ) 133

FRAC~AL BLOCK CODING (FBC) A L G O ~ M 1 3 5

.. AFFDE TRANSFORM B ASED VEC~OR QUANTIZATION 141

.................... ... mono^ Esnhi~no~ (ME) ,, 146

VHDL IMPLEME~XTATION AND TMING ANALYSIS ... 150
... V E ~ O R QUA~\T~ZATION 1 5 1

................................... FRACML BLOCK CODING ...- 152

MOTION Esnkixno~ ,, .. 154

... AFFINE Monos ESTIMATION 154

.. SUMMARY 154

................... 7 AUGMENTED FRACTAL E N G m 156

INTERPOLATION KERNELS ... 161

E X P E R I M E ~ ~ ~ RESULTS ... 165

~[NTERPOLATION RLTER IMPLEMENTA~ON ... 166

.. F'ERIpmRQL SECTION 171

.. RANDOM ACCESS MEMORY (EUM): 171

C o m o ~ U m (CU: .. 173

CPU-F MODULE .. 173

...................... bn'EJL1GENT MEMORY INTERFACE (IMI): 174

... SUMMARYr.......i.r.... 175

.. 8 CONCLUSIONS 177

8.1 TaEsIS CONTiUsvTIONS .. 178

8.1.1 C ~ ~ s s r n c ~ ~ l o N OF VARIOUS MULTIMEDIA OPERATIONS-.TI. 178

.............................. 8- 1.2 DESIGN TRENDS IN MULTIMEDIA HARDWARE ARC HI TE^^ 178

8.1.3 HARDWARE / SOFTWARE CO-DESIGN FOR VLSI ~~PLEMENTATION 178

.. 8.1.4 AFFINE TRANSFORM PROCESSOR 179

8.1.5 FRA= ENGINE ... 179

.. 8.2 PUBLICATIONS~ 180

... 9 FUTURE WORK 181

... 9.1 MULTIMEDIA ALGORITHMS 181

9.2 NEW AFFIN? ALGORITHMS .. 182

... 10 REFERENCES ... 184

Table of Figures

Figure 1 . The design approach for the Fractal Engine .. 19

Figure 2- Image Coordinates ... 23

Figure 3- Barbara image in 4 different sampling rates .. 24

Figure 4- Interiaced scan display ... 26

Figure 5- Sharpening effect .. 28

Figure 6- Noise removal using image enhancernent techniques 29

Figure 7- Visual Media Operations ... 32

Figure 8- Example point operations .. 35

Figure 9 . An example of an MPEG-4 Scene .. 44

Figure 10- IC transistor counts 56

Figure 1 1 . Evolution of IC Design Methodology .. 66

Figure 12- Cornparison of Design Flows ... 68

.. Figure 13 . VLSI Design Process 6 9

Figure 14- Multimedia Architecture Trends ... 72

.. Figure 15- Distributed irnplementation exarnple .- 74

Figure 16- Unified implementation exarnple 7 4

Figure 17- A typical graphics accelerator system .. 75

Figure 18- Video processor implementation ... 76

.. Figure 19- Typical media processor system 7 8

Figure 20- Data path selection ... 79

Figure 21 - Granularity issue in multimedia architectures ... 83

... Figure 22 - Available DRAM options 87

Figure 23- MVP Block Diagram ... 91

Figure 24 - Mpact 2 block diagram ... 92

... Figure 25 - Block diagram of TM- 1 000 9 4

... Figure 26 - Block Diagram of DDMP 96

Figure 27 . Irnplementation of MMX technology 96

Figure 28- L64002 Block Diagram ... 100

Figure 29- VIP Block Diagram ... 101

Figure 30- C C and MEC block diagram 103

.. Figure 3 1 - Spatial Transformation 109

Figure 32 - General Affine Transformation .. 110

... Figure 33- Translation I l l

Figure 34- Scale 112

.. Figure 35- Shear 113

... Figure 36- Transposition 113

Figure 37- Rotation procedure .. 114

... Figure 38- Rotation 114

Figure 39 - Example of isometric transforms .. 117

Figure 40- mne Module Block Diagrarn .. 118

............................. Figure 4 1 - Accumulation and Surnmation Cells 119

... Figure 42- Array Adder for 4x4 blocks 120

Figure 43-B asic Transposer Ce11,. ... 121

... Figure 44- 4x4 Transposer Module 122

Figure 45- Fractai Engine Block Diagram ... 128

Figure 46- Celement and 8-element Amy Adder ... 130

Figure 47- Reflector Module .. 130

............. ... Figure 48- 8x8 Transposer Unit .. 131

Figure 49- Affine Module for 4x4 blocks .. 132

Figure 50- Affine module for 8x8 blocks .. 132

... Figure 5 1- Scalable Aff~ne Module 133

. Figure 52 Data flow in Fractal Engine for VQ fmplementation .. 134

.............................. Figure 53 - Processing Section of Fractal Engine for VQ execution 135

................................. Figure 54- Data flow in Fractal Engine for FBC Implementation- 137

... Figure 55- Processing Section in 8x8 mode for Execution 138

... Figure 56 - Performancce chart of AWQ 144

........... Figure 57 Processing Section of Fractal Engine for ATVQ execution 145

...... Figure 58 - Data flow diagrarn of Fractal Engine for ATVQ .. 145

. Figure 59 - Data flow diagram of Fractal Engine in ME process 148

............................ Figure 60 - Data flow diagram of Fractal Engine in AME execution 149

Figure 6 1 - Forward mapping ... 157

.. Figure 62- Four corner mapping 158

.............. Figure 63- Area mapping ,.....~... 159

.....-. .. Figure 64- Inverse mapping .. 160

. Figure 65- 1-D Interpolation 161

Figure 66- Nearest Neighbor Interpolation ,. ... 162

Figure 67- Linear interpolation ,,...,. .. 163

Figure 68- 2D Area Based Interpolation 164

Figure 69 - Basic accumulator ce11-.. ... 167

Figure 70 - 12 bit, 3 level-pipelined accumulator ... 168

Figure 7 1 - Scdable accumulator .. 169

Figure 72 . Block diagram of an 8-bit multiplier .. 170

Figure 73 - A multiplication example ... 171

... Figure 74 - Burst transfer example for a 66MHz dock 175

1 Introduction

The recent advances in VLSI technology [11-[2], high-speed processor designs [3],

Internetiïitra.net implementations[4], broadband networks [5] (ATM and ISDN) and

compression standards [6] (JPEG 171, MPEG [8], H.26 1, H.263 and G.273) are leading to

the popularity of multimedia applications. Exarnple applications include Multimedia

Information S ystems [9], Digital Libraries [1 O], Remote Sensing and Natural Resources

Management [I l] and Geographic Information System [12].

A variety of media processing techniques are typically used in multimedia processing

environments to capture, store, manipulate and transmit multimedia objects such as text,

handwritten data, audio objects, still images, 2D/3D graphics, animation and full-motion

video. Example techniques include speech andysis and synthesis, character recognition,

audio compression, graphics animation, 3D rendering, image enhancement and

restoration, imagehide0 analysis and editing, and video transmission.

Visual media in a multimedia system contains a significant arnount of information, and

correspondingly involves a large volume of data in contrast to the other media types-

Uncompressed digitai video requires 250 Mb/s to support studio quality transmission of

NTSC images (480 lines x 720 pixelslline x 24 bits/pixel x 30 frarnes/s)[l3]. Even a

simpler application such as video telephony (240 lines x 360 pixelnine x 16 bitdpixel x

10) requires 14 Mb/s to transmit the digital video signai in raw format. The bandwidth

and storage requirernents of visual information typically make it difficult to manage the

data in its raw form. However, there is considerable redundancy in video data, both from

an information theoretic viewpoint as well as from the perspectives of stmctural content

and human perception. A number of image and video compression standards, e.g.,

MPEG- 1 [141, MPEG-2[15], MPEG4[161,f 171, H.26 1 [18], and H-263 [19] have been

recently proposed to compress the visual data for a variety of transmission and/or storage

applications. There is ongoing research and standardization efforts targeted towards

future multimedia applications with the objective of integrating compression and content

access functionaiity, including MPEG-7[20]. These techniques and standards will involve

execution of complex video processing tasks in real-tirne. The challenges can range from

waveform coding implernentations to scene modeling and understanding. For example,

the principal objective of model-based image coding [SI], [22] o r intelligent image

coding is to understand the scene by modeling the objects in order to achieve a higher

level representation. In addition, there is an increasing interest in 3-D image and video

processing[23], [24]. An important processing task in most of these situations is &ne

transformation[25], which includes operations such as rotation, transposition, scaling and

translation. For example, intelligent motion estimation in a video sequence requires

extraction of the motion of objects and carnera operations, which could be represented

using affine pararneters.

In general, multimedia computing presents challenges from the perspectives of both

hardware and software. Each media in a multimedia environment requires different

processes, techniques, algorithms and hardware. Hence, it is crucial to design a generic

processor architecture that meets the cornputing requirements of the various media types.

The complexity, variety of techniques and tools, and the high computation, storage and

VO bandwidths associated with visual processing pose several challenges, particularly

from the viewpoint of real-time implementation.

Red-time implementation goal is the principal reason for the slant of most media

processor development[261 towards visuai processing. Several processing solutions

ranging from multimedia extensions to general purpose processors such as the Intel

MMX[27], programmable DSP architectures such as the TI-MW [28], Media processors

like the Philips TriMedia processor[29], and special purpose architectures such as the C-

Cube MPEG decoder chip-sets[30] have been proposed to implement a variety of

multimedia (particularIy visud) processing operations. A detailed categorization of

available multimedia processing strategies is required in order to propose the optimum

architecture for target applications. In this thesis, we have designed a high performance

visual signal processor (VSP) called Fractal Engïne, which is optimized to execute a

variety of both mid-level and low-level visual operations.

7.1 Motivation

The implementation of video processing aigorithms or in generaI multimedia algorithms

demands systems of large computationd capability with efficient VLSI implementation

of the various media processing algorithms. Real time video compression requires

processing power in the range of 100 MOPS to 100000 MOPS. The envisaged mass

application of digital multimedia demands fast and reduced size implementations, which

are potentially feasible due to recent advances in V U 1 technologyi3 11 specifically in the

areas of high density, and fast circuit implementations. -1 technologies have now

advanced ta the point where, for some applications, the processing power and memory

14

required to perform these tasks cm be incorporatecl h t o a few silicon chips. Individual

transistors switch faster and therefore circuits perform operations at a higher speed. The

transistors occupy less space and therefore more complicated design can be integrated

into a single chip. It is required to study various options in VLSI design and select the

best environment for target applications.

The advent of -hardware description ianguages such as VHDL (VHSIC Hardware

Description Language){32] and re-configurable high density FPGAs[33] (Field

Programmable Gate Amy) such as Altera[34] and X î h x [3 5] have not oniy faciiitated

rapid prototyping of digital designs, but also serve the needs for programmable and re-

configurable hardware design. Thus it makes possible quick assembly of pre-designed

generic processing elements into architectures that can be dedicated to execute specific

algorithm or a ciass of algorïthms under the assumption that the generic processing

elements were designed to accommodate a varïety of media processing requirements. A

specific configuration can also be chosen fÏom a universal architecture using extemal

control signals assuming that the target processor is capable of organizing the generic

processing elernents into various configurations. Hence, enabling VLSI technology

should be thoroughly studied and the best possible combinations of HDLs, ASICs

(Application Specific Integrated Circuits) and FPGAs have to be selected.

The main focus of the researchers for video processor design is the optirnization of iow-

level operations such as multiplication and accumulation. However, these developments

are not suffkient to overcome al l the problems in implementing multimedia applications.

There is clearly a need for a bottom-up design strategy for meeting the computing needs

of multimedia processing. We need to derive the basic operations involved in a variety of

image and video processing operations such as enhancement, restoration, compression

and analysis of images and video sequences. It is required to derive mid-level and high-

level operations in visual domain and design scalable and modular architectures for these

requirements. Since Fractal Block Processing (FBP)[36] encompasses a major@ of

image processing operations [37], [38], including surnrnation/accumulation, image

addition / subtraction, translation, stretching, shifting, scaling, rotation and pattern

rnatching, we have chosen this as the candidate algorîthm for the design of the genenc

video processing element. We note that the operations of translation, stretching, shifüng,

scaling and rotation termed as affine transforms[39] are particularly important and are

extremefy powerful in visual processing tasks such as image analysis and understanding

motion in video. It is our belief that most of the complex processing operations involved

in the next generation of visual processing tasks will involve some form of affine

transformation. We note that there is hardly any architectural solutions that emphasize

affine transform implementation in the context of general purpose video processing. The

choice of Fractal block processing as the candidate aIgorithm in Our generic processing

element design is therefore based on the following two premises: (i) it contains a

reasonabie super-set of the variety of processing tasks (including affine transformations)

typically found in visual (and multimedia) processing, and (ii) it is a computationally

intensive procedure and hence presents challenges from the perspective of real-time

implementation. Another important requirement in the design of multimedia processor

architectures is scalability. For example, visual processing tasks typically operate on a

variety of image sizes, resolutions, and frame rates, and it is therefore crucial to design

the generic processing element to be scaiable. For a problem of cornplexity X which is

executed using N units in T seconds, scalability impiies the following: (i) T M seconds

will be required to solve the problem using NM units, andior (ii) A problem of complexity

XM is solved in T seconds using NM units. The first type of scalability requires a flexible

control design while the second type of scalability requires that the feature of scalability

be incorporated in the design o f individual modules.

An important factor in designing a high performance video processor is to adopt the

promising features in existing architectures, This necessitates full investigation of a

variety of existing processors ranging from general purpose processors to dedicated

hardware modules used in multimedia applications.

7.2 Problem Staternent

In this thesis, we propose the design of generic processing elements based on the

derivation of the fundamental visual processing operations in Fractal block processing.

An Affine Transform Processor (ATP), which is the core processor, and further a visual

signal processor based on ATP core are designed. The processor termed Fractd Engine is

capable of implementing the garnut of imagehide0 processing algorithms. Fractal Engine

is a simple, modular, and scalable architecture that is optirnized to execute both low-level

and mid-level operations. Tt is capable of implementing a variety of visud processing

tasks, including spatial filtering, contrast enhancement, frequency domain operations,

histogram calculation, geometric transforms, indexing, vector quantization, fractal block

coding, shot boundary detection, motion estimation, and camera operation detection.

Fractal Engine is an open architecture and is therefore capable of adapting to the

processing requirernents of a variety of media processing algorithms. The individual

modules of the Fractal Engine have been irnplemented in VHDL. A behavioral mode1 of

the circuit has been developed and fully tested by using VHDL sirnulators. The mode1 is

synthesized using BiCMOS .8p ASKC library cells[40] and X i l i n f l t e r a FPGAs. We

have chosen to demonstrate the real-time execution capability of Fractal Engine by

rnapping specific visual processing algorithms such as fractal block coding (FBC)[41],

vector quantization[42] and motion estimation[43] ont0 the proposed architecture. The

steps adopted in the design of the Fractai Engine are presented in Figure 1.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 presents the fundamental operations in

visual media processing. Al1 of the visual algorithms are classified to four major

categones and six different classes. The basic operations of al1 groups are then

introduced. We propose that a general affine transformation is a mid-level fundamental

operation which involves low-level operations in imagehide0 processing algorithms.

MPEG4 is used as an example to demonstrate the validity of our categorization. In

chapter 3, different aspects of enabling VLSI technology are reviewed. The different

options for VLSI irnplementation of video signal processors are then discussed. Hardware

description languages, logic synthesizers, and behavior compilers for multimedia

purposes are then explained and the necessary tools in our design methodoIogy are

introduced. The design trends in multimedia processor architectures are detailed in

chapter 4.

/ Define Problern {
(Video Processor : ; Design) i

I
Review Algorithmic

requirernents Fractal Block

Affine ~ransforms. '
jL

Processing

Find Basic Candidate
Operations Algorithm

n4
-. .

i
l

v
l

Review Hardware i
Architectures

CPU. Memory.
Architecture. ...

Enabling VLSt
Technology Design Trends

Fundamental

Affine Transform

Programmability.
New Algorithms? vas Linear Filtering. 1 General Affine. ...

1 Fractal Engine
Yes

Figure 1 - The design approach for the Fractal Engine

It is concluded that dedicated modules are suitable for critical units while programmable

modules are required to facilitate the adaptation of the architecture for various algorithms.

The individual modules of the proposed ATP core are presented in chapter 5, where basic

19

operations in affine transformation are introduced and an optimal scalable architecture is

proposed. The detailed design of the Fractai Engine which is optimized for executing

fractai block processing algorithm is presented in chapter 6. The mappimg of example

aigorithms ont0 the Fractal Engine and arealtiming analysis are dso discussed in this

chapter. Since Fractal Engine is an open architecture, we have demonstrated the

implementation of new algorithms such as generalized affine transform mperations and

interpolation filter in chapter 7, The design is based on the augmentation in te- of

flexibility and programmability in Fractal Engine. Finally, conclusions a n d directions for

future work are presented in Chapter 8 followed by the references.

2 Fundamental Multimedia Operations

We note that a critical analysis of image and video tasks will result in the denvation of

the set of generic operations, which are typically employed in a variety of multimedia

applications. In this chapter, we frrst present the fundamentals of visual media processing.

We then sumrnarize the various categories of operations in image and video processing

followed by the derivation of the generic operations for visual processing and a brief

introduction to affine transforms and fractal processing. The last section introduces

MPEG4, the new standard for multimedia applications. The principal objective is to

demonstrate that the candidate algorithm chosen for the design of the target architecture

encompasses a majority of the visual operations as well as presents challenges from the

perspective of real-time implernentation.

2.1 Visual Media Basics

Video sequences are essentidly a collection of individual frarnes (images). Hence, the

main part of this section deals with the definitions for digital images.

Image Components

A digital image is composed of discrete points with a quantized value assigned to each
\

point. In the case of gray-scale images this value represents the gray level of the point.

However, for color images, the quantized value represents the color component values of

the point.

A digital image is created from a continuos-tone image after the two steps of sampling

and quantization[44]. In the sampling process, the brïghmess values of particular

positions are sarnpled. In the quantization process, the sampled value is quantized to a

fixed length integer value which is usually %bits for gray-scale images and 24-bits for

color images. The 24-bit quantization known as m e color representation consists of 3

independent &bit integer values describing the intensiw of basic colors red, green and

blue. This representation is known as RGB format In the case of gray scale images, d u s

value describes only the intensity value corresponding to the brighmess of the point. A

quantized sample representing the brightness value for a specific position in the image is

called a pire1 or a picture element. The combination of sarnpling and quantization

processes is referred to as image digitization.

An image is generally sampled into a rectangular array of pixels. Each pixel has an (x,y)

coordinate which describes its location in the image. The x-axis is the horizontal axis

from left to rïght while the y-axis is the vertical axis from top to bottom as shown in

Figure 2. The origïn or location (0,O) is in the upper Ieft corner of the image in this

representation. As an example, the pixel at location (50, 120) is marked in the Figure 2.

The nurnber of colurnns or rows in an image (M and N respectively for an MxN image)

indicates the spatial resolution of the image which is directly related to the quaiity of the

image. Spatial resolution describes how many pixels are in the image. The more pixels in

the image, the better its quality and the larger its storage size. The number of pixels in a

digital image depends on how finely the image is sampled, or divided into discrete pixels.

Figure 2- Image Coordinates

It is the sarnpling rate, which detemiines the number of pixels for a known physical size.

For example, 200 dpi (dot per inch) means that there are 200 pixels in an inch. The

maximum sampIing rate is set by the digitizing device such as scanner, digital camera,

etc. From sarnpling theorem, the necessary sarnpling rate so that the digital image

adequately resolves al1 spatial details of the original continuous-tone image, is at least

twice as fast as the highest spatial frequency contained in the image (Nyquist rate).

If sarnpling occurs at a lower rate than that required by the sampling theorem, the higher

spatial frequency details will be Iost in the digital image, Hence, the digital image will

appear to be not as sharp as the original image. In Figure 3, four different sampling rates

are employed to generate the illustrated digitai pictures. It is clear that the picnire (D)

doesn't contain al1 the details of the picture (A) and the details of the picture are lost due

to pixel blocking effect.

On the other hand, if sampling occurs at a higher rate than Nyquist rate, extra pixels will

be created which theoretically do not contribute to improving image quality. However,

they can be used in future manipulations such as image resarnplinghnterpolation and

feature extraction.

A) 96 dpi B) 72 dpi

C) 48 dpi D) 24 dpi

Figure 3- Barbara image in 4 different sampiing rates.

Frame Rate

This parameter which is employed in video sequences determines the temporal resolution

while the sampling rate determines the spatial resolution- The higher the frame rate, the

more accurate is the motion representation in a digitized video sequence.

Frame rate is a sampling terminology, which is applied to digital and other non-digital

forms of sequential image acquisition and display such as broadcast television. It is often

expressed as the number of frames per second (fps). For exarnple, if the frame rate of a

system is 30 frames per second, an image frarne is acquired (or displayed) every 1/30" of

a second. If an object being imaged moves across the image frarne at a faster rate, i t may

never be captured in an individual image. Once again, we note that it is essential that the

frarne rate is at least twice as fast as the highest frequency of motion in the video

sequence.

24

Interlaced Versus Progressive S can

The concept of frarne rate for image display relates how often an image is updated on the

viewing display. Since the normal display mechanism is a video display monitor, images

must be repeatedly refreshed. The rate at which images are refreshed c m cause display

flicker, and therefore human eye fatigue. Display flicker dso depends on how the image

is scanned on the display monitor. Common broadcast television equipment uses a

technique known as interlaced scan[45] display, as shown in Figure 4. This means that

the odd-numbered Iines of the image are displayed first, followed by the even-numbered

Iines. The effect is to interleave, in time, the two interlaced halves of the image, one after

another. Interlacing gives the impression to the observer that a new frame is present twice

as often as it really is. This technique was used originally for television broadcast signals

since the display could be refreshed less frequently without noticeable image flickering

(although some rninor line-to-line flicker does occur at certain instances). Systerns using a

standard commercial broadcast television display monitor for image display typicalIy

have a 30 frarne per second frarne rate and interlaced scan.

in morion image sequences, interlaced scan displays can show noticeable motion defects

because the odd and even halves of each image are separated in time by one-half the

frame rate. The resuIt is a tearing effect that appears on objects with fast motion through

the image frame.

Start of odd field Star& of even fieId

-i
/ \

End of cxid field End of even field

Figure 4- Interlaced scan display.

In the non-interlaced method known as progressive method[46], the entire image is

displayed in one pass. In this case, the frarne rate must be twice that of an equivalent

interlaced display, or image flickering wiII be noticeable. Progressive scan eliminates

line-to-Iine flicker and motion artifacts in displayed images. Systems using a progressive

scan display monitor for image display typically have a 72 frame per second frarne rate.

Fideiity Criteria of Digital Images and Video Sequences

Fidelity cnteria are applied to measure image quality and for cornparhg the performance

of different processing techniques. There are two types of critena1381 that are used for

evaluation of image quality, .subjective and quantitative. The subjective critena use

human feeling about an image (or video sequence). Quantitative rneasures, try to describe

or compare the irnagelvideo quality by an analytic formula.

Mean square cntenon is often used in image processing. It refers to the average (or sum)

of squares of the error between two images (u and u') and it could be described in three

different formats as follow:

LM N

Average least square: a,' =)/MN Iu(m, n) - ur(m, n)12
m=l n=I

Mean square error: O,' = YMN ~[Iu(rn, n) - u'(m, n)12]

6f N

Average rnean square: ou ' = YMN 7 ~ [l u (r n , n) - d (m , n)lz]
-1 n=l

where the size of the image is MxN and E[] represents the mathematical expectation.

ui many applications the mean square error is expressed in tems of a signal-to-noise ratio

(SNR), which is defined in decibels (dB) as foIlows:

where d is the v

Sm = IO log,,

ance of the original image.

The alternative formula for SNR, called peak-to-peak SNR (PSNR) is defined as:

(Peak - to - peak value of the reference image)'
PSNR = 10 log,, cc = ~ a I ~ m J J t r

oc2

2.2 Digital Image and Video Processing Ca tegories

Visual media processing involves operations to enhance, restore, compress and analyze

images and video sequences. Whatever the operation, a similar set of steps are followed:

A digital technique is applied to a digital image or video to form a digital result, such as a

processed imagehideo. a cornpressed bit-stream or a list of extracted features. The four

main categories of imagehide0 processing tasks are now presented.

Enhancement:

The quality enhancement is the primary goal in digital signal processing systems. Many

enhancement techniques are introduced to cornpensate for the effects of a specific (known

or estimated) degradation process for 2-D signais known as images. This approach,

known as image restoration, will be discussed in the next section. In image enhancement

methods, little or no attempt is made to estimate the actual degradation process that has

occürred on the picture. These inciude methods of modiQing the intensity value, contrast

enhancement, edge enhancement, deblumng, and smoothing or removing noise. These

methods assume that certain general properties of the pictue are degraded and attempt to

resolve these problems. For example, increasing the contrast is a reasonable enhancement

operation due to the attenuation of the picture, or debIumng is reasonable as shown in

Figure 5 because degradation usually blurs and smoothing is justifiable, since noise is

generdly added to the original picture as shown in Figure 6-

Figure 5- Sharpening effect

Figure 6- Noise removai using image enhancement techniques.

Image enhancement employs local correlation between adjacent pixels to enhance the

image quaiity,

Restoration:

Picture restoration is applied on images that have been degraded in the presence of one or

more sources of corruption. There are different kinds of degradations based on the

affected area. Point degradarions only alter the intensity value or the color of individual

pixels whiIe spatial degradations blur an area of the image. Other types generate

temporal degradation in video sequences. For exarnple, the pictures obtained in remote

sensing and astronomy are degraded by atmospheric turbulence, aberrations of the optical

system and relative motion between the camera and the object. In image restoration, it is

assumed that the degraded image is a convolved version of the origind image by the

degradation function plus additive noise. The goai is to obtain as good an estimate as

possible of the original picture. Obviously, any such estimation procedure requires some

form of knowledge concerning the degradation function. As a result, frequency domain

correlation is used to restore visual information. Examples include inverse filtering,

pseudo inverse filtering, etc.

Compression:

The aim of digital data compression is to represent the data by as few bits as possible for

the purpose of transmission or storage. The bandwidth and storage requirernents of visual

data typically make it impossible to handle visual (digital) data in its raw form and hence,

a number of compression techniques have been developed.

Visual data compression methods f a into two common categories. In the fmt kind,

cailed lmsless compression, the data could be restored completely after the compression

process. In this method, the redundancy of the image is exploited using sourcecoding

techniques[lOl] such as Huffinan coding and arithmetic coding. In the second category,

c d e d lossy techniques, higher compression rate is achieved at the expense of loosing

some insignifcant information in the decoding stage. This compression technique results

in some distortion. Efficient compression techniques tend to minimize the distortion

perceived by human visual system.

Different Mage and video compression techniques[74] remove the existing redundancy

in different domains and hence, can be classified as follows:

Spatial based

In this class of compression techniques, the existing correlation within an image such

as predictability, randomness and smoothness is exploited. ADPCM (adaptive

differentid pulse code modulation), vector quantization and fractal block coding

techniques are typical examples of this category.

Temporal based

In this category, the existing correlation within a video sequence and between the

consecutive frames of the same shot is exploited and the redundancy is removed.

Motion estirnation[95].[99] is the basic operation for these techniques.

Frequency based or transform coding

In transform coding techniques, a block of data is transfomed so that a large fraction

of its total energy is condensed into a small part of the transfomed data which are

quantized independently. DCT (discrete cosine transform)[75] and DWT (discrete

wavelet transform)[94],[97] are typical digital transforms employed in this technique.

We note that the objective in al1 categories is to exploit the spatio-temporal correlation in

an image or video to reduce the redundancy and represent the data in a compressed form.

ImageNide0 Analysis:

Semantic correlation of the pixels is used for image and video understanding. Recently,

there is a tendency to represent multimedia objects using generai object based

representations which provides content-based functionalities. The objective of model-

based image representation[21] or intelligent image understanding is to understand the

scene by modeling the objects, yielding a higher level representation. Applications of

mode1 based image representation and image analysis include, automatic vehicle dnving,

medical inspection, mobile robot navigation, mail sorting, label reading, global model

construction and low-bandwidth image coding. Semantic correlation of the pixels is used

for image and video understanding. Example operations involved in image and video

analysis indude, image segmentation, feature extraction, object ~Iassification, indexing,

scene cut detection, etc.

It can be deduced from the summary of the different categories of operations listed above

that the principd task is to exploit the different forrns of correlations present in the visual

data The individual operations encountered in visud processing are detailed in the

foIIowing section.

2.3 Fundamental Operations in Visual Processing

The fundamental operations in the four major categories of visual processing tasks are

listed be1ow. The objective is to select the candidate algorithm, which will be employed

in the design of a high performance video processor. The selected kemeI algorithm needs

to be represented by a majority of such operations- We now propose the categorization of

dl individual operations in six classes as shown in Figure 7. The individual operations of

each class are detailed.

Operatio Image Subtractio

Fourier uansform
DCT transform

I m a g e masking Block matchine
Motion estimation

L o w pass filtering
High pass filtering

Figure 7- Visual Media Operations

Point operations

The resulting gray levei at a pixel depends only on the input gray Ievel of one point

(usudIy the gray level of the same point before applying the operation). Such operations

are used for gray scale manipulation and for segmentation by pixel classification. The

extension of these operations inchde dual image operations where the output level of a

pixel depends onIy on the set of input levels from the pixels at the same position. For

example, we may want to take the difference between two pictures. The operations in this

category are :

Description: Each image pixel is added to a constant translation factor.

O(x.y) = I(x,y) + +
''

- Where O(x,y) is the output image, I(x,yi is the input image and t/. is the translation factor.

Applications: Brightening or darkening the image (an example is shown in Figure 8-B).

Category: S ingle-image.

Stretch ing

Description: Each image pixel is multiplied by a constant stretch factor (sf)-

Applications: Increasing or decreasing the contrast of the image (an example is shown in

Figure 8-C).

Category: S ingle-image.

Description: Each image pixel is evaluated to be above or below a predetermined

threshold vaiue (t,). If the pixel brightness is less than the threshold, the resulting pixel

brightness is set to O, otherwise it is set to the maximum v d u e (e-g- 255 for 8 bit values).

Applications: Creating a very high contrat image. segrnenting the image by highlighting

an object of interest and separating it from its background (an example is shown in Figure

8-D).

Category: Single-image.

Image Subtraction /Addition

Description: One image is subtracted from or added on a pixel by pixel basis to a second

image.

Applications: Removing comrnon background image information, determining object

motion, Averaging over images of the sarne scene to reduce random noise, merging two

images.

Category: Duai-image.

A) original image B) Traslation

C) Stretching D) Thres ho Ming

Figure 8- Example point operations

Local operations

The output of these operations depends only on the gray values in a neighborhood o f a

particular pixel. Such operations are used for noise cleaning, edge and local feature

detection, etc. The following operations belong to this category:

Image Masking

Description: A fïnite impulse response (FIR) filter or rnask is applied to the image to

perform a spatial image processing operation.

35

w here * indicates mas king operation.

Applications: Low-pass filtering, unsharp masking, high-pass filtering, edge enhancement

and line detection.

Category: dual-image.

Median Filtering

Description: The filter is a ranking filter, where for example the fifth-radced pixel

brightness value is selected as the output pixel brightness from a 3x3 input group of

pixels.

where f is the nonlinear ranking and seIecting function and 1 is the input group of pixels.

Applications: Removing impulse noise spikes from an image.

Category: single-image.

MorphoZogical operations such as erosion and dilation

Description: The erosion operation reduces the size of bright objects on a dark

background in an image and the dilation operation increases the size of bright objects on a

dark background in an image (morpho1ogicaI process).

Applications: Image analysis, outlining, thinning, skeletonization and edge detection.

Category: single-image.

Line operations

The inputs to these operations are pixel values which reside across a vertical or horizontal

line. Such operations are typically used in raster scan images. A typical example

operation is the grouping of one's and zero's in a line for run-length coding. Exarnple

operations in this category include:

Run Length Coding

Description: Across each line of an image, pixeI values are sequentially compared and

grouped together into mns of identical brightness.

Applications: image compression.

Category: Single image.

Differenrial Pulse-Code Moduhtion (. C M) Coding

Description: Each pixel value is replaced by the difference value of it and its neighbor

and then represented by a lower-resolution value.

Applications: Lossy image compression.

Category: single-image.

Line segmentation

Description: Each line in an image is scanned and the white intervais are recognized to

segment each line from the image.

Application: Text recognition.

Category: single-image.

Geometric operations

These operations are performed on a set of pixels defined by a geometrical transformation

or around a neighborhood of a specified point. This cIass includes the following

operations:

Up and Down Sampling

Description: Portion of image is resampled for another spatial resohtion.

Applications: Image enhancement, zoorning in and out, and image size adjustment.

Category: single-image.

Shifh'ng

Description: The spatial location of image pixels is shifted linearly.

AppIications: Geometric adjustment of the location of an image-

Category: single-image.

Scaling

Description: The spatial size of image pixels is expanded or reduced Iinearly.

l (xpy) + O(x ',y ') rvhere x'=x.S, and y '=y.%

Applications: Geornetric adjusmient of the size of an image.

Category: single-image.

Rotation

Description: The image is rotated linearly about the origin.

I(x,y) + O(x'.y ') ivhere x'=x-cos(O)+y.sin(8) and y '= -x.sin(6)+y.cos(6)

Applications: Geometric adjustment of an image.

Category: single-image-

BIock operations

A rectangular block of pixels with a typicai size of 4x4, 8x8 or 16x16 are grouped

together and processed. These operations may result in another block, a single value or a

vector of data, Example operations are:

Fourier Transfom

Description: An image is transformed to frequency domain by a discrete Fourier

transform operation.

O (W) = 7 (4 ~ s ~))

where 7 is the Fourier transfom.

AppIications: Frequency filtering, removing periodic noise patterns and energy

compacting.

Category: single-image.

Discrete Cosine Transfom (DCT) Coding

Description: Pixel blocks (8x8 pixels) are discrete cosine transfomed and then the

frequency components are quantized.

where V is the discrete cosine transform.

Applications: Lossy image compression.

Category: single-image-

Paîtern Mafching

Description: A block of image is compared to a set of blocks in terms of Euclidean

distance to determine the best match between the blocks.

Applications: Documentation analysis, object recognition, vector quantization, motion

estimation and fractal image compression.

Category: dual-image.

Image operations

The input for these operations consists of the intensity value of d l the pixels (or the main

part) of an image. Typicd examples of these operations include:

Image Covariance and Correlation

Description: Image is modeIed by randorn field representation.

~ov(cdm,n) ,u(d n')) = ~ [(u (m , n) -p(m,n)Xu(mr,n') - p(rnr,n'))], p(rn,n) = ~ [u (r n , n)]

Applications: Image modeling and template matching.

Category: single-image.

Histograrn calculation

Description: The relative frequency of each gray Ievel in the image is calculated. The

gaph of the frequency as a function of gray levels is called the histograrn of image.

PAZ) = nurnber of pixels wifh gray levez equal to z.

Applications: Image segmentation, measurement of tertual properties and image

comparison.

Category: single-image.

Description: Pixel values are replaced with variable-length codes based on their

frequencies of occurrence in the image,

Applications: image compression.

Category: single image.

Mean square error / SNR computation.

Description: An image is compared to a reference image with these quantitative criteria.

M iV

MSE = yMN ~u(rn, n) - uT(rn, n)[' , SNR = 10 log,, gxSE
m i l n=l

Applications: image comparison.

Category: Dual image.

2.4 Fractal Processing

The principal task in al1 of four different categones of image operations is to exploit the

high correlation present in the visual data. Two new mathematical entities, narnely

Fractals[41] and Wavelet Transforms[96], have been recently introduced to exploit the

correlation and self-sirnilarities within an image or a sequence of images. Wavelet

transformation belongs to the category of transform coding techniques, which attempt to

exploit the correlation in an altemate domain rather than spatial domain. On the other

hand, Fractal processing extracts existing self-sirnilarity and self-affine content within the

image.

A majority of the processing operations Iisted above is accommodated in Fractal Block

Processing (FBP)[38]. FBP is a computationally intensive procedure and involves

operations such as, summation/accumulation, image additionkubtraction. translation,

stretching, shifting, scaling, rotation and pattern matching. We have therefore chosen FBP

as the candidate algorithm for the design of the generic video processing element which is

detailed in chapter 6 of this thesis. The basic operations in FBP which are affine

transformations are discussed in chapter 5.

2.5 MPEG4 Multimedia Standard

An ernerging standard that is expected to become popular in visual domain processing (as

well as other domains such as Audio) is MPEG4[16], [17]. MPEG4 is the third standard

in a series developed by the Motion Picture Expert Group. The first two standards

MPEG1[8], [14] and MPEG2[15] address the coding and compression of frame based

video sequences and audio. MPEGl was pnmarily used for Video-CD's with a resolution

of 352x240. MPEG2 operated on a higher resolution (704x480) and has added support

for interlaced video. Later, higher levels of resolution were specified so that MPEG2

could support HDTV. MPEG2 now supports al1 resolutions and frame rates defined by

ATSC for digital television. MPEG4 was finalized in October 1998 as an ISO/IEC 14496

standard. MPEG4 differs from the previous standards in a number of ways. The new

standard allows interactivity, high compression and accessibility to the video content.

Video information in MPEG4 is no more specified as compressed frames but as

42

cornpressed Video Objects (VO). In this section, by introducing this standard, we show

the validity of our categorization introduced in this chapter. We note that the operations

involved in affine transformations, motion estimation and wavelet transforms will form

important components in MPEG4. MPEG4 achieves a high performance by providing

standardized ways to:

represent units of aural, visual or audiovisual content, called "media objects". These

media objects c m be of naniral or synthetic ongin; this means they could be recorded

with a carnera or microphone, or generated with a computer as shown in Figure 9.

descnbe the composition of these objects to create compound media objects that form

audiovisual scenes;

multiplex and synchronize the data associated with media objects, so that they can be

transported over network channels.

interact with the audiovisual scene generated at the receiver's end.

In addition,

(1) MPEG4 uses object based coding as opposed to frarne and channel based coding of

previous standards. MPEG4 also defines how interactivity between user and objects

c m be employed, in convast to previous standards which allowed very limited

interactivity. Objects in MPEG4 are very important because they allow content based

interactivity. Objects are coded independently but grouped together to form a scene.

Interactivity is enabled by the representation of a scene as a collection of objects or

the composition. When the viewer selects or points to an object, actions that are

predefined for the object can occur. An object in MPEG4 is a component of a scene or

the final audio-video presentation. Objects can be simple or compound.

=Ur pVQw--'- ,
d e 0 i ,

conrposwr ;- .*- . 'r-- corqwsl&r ;;O

pmjoction f ..-
.-' plans : ..--

' CI !

I

:

Figure 9 - An exarnple of an MPEG-4 Scene

(2) MPEG4 allows the coding of objects as arbitrary shaped images or rectangular

images, Previous standards c m code only rectangular area. In MPEG4, arbitrary

shapes are generated by coding a rectangular area and then adding a shape layer or

mask which defines the exact shape of the video object-

(3) MPEG4 provides different coding methods (also called tooiboxes) for coding

different types of material. Cornputer generated or synthetic material can be coded

using methods that are more appropriate to that format- MPEGl and MPEG2 only

addressed coding of natural material such as video or film. Normal video objects are

usuaily coded using DCT based compression methods in MPEG4 sirnilar to those

used in MPEGl and MPEG2. The DCT based coding rnethods are optirnized for

natural images that contain many shades of colors and smooth variatims that

normdly occur in the red world. Computer generated images c m have very few

colors and many sharp transitions. DCT based coding methods do not compress these

types of images. MPEG4 provides alternate methods of coding images that are

computer generated- These objects are calIed synthetic objects to differentiate thern

from natural video and audio objects. Since computer generated objects can be

created from sending commands to a rendering engine, one of the most efficient

methods of compressing cornputer generated objects is to compress the commands to

the rendenng engine such as a text imager, 2D and 3D graphics rendering engine or

sound generators.

(4) Because of the independent coding of objects in MPEG4, a means to combine objects

in a scene is required. This is called composition and applies to both audio and video

objects. Composition is the layering of objects to produce the final displayed image.

Since objects can overIap depending on their size and position, it is required to

determine which object is visible at any point in the displayed image. Further more, if

a gray scale mask is used, the object being composited allows some of the underlying

objects to be visible as well. MPEG4 dlows 3D Srne transformations on each

object before it is cornposited. This means that each object may be translated, scaled

and rotated in 3D space before composition. The affine transformation parameters for

each object cm be modified during the presentation. composition is defined by a

scene description object in the MPEG4 bitsueam. The scene is expressed as a

hierarchy of nodes. which represent objects. The scene specifies audio-video

composition as well as reIationships between objects and the actions that can occur

for each object.

(5) MPEG4 is designed to be an evolving standard. As new methods of coding are

developed, they can be integrated in existing MPEG4 decoders so that they can

decode new matenal, coded using the new algorithms.

(6) MPEG4 broadens applications from mainly two-way videophone appliances to a

number of conceivable video communication or video entertainment devices.

(7) Since MPEG4 specifies the coding of naturd and synthetic audio-video sources as

independent objects, additional objects can be added to the mainstrearn without

requirïng the decoding and re-encoding. Ail the objects are combined in the decoder

to form the final audio and video presentation.

We note that the novelty of MPEG4 resides in object based techniques.

transformations are among appropnate toolkits to achieve object based processing.

Fractal processing is also an appropnate candidate for coding synthetic objects in a scene.

Wavelet coding is used to code texture information. In the next section, we present visual

coding techniques, which are introduced in MPEG4 standard.

17 Coding of Visual Objects

Visual objects cm be either of natural or of synthetic origin. Different coding techniques

are employed for different visual objects. In this section, we show that Our proposed

candidate algorithm encompasses a majority of coding techniques in MPEG4 standard-

25.1 Natural Textures, Images and Video

The tools for representing natural video in the MPEG4 visud standard aim at providing

standardized core technologies allowing efficient storage, transmission and manipulation

of textures, images and video data for multimedia environments.

The visual part of the MPEG4 standard wiIl provide a toolbox containing toois and

algorithms bringing solutions to natural visuai objects. It wiil give an efficient

representation of visual objects of arbitrary shape, with the goal to support so-called

content-based functionalities. Next to this, it will support most functionalities already

provided by MPEG-1 and MPEG-2, including the provision to efficiently compress

standard rectangular sized image sequences at varying levels of input formats, frame

rates, pixel depth, bit-rates, and various levels of spatial, temporal and quality scdability.

Support for Conventional and Content-Based Functionalities

The MPEG-4 Video standard will support the decoding of conventional rectangular

images and video as well as the decoding of images and video of arbitrary shapes.

The codùig of conventional images and video is achieved similar to MPEG-1/2 coding

and involves motion predictionlcompensation foiiowed by DCT based texture coding. We

recail fiom section 2.4 that fiactai/affine processing employs a super set of these

operatiom.

Global motion compensation is based on the transmission of static "sprite" which is a

possibly large still image describing panoramic background and motion vectors. For each

consecutive image in a sequence, only 8 global motion parameters describing camera

motion are coded to reconshuct the object. These parameters represent the appropriate

affine transform of the sprite transmitted in the first fkme.

Coding of Textures and Still Images

Efficient Coduig of visual textures and still images is supported by the visual texture

mode of the MPEG4. This mode is based on wavelet transform that provides very high

coding efficiency over a very wide range of bitrates. Together with high compression

eficiency, it aiso provides spatial and quality scalabilities (up to 11 levels of spatial

scalability and continuous quality scalability) and also arbitrq-shaped object coding.

The wavelet formulation provides a scalable bitstream coding in the form of an image

resolution pyramid for progressive transmission and temporal enhancement of still

images. The coded bitstream is also intended for downloading the image resolution

hierarchy into the terminal to be formatted as 'bitmap texture' as used in 3D rendering

systems. This technology provides resolution scalability to deal with a wide range of

viewing conditions more typical of interactive applications and the mapping of irnagery

into 2D and 3D virhial wodds.

ScalabIe Coding of Video Objects

MPEG4 supports the coding of images and video objects with spatial and temporal

scalabiiity, both with conventional rectan,@ar as well as with arbitraiy shape. Scdability

refers to the ability to o d y decode a part of a bitstream and reconstruct images or image

sequences with:

reduced decoder complexity and thus reduced quali ty ;

reduced spatial resolution;

reduced temporal resolution;

equal temporal and spatial resolution but with reduced quality.

This functionality is desired for progressive coding of images and video over

heterogeneous networks, as well as for applications where the receiver is not willing or

capable of displaying the full resolution or full quality images or video sequences.

2.5.2 Synthetic Objects

Synthetic objects f o m a subset of the larger class of coniputer graphics such as:

a synthetic description of human face and body

=, The shape, texture and expressions of the face are generally controlled by the

bitstream containing instances of Facial Definition Parameter (FDP) sets

and/or Facial Animation Parameter (FAP) sets. Upon construction, the Face

object contains a generic face with a neutral expression. This face can already

be rendered.

animation streams of the face and body

a The rendered face is capable of receiviag the animation parameters from the

bitstream, which wdl produce animation of the face including expressions,

speech, etc. Body Animation is being designed into the MPEG4 fabric to work

in a thoroughly integrated manner with facehead animation,

static and dynamic mesh coding with texture mapping

A 2D mesh is a partition of a 2D planar region into polygonal patches. The

vertices of the polygonal patches are referred to as the node points of the

mesh- MPEG4 considers only triangular meshes where the patches are

triangles. A 2D ciynamic mesh refers to 2D mesh geometry and motion

information of al1 mesh node points within a temporal segment of interest. In

2D mesh based texture mapping, triangular patches in the current frame are

deformed by the movernents of the node points into triangular patches in the

reference frame, and the texture inside each patch in the reference h e is

warped ont0 the current frame using a parametnc mapping, defmed as a

fuaction of the node point motion vectors. For triangular meshes, affine

mapping is a common choice. Its linear form implies texture mapping with a

low computational complexity. Affine mappings can mode1 translation,

rotation, scaling, reflection and shear, and preserve straight lines. The degrees

of freedom given by the three motion vectors of the vertices of a triangle

match with the six parameters of affine mapping. This implies that the original

2D motion field c m be compactly represented by the motion of node points,

Corn which a continuous, piece-wise affine motion field can be reconstructed.

At the same time, the mesh structure constrains movements of adjacent image

patches. Therefore, meshes are well-suited to represent mildly deforrnable but

spatidy continuous motion fields. The 2D object-based mesh representation

is able to mode1 the shape (polygonal approximation of the object contour)

and motion of a VOP in a unified M e w o r k , which is also extensible to 3D

object modeling when data to constnict such models is available. 2D mesh

modeiing may be used for compression if one chooses to fransmit texture

maps only at selected key h e s and mimate these texture maps (without

sending any prediction error image) for the intermediate -es. This is also

known as self-transfiguration of selected key frames using 2D mesh

information.

Texture Coding for View Dependent applications

The view-dependent scaiability enables streaming texture maps, which are used

in realistic virtual environments. It takes into account the viewlng position in

the 3D virtud world in order to transmit only the most visible information. Only

a fraction of the information is then sent, depending on object geometry and

viewpoint displacement. This fraction is computed both at the encoder and at

the decoder. This scalability can be applied both with Wavelet and DCT based

encoders.

2.6 Summary

We have summarïzed various categories of operations in image and video processing

followed by the derivation of generic operations for visual processinp. Visual media

processing involves operations to enhance, restore, cornpress and andyze images and

video sequences. Image enhancement employs locai correlation between adjacent pixels

to enhance the image quality. In image restoration, it is assurned that the degraded image

is a convoIved version of the original image by a degradation function pIus additive noise.

Image compression techniques decrease the nurnber of bits, which represent the image.

Semantic correlation of pixels is used for image and video understanding in imagehide0

analysis. We then present al1 operations in imagehide0 processing. Our goal is to derive

the fundamental operations and also a candidate algorithm to represent the majority of the

operations in visual domain. Operations in visud processing are classified as folIows:

Point operations

Local operations

Line operations

Geometric operations

Block operations

Image operations

The principal task in al1 of different categories of image operations is to exploit the high

correIations present in the visual data using various operations. Fractd processing has

been recently introduced to exploit the corre!ation and self-similarities within an image or

a sequence of images. It is clearly shown in chapter 6 that fractal processing encompasses

a majority of visual operations. FBP (Fractal Block Processing) is a computationally

intensive procedure and involves operations such as, surnmationlaccumuIation, image

additiodsubtraction. translation, stretching, shifiing, scaling, rotation and pattern

rnatching. Hence, we have chosen FBP as the candidate dgorithm for the design of the

generic video processing eiement which is detailed in chapter 6 of this thesis. Finally we

have introduced novel techniques in the MPEG4 standard to show the validity of our

proposed categorization and also to dernonstrate the irnpkmentations of affine

transformations. We now present enabling technologies for realization of Fractal Engine,

in VLSI (Very Large Scaie Integrated Circuits).

Rh- \

3 Review of VLSI Technology

Multimedia hardware architectures are increasingly emerging due to advaxed VLSZ

technology. Today's multimedia architectures are able to handle most of the required

processing tasks for al1 of the media including image and video. VLSI technology[l] has

grown exponentially in the last two decàdes. Powerfùl and integrated multimedia system

irnplementations are now feasible due to recent advances in the VLSI area. The design of

VLSI architectures for video processing is faced with a number of key choices. These

include Integration (single chip VLSI, LSI, etc.), Fabrication Process (full custom, semi

custom, etc.) and Design Tools (schematic capture, hardware description languages, etc.).

We note that an efficient hardware design requires careful investigation of the state-of-

the-art technology and choosing the tools that best suit the requirements of multimedia

implernentations-

3.1 lntegration

VLSI (Very Large Scale Integration Circuit) is the technology of integrating million

transistors ont0 a single device. The systems that required hundreds of discrete ICs in the

past cm now be designed into an IC that is about JA inch square. We note that it is not

only the count of gates that determines the cost, but the number and types of ICs

ernployed and the interconnection required to implement a digital circuit. Increased

integration cm offer reduced production costs as a result of high packing density, low

system cornponent cost and simplified assembly. However Iower power dissipation,

higher switching speeds and more system reliability are the other advantages.

54

Cur~ent ly~ chips with sub-micron features are quite common. For example, the 200-MHz

Pentium Pro[58] and PowerPC 604e[59], [60], [61] have circuit features measuring only

0.35 micron across. The delivery of devices composed of 0.18-micron is now emerging.

The number of transistors that designers can pack on a chip has increased at a rapid rate.

For example, the logic density in the x86 processor family has increased 20 times in a

span of 10 years as shown in the Figure 10.

The basis of these ever-higher logic densities is increasing levels of sophistication in

photolithography[62]. Current Iithographic processes employ a mercury light source

whose 0.365-micron wavelength creates the 0.35-micron features. Successfully achieving

the smaller 0.25-micron feature size requires the utilization of a krypton-fluoride

ultraviolet laser that has a 0.248-micron wavelength. Smaller features are handled by the

use of argon-fluoride Iasers with a 0.193-micron wavelength. However, achieving 0.1-

micron feature size requires optical trickery, which involves masks that phase-shift the

light to improve the resolution. Building even-smailer chip features requires using light

sources with even shorter wavelengths. In doing so, chip designers have traversed the

electromagnetic spectrum from visible light, to ultraviolet light, and finally into X-ray

tenitory.

Since multimedia processors require large number of devices to be packed onto a single

chip, this high integration technology is crucial to support the development of chip-sets

dedicated to this type of applications.

Figure IO- IC transistor counts.

3.2 Fabrication Process

Designed chip-sets can be fabricated using either a full custom or semi-custom design

techniques[63]. The different choices include, full custom systems, cell-based systems,

gate arrays and field programmable logic devices. The 1 s t three options are usually

considered as serni-custom techniques and are distinguished by the name ASIC

(Application Specific Integration Circuit). ASICs combined with new design tools (will

be discussed in 3.3), have transformed the VLSI technology and made it possible fo-r large

numbers of designers to develop integrated circuits tailored to their specific appiication.

Multimedia products are therefore made feasible due to this enabling technology. In this

chapter, we discuss different options in hardware design.

3.2.1 Full Custom Design

Full custom design involves hand crafting of the chips at the silicon level and therefore

demands a considerable amount of ski11 and experïence on the part of the designer. Every

individual transistor and connecting track has to be drawn in terms of basic geometric

shapes (polygons) corresponding to features that will eventually be reproduced on the

various mask Ievels for the silicon fabrication process. A typical process may require ten

or more such masks to be produced. Drawing of the polygons is usudly achieved using a

graphics editor on a cornputer-aided engineering (CAE) workstation and is inevitably

time consuming and error prone. The designer must observe a set of geometric design

rules for the particular process that he/she is planning to use. At some stages it is

necessary to verify that the Iayout that has been drawn confonns to these d e s . When the

Iayout of a ceIl is complete it is simulated at the transistor level. This process will include

computation of track capacitance that is extracted from the physicd description to yield

accurate performance estimations. These steps are then iterated until satisfactory

performance is achieved. Full custom design offers by far the greatest degree of fiexibility

of any of the techniques available- It gives the designer total freedom to decide what to

integrate ont0 the chip (e-g. rnixed digital and analog, power devices, special-purpose

devices with integrated sensors). However, the time and effort involved can arnount to

many man-years and is justifiable only if production volumes exceed 100,000 units.

Pentium MMX with extended multimedia instruction set is an example of this

technology. We note that, the cost and the timing of this approach is not justifiable for Our

researc h.

3.2.2 Gate Array and Celi-Based Design

Gate a r r q design offers the advantages of a custom approach but yet removes the need

for labor-intensive transistor-level considerations, principally performance verifkation

and physical layout, frorn the customer. To achieve this the silicon vendor carefully

predetemines and characterizes a simple logic cell, typically having the potential to

realize a few basic gates, and then repeatedly locates instances in a regular matrix

covering most of the chip area. The gate array wafers are then fabrïcated as far as the

interconnecting layer, typically representing 90% of the whole process; it is then lefi to

the discretion of the user to determine a suitable pattern for a specific application. A

number of architectural forms are available, being characterized by the pattern of ceil

layout and the amount of silicon explicitly devoted to interconnection paths. The gate

array market is dominated by CMOS devices, which typically offer a few thousand gates

with toggIe rates up to about 350 MHz. Recent innovative families offer as many as

5,00,000 equivalent gates together with approximately 0.25 ns delay, and consequently

the gate array technique now offers a high degree of versatility. To summarize, gate arrays

achieve the objective of reducing design time compared to full custorn devices, and

require only a reduced customized mask set. Consequentiy they are appropriate for

relatively small production volumes, typically a few thousand; in particular, prototyping

using this medium is often attractive. Tumaround time for designs is typically a few

months and a sirnilar period is required if corrections are necessary. Consequently the

importance of 'first-time correct' design is paramount. If suficient turnover is

anticipated, then time delays from completing a design to receiving a chip are possibly the

major drawbacks associated with gate array design.

5s

Cell-based IC design can be viewed as an attempt to obtain the best of both worlds (full

custom and gate arrays). It offers the ease of design of gate arrays while retaining some of

the density and performance advantages of full custom design. As with the gate array, the

primary objective is to elirninate the need for the engineer to hand craft circuitry into

silicon at the individual cornponent or transistor level. This is achieved by making

available to the chip designer a range of predefined and pre-characterized functional cells

(collectively referred to as a ce11 library) which cm be used as building blocks to

construct any desired circuit. Cells can be drawn from the library as required and placed

virtually anywhere on the silicon. The ability to optirnize the cells represents one of the

major advantages that ceII-based systems have over gate arrays. We recaII that the

components in gate array cells are fixed in size and position by the manufacturer and

consequently there is little or no scope for optimizing the rnanner in which these

cornponents can be connected together to realize a particular function. It is invariably the

case that a given function implemented as a gate array ce11 will occupy a larger silicon

area and have infenor performance compared with a hand crafted ce11 in a ce11 library. In

tems of tum-around tirne a cell-based chip will demand equivalent effort to that required

in fabncating a full custom chip. Compare this with the situation for gate arrays where

almost one custornized mask wiil normally be required to commit the array to a specific

task. We note that in Our project, a standard ce11 based technology of BiCMOS -8 micron

is our primary selection for VLSI implementations of dedicated units. Fortunately this

technology is available through CMC for Our Lab.

3.2.3 Field Programmable Gate Arrays (FPGA)

The major disadvantages of gate array and cell-based design are the Ume taken to design

and fabricate such a chip and the necessity for first-time correct solutions to minirnize

delays and costs. An attractive alternative allows for customization to occur in the field

when al1 masking stages are complete, Programmable logic devices (PLDs) offer such a

facility. They belong to the family known as "field programmable serni-custom". They

consist of programmabIe logic gates that are connected through eiectronic fuses

(switches). Programming a fieId programmable device rneans blowing the fuses (turning

on the switch) d o n g the path that must be disconnected (connected). Like traditional gate

arrays, FPGAs implement thousand of Iogic gates. Field programmability is obtained at a

cost in logic density and performance. FPGA capacity trails mask programrned gate array

capacity by a factor of 10 and its speed trails mask prograrnrned gate arrays by a factor of

three,

On the other hand, a user can program an FPGA design in a few seconds or minutes,

rather than the weeks or months required for the production of mask-programmed parts.

Hence, FPGA design is a low risk design which makes FPGAs usehl for rapid product

development and prototyping. In addition, FPGAs can be fully tested after programming

and hence user's designs do not require test program generation, automatic test pattern

generation, and design for testability. Most FPGAs are now re-programmable and in the

case of a requirement for modifications, they can be re-prograrnmed within a few

seconds.

Many kinds of programmable Iogic products are referred to as FPGAs. Here, we use a

broad definition of the term, including not only devices with intemal structure sirnilar to

gate arrays, but also devices with interna1 structure similar to a collection of Pms. The

term FPGA is ofien reserved for the former category, the latter are also called cornplex

PLDs (CPLDs) or programmable multilevel devices (PMDs). Three prograrnming

technologies are cornmonly used for FPGAs. Each has associzted area and performance

costs, and the device architectures reflect those costs. Thus, we can categorke FPGAs as

foIlows:

Cornplex PLD (CPLD)

In a CPLD architecture, the user creates logic and interconnections by programming

EPROM (or EEPROM) transistors to form wide fan-in gates. A CPLD consists of a few

function blocks, each similar to a simple two-level PLD. Each function block contains a

PLD AND-array that feeds its macro-cells- The AND-array consists of a number of

product terrns, The user prograrns the AND-array by turning on EPROM transistors that

allow seIected inputs to be included in a product term. A macro-ceII includes an OR gate

to cornpiete the two-level AND-OR logic and may also include registers and an y0 pad.

SRAMFPGAs

In an SRAM-progarnmed FPGA, programming of the device is stored in static mernory

cells. In SRPLM FPGA, logic functions are implemented as Iookup tables made from the

memory cells, with function inputs controlling the address lines. Each lookup table of 2n

memory cells implements any function of n inputs. One or more lookup tables, combined

with flip-flops, form a configurable logic block (CLB). The CLBs are arranged in a two-

dimensional array with interconnect segments in channels similar to gate array

architecture. SRAM FPGAs are inherently reprogrammable and can be updated in the

system, providing designers with new design options and capabilities, such as logic

updates that do not require hardware modification and time-shared virtual logic. Xiiinx

FPGAs are typical exarnple of an SRAM FPGA.

Antifuse FPGAs

An antifuse is a two-terminal device that, when exposed to a high voltage, forrns a

permanent short circuit between the nodes on either side. Individual antifuses are srnail,

so an antifuse-based architecture cm have hundreds of thousands or millions of antifuses.

To simplify the architecture and prograrnming , antifuse FPGAs usualIy consist of rows

of configurable logic elements with interconnect channels between them, rnuch like

traditional gate arrays. Typical exarnple of Anti-fuse FPGA is Actel FPGAs.

3.2.4 Selected device

In our design process, we employ FPGAs in the implementation of control unit of the

device which will bnng flexibility and prograrnmability to Fractal Engine. The selected

target architecture is Altera / Xilinx SRAM FPGAs-

3.3 Design Tools

One of the important enabling technologies for successful ASIC development is having

the proper design tools and a methodology that rninimizes design errors at any level. In

this section different design tools are studied with an emphasis on logic synthesis. Logic

synthesis is the design tool to anaiyze, veri@, simulate and synthesize logic designs from

a behaviord description to silicon implementation-

Hardware description lanpages[64] have s h o w to be essentid parts in Logic synthesis.

The rapid advances in integrated circuit technology over the past frfteen years have dnven

the need for more capabIe design tools, and as those tools have developed, they in tum

have made it possible to design larger and more complex ICs- In the 1980s, a number of

people within the electronics design community realized that conventional design tools

and methods would be inadequate to handle the growing complexity and size of

electronics systems. Two of the major advances to overcome that problern are the

development of Hardware Description Languages (HDLs), and their use with powefil

Iogic synthesis systems.

Logic synthesis is a process that is primarily intended to be used in the design of digital

ICs, and, in particular, ASIC devices such as gate arrays. Logic synthesis or design

automation is the automatic synthesis of a physical design from some higher-ievel

behavioral specification which is much faster than rnanual design. It reduces the design

cycle considerably, and d o w s the designer to experiment with various designs to obtain

the optimal sizekpeed trade-off for a given appkation. Furthermore, as long as the

original specification is verified and simuiated, a synthesized circuit should not require

either verification or simulation. High level behavioral specifications (the input to logic

synthesis tools) are in generai easier to write and to understand (and modify), less error-

prone, a d faster to simulate. Hence, they considerably facilitate the design of complex

systems. Today, synthesis is a growing industry, and commercial implementations of

synthesis systems are wideiy used for production-Ievel design of digital circuits.

Different levels of Logic synthesis are as follows:

High-level qnthesis: converts a high levelr program-like specification of the behavior

of a circuit into structurai deign. in terms of an interconnected set of Register-Transfer

leveI (RTL) componen ts, such as ALUs (Anthmetic-Logic Unit), registers, and

multiplexors.

Logic synthesis: converts a structural design into optirnized combinational (or

sequential) logic, and maps that logic ont0 the library of available cells in a particular

technology,

Layout synthesis: converts an interconnected set of ceUs into the exact physical

geometry (layout) of the design. It involves both the placement of the cells as well as

their connection (routing).

An integrated synthesis system that covers al1 three synthesis levels is often referred to as

a silicon compiler. Such a tool wouid allow the design of electronic circuits from a high-

level, behavioral specification with little or no human intervention-

Hardware Description Languages (HDLs) [64] are used to descri be the behavioral

description of a circuit which is considered as the input to a high-level synthesis tool.

Arnong d i of HDLs, VHDL (VHSIC HDL)[32] has emerged as a standard for hardware

specification and simulation. The development of VHDL was sponsored by the US

government and the Air Force dunng the 1980s. h 1987, the VHDL language was

adopted by lEEE as a standard hardware description language and has since achieved

wide spread industry acceptance. The VHDL language has powerful capabilities that have

several possible functions depending on its application. The language c m be used to

descnbe and speciQ a varïety cf electronic systems, at levels of abstraction ranging fiom

pure behavioral down to gate and switch level details. In addition to the description

capability, systems modeled in VHDL c m aiso be simulated at any of the Ievels in order

to verify their functional operation and performance parameters. A number of very

capable commercial VHDL simulators are available in the CAE marketplace. Finally, the

VHDL description of a desired logic function c m also be used to drive the logic synthesis

process, with the constraint that the VHDL code be part of a fairly flexible but non-

standardized subset of the language.

3.3.2 IC Design Methodology

Two conflicting forces drive the IC design process: circuit qudity and time to market. We

recail that semiconductor technology is undergoing exponential improvements, hence,

rather than a single stable IC design methodology we see rapidly changing paradigrn

shifts as shown in the Figure 1 1.

Transistor-Level Layout:

The premier IC design methods were focused on transistor level design coupled to layout.

in this approach transistor level layout entry and transistor level simulation are employed.

1 990's
(1 O6 gates)

1980's
(1 O5 gates)

1970's
(103 gates)

(HDL-levcl Design)

U

S ynthesis

Place & Route

Netlist E3

Figure 1 1 - Evolution of IC Design Methodology

Gate-Level Entry:

Transistor level design is a time consuming process. The introduction of Gate Arrays

(GAs), standard cells and Field Programmable Gate Arrays (FPGAs) brought comparable

benefits to the IC designers. These IC technologies are supported by automated place-

and-route systems. These systems take a net-list of cells from the library as input and

automatically place and route them in rows and columns.

The utilization of standard cells, GAs and FPGAs in this approach raised the IeveI of

abstraction from the transistor level to the gate level. The primary design entry method is

gate-Ievel schematic entry by means of a schematic editor. Other key tools in this

methodology are: gate-level simuiation, automatic place-and-route tools and layout

editors.

Synthesis Based Design

We recdl that the two important inventions of HDLs and logic synthesis systems

accomplished this approach of synthesis based design. We now present different steps in

synthesis based design process,

I - Behavioral Modeling:

For complex ICs, such as a high-performance microprocessor, a behavioral model of the

IC is fxst developed- Behavioral modeling proposes modeling the functionally correctly,

but without considering exact dock-cycle by dock-cycle behavior- This behavioral mode1

can be expressed in a hardware description language such as VHDL.

2. Simulation and Testing:

The ability to fully test a behavioral model of a design is achieved by VHDL simuiators-

The code for the VHDL descriptions and test patterns wiIl normally be typed as ASCII

text files which are the input source for the VHDL simulation tools. The reason that this

c m be accomplished so quickly is that the synthesizable VHDL code is written at a fairly

high level compared with the gate by gate details required on a schematic, and this itself

takes much less time. Hence, with VHDL, the simulation begins irnrnediately which

enables to find design problems in early stages.

3- Logic Synthesis:

Although synthesis is a fairly autornated process, additional details must be provided to

the tools. First is the decision of which ASIC vendor wiII be used. Hence, the vendor

specific library of cells and parts are required in order to generate the gate level design-

This library normally contains the details of individual gate delays and the rules for

computing loading delays due to inputs and estimated capacitance and wire length. The

second input to the synthesizer is information that is used to constrain the design based on

designer's requirements. This typically includes the dock rate and puIse width,

assumptions about operating temperature, voltage, and process variations, output loading,

and lirnits on permissible propagation delays through critical paths. The outputs of the

synthesis tools typically include a vendor specific net-kt, reports on timing, gate count

and area, critical paths and plotted schematic diagrams. Figure 12 shows the detailed

design flow for two different methods.

Schematic l Entr-Y l
Genention l NediSc l
Gate Level

Logic Simulation i

Coding I"i
Simulation s

Logic
S ynthesis

+
Conventional Method VHDL S ynthesis Method

Figure 12- Cornparison of Design Flows

In this thesis, our goal is to obtain a VLSI system, which meets the performance and

specification requirements for rd-time implementation of multimedia applications. To

achieve this objective, we have chosen to implement al1 hardware designs in behavioral

description in early stages using VHDL. Primary validation of functionality is assured by

VHDL simulators. Logic synthesis is then applied and vendor specific net-list is

generated (as shown in Figure 13). Real parasitic values, routing and propagation delays

68

are then back-annotated and final simulation assures the functionality of the design. The

target VLSI technology is standard ce11 based for more critical modules and FPGA for the

programmable control unit.

Figure 13 - VLSI Design Process

In the next chapter, architecture design trends are discussed in order to select the best

strategy for Fractal Engine.

3.4 Sumrnary

The design of VLSI architectures for video processing is faced with a number of key

choices. These include Integration (single chip VLSI, LSI, erc.), Fabrication Process (full

custom, semi custom, etc.) and Design Tools (schematic capture, hardware description

languages, etc.). High-density VLSI chip-sets require new design automation systems.

They can be fabricated using either a full custorn or semi-custom design techniques. The

difTerent choices include, full custom systems, ce11 based systems, gate arrays and field

programmable logic devices. In Our research, we employ ce11 based system design

techniques for dedicated uni& and field programmable gate arrays for programmable

units-

Logic synthesis using VKDL entry codes is Our main design tool which minimizes design

errors at any Ievel. Logic synthesis is the design tool to anaiyze, venfy, simulate and

synthesize logic designs from a VHDL behavioral description to silicon implementation.

In addition to hi& density and fast VLSI systems, multimedia systems require new

advanced techniques in parallel processing. We present different aspects of multimedia

hardware architectures in the next chapter. Our goal is to find the best design scheme for

Fractai Engine.

4 Design Trends in Multimedia Architectures

Multimedia system design presents challenges from the perspectives of both hardware

and software. Each media in a multimedia environment requires different processes,

techniques, algonthms and hardware implementations.

Multimedia applications require efficient VLSI irnplementations for various media

processing algorithms. Ernerging multimedia standards and algorithms will result in

hardware systems of high complexity. In addition to recent advances in enabling VLSI

technology for high density and fast circuit implementations (discussed in Chapter 3),

special investigation of architectural approaches is also required. The important issues in

multimedia hardware design are listed below:

Parallelization and Granularity: MJMD, SIMD, coarse grain such as multiprocessor

architectures and fine gain like superscalar and VLIW[87] architectures, etc.

Processor (datapath) choices: DSP, RISC and CISC[65].

Memory Interface Design: Support for EDO-DRAM, S D M , VRAM, RDRAM,

etc.

Flexibility: Dedicated or programmabIe.

In this chapter, we investigate different architectures and categorize them. We note that

some categories are not restricted to multimedia processors. M e r the review of all

architectures, we andyze advantages of each technique to be empioyed in Fractal Engïne.

In general, there are two different approaches for mukirnedia architecture design (Figure

14) as of any core processor narnely: Dedicated and Programmabie. Combination of

dedicated and programmable modules in a multimedia architecture offers a compromise

between the two strategies as an adapted architecture for multimedia purposes.

Figure 1 4- Multimedia Architecture Trends

A function specific (dedicated) implementation is a direct mapping of the multimedia

processing tasks to hardware modules optimized to execute the specific functions.

Matching of the individual hardware modules to the processing requirements results in

area efficient implementations. Multimedia programmable processors consist of

operational and memory modules, which enabIe the processing of different tasks under

software control. Combination of dedicated and programmable modules in a multimedia

architecture offers a compromise between the two strategies. As shown in Figure 14, the

architectures range from dedicated and adapted modules to fully programmable media

processors. A brief description of each category is presented in the following sections.

4-1.1 Dedicated Architectures

Based on available technologies, required computational achievement, production

quantity and the target algorithm the use of dedicated implementations could become the

best choice. For high volume consumer products, the optimization in silicon area and

timing of the device, which is brought by dedicated architectures, decreases the

production cost. Ako, designing an specific function architecture for a well defined and

established standard idgorithm is the best dternative- Dedicated processors differ in terms

of the ability of computations. They range from a small module for a specific srnaIl task

such as a DCT chip to a complete MPEG-2 encoder, which are discussed in the following

sub sections.

4.1.1.1 Dismmbrcted (Chip-Set) Implementation

In a chip-set, each major video processing module is configured as a separate chip such as

a DCT chip, Kuffman coder chip, motion estimator chip, etc. Each module is designed by

a dedicated hardware architecture. In a distributed implementation, the designer is

responsible for the interconnection of the chips. The advantage of this approach is the

flexibility in selecting and connecting the different modules. The disadvantage is the

increase in area and therefore the size of the system- A typical distnbuted implementation

is shown in Figure 15. LSI Logic's L64735 DCT Processor Chip and L64765 Color and

Raster/Block Converter Chip[89] are good examples of this approach.

Figure 15- Distnbuted implementation example.

In this approach the whole system is designed in a single chip (or chip set) which results

in a low power dissipation and reduced silicon area. The main disadvantage of this

approach is the lack of the flexibility. Figure 16 shows a typical unified implementation.

An example of this approach is the C-Cube CL45 1 [go].

Figure 16- Unified implementation exarnple.

4.1.2 Adapted Architectures

The idea of designing a more flexible architecture for multimedia applications is

necessary because of the increasing number and variety of multimedia applications.

Dedicated architectures fail to respond to any change in the implemented algorithm. Most

dedicated architectures for multimedia processing applications achieve an increase in

flexibility by an adaptation of a programmable architecture to the algorithmic

requirements. Visud media being the most complex media in a multimedia environment,

has been the main target of architecture adaptation. Graphics and video chips have been

specifically designed the details of which are now discussed.

4.1.2.1 Graphicd3D Accelera fors

The graphics accelerator chip (or chip set) is designed to perform computationally

intensive tasks by providing hardware acceleration for the execution of Iow-level

graphics operations. Hence, they often function as a coprocessor in workstations and

personal computers, Newer chip sets often include hardware assistance for displaying 3-D

data and video strearns. A typical system with a graphics accelerator is shown in Figure

17. An example of this category is the ViRGE/VX by S3 [92],

4 * f bus
4 b

Fra rn e
Bu ffer

Gm:hïa =' VWM M' DAC wi
Accclrraror DRAM

Figure 17- A typical graphics accelerator system

4.1.2.2 Video Processors

Video processing tasks. such as DCT, motion estimation and variable block coding,

demand a high performance processor. Most processing units accomplish higher speeds

with the aid of a video coprocessor, which is capable of execution of above-mentioned

tasks. Recently, several video processors have appeared in the literature including the

VCP by 8x8 [91]. Figure 18 illustrates the utilizatioi? of a video processor in a complete

system.

Composite
Vico Source
WCR laser drrk
. a m e n -)

Vidco
Decoda e. LI Vidco

1 , CODEC ,
Source

(CD. Hard dirk . modem. -1

Figure 18- Video processor implementation

4.1.3 Programmable Architectures

In contrat to function specific approaches with limited flexibility, programmable

architectures implement different tasks by software control. The main advantage of

programmable architectures is the increased functionality. The design of a programmable

multimedia processor could be based on the design of a general purpose architecture or

perforrned independently for multimedia applications. In the former case, multimedia

capability add-ons are realized either in extending the instruction set or adcling

multimedia hardware units. In the latter approach, a processor is specifically designed for

multimedia purposes. These alternatives are discussed in the following sub-sections.

4.1.3.1 General Purpose Processor with Extended Multimedia Instruction Set

Adapted architectures Iike graphics and video cards in workstations and personal

computers have the disadvantages of increased cost to the end user. General purpose

processors including RISC and DSP have significant computing power but are not

optimized for multimedia processing. Therefore, there is a strong desire arnong computer

manufactures to enhance existing architectures so that multimedia processing (video and

graphics processing) is intepted into the next generation processors just as 2D graphics

processing has been integrated into today's architectures. Extended multimedia

instruction set which is inuoduced by Intel in MMXTM[27] processon is an example of

this approach.

4.1.3.2 General Purpose Processor with Multimedia Hardware Units

The previous approach does not optimize the hardware for multimedia applications with

highly intensive computations. By using the enabling V U 1 technology the alternative

solution is to add dedicated multimedia hardware units to the processor. The MediaGX

processor [93] is an example of this approach- MediaGX not only executes x86

instructions using a Cyrix CPU core. it aiso acts as a virtual video card resulting in a

highly integrated device with a lower cost and supenor performance.

4.1.3.3 Media Processors

Media processors are a new category of Iogic devices defined as software-programmable

processors that are dedicated to simultaneousIy accelerating several multimedia data

types. Media processors meet three requirements:

1) software-enabled (not a multi-function fixed-function ASIC);

2) dedicated to multimedia (not multimedia extensions to a CPU, like MMXTM);

3) capable of accelerating severai multimedia functions simultaneously (not a DSP).

Recent advances in multimedia technologies such as DVD (MPEG-2 video, Dolby

Surround AC-3TM audio), 3D graphics, home movie editing (MPEG encoding), and

video-phone, involve computationally intense operations and hence make it expensive

and difficult to design a dedicated chip or add-in boards for every new technology. Hence,

media processors are the target of new multimedia designers- A typical system

implementation by a media processor is shown in Figure 19. There are several vendors

now in the process of media processor design, TriMedia[29] by Philips is an exarnple of a

media processor.

Compostte
Video Source
(VCR laser d isk

dam source
(CD. Hard diski

Figure 19- Typical media processor systern

In the following sections, other options in the design of a multimedia hardware

architectures are discussed. We note that these options mostly are applicable to

programmable muhimedia processors and are used widely in today's architectures.

4.2 Processor selection

Programmable architectures have severd units in common. In general, every

programmable architecture consists of data path, memory, input/output and controi path.

Data path is responsible for al1 the operations performed on data for the purpose of data

input, manipulation, analysis, processing and output. Control path is generating al1

necessary signals to control the interaction between modules. There is always a contest

between the complexity of these two parts in the design of a processor. The larger data

path leaves less space for control path and vise versa,

In this section, we investigate the possible options for the design of the processor[65] in a

multimedia system as shown in Figure 20- The categorization scheme is based on the

format of instruction-set, available registers and the structure of data path.

Figure 20- Data path selection

CISC (Cornplex Instruction Set Computing) microprocessors with a more complex

instruction set provide more direct hardware suppoa for a software developer than any

other architecture. Instructions in a CISC processor are very powerîùl in terms of

processing capability and support large numbers of registers and addressing modes.

Control path in CISC processors is more complex in order to execute instructions that are

more powerful. RISC (Reduced Instruction Set Computing) microprocessors offer faster

execution of individual instructions by optimizing the processor for a smaller instruction

set. DSP (Digital Signal Processing) microprocessors are optimized to perform digitai

processing operations such as filtering. Multiply and Accumulate (MAC) instruction

occurs frequently in DSP algorithms and is performed in one cycle in DSP processors.

In eariy stages of microprocessor design, memory sub-systems were far slower than the

processor (this gap though narrower stiIi continues today). In order to decrease thc

mernory access by CPU, engineers designed complex instruction sets. Each instruction

encapsulates several simple instructions, and hence the time spent retrieving the

instruction from memory was reduced. Another design key for CISC processors is

microprogramming. Microcode essentially acts as a translation layer between the

instructions and the data path. In a rnicroprograrnrned systern, the main processor has

some built-in memory (typically ROM) which contains groups of rnicrocode instructions

which correspond to each instruction, When an instruction is retrieved by the processor,

the processor executes the corresponding senes of microcode instructions. Using

rnicroprogramrning, designers are able to update a processor with new instruction sets

without changing the hardware. Since the microcode memory can be rnuch faster than

main memory, an instruction set c m be implemented in rnicrocode without Ioss of speed

over a purely hard-wired implementation.

The Characteristics of instruction sets in CISC processors include:

Register to register, register to mernory, and memory to register commands.

Multiple addressing modes for memory, incIuding specialized modes for indexing

through arrays.

Variable length instructions, where the length often varies according to the addressing

mode.

Instructions which require multiple dock cycles to execute.

Two key features of CISC hardware architectures are:

Complex instruction-decoding Iogic (complex control path)

A small number of general purpose registers.

Anaiysis of the instruction mix generated by CISC shows that about 80% of the

instructions generated and executed uses only 20% of the instruction set. It is an obvious

conclusion that if this 20% of instructions is speeded up, the performance benefits would

be far greater. Further analysis shows that these instructions tend to perform the sirnpler

operations and use only the simpler addressing modes. Essentially, ai1 the effort invested

in processor design to provide complex instructions and thereby reduce the compiler

workload is being wasted. Hence, if only simpler instructions are required, the processor

hardware required to implement them could be of reduced complexity. It therefore

follows that it is possible to design a more powerful processor with fewer transistors and

lower cost. This processor has a simpier instruction set and hence, executes its

instructions in a single clock cycle and synthesizes complex operations from sequences of

instructions. The main features of a RISC processor are as follows:

Al1 instructions will be executed in a single cycle.

RISC processor must include pipelining techniques to segment instructions.

Mernory wiI1 only be accessed via load and store instructions.

Al1 execution units wiil be hardwired with no rnicrocoding.

On-chip instructions and data cache stores often used to decrease memory access.

Operations are register based.

The advent of new processors, which combines the advantages of both RISC and CISC

architectures, has made distinction between CISC and EUX architectures no longer clear-

cut. Now a processor capable of executing multiple instructions in a cycle contains a large

instruction set of over 200 instructions and therefore cannot be considered as a RISC

processor. Typical examples of this category are the PowerPC and Pentium processors.

4.2.3 DSP

DSP processors are optimized for digital processing operations which include multiply

and accumulate (MAC) operations. MAC operation r = b + a . x, requires multiple clock

cycles in CISC and RISC processors, whiIe in a DSP it is executed in one clock cycle.

Some characteristics of a DSP processor include:

Multiple data and instruction buses.

Parallel execution of MAC operation.

Lirnited nurnber of instructions.

Efficient loop control.

4.3 Granularity

The granularity of a muItimedia system defines the size of the individual processing units

by which tasks are executed, The granuIarity affects the number of processing units since,

in any parallel architecture there is a tradeoff between the size and the number of

processors.

Coarse grain systems are formed by a small number of large and complex processing

units, In fine grain parallelism, there is large number of small processors. The

intermediate possibilities between these two extremes can be referred to as medium-grain

pardIelism. Fine and medium grain parallelisms have the potentid of being faster, but

they need more powerfuI control units to divide small tasks between the processing units

eff~ciently. Most of multimedia processors are categorized as fme/medium grain

processors. Each task is executed in parailel at the instruction level arnong several

processing units. We now present the scheme of parallelism employed in these machines

and we will present data Ievel parallelism in section 4.4-

Figure 2 1 - Granularity issue in muItimedia architectures

4.3.1 Instruction Scheduling - Super scaiar

The objective of a super scalar[66]-[69] system is to execute more than one instruction in

each clock cycle. The basic idea is to build a processor whose data path includes multiple

functional units and a modified control path to divide each task among the functional

units and keep them busy as much as possible. For exarnple, a data path is formed by

several adders and a couple of multipliers. Thus the processor is able to perform a number

of additions and multiplications at the sarne time. To achieve this, the control unit should

be able to anatyze a sequence of instructions and decide when some of them can be

executed in parallel. In a super scaiar machine, the central processing unit (CPU)

manages multiple instruction pipelines to execute several instructions concurrently during

a clock cycle.

4-3.2 Instniction Scheduling - VLIW

VLIW (Very Long Instruction Word) processors [69]-1711 achieve instruction level

parallelism through software control in contrast to super scalar architectures. A VLIW

instruction is a long string of bits (few hundred to few thousand bits) that directly controls

every individual processing element in the processor. Each bit could turn on or off a

particular element of the data path. Parallel execution is arranged simply by setting the

instruction bits that activate several functional units at the same time. The hardware does

no instruction scheduling; al1 decisions about controlling the functional units m u t be

made when the program is compiled. Hence, VLIW architectures are data path intensive

and require low control cornplexity.

43.3 Data flow

Data flow architecturesC721 achieve parallelism based on the concept of executing

prograrn instructions as soon as their operands are ready, instead of following the

sequence dictated by instruction code. The data flow architectures could be massively

parallel. Control functions are placed on the data side (data-dliven). The architecture can

elirninate the need for a processor dock and hence the processor has extremely low power

consumption. The architecture itself has power management functions so that it operates

only when data is present in the computational section.

4.4 Data distribution

We recall from Section 4.3 that in fine/medium grain systems, parallelism can be

achieved by either task distribution (instruction level parallelism) or data distribution. In

data distribution pardlelism, the data is distributed arnong several processing units which

perform operations in parallel over the different data segments. Processors are classified

according to how they process the prograrn instruction and data streams, narnely (i) SISD

- Single Instruction Single Data, (ii) MTSD -Multiple Instruction Single Data, (iii) SIMD

- Single Instruction Multiple Data, (iv) MIMD - Multiple Instruction Multiple Data[86].

It is clear that the last two classes ernploy data distribution for parallelism and hence, they

are discussed in this section.

4.4.1 SIMD

In SIMD architecture, al1 processing units execute the sarne instruction in the same

machine cycle over different data. They include vector/array processors, associative and

orthogonal processors. A control unit issues the executicn command to al1 processing

units and hence the control design is simple.

4.4.2 MIMD

A MIMD architecture typically achieves high utilization of al1 processing units. It needs

separate control uni& and instruction mernories per paralle1 unit. Compared to SIMD, the

advantage of MIMD is greater flexibility and higher performance for complex algonthms

with highly data dependent control flow. On the other hand, MIMD requires a

significantly increased silicon area. Additionally, the access rate to the program memory

is increased, since several controllers have to be provided within program data.

4.5 Memory Selection

Multimedia applications with large volumes of data require very large memory

bandwidth. Hence, high density, fast and low power storage is an essential part of each

multimedia system. Also, the dock speed in processing units has been increased and a

fast memory is required to match the processinp speed. In order to meet these

requirements, several approaches have emerged recently which increase the performance

of DRAM rnemones. These techniques include extended data out (EDO) DRAM,

synchronous DRAM (SDRAM), Rarnbus (RDRAM) Dram and video (VRAM) DRAM.

Figure 22 - Available DRAM options

4.5.1 EDO RAM

In EDO (Extended Data Out) mernories, output data can be maintained until the next

CAS (column address strobe) fdling edge. This results in continuos mernory accesses.

DRAM has a two-stage pipeline, which lets the memory controller read data off the chip,

while it is being reset for the next operation.

4.5.2 SDRAM

SDRAM (Synchronous DRAM) is another form of rnernory developed shortly after EDO.

Performance improvement of SDRAM is achieved by introducing synchronous operation

to DRAM. Because of being in sync with the processor, it elirninates timing delays and

makes the memory retrievd process much more efficient-

RDRAM is an interface design in order to provide an optimized solution for data transfer

between memory and processor. It adopts a 9-bit data bus, and there is no dedicated

address bus. Instead, packets including both command and address are first sent to the

chip via the Rambus channel- Following the request packets, an acknowledge packet and

a data packet are sent from the chip back to the conuoller- After initia1 latency, data is

accessed at high speed,

Graphics memory must work very quickly to update. or refresh, the screen (60-70 times a

second) in order to prevent screen flicker. At the same time, graphics memory must

respond very quickly to the CPU or graphics controller in order to change the image on

screen. With ordinary DRAM, the CRT and CPU must compete for a single data port,

causing a data trafic bottleneck-

VRAM (Video RAM) is a dual-ported memory that solves this problern by using two

separate data ports. One port is called the serial access memory (SAM) dedicated to the

CRT, for refreshing and updating the image on the screen. The second port which is the

random-access port is dedicated for use by the CPU or graphics controller, for updating

the image data stored in memory.

4.6 Multimedia Processors

In this section, we introduce example processors for multimedia applications. The

objective is to show the validity of categorizations discussed in this chapter. These

processors are designed for different target applications and one exampIe is selected for

each application. Examples include:

Application

1. Multimedia Video Processor

1 2. Generic Media Processor

3. Generic Media Processor P
1 4. Ernbedded multimedia processor

5. Dataflow Media Processor

6. General Purpose Processor

7. Video codec for studio applications

8, AudioNideo codec (MPEG-2)

9. Graphic and video processor

10. Video conferencing solution codec

1 1. Image compression

estimation

Example:

MVP by Texas

Mpact 2 by Chromatic

TriMedia by Philips

V830EUAV by NEC

DDMP by Sharp

Pentium with MMX technology by

ViP by IBM

VCP by 8x8

-

ICC and MEC by ~ m i
Microsystems

Parallel processing techniques with multiple processing elernents and memory systern,

which typically communicate through an interconnection network are employed in these

architectures.

In 1994, TI introduced the TMS320C80 single chip Multimedia Video Processor

(MVP)[76]. MVP combines, on a single serniconductor chip, multiple hlly

programmable processors with multiple data strearns connected to shared RAMs through

a crossbar network. Each of the independent processors can execute many operations in

parallel in every cycle. MVP has a scalable architecture with an overall performance of 2

MOPS (million operations per second). Figure 23 shows a block diagram of the major

functional blocks of the MVP. The Master Processor (MP) is a RISC processor with an

integral floating-point unit. MP is used pnmady for host interface, sequential processing,

and management of multiple concurrent tasks operating on the entire MVP.

The MW's advanced DSPs have a unique parallel architecture optirnized for image and

video computing. These DSPs have many powerful features not found in conventional

DSPs, such as:

Long instruction words (64 bits): allowing up to 15 RISC-equivalent operations to be

specified in a single instruction.

Single-cycle parallel accesses to the on-chip memory: allowing two 32-bit data

transfers per processor in every cycle, concurrent with data operations.

Three-input 32-bit ALU, which can be optionally split into two 16-bit units or four 8-

bit units.

16x16 multiplier, which c m also be split into two 8x8 units.

Dedicated adders for address generation, which c m aIso be used for arithmetic

operations.

Figure 23- MVP Block Diagram

The MVP also includes 50 K-bytes of on-chip SRAM accessible in a single cycle. The

memory is organized as 25 blocks of 2 K-byte modules and each module used as an

instruction cache, data cache, data RAM, or parameter RAM. An instruction cache is

assigned to the MP and each of the DSPs, while the data cache is available only to the

MP- For the DSPs, the daca RAM serves as the local storage area. While the cache

memory is serviced automatically in hardware by the Transfer Controller (TC) for

transfers to and frorn the external memory, the data RAM needs explicit management and

requests to the TC by the processors in software. Each DSP is associated with 8K-bytes of

on-chip RAM modules, although any processor can perform a single-cycle access to any

data or parameter RAM module via the crossbar. The TC is an intelligent DMA

controller, responsible for interfacing to the extemal memory system. It prioritizes

different types of data transfer requests from the MP and the DSPs, and transfers the data

91

within or between the on-chip and external mernones- It has numerous modes of transfer

operations, such as rnulti-dimensional transfers, table-guided transfers, fill-with- value,

and senal register transfers (SRT)-

The processors and the memory modules are fûlly interconnected through the crossbar

which can be switched at the instruction clock rate (20 ns). Inter-processor

communication protocols such as message passing and pipelining can be easily

impiemented in software, since each memory access takes only one cycle. In the case of

simultaneous access to the sarne location, the crossbar connections ensure that such

contentions are resolved through a pnority-based scheduling.

The M W ais0 integrates the Video Controller (VC) for the generation of video timing

signals and VRAM memory transfer cycles, elirninating the need for extemal circuitry

and thus reducing the board space and the number of chips needed in video systems.

4.6.2 Chromatic Research lMpact 2

The block diagram of Mpact 21771 is shown in Figure 24.

4 PCI Bu8 or AGP

Figure 24 - Mpact 2 block diagram

Mpact 2 is a media processor designed for multimedia applications in PC. The Mpact 2

chip consist of a signal processor and five DMA bus controls. Data is transferred

simultaneously between the memory and the bus system. It includes dual Rambus

channels capable of a date transfer rate of 1.2 Gigabytes per second. The is a VLlW

architecture with a SIMD control unit. Data paths are al1 72 bits wide- There are on-chip

caches for instruction and data. Data cache is a multiport rnemory with six read and six

wnte ports. AGP and PCI interfaces are designed in this chip and are readily avaiiable.

4.6.3 Philips TriMedia TM-1000

TM-lOOO[29] is the first media processor from the farnily of TnMedia processors, The

core processor inside TM-1000 is a high performance VW-based CPU core. The core

incorporates 27 functional units. The selection of the functional units is based upon the

application. Every VLIW instruction is formed by a maximum of five operations. The

core has 128 general-purpose 32-bit registers. There are 15 read pas and five write ports

in the register file.

TM-1000 processor consists of memory, video. audio modem and PCI interfaces which

makes possible easy communication with multimedia devices as shown in Figure 25.

Slerso digital au&
QS O C 4 0 0 kHz

i2C bus u:
amen. e k

Figure 25 - Block diagram of TM- 1000

4-64 V830R/AV by NEC

V830R/AV[78] is an embedded multimedia processor designed for low cost multimedia

onented applications. It is targeted to suppon real-time video signal processing of

bmadcast quality. Strong multimedia processing extensions are incorporated into V830

RISC engine, which is the base of V830WAV processor. The core architecnire supports

32-bit MAC operations. The processor is based on a two-way superscaiar architecture.

The two major execution units in the V830R CPU core narnely, the 32-bit integer

execution unit and a 64-bit multimedia extension unit, can work in parailel to improve the

performance. This 64-bit multimedia coprocessor performs SIMD parailel operations on

eight bytes, four half-words, or two words packed in thirty-two 64-bit coprocessor

registers. The execution units are fully pipelined and have one clock throughput and fixed

4clock latency. The key features of V830R include:

Dual-issue superscalar

Rarnbus interface ready

16K four way instruction and data cache

video/audio, DM& A/D multipiexed bus and ICE interfaces.

The V830R CPU core has a six-stage pipeline structure. The whole pipeline is divided

into three pipelines: an Instruction pipeline (1-pipe), an integer pipeline (V-pipe) and a

multimedia pipeline (M-pipe). The processor is capable of executing MPEG-2 decoding

in the main profile at main Ievel (MP@ML).

4.6.5 Sharp DDMP

DDMP[79] (Data-Driven Media Processor) is the first data flow processor designed for

multimedia applications. This device uses high-speed paralle1 processing techniques to

process massive amounts of multimedia information, including full-motion video,

graphies, and audio.

The DDMP puts control functions on the data side (data-driven) and eliminates the need

for a processor clock in contrast to conventional von-Neuman cornputers. The result is a

media processor with extrernely Io w power consumption in which the architecture itself

has power management functions so that it operates only when data is present in the

computational section. The DDMP media processor consists of a number of cores,

controllers and I/O circuitry as shown in Figure 26.

I Data-driven
high-speed

computational core t

Figure 26 - Block Diagrarn of DDMP

4.6.6 Pentium processor with MMX technology

The motivation behind .MMX[27] is to provide additional capabiiity to existing

processors without sacrificing backward cornpatibility. It has been added to existing

floating point and integer functional units as shown in Figure 27.

Figure 27 - Implementation of MMX technology

MMX technology processes several pieces of data with each instruction. Typical elements

of data are usually small, for example 8 bits for each pixel color component in an image

or 16 bits per element for audio samples. CPU Data in MMX technoiogy are wide (Le. 64

bits or more) and are cornposed of independent smailer size data elements called packed

data types. A nch set of MMX instructions are defined to perform the parallel operations

96

on multiple data elements packed into new wide data types (for example 8 x 8-bit, 4 x 16-

bit). Processor extends the basic integer instructions into SlMD versions. MMX

instructions also support sanirating arithmetic in which the overfiow and underfiow bit is

not truncated and the instruction results in the largest or smallest possible representable

number in the data type of operation. Sub-word paraiIelism on packed data types and

saturation arithmetic in MMX technoiogy are usefûl in many multimedia applications

such as motion compensation and graphics algorithms like shading. MMX technology

also provides a parallel compare instruction for data dependent applications. In Inte1

Pentium processors with MMX technology, MMX instructions are designed to mn in the

integer pipelines of the CPU despite the use of the floating point registers to hold data

MMX instructions with the exception of the multiply instructions execute in one cycle.

The multiply instructions have an execution latency of three cycles, but the rnultiply

unit's pipelined design enables a new multipfy instruction to start every cycle.

4.6-7 C-Cube's VideoRISC Processor (VRP)

The VideoRISC [8 11 family consists of a series of video compression products for digital

television, consumer electronics, and multimedia computing applications. VideoEUSC

products are a combination of micro-application software sets and microprocessor chips.

A different micro-application is supplied for each product and defines the functionality of

that product. For exarnple, the CLM4500 is a real time IIIIPEG-Z video encoder (for

consumer quality), while the CLM4200 is a real time H.261 video codec- Both the

CLM45ûû and CLM4200 processors are based on VideoRISC product.

While each micro-application is different, al1 run on the same chip: C-Cube's VideoRISC

Processor (VRP). The VRP is designed to compress and decornpress digital video in real

time, and can be used individually or with other W s , depending on the performance

requirernents of the micro-application. The CLM4600 MPEG-1 Video Encoder (for

broadcast qudity) requires eight VRPs, while the CLM4500 requires only two.

Other members of the VideoRISC farnily include the desk-top-oriented CM4100

Multimedia Accelerator and an MPEG-2 encoder.

As an exarnple of this farnily, CLM4700 MPEG-2 digital video encoder chip-set [30]

encodes broadcast-resolution video into MPEG-2 Main LeveVMain Profile format in real

time, using either frarne encoding or adaptive fieldframe encoding techniques. System

features inciude:

MPEG-2 Encoding

Multi-resolution /Multi-mode Video Capability

S ystem Layer Support

Support for Broadcast Applications

S implified Hardware Architecture

4.6.8 L64002 MPEG Audio/Video Decoder

L64002 is a single-chip MPEG-2 source decoder [82] that combines a video decoder that

is cornpliant to the MPEG standard Main Profile at Main Level with a two-channel

MPEG audio decoder. The L64002, however is more than just a single chip MPEG-2

98

audio/video source decoder. The architectural elements of the device shown in Figure 28

were developed for implementation of cornpressed digital interactive television

applications. These architectural eiements include a customized RISC engine and a video

dispIay and graphics controller. Features of L64002 include:

Audio Decoding Block

Decodes Layer 1 and Layer I I (MUSICAM) ISO 1 1 172

Decodes two channels of 5.1 channel bit-strearn (BO 138 18)

Output samples rates: 16,22.05, 24, 32,44.Z, 48 kH2

Channel data rates of 8 KBits/sec to 448 KBitdsec

Outputs 16-bit PCM audio

Customized RISC Engine

AI1 microcode stored on-chip

Serial or 8-bit parallel input

Robust error concealment

Checks for syntax errors at al1 layers of MPEG bit-stream

Freeze tiame for video; mute or repeat for audio

Optimized Memory Architecture

Figure 28- L64002 Block Diagram

4.6.9 IBM Video Integration Processor

IBM introduced Video Integration Processor (ViP905) [831 on a single 208-pin PQFP

module. ViP905 is designed in CMOS 0.5 micron, triple leveI rnetals, contains over

750,000 transistors, 250,000 gates, and provides 900 million operations per second. This

technology provides the ability to process a television-like RGB or YUV data stream

from a TV digitizer function or video CODEC (either Software [SI"] or Hardware

CH/WI) into computer rnemory for manipulation and display. The image can be scaled to

any desired size, from one pixel to four times (4X) the size of the original-in fi111

motion, on the fly. The extremely sophisticated scaling algorithms provide high-quality

images, without the artifacts introduced by other methods. The TV data stream can be

transformed into RGB24, RGB 26, or RGB8 screen formats. Proprietary Dithering

Algonthms improve the quality of RGB16 output to approximately RGB24 quality, and

improve the quality of RGB8 output to approximately RGB 16 quality.

The block d i a ~ a m of ViP905 is shown in Figure 29. The Video Integration Processor

technology is capable of 60-Hz interlaced updates of the TV decoder video strearns, or

30-Hz non-interlaced updates of both the TV decoder stream and the video CODEC

strearn. Two video windows can overlay each other, as desired, with single pixel

granularity. In addition, graphics c m be overlaid on the video windows with single pixel

granularity.

Rsg&canlm(

HNI CODEC rirsitr

Figure 29- VIP Block Diagram

4.6.10 8x8's Video Communication Processor (VCP)

The 8x8 Video Communications Processor (VCP) is a single-chip programmable video

subsysrem and multimedia communications processor [84]. It can implement a conplete

multimedia and video conferencing subsystem on a single circuit card with a

programmable DSP chip and mernory. The VCP performs a superset of the functions of

8x8's Vision Controller and Vision Processor chips. For video conferencing applications

it c m act as a Fi111 C F resolution H.261 codec and provide forward error correction and

bit-strearn multiplexing to the H.221 and H.242 standards. For video playback

applications the VCP c m decode the MPEG-1 video and audio strearns- In addition to

multiplexing and codec functions, the VCP provides programmable video pre- and post-

processing functions including format conversion, video scaling, temporal filtering,

output interpolation, color conversion and picture-in-picture.

4.6.11 Array Microsystems Video Compression Chip-set

Array Microsystems designed a two chip chip-set [85] for video compression

applications. The a77100 Image Compression Coprocessor (ICC) and a77300 Motion

Estimation Coprocessor (MEC) chip-set provides a programmable video compression

solution with reasonable performance and feaiures for multimedia systems.

The ICC performs hinctions such as DCT, quantization. zero-run length coding, etc. The

MEC performs motion estimation and is required only in those systems implernenting

MPEG-1 or H.261 motion cornpensated compression. The block diagrams of ICC and

MEC are shown in Figure 30. For increased flexibility, the host PC or an off-the-shelf

RISC microcontroller performs variable length coding and bit-strearn control,

cornmunicating with the ICC and MEC over their respective host bus interfaces. Input,

output, and scratchpad images are stored in DRAMs or VRAMs connected to the ICC and

MEC video buses. This mernory for exarnple, supports the following at 30 Fps:

JPEG encoding or decoding of full resolution CCIR-601 (720h x 480v) images

102

Simultaneous H.261 encoding and decoding of CIF (352h x 288v) images

Full MPEG-1 I,B,P encoding or decoding of SIF (352h x 240v) images.

Figure 30- ICC and MEC block diagram

In the next section we present an analysis of the strengthc of each processor in order to

create a mode1 for an ideal multimedia processor. These ideas are considered in designing

the Fractal Engine.

4.7 Analysis

We now present the appropriate architectural solutions for multimedia applications based

on the anaIysis of multimedia data and processing as well as the analysis of architecturai

approaches. We note that the designer has to decide upon the criticai options based on

avaiiable VLSI technology, target application and environment.

Multimedia processing and high throughput CPUs are employed not only in desktop

computing applications to enhance the computing power of advanced workstations

and servers but dso in many embedded applications such as high-speed printers and

video game consoles. Hence:

There is no unique solution for al1 multimedia systems.

Most low and medium level algonthms have pre-determïned memory access. Hence:

* Partitioned memory architecture among data paths and a shared memory

architecture is sufficient for those operations (in contrast to complex multi-port

mernories).

Real-time processing is stream based and has poor temporal locality. Hence:

a The increased number of data cache misses coupled with the high communication

bandwidth between cache and register file degrades the system performance.

However, block transfer operations speeds up the entire process-

High throughput memory interfaces are required to maintain al1 the functional un is

busy al1 the time. Hence:

DMA interfaces are employed in multimedia processors. For exarnple Mpact 2

has DMA interfaces,

Rarnbus interface is more appropriate for data transfer. Therefore, V830R

implements RDRAM interface.

* On chip caches with multiple ports for simultaneous read and write increase data

bandwidth. Mpact 2 has a data cache with 6 ports for reading and for writing.

State-of-the-art bus interfaces such as AGP, PCI should be implemented.

-. Utilization of wide CPU words (Le. 64 bit word) and data buses result in an

increase in data throughput.

104

The MAC operation is very common. Hence:

a DSP arithmetic units are appropriate.

The conditional branch is not used very frequently. Hence:

Superscalar, VLJW and pipeline architectures work well.

The operations have inherently high parallelism. Hence:

a Compilers for VLIW processors extract the paralIelism and generate efficient

code. This is the reason for most media processors such as Mpact 2 and TriMedia

being based on VLW architecture.

There are high level and medium level applications in multimedia processing which

require increased compute power from the processor (in the range of million

operations per second) such as affine transformations, motion estimation and 3D

rendering. Hence:

hardware dedicated units are required. For exarnple, Mpact 2 has a motion

estimation unit and an engine for 3D rendering. TriMedia has a variable length

decoder for MPEG decoding and a scaling unit for video post processing.

There are conditional execution of instructions in multimedia algorithms. Hence:

MIMD control structure enables each individual data path to adapt its execution

path accordingly. This approach is employed in MVP.

Most of the multimedia functions don? require more precision than 8 or 16 bits.

Hence:

a fine to medium g a i n architectures are more suitable.

-s Packed arithmetic is empioyed for concurrent execution of packed data in wide

data words like the paralleIisrn in MMX technology for Pentium processors.

Floating point operations are cornrnonly used in applications like 3D graphies. Hence:

* Floating point units speedup the execution of these operations at the expense of

additional real estate in the chip as in the case of MVP and Pentium processors.

Concurrent execution on sub-words of data is possible in multimedia instructions

especially in wide data words (Le. 64 bit)

Multimedia extensions to individual instructions are justified to exploit sub-word

parallelism. This approach is employed in Pentium processors with MMX

technology.

Conditional branches which alter the path of execution and reduces pipeline

utilization are present in data dependant applications such as object recognition, video

compression and model-based representation. Hence:

=S Out-of-order execution and dynamic scheduling techniques which c m be

incorporated in super-scalar architectures such as Pentium processors, are used to

enhance utilization factor of pipelines.

High speed access rate are desired in multimedia processors to speedup the

operations. This results in high frequency dock rates and therefore result in

increased power consumption. Hence:

Data flow processors like DDMP without a clock signal decrease the power

consumption drastically.

4.8 Summary

Multimedia hardware architectures have evoived from simple extensions of digital signal

processors and small dedicated architectures to powerful parallel architectures. It is

necessary for the designer to investigate the various issues in this evolution before

ernbarking on a new hardware design.

ln this chapter, first the issue of programrnability has been studied- Different techniques

and approaches ranging from dedicated modules to full programmable media processors

have been presented- Based on available VLSI technologies, required computational

achievement, production quantity and the target algorithrn, it is the designer who will

select the best VLSI implementation approach. In Our proposed Fractal Engine we employ

both techniques in different moduIes. Cntical hardware units are implemented in

maximum efficiency. Cornplex multimedia processing tasks narnely affine transforms are

directly mapped to these units. Control unit and other programmable units are

implemented using configurable FPGAs. Programmability feature exists in FractaI Engine

by communication with an externai CPU which controls the operation of Fractai Engine.

Programmable processors for multimedia applications are increasingly becoming popular

due to the wide variety of multimedia applications, development of multimedia

technology, advancements in parallel processing techniques, availability of high speed

interconnection networks and mernories and enabling VLSI technology. In this chapter,

various aspects of a programmable multimedia processor have been presented. Finally,

different exarnples of available processors have been studied. The features of recent

programmable multimedia processors are sumrnarized and tabulated in Table 1. We note

that although TE-MW and Pentium-MMX are older than other architectures, they are

included in the table because of their high performance and representation of advanced

techniques..

TI - MVP TriMedia

Distribution r""

RISC
I

Granularïty

Memory M

Processor RISC,DSP.

iMedium

Mpact

Fine-Medium

RISC

LMDMP

'Medium

RXSC, DSP

V W

V830R

CRISC

,Medium

SIMD

Table 1 - Features of multimedia processors.

In the next chapter we start the design of transform processor which is the core of

MMX

Dataflow

I

RDRAi i

the Fractal Engine. Affine transforms are first presented followed by derivation of two

fundamental affine transforms. The hardware implementation is discussed in the end of

the chapter.

Medium

MIMD-like

iMedium

Supencalar

RDRAM

Supencalar

Sih4D

EDO.

S [MD

5 Affine Transform Processor

The core processing element for Affine processing is Afine Transfonn Processur (ATP)

which is a parallel and pipelined architecture. ATP is simple, modular, scaleable and is

optirnized to execute both low level and mid level operations. Implementation of the

basic operations by ATP enables efficient execution of a majority of visual computing

tasks. ATP executes Affine transforms which are a geometric transformation.

The basis of geometric transformations[98] is the mapping of one coordinate system ont0

another. This is defined by means of a spatial transformation (a mapping function that

establishes a spatiai correspondence between al1 points in the input and output images).

With a spatial transformation, each point in the output image (x, y coordinates) maintains

the intensity value of its corresponding point in the input image (ri, v coordinates). The

correspondence is found using the spatial transformation mapping function (X(u,v) ,

Y(u,v)) to project the output point ont0 the input image. Figure 31 illustrates a typicaI

transformation.

Figure 3 1 - Spatial Transformation.

We note that in the Figure 3 1, the intensity values of the pixels are the same in the input

and output images- Depending on the application, spatial transformation mapping

functions may take on many different forms. Simple transformations rnay be specified by

analytic expressions including affine, projective, bilinear and polyriomial transformations.

Affine transformsp9] are widely used in visual processing applications. A description of

affine transforms and derivation of the two fundamental operations are presented in the

next sections foIlowed by an efficient method for implementing the two basic operations

which form the core of the proposed ATP.

5.1 Affine Transforms

Affine (linear) transforms. specified by analytic expression as a matrix multiplication, are

the most comrnonly used spatial transform in the area of image and video processing.

They map a 2-dimensional Euclidean space 2 ont0 itself as shown in Figure 32. Affine

mappings preserve existing parallelism (lines) in the original image. For affine

transformations the mapping functions are:

x = u,,u +a,,v + a,,
4-+

y = a,,u + a,v + a,

Figure 32 - General Affine Transformation

This accommodates translations, rotations. scde, and shear. Affine transformation is also

expressed using a 3x3 matrix for homogenous coordinates.

We note that the combinations of two consecutive affine transforms are easily expressed

by the product of their individual transform matrices (i.e. it is another affine transform). It

is also shown that any arbitrary affine transfom can be expressed as a set of predefined

affine transforms, which include translation, scaling, shear, transposition and rotation.

5.1.1 Translation

Al1 points are translated to new positions by adding offsets Tu and TV to rt and v,

respectively. The translated transform is expressed in Equation (3) and is illustrated in

Figure 33.

Figure 33- Translation.

5.1.2 Scale

Al1 points are scaied by applying the scale factors S. and Sv to the ri and v coordinates,

respectively (Equation (4)).

If the scale factors are not identical, then the image proportions are altered resulting in a

disproportionate scaled image. Positive scale factors that are larger than unity result in

magnification while factors smaller than unity result in a reduction. Negative scde factors

cause the image to be reflected. An exarnple of positive scaling is shown in Figure 34.

Figure 34- Scale.

5.1.3 Shear

By allowing al2 to be non-zero, x is made linearly dependant on both rc and v, while y

remains identical to v. A sirnilar operation can be applied along the v-axis to compute the

new values for y while x remains unaffected. This effect is caIIed shear. The shear

transform along the ti-axis and v-axis are as follows:

An example of shear alongx-axis is illustrated in Figure 35.

Figure 35- Shear.

5.1.4 Transposition

Al1 points in the UV-plane are reflected so that the x-coordinate will cornespond to v and y-

coordinate to u.

An example of transposition is shown in Figure 36.

Figure 36- Transposition.

5.1.5 Rotation

Ai1 points in the UV-plane are rotated about the origin through a counterclockwise angle 8.

The transforrn matnx is given in (7).

Each point in the image is rotated, so that the distance of the point from the origin is a

constant (as shown in,

Figure 37- Rotation procedure.

An example of 45-degree rotation is illustrated in Figure 38.

Figure 38- Rotation.

The inverse of a rotation is also a rotation with the same degree but in the opposite

direction and c m be simply expressed as:

hplementation of Rotation in Digital DornaÏn is discussed in Chapter 7.

5.2 Fundamental Affine Operations

A set of special -ne transfotms typicdly used in several image and video processing

applications are applied on intensity values of a square block of pixels (L=MxM pixels).

W e denote these operations by A: which consist of stretching (s), translation (t) and

isometric transforrn (k),

If X is an L-dimensional vector, then

where s,t are integers from the sets S, T and define stretching and translation rnappings.

1' is one of the isometric transforms given in the set 1,

I = { I k ; k = 12.---. N , }

and I* is an L-dimensional identiw vector = [1,1,- -,II.

The following basic isometric transformations have been chosen among al1 isometric

transforms [4 1 1.

1, - Identity: This transfonn maps each pixel ont0 itself.

1, - Reflection about the mid-vertical Iine: Each pixel with (x,y) coordinates is mapped

ont0 a pixel with (-..,y) coordinates,

I , - Reflection about the rnid-horizontal line: Each pixel with cr,y) coordinates is mapped

ont0 a pixel with (x,-y) coordinates.

I, - Reflection about the first diagonal: This affine transformation swaps the coordinates

of each pixel and is also cdled transposition- A pixel with (x,y) coordinates is mapped

onto (y,x),

I, - Reflection about the second diagonal: This isornetric transform swaps the

coordinates of each pixel and also changes the sign of the values of coordinates. A pixel

with (..,y) coordinates is thus mapped ont0 (-y,-x),

- Rotation around the center by 90 degrees: This transformation rotates the picture 90

degrees to the Ieft (counter clockwise). A pixel with (x,y) coordinates is hence mapped

ont0 (y, -x).

I7 - Rotation around the center by 180 degrees: Each pixel in this transformation is

refiected about the center of the picture. A pixel with (.r,y) coordinates is mapped ont0 (-

-r, -y)-

I , - Rotation around the center by 270 degrees: This transformation rotates the pictures

90 degrees to the right (clockwise). A pixel with (XJ) coordinates is thus mapped ont0 (-

? P d .

An example of the mapping of selected affine transforms is illustrated in Figure 39.

Figure 39 - Example of isornetric transfonns.

We note that the combination of any pair of these transforms will result in another

transform from this set. For example, a reflection about the mid-horizontal line (1,)

followed by a rotation around the center by 90 degrees (16) will result in a reflection

about the second diagonal (I,) (Le. I, 0 I3 = I ,). Table 2 lists d l possible combinations

in I.

Table 2

We propose to employ a chain of combinations of two simple isometric transforms, I3

(Reflection about the mid-horizontal line) and I, (Reflection about the first diagonal or

Transposition) to express al1 other transforms as follows.

Hence, the two fundamental operations in selected affine transforms are transposition and

reflection about mid-horizontal line. This implies that the implementation of these two

transforms in a chain will result in al1 other transforms without explicitly implementing

them.

5.3 VLSllmplementation of ATP

This module is capable of executing for each range block, d l of the selected isometric

transforms on the domain blocks and selects the best transform corresponding to the

closest match. The basic isometric transforms are transposition and reflection. Hence, a

chain of these fundamental operations is implemented in AFM (Affine Module) in order

to execute al1 of the selected transfonns in a systolic fashion as shown in Figure 40.

Vrctor

Figure 40- Affine Module Block Diagram

Every unit in the chah has a built-in array adder (AR) and distance calculator @) to

measure the distance between the uansformed domain block and the range block stored in

the SRAM. The design of built-in array adder is detailed next-

5.3.1 Array Adder Unit (AR)

This module consists of two sets of M basic cells, where M is the number of rows or

columns of the input block (a 4x4 example is shown in Figure 42). The first basic ce11

(accumulator (ai) shown in Figure 41) accumulares the partial distortion for the ith row of

the domain block with the corresponding row of the range block stored in the SRAM

(zlcj - (sdG + I)). In the first M dock cycles, the absolute value of the difference between
f I

the row elements of the domain block and corresponding elements of the range block is

accumulated. At the end of every M clock cycles, the accumulated value (Si) is ready to

be output.

The second set of basic cells (summation, si) adds the partial distortion values to compute

the total distortion value. The block diagram of the ce11 is illustrated in Figure 41.

Figure 4 1- Accumulation and Summation Cells

A , m o d u l e 4 s . m o d u l e

Figure 42- Amay Adder for 4x4 blocks

5.3.2 Reflector Unit

The reflector unit shuffles the input cofurnns of the data such that:

Where X, is the input to the module and Y, is the output This moduie delays the output

for M clock cycles to maintain the synchronization between the outputs of other modules.

5 3 3 Transposer Unit

A parallel and pipelined transposer architecture was proposed in [88]. Here, the basic ceil

of the transposer architecture (as shown in Figure 43) has two modes of operation A and

B seiected by a control s ipa l C such that when

1. C=l A OUTPUT = A INPUT (A mode)

2. C=û B OUTPUT = B INPUT (B mode)

W e note that b indicates the data-bus width. The control signal is derived frorn the global

clock signal. Thus the communication is synchronous and the control is simple in

structure.

A input 1-1 A output

controt C u
6 input
b lines

Figure 43-Basic Transposer CeIl

The unit also includes an array adder. The architecture of a transposer module is shown in

Figure 44. This module consists of L=M' basic cells. Figure 44 illustrates the design of

transposer for a 4x4 matnx (Le. M=4).

An entire column (row) is loaded in and out of the module in each clock cycle. In the A-

mode, a column (initially the first column) of a bIock is Ioaded in parallel into the ceils

TI,I-T~.$. Meanwhile, the second column of data is prepared to be loaded into the

transposer module. In the second clock cycle, they are loaded into the cells T~ . J -T~ ,~ ,

while the first column of data moves to the cells Tu-Tz4. This procedure continues and at

the end of 4 clock cycles, di the colurnns of data are loaded into the transposer module-

As soon as the last column of data is loaded into the cells TJ.1'T3,&, the cells are switched

to the B-mode of operation. In the next 4 clock cycles, the row elements of the input

block are drawn out of the transposer module through t h e outputs BI -Bq in the B-mode.

Note that this output data is essentially the transposed version of the input data.

A- mode B-=e -
Figure 44- 4x4 Transposer Module

5.4 Summary

We reiterate that the ATP forrns the core of the Fractal Engine architecture. Considerable

optimization has been applied in the design of ATP in VHDL. The denvation of two

fundamental affine transforms and the design of array adder units are the key factors that

lead to a highly parallel, pipelined and scalable architecture of ATP. The proposed

architecture for ATP is scalable and modular and is hence suitable for VLSI

implementation. In the next chapter, the design of the Fractal Engine and its associated

peripherai blocks are presented.

6 Fractai Engine

The primary focus of the Fractal Engine is to implement both image and video based

algorithms and it is based on the affine processor core. In this chapter, fractal processing

algorithm is fiat introduced followed by the design of Fracral Engine. Exarnple

algorithms from spatial domain where image and intra-frarne calculations are considered

and temporal domain, where temporal correlations are exploited are presented. The

spatial and temporal operations are mapped onto the Fractal Engine. Finally, timing

analysis demonstrates the real-time execution potenriai of the algorithms using the Fractal

Engine.

6.7 Why Fractal?

We recall from chapter 2, that the choices of kernels used in our design were prirnady

dictated by visual data processing requirernents. We note that a majonty of low level and

mid level visual data processing exists in fractal block processing (FBP). Fractals exploit

the hi& correlation and self-similarities present in the visual data within an image or a

sequence of images. Fractal processing extracts existing self-sirnilarity and self-affine

within an image.

FBP encompasses a majority of image processing operations including, summation I

accumulation, image addition / subtraction, translation, stretching, shifting, scding,

rotation and pattern matching. We have therefore chosen FBP as the candidate dgorithm

for the design of the generic video processing element in the proposed architecture.

Furthemore, from the current trends in multimedia design. mode1 based representation,

123

complex motion analysis and image understanding are the most demanding tasks. These

wiI1 form the major requirements for a machine to interact meanina@ly with its

environment. Hence, aff~ne transforms are receiving increasing attention in recent

research including the MPEG4 standard. We note that fractal block processing is about

finding affine relations within the blocks or objects of an image and is an appropriate

candidate for future visuai data processing applications. A detailed description of FBP is

presented in the following section.

6.2 Fractal Block Processing

The emergence of powerfül hardware architectures is providing the possibility of using

FBP in image and video processing. Fractal based techniques are becorning increasingly

popular in visual processing. They have been applied in several areas of visud

processing, such as segmentation[47], analysis[48], [49], synthesis

[SOI, cornputer graphics [55] and compression[56], [57]. In the last few years, several

image compression methods using fractal theory have been developed- These methods

promise better compression performance. Since fractal images can be described and

generated by simple recursive mathematid equations operating on the entire image, the

basic idea is that an image can be reconstructed based on the self-similarity it contains.

Dunng the andysis stage, the dgonthm partitions the image into a number of square

blocks. For each block, FBP associates the transformation in the image, which can best

reconstruct the block. This information c m be used in different areas. For instance, in

image coding, compression is obtained by storing only the description of these

transformations- Expected compression ratios for moderate quality reconstmction are

about 100: 1. Fractal processing offers the following advantages and strengths:

1. Due to the existing self similarity in many parts of naturd images, fractal processing

is suited for real world pictures.

2. The degree of analysis can be traded off against processing tirne.

3. After analyzing the image, reconstruction is very fast.

4- It provides scaIabiIity/resolution independence since the image is defined by a set of

equations which c m be arbitrarily scded.

However, fractal processing has the following disadvantages:

1, Most natural images are not rnathematically synthesizable. They are not self-

transformable at the Ievel of the entire image.

2. The procedure to calculate and exploit the existing correlations within an image or

images is highly compute intensive which prechdes red-time implementation of

fractal based algorithms-

To overcome the first problem, Fractal Block Processing (FBP) bas been proposed in the

literature [41]. FBP assumes that visual correlation can be efficiently exploited through

piecewise self-transformability on a block-wise bais- The image is partitioned into non-

overlapping blocks called range blocks. For each range block, possible affine contractive

transforms are applied on al1 candidate (domain) blocks within the image. The goal is to

find the best match domain block for every range block. At the first level, Iarger range

blocks (typically 32x32) and larger domain blocks are considered, If a range block cannot

be approxirnated (within a given threshold) by the domain blocks in the image, it is

further divided into smaller size range blocks in the next level and the best match search

is repeated. We note that this technique is based on Partial Iterated Function Systems

(PIFS), in which the image is expressed using several equations and mappings.

The key elernent in FBP is affine contractive transforms. They are linear transfonns

which map a 2-dimensional Euclidean space ont0 itself and are descnbed as follows

(The detail of these transformations and an Affine Processor are presented in chapter 5) :

This indicates that the image wiIl be formed of properly transformed parts of itself. The

goal is to f k d the best set of affine transforms (W) which minimize the distortion between

the transformed image (Wm) and original image V).

W is a coIIection of maps wi identical to a pair of a range block and a domain block and

the parameters of the corresponding affine transforrn-

W = U W . i.e. W(f) = tvl (f) U *v7 (f)...U rv (f) and f is as close as possible to W(f) (10)
i ' - N

The execution time for QCIF (180x144), CF (360x288) and CCIR 601 (720x480) video

sequences corresponding to a IOOMHz clock (with the assumption that one operation is

executed every dock cycle) are 6.35, 101 and 1000 seconds, respectively. Hence, a

speedup factor ranging from 190 to 30000 is required for real-time processing. There are

two basic operations involved in FBP namely &ne transformation (discussed in chapter

5) and mean/variance computation, which is now presented.

6.2.1 Mean and Variance computation

To normalize each domain block before cornparison with a range block, mean and

variance values of the blocks are caiculated. These two mathematicai entities are the basis

of al1 statisticai operations in image processing and are expressed as follows:

We note that in these expressions, the calculation of mean value and variance of the block

are executed serially. However, the expressions in (3) can be rewrinen for parallel

execution.

We note that the fundamental operations involved in (4) are squaring, division and

accumulation which are implemented in a dedicated hardware unit in the Fracral Engine.

In the following section, the different modules of Fractal Engine are presented.

6.3 Fractal Engine

We propose a parallel and pipelined architecture based on ATP core called Fractal

Engine to implement the operations in FBP. Fractai Engine is simple, modular, scalable

and is optimized to execute both low levei and mid level operations. We present the

design of individual sections of the Fractal Engine - Dedicated module which is shown as

processing section in Figure 45.

Peripheral Section h-ocessing Section

Figure 45- Fractal Engine Block Diagram

6.3.1 Processing Section

This unit essentiaily forms the dedicated module of Fractal Engine and performs al1

calculations required in FBP. It consists of three modules:

Affine Module (AFM): to execute isometric transforms and calculate the distortion

between the range and domain blocks.

Scale Module (SCM): to execute scaling and translation.

Aithmetic Module (ARM): to calculate the mean and variance of blocks.

In addition, the processing section has a built-in static RAM (SRAM) to store range

blocks.

6.3.1.1 ADne nodule (AFM)

This is the core processor of Fractal Engine detailed in chapter 5.

6.3.1.2 Scale module (SCM)

The task of this module is to calculate the translated and scaled version of every domain

block and make it available for geometric transformations in AFM. Several paraliel units

are implemented to execute scaling and translation on different domain blocks in parallei.

6.3.I.3 Anthmetic module (W)

This module executes low level computing operations to calculate the mean and variance

of image blocks. One element of a biock is pumped into the module at every clock cycle.

6.3.2 Scalability

Hardware scalability is an important feature in the design of an architecture. For a

problem of complexity X which is executed using N units in T seconds, scalability

implies:

T M seconds will be required to solve the problem using NM units.

A problem of complexity XM is solved in T seconds using NM units.

The first type of scalability requires a flexible control design, while the second type of

scalability requires that the feature of scalability be incorporated in the design of

individual modules. We illustrate the concept of scalability in Fractal Engine, where 8x8

block architectures have been built using 4x4 blocks.

6.3.2.1 Scalable array adder

An Selement array adder is built using two Celement array adders as shown in Figure

46-

A, module 4S4 module

Figure 46- 4-element and 8-element Array Adder

6.3.2.2 Scalable remctor

The procedure of reflection about mid horizontal line is straight forward, This module

only shuffles the input elements entenng the module. We note that an Rs module can be

configured using two & modules as shown in Figure 47.

Figure 47- Reflector Module

6.3.2.3 Scahble transposer

The proposed transposer is a modular and scalable architecture. To build an 8x8 matrix

transposer, we simply arrange four 4x4 rnatrix transposers together as shown in Figure

48. The transposition process is executed in 8 dock cycles. The only modification

required is in the fiequency of the control signal.

Figure 48- 8x8 Transposer Unit

6.3.2.4 Scahble afJSne module

The issue of the scalability of reflector and transposer has been discussed in previous

sections. We note that in order to design an affine moduIe which performs al1 selected

transforms on either four 4x4 blocks or one 8x8 block, special data routing

mechanism is required. The module has two modes of operation:

Operation on 4x4 blocks (4x4 mode)

Operation on 8x8 blocks (8x8 mode)

The ~ o ~ g u r a t i o n of module in each mode is illustrated in Figure 49 and Figure 50,

respectively .

Figure 49- M i n e Module for 4x4 blocks

Figure 50- Affine module for 8x8 blocks

The reconfigurable architecture is shown in Figure 5 1.

We note that this reconfigurable architecture performs data routing in two different

modes. In the 4x4 mode, the module processes four 4x4 blocks and is configured as

s h o w in Figure 49. In 8x8 mode, the module processes one 8x8 block and is configured

as shown in Figure 50.

4x4 Mode 8x8 Mode

Figure 51- Scalable Affine Module

6.4 Example Algorithms

In this section, we demonstrate the concept of generk processors, red-time execution

capability and scalability in Fractal Engine by implementing five examples of compute

intensive algorithms. These algonthms include Vector Quantization (VQ)p2], Fractal

Block Coding (FBC)[41] and Mine Transfomi Based Vector Quantization (ATVQ)[25]

from spatial domain, Motion Estimation[43] (ME) and Affine Motion Estimation (AME)

from temporal domain. These algorithms not only encompass a varïety of operations

involved in both image and video processing, but also reflect the challenges in visual

computing applications from the perspectives of real-tirne implementation and scalability.

6.4.1 Vector Quantization (VQ)

In VQ[42], a set of representative images is decomposed into L-dimensional (MxM)

vectors. An iterative clustering algorithm such as the LBG algorithm Cl001 is used to

generate a codebook (CB) of size K. This codebook is then made available at both the

133

trammitter and the receiver. In the encoding process, the image to be coded is

decomposed into L-dimensionai vectors. For each input vector Vi (range block), CI3 is

searched using a nearest neighbor rule to fïnd the closest codeword Wj- Compression is

achieved by transrnitting the label j corresponding to Wk Reconstruction of images is

implemented by using j as an address to a table containing the codewords.

The existing high computationai complexity in VQ has been an impedirnent in reai-time

implementation in many applications- In this section, we demonstrate the real-time

implementation of VQ using Fractal Engine. The data fiow diagram and the processing

architecture of Fractal Engine for VQ execution are illustrated in Figure 52 and Figure 53,

respectively.

Figure 52 - Data flow in Fractal Engine for VQ Implementation

IMI fetches columns of data including range blocks and codewords from RAM and

provides data for AR module. To start with, the frrst range block is loaded in SRAM. An

entire column is loaded in and out of AR cells in each c h k cycle. At the end of the first

eight clock cycles, the e s t codeword enters the accumulator module of AR1. In the

second eight clock cycles, the second codeword is loaded into AR1-ACC, while the

partial distortion values are added in ARi-SUM- The value of distortion between the first

range block and the fust codeword is available at the beginning of the third set of eight

clock cycles. In the next eight clock cycles, the distortion values are stored in CMi for

future comparisons. After an initial latency of 24 clock cycles, the utilization factor for

AR-1 and CM-I cells is 100% and at every eight clock cycles, the codewords are

compared with the range block-

Figure 53 - Processing Section of Fractal Engine for VQ execution

6.4.2 Fractal Block Coding WC) Algorithm

Barnsely[36] has proposed an algorithm to cornpress fractal images with a very high

compression ratio (100-10000)- This algorithm is based on Iterated Function Systems

(IFS). However, real life images are not self-transfonnable at the level of entire image. A

block based fractal image compression method or Fractai Block Coding has been

proposed by Jacquin[41] for real life images with a compression ratio ranging fiom 80 to

200. The proposed algorithm is based on Partial Iterated Function Systems (PIFS).

The sequence of operations in FBC illustrated in a flow chart format is now presented.

TES

r i s

An original nxn monochrome image f is partitioned into non-overlapping range

blocks, Ri.

A pool of domain blocks Dj is made up of al1 blocks from the original image.

For every range block (Ri), the affine contractive transformation (ti) which minirnizes

the distortion between Ri and a domain block (Di) is searched.

If the distortion is less than a preset threshold, the best pair (Di , fi) is stored.

Otherwise, the range block Is divided into smaller size range blocks and the search for

the best pair (Di , ti) is repeated.

6.4.2. I ~mplemenhztion of FBC

The modules in Fractal Engine including AFM, SM and ARM are controlled by CU to

work in paraflel for real-time implementation of FBC. IMI provides data for ail units as

s h o w in Figure 54. The procedure consists of two different processes:

1- Mean and variance calculations of al1 4x4 and 8x8 blocks.

2, Block matching and affine transformations.

We recall from Section 6, that these two tasks cannot be performed simuItaneously on the

same frame- Hence, two consecutive fiames V; andAl) are stored in the RAM module.

While ARM is calculating the mean and variance values for the range and domain blocks

in hl, AFM and SCM detennine the best candidate domain blocks with appropriate

affine transformation for every range block in fi- The latency is NxN dock cycles, where

N is the number of rows or colurnns of the m e .

RAY - Memory module
IYI - Intelligent Yemory Interface
SCH- Scala module
ARM - Arithmetic module
AFM - Alline module
SRAU - static R A Y
dl. d. xD. xR - varlance and average of
domain and range block
-cale and translallon Iactor

Figure 54- Data flow in Fractal Engine for FBC Irnplementation.

At every clock cycle, one element of the h e is loaded into ARM by IML ARM

calculates the summation of the elements of a block and their squared values. In every

LFMM clock cycles, where M is the size of the block, the mean and variance of one

block is detennined and M I stores the results in the RAM.

AFMprocess

The modules of processing section in 8x8 mode are shown in Figure 55.

Figure 55- Processing Section in 8x8 mode for Execution.

U

To start with, the first range block is loaded in SRAM. An entire column is loaded in and

! Cornparator I
Affine Module (AFM)

A

out of AFM and SCM in each clock cycle. A column of a domain block (initially the first

column) is loaded into SCM. At the end of the first eight dock cycles, the fxst

transformed domain bIock pl) is loaded into RI -fust reflector module- which is shown

in the ce11 (1,2) of Table 3 and the first affine transformed version of Bi (BI(l)) enters the

accumulator module of AR1 (1,lO). In the second eight dock cycles, the second domain

block is loaded into Ri (2,2) and the fust transformed version (Bz(1)) into ARI-ACC

(2,lO) BI moves to Tl - the first transposer module- (2,3), the second affine transformed

of BI (B1(2)) enters AR2-ACC (2,12) and the partial distortion values between range

block and BI(l) enter into ARl-SUM (2,ll). The totai value of distortion between the

range block and fiat transfomed domain block is available at the beginning of the

third set of eight dock cycles and is loaded into the fust comparator module (3,26). In the

next eight clock cycles. while the total distortion value between the range block and the

second domain block is starting to get loctded into CMi (4,26), the distortion value

between the second affine transfomed version of BI and the range block is being

compared with the previous distortion value (4,27). This procedure continues for all the

domain blocks and the process is flustrated in Table 3.

After 72 (9M) dock cycles, the best affine transform which generates the least distortion

value between the fmt domain block (BI) and the range block is available a? the output of

the comparator module (10,34). We note that the utilization factor after this initizl latency

is 100%- After processing al1 the domain blocks, if the minimum distortion is within a

pre-specified threshold, the best domain block index and the corresponding affine

transfonn parameters are loaded out of AFM.

1

2

3

4

5

6

7

8

9

10

11

Table 3 - Ce11 occupancy for the execution of FBC

I

2

3

4

5

6

7

8

9

10

II

I

cycle
0-7

8-15

16-23

24-31

32-39

40-47

48-55

56-63

64-71

72-79

80-87

Clock
cycle

0-7

8-15

16-23

24-3 1

32-39

40-47

48-55

56-63

64-71

72-79

80-87

2

Block
in Ri

Bi

Bi

BI

Bq

€35

Ba

B7

Bu

BY

Bi\)

Bii

3

Block
in Tl

BI

B z

BI

B4

BJ

Bfi

B7

Bs

BY

Bi(i

4

Block
in R2

BI

B2

BI

B4

B5

Bn

Bt

Ba

Bu

5

Block
in T2

BI

B2

Bi

B4

B5

Bn

57

Be

ACC

Bi(6)

8 4 6)

Bd6)

B4(6)

Bs(6)

h (6)

SUM

846)

Bd6)

B3(6)

B4(6)

Bs(6)

6

Block
#in R3

Bi

Bi

B 3

B4

B5

Bn

Bt

ACC

Bi(7)

Bd7)

Bs(7)

B4(7)

h (7)

SUM

Bi(7)

847)

B3(7)

h (7)

7

Block
inT,

- - - - - -
Bi

Bi

BI

B4

B5

B6

ACC

8i(Q

B2(8)

83(8)

B4(8)

SUM

BI@)

Bl(8)

&(8)

8

Block
in R4

Bi

Bi

B3

B4

B5

Bi

1) ~

Cornparnior modulcs

Block#
inCM1

Bi(])

Bz(1)

B3(1)

ad(])

Bs(1)

Bn(1)

87(1)

Ba(!)

841)

9

Block
in TI

Block#
inCMz

Bi(1-2)

B2(1-2)

Bj(1-2)

B4(1-2)

Bal-2)

Bn(1-2)

07(1-2)

Bs(1-2)

10 11

AR1

Block#
inCM3

Bi(1-3)

h(1-3)

B3(1-3)

B4(1-3)

Bs(1-3)

Bn(t-3)

&(l-3)

ACC

12 1 13

AR2

SUM

Bi(1)

B2(l)

Bd1)

b (1)

Bs(l)

Bdl)

B7(I)

Ba(1)

b (1)

Bi41

ACC

Bi(2)

B2(2)

 BI(^)

B4(2)

Bd2)

Bn(2)

B7(2)

Ba(2)

B9(2)

BinM

14 15

AR]

16 1 17

AR4

Bi

B2

BJ

B4

Block#
inCM4

Bi(1-4)

B2(1-4)

B3(1-4)

Bd(1-4)

Bs(1-4)

Bn(1-4)

SUM

Bi(2)

8d2)

BA2)

B4(2)

Bs(2)

Bn(2)

&(2)

Bs(2)

B9(2)

18 19

AR5

ACC '

843)

W 3)

B4(3)

Bd3)

Bn(3)

B7(3)

Ba(3)

Bu(3)

ACC

Bi(4)

Bi(())

8441

Bd4)

Bn(4)

B7(4)

Be(4)

Bi(1)

B2(1)

Bi(1)

BdI)

b (1)

Bn(1)

B7(1)

Be(1)

B9(1)

Bia(l

Bil(1

ACC

BiU)

Bi(5)

Bi(5)

B4(5)

Bs(5)

Bn(5)

B7(5)

SUM

Bi(3)

M 3)

h (3)

B4(3)

Bd3)

Ba(3)

B7(3)

Ba(3)

SUM

h (4)

Bd4)

B3(4)

B4(4)

W 4)

B7(4)

Block#
in CM3

Bl(l-5)

B2(1-5)

Bj(1-5)

B4(1-5)

Bj(l-5)

SUM

Bi(5)

W)

b (5)

B4(5)

Bd5)

Bd5)

Block#
in CM6

Bi(I-6)

B2(1-6)

Bj(1-6)

B4(1-6)

Block#
inCM7

Bl(l-7)

B2(1-7)

B,(I-7)

Block#
in CMe

Bi(I-8)

Bz(1-8)

6.43 Affine T r d o r m Based Vector QuanfEzation

We propose a high performance video compression algorithmDl] which can be ideally

mapped ont0 the Fractal Engine. This algorithm is based on a combined Srne transform

and vector quantization (ATVQ), where the intra-fiame and i n t e r - h e redundancy in a

video sequence are exploited through piecewise self-similarity on a block-wise bais

within a frame and between M e s . In ATVQ, the best match for each vector of the input

image is searched among various affine transforrned versions of the codewords in

addition to the non-transfonned codewords (as in standard VQ). Hence. ATVQ can

reconstmct more input vectors using a smaller size codebook with a specified distortion

compared to conventional vector quantization. In this section, the ATVQ algonthm is

mapped onto the Fractal Engine. Fust, the ATVQ aigorithm simulations and its coding

performance are discussed followed by the mapping of the algorithm onto the proposed

architecture. The timing analysis of the execution of the algorithm is presented in 6.5.1.

An affine transform based vector quantizer can be defined as a composition of hwo

rnappings A: and Q , where A: is as introduced in section 5.1, and Q is the conventional

vector quantizer which maps into a finite subset Y of .

where, Y, is an L-dimensional vector.

To start with, a universal codebook is generated which is available at both the trammitter

and receiver. The algorithm for codebook generation is detailed in [100]. We note that the

codebook generation process is executed only once and is hence executed off-line. The

training set for codebook generation includes frames fiom various video sequences. The

steps of the AWQ algorithm follows:

Step-O. Consider the b t frame as the input. el)

Step-1, Partition the input frame into square blocks of size M M

Step2. For each block Xi select the affine transform A:, and the vector Y, from the

codebook such thatr

~ (A Û (x,), Y,) = M n d(& (x,), Y,) for aii possible values of I , v, w and j

The algorithm to determine the best affiine transform A: is now detailed.

For every codeword in the codebook:

a) Calculate the variance and the mean of the input block (ivar, imean) and the

variance and the mean of the selected codeword (cvar, cmean).

b) Assign the scaling factor s = ,/= and then quantize the value s to the

nearest number in the set S.

c) Assign the translation factor t = cmean - s*imean . If it is not in the range of set

T, the nearest value in the set is selected.

d) Transform the input block to the scaled and translated version.

(i.e. foraiixofXi: x = s * x + t)

e) Apply al1 transfomis in the set I to Xi and calculate the distortion between the

transforrned block and the codeword-

Determine the least distortion value and store the corresponding values of S s, t

and n.

Step-3. Assign the codeword [k s t n] to Xi .

6.4.3.2 Simulation results

The performance of ATVQ is investigated using 4 test video sequences of 30 frames each

(namely, Football, Ping-pong, Miss Ameica and Salesman). The codebook is generated

using the sequences Football, Ping-pong and Miss Amenca This codebook is used to

code al1 the test video sequences. Different sets of S and T with varying codeword sizes

are employed. The best values for Ns (number of members of S), Nt (number of members

of set 7) and M (number of rows or columns of each codeword) have k e n chosen frorn

the results of simulations- The selected values are:

The performance of ATVQ is evduated using the Rate-Distortion (R-D) cnterion, where

the distortion is measured using the Peak Signal to Noise Ratio (PSNR) and is defined as:

PSNR = 10 log,, (255 x 255 / MSE) dB

for 8 bit/pixel (256 gray level) images and MSE is the mean square error between the

original image and the reconstmcted image. The bit rate for ATVQ is caiculated as

follows:

Where R, Rk, Rs and RI refer to the bitrate for the codeword label, isometrïc traosform

index, scaling factor and translation factor respectively and are caiculated as follows:

The following diagram iilustrates the distortion value for a i i of the test sequences at a

bitrate of .38 bpp.

I + Ping Pong
-A- Football I

Figure 56 - Performance chart of ATVQ

It c m be seen that ATVQ outperforms VQ at the sarne bitrate.

6.4.3.3 Mapping of ATVQ on Fractaï Engine

The architecture of Fractal Engine for ATVQ is similar to that for FBC. The difference

lies in the fact that domain blocks in ATVQ are codewords from the codebook while in

FBC, the domain blocks are formed from blocks in the same image (M e) .

144

Figure 57 - Processing Section of Fractal Engine for ATVQ execution

Al1 modules in the engine work in parallel and pass data to determine the best match for

each range block- The communication between different modules of the Fractal

for ATVQ execution is s h o w in

Figure 58.

Engine

\ ARM 1

Figure 58 - Data flow diagram of Fractal Engine for ATVQ

In each clock cycle, one column of an MxM block from the video sequence enters AFM.

After M clock cycles, the distortion value between the input block and the stored

codeword is calculated and the reflected version of the input block is passed to the next

145

chah in the cell. In the second M clock cycles, the second ce11 (which is a T-Cell)

transposes the input block and calculates its distortion value corresponding to the stored

codeword. Meanwhile, the second input block enters the module. Hence, after 9M clock

cycles the distortion values between the transformed codeword and the range block are

compared and the best transform is selected. This is fedback for comparison with other

distortion values for other codewords. All of the calculated distortion vdues are

compared by CM to determine the best affine transform parameters for each codeword in

the codebook.

6.4.4 Motion Estimation (ME)

ME14331 is widely used in i n t e r - h e visual media processing paaicularly in video and

image sequences. ME-BMA (block matching algorïthrn) is typically used in inter-fiame

motion-compensated (MC) processing. In BMA, motion of a block of pixels (usually

MxM), within a frame interval is computed- The range of the motion vector is constrained

by the search window. BMA assumes that al1 pixels within the block have uniform

motion. The goal is therefore to find the best match between the block in the current

frame (range block) and a corresponding block (domain block) in the previous frarne

within a search window of size ((M+2rn) x (M+2m)). In H.261, MPEG-1, and H.263,

ME is based on (16x16) luminance blocks.

A variety of techniques have been proposed in literature for ME implementation. They

are typically compute intensive and are hence dmcult to implement in hardware. Since

the core processor of Fractal Engine has been designed by optimizing the implementation

for a variety of multimedia operations, ME can be mapped ideally onto the Fractal Engine

and implemented in real-time.

146

We note that motion estimation is essentiaily a pattern matching process. This process has

k e n fully implemented (in parallel) in the Fractal Engine in the execution of VQ and

FBP. The difference here is that instead of codewords or domain blocks fiom the current

frame, the affine module is fed with blocks from the previous fiame. Furthemore, affine

motion estimation (AME) is also possible in real-time using Fractal Engine- In AME,

each range block is also cornpared with the affine transformed version of the candidate

blocks in the previous frame. Hence, better match can be obtained using this process. In

the next sections, we demonstrate the real-tirne execution of Motion Estimation and

Affine Motion Estimation using the Fractal Engine.

6.4.4.1 Motion Estimafion

The full search BMA-ME is implemented in the Fractal Engine. We recdl that in BMA,

motion of a block of pixels (MxM), within a h e interval is investigated, The best

match between the range block and al1 possible domain blocks in a search window of size

{(M+2m) x (M+2m)) is searched by the Fractd Engine.

Full search implies that al1 blocks fomed by any pixel displacernent within the search

window have to be compared to the range block. h other words, (2m+l)x(2m+I) blocks

in previous frarne are compared to the range block and the closest block is selected. Full

search ME is compute intensive and is hence difficult to implement in hardware. Fractal

Engine is capable of implementing full search ME-BMA in real-time which is

demonstrated for the case of M=8. The structure of Fractal Engine for ME is shown in

Figure 59.

domain block

Figure 59 - Data flow diagrarn of Fractal Engine in ME process

The memory block is divided into two sub-blocks. Each sub-block stores the information

of one frame. After the fust h e is stored in the fust RAM block, motion estimation for

the second Erame is started. At the sarne time, the data is stored in the second RAM block.

We note that at the end of motion estimation process for the blocks in the second frame

(current irame), the contents of the second block of RAM need not be copied to the first

RAM block. Instead, the Fractal Engine considers this RAM block as the previous fiame

data and fills the first RAM block with the new (third frame) information.

64.42 Amne Motion Estimation

We recail that the main task in data analysis in video applications such as video coding,

indexing and compression is motion estimation. The idea is to exploit existing temporal

correlation among subsequent frames of a video shot. This kind of correlation exists

because in each shot, subsequent frames are taken from one single scenery at different

time instances. However, the variances in frames, which are called motion, are due to the

movement of objects and various camera operations. Traditional motion estimation

148

techniques [99], 1431 try to model the motion with one-dimensional shift function. This

assumption is not valid for complex motion where sophisticated motion functions are

required to model the temporal activity. Cornplex motion functions are not realizable in

real time ushg existing architectures. The affine motion functions capture complex

motions and are implementable in real-time using the affine processor of the Fractal

Engine. This makes possible analysis of motion in a shot more accurately and hence,

outperforms other motion estimation dgorithms. In this section, we show the

implementation of motion function using the Fractal Engine. The basic idea is to

find the best match for a range block not only in the domain blocks in previous frame but

also in the affine transformed version of those blocks.

The structure of the Fractal Engine for the execution of AME is s h o w in Figure 60.

I
-1 col. of O A T h transforme

Figure 60 - Data fiow diagram of Fractal Engine in AME execution

6.5 VHDL lmplementation And Timing Analysis

A behavioral VHDL description of the design has k e n implemented using the

synthesizable part of the VHDL language. The fûnctionaiïty of the design has been tested-

After an initial latency of 9M clock cycles (where M is the number of rows in a block),

the first result becomes available at the output of AFM.

1 CeU 1 Po 1 Nets 1 total 1 Max. path delay

AR-ACC 27 288 20.72

1

Table 4- Timing and area analysis of the chip

AR-SUM

* area is normalized to the equivalent of a nand2 gate.

The design, has been synthesized (translated and optimized) using BiCMOS .8p

technoIogy. The resulting chip area and speed for the basic modules are shown in Table 4.

We note that the area and speed can be further improved by using advanced technology

libraries.

The minimum duration of the dock pulse is determined by the maximum of:

4 The tirne taken by the AR-ACC to cornpute the partial distortion value.(20.72

ns

+ The time taken by AR-SUM to add the partial values.(11.97 ns)

The time taken by the T-ce11 to load and transfer the data (0-89 ns)

29 40 120 1 1.97

4 The time taken by SCM to calculate the translated and scale version of one

element of data(l1-77 ns)

+ The time taken by CM-cell to compare two distortion values. (9.17 ns)

Hence, the minimum duration of the clock pulse is 20.72 ns and the maximum fiequency

of operation is f=1/20.72ns = 48MHz. We note that by using this specific dock fiequency

for the Fractal Engine, reaI-time implementation of the exarnple dgorithms are possible.

The timing analysis for execution of the algorithms is detailed in next section.

6 Vector Quantization

The computational complexity of VQ for n range blocks of dimension L for an image of

size M N , and a codebook size K is O(KLn). For exarnple, a 512 x 512 image with vector

dimension of L = 64 (8x8 blocks) encoded using a codebook of size K = 256 requires

approximately 1 92 million arithmetic operations.

In the Fractal Engine, after an initiai latency, at the end of every eight dock cycles, one

codeword is processed. Hence, K=2048 dock cycles are needed to output the codeword

label for each input vector. The number of clock cycles required to encode a frame is (N x

N) / (Mx M) x K = (512 x 512) / (8 x 8) x 2048 = 8388608. Hence, each frame is encoded

in:

8388608 x 20.72ns = 0.17 seconds.

For a video sequence 30 frame/second, Fractal Engine irnplements the VQ algorithm in

real-time. We note that ATVQ algorithm is executed in Fractal Engine in exactly the

same time as VQ because al1 the transformations and cornparisons for each codeword is

processed in paralle1 dong with the basic calculation. In other words, Fractal Engine is

capable of executing AWQ algorithm in red-time.

6.5.2 Fractal Block Coding

We now calculate the number of operations involved in FBC algorithm based on general

values for the frarne size, NxN, the block dimension, L=MxM and f=8 geornetric

transfoms in a general purpose processor.

The number of operations involved in FBC depends on the bIock size and is calculated as

foliow s:

n = (N x N) / L number of blocks.

n x (n-1) x L number of additions and multiplications in scaling and translation stage.

n x (n-1) x f x L number of multiplications in the block matching process-

n x (n-1) x f x 2 nurnber of additions in block matching process.

nxL number of integer additions and integer multiplications in mean and variance

calculation-

n x (n-1) x (f-1) number of geometric transforms.

In the case of 128x128 pixel frarnes, the total number of operations are:

8x8 mode: 7.1~10' additions + 3.76~10' multiplications + 2.93~10' integer additions.

4x4 mode: 2.85~108 additions + I .SX I@ multiplications + 1.1 7x108 integer additions.

152

h the FractaI Engine, after an initial latency of 72 clock cycles, at each dock cycle one

column of 8x8 (or 4x4) blocks is processed in all of the sub modules of AFM. Hence, 8

(or 4) clock cycles are needed to output the distortion between a range block and al1 of

eight transformed versions of a normalized domain block. The number of dock cycles

required to encode a h e is:

~ x (N x N) / (~ x ~) x (N x N) / (~ x ~) 8x8 mode

(4 x (N x N) / (4 ~ 4) x (N x N) / (4 ~ 4)) / 4 4x4mode

If every operation is performed in one clock cycle in the general purpose processor, the

number of clock cycles required for encoding one frame will be: 1 . 3 8 x ~ d + p 5.52x1@,

where p is the percentage of remaining 4x4 blocks to be coded. For a srpical value of

p=90% and 40MHz clock signal, it takes 15.87 seconds to encode one frame in the

sequential processor while the Fractal Engine encodes each frarne in -044 seconds- For a

video sequence containing frames of size 176x144 pixels with 10 frarndsecond (QCIF

format), Fractal Engine implements the FBC algorithm in rd-tirne.

It is important to note that the scaiable feature of Fractal Engine makes possible red-time

implementation of larger size and higher frame rate image and video sequences such as

CIF, CCIR 601 and HDW. For example, real-time implementation of FBC for a

CCIR601 sequence c m be achieved by simply cascading Fractal Engine modules. Fractal

Engine is an open architecture and hence can evolve, adapt, and expand to handle a

variety of computing tasks and challenges present in other media processing (including

visual processing) applications. We note that the performance analysis are based o n . 8 ~

BiCMOS technology and available today's technology like .2Sp and .18p will increase

the performance both for area and speed resulting in smdler and faster modules.

153

6.53 Motion Estimation

For an image size of NxN, with blocks of M a and a search window of (2m+I)x(2m+ 1), '

(N ~ N) / (M X M) X (Z ~ + ~) ~ block cornparisons are required to detect motion vectors for all

blocks in a fiame. In the Fractal Engine, after an initiai latency, in the case of M=16, at

every sixteen clock cycles, one block is compared to a range block. Hence, for a QCIF

(cornnion intermediate format) video sequence with a frame size of 176x144, M=16,

m=15 and clock fiequency of 48MHz, 30 fiames are processed in 0.95 seconds which

results in real-tirne execution,

65.4 M m e Motion Estimation

For an image size of NxN, with blocks of MxM and a search window of (2m+I)x(2rn+I),

(NXN)/(MXM)X(~~+~)~XS block cornparisons are required to detect affine motion vectors

for al1 blocks in a frarne. in the case of M=8, after an initial latency of 72 clock cycles, at

every eight dock cycles, eight affine transformed versions of one block are compared to a

range block. Hence, for a CIF video sequence with a frarne size of 352x288, M=8, m=5

and a clock fiequency of 48MHz, 30 frames are processed in 0-82 seconds which results

in real-time execution of A M . by the Fractal Engine.

6.6 Summary

Fractals exploit the high correlation and self-sirdarities present in visual data within an

image or a sequence of images. Fractal Block Processing (FBP) has been proposed as an

algorithmic solution to implement the fractd operators for various images. We have

presented the design of a Fractal Engine based on an affine video processor, to meet the

real-time requirements of FBP. The highly parallel and pipelined architecture of Fractal

154

Engine enables this processor to perfonn a variety of compute intensive visual processing

applications in real-time. Scalability and modularity issues are addressed in the design of

Fractal Engine. To dernonstrate the computational power of Fractal Engine vector

quantization, fracta1 block processing, &ne transform based vector quantization, motion

estimation and affine motion estimation algorithms are mapped ont0 the Fractal Engine

and have been shown to be implementable in real-tirne, In order to make the Fractal

Engine applicable to other applications which involve image and video operations that are

not captured by Fractal Processing, augmenting to the Fractal Engine is required. We

present examples of augmenting the Fractal Engine in the next chapter.

7 Augmented Fractal Engine

In this chapter, the design of the augmented Fractal Engine is presented. In the design

process, we increase the functionality of the Fractal Engine by adding auxiliary modules,

which support fiexibility of the design, the interface to peripherds and an interpolation

filter. Augmented Fractal Engine affords a level of programmability using external

control by an externd CPU. It also performs d l kinds of general Iinear filtering using the

interpolation fdter module. First, interpolation in digital domain is detailed and the

interpolation filter design is presented. Finally, supporting architectures for

programmability features dong with peripheral sections are discussed.

7.7 Interpolation in Digital Images

In digital images, the pixels, or picture elernents, are lirnited to lie on a sampling grid,

taken to be the integer lattice. The individud pixels are passed through a mapping

function such as affine transfomis, which generates the new coordinates corresponding to

the transform function. The new coordinates, unlike the input sampIing points, do not

generally coincide with the integer lattice (for example in a rotation transfonn, if they are

not integer multiples of 90 degree rotations). Hence, the new coordinates can take

continuous values assigned by the mapping function- The problem is to locate the exact

intensity values of the pixel at the integer lattice points. This requires an interpolation

stage to fit a continuous surface through data sarnples, which may then be sampled at

arbitrary positions. The accuracy of interpolation has a significant impact on the quality

of the output image. Consequently, many interpolation functions have been investigated

156

to reduce the computational complexity and improve the image quality. Popular

interpolation functions include linear, bilinear, nearest neighbor, etc. More sophisticated

and accurate methods[52] include, cubic spline interpolation and convolution with a sinc

fünction. Although the sinc function is an ideal candidate, it cannot be realized using a

finite number of neighboring elernents.

In this section, we propose two modifications to classical interpolation methods to

maintain the quality dong with performance enhancement We note that whatever the

mapping functions and the algorïthms of interpolation are, they can be implemented in

two different flavors, narnely forward and inverse mapping[54], which are now detailed.

7.1.1 Forward Mappiag

The forward mapping consists of copying each input pixel onto the output image at

positions determined by the X and Y mapping functions. Figure 61 illustrates forward

mapping. Each input pixel is passed through the spatial transformation where it is

assigned a new output coordinate value. Notice that the input pixels are mapped from a

set of integers to a set of red numbers. In the Figure 61, this corresponds to regularly

spaced input samples and irregular output distribution,

UV-plane xy-plane

Figure 6 1 - Forward mapping.

In the continuous domain, where pixels may be viewed as points, the mapping is

straightforward. However, in discrete domain, pixels are taken to be finite elements

defïned to lie on a (discrete) integer lattice. It is therefore inappropnate to implement the

spatial transformation as a point-to-point rnapping. This can result in two types of

problems: holes and overlaps. Holes, or patches of undefined pixels, occur when mapping

contiguous input samples to sparse positions on the output grid. In Figure 61, C' is a hole

since it is bypassed in the input-output mapping In contrast, overlaps occur when

consecutive input samples collapse into one output pixel, as depicted in the figure by

output pixel E' .

The solution to the point-to-point problem is by using a four-corner mapping paradigm.

This considers input pixels as square patches that may be transformed into arbitrary

quadrilaterals in the output image,

Figure 62- Four corner mapping.

An accumulator array is therefore required to appropriately integrate the input

contributions at each output pixel. It is achieved by determuling which fragments

contribute to each output pixel and then integrating over al1 contributing fragments. The

partial contributions are handled by scaling the input intensity in proportion to the

fractional part of the pixel that it spans. Thus, each position in the accumulator array

evaluates iw-f, wheref;- is the input value, wi is the weight reflecting its coverage of the
I I

i=O

output pixel, and N is the total number of deposits into the cell. Using the four-corner

mapping solution introduces time consuming intersection tests which precludes real-time

implementation for digital rotation.

To overcome this probIem, we propose an area mapping aigorithm. In this algorithm the

point-to-point map is performed. Instead of using a four-corner mapping frorn the input to

the output image* we consider the output pixels as square blocks. The center of each

block is located on the coordinates of the mapped point in the output image.

m e o r n o m o e e o

uv-plane xy-plane

Figure 63- Area mapping.

An accumulator array is then used to evduate the fractional part of the pixels that it

7.12 Inverse Mapping

In inverse mapping, each output coordinate is projected into the input image via U=X'

and v=Y'. The value of the data sample at that point is copied onto the output pixel. This

is the most common method since no accumulator array is necessary, and output pixels

that lie outside a clipping window need not be evaluated. This method is useful when U

and V are readily available (as in the case of most affine transfomis) and the input image

can be stored entirely in the memory. Figure 64 illustrates the inverse mapping, with each

output pixel mapped back ont0 the input via the spatial transformation (inverse) mapping

function.

Figure 64- Inverse mapping.

Sirice the output pixels are projected to the input pixels with real-valued positions, an

interpolation stage must be introduced in order to retrieve input values at undefined (non-

integrai) input positions. Again, area mapping is employed to calculate the intensity of the

input pixels at non-integer positions.

7.1.3 Interpolation

Interpolation[Sl] is the process of determining the values of a function at positions Iying

between its samples. It achieves this process by fitting a continuous function through the

discrete input samples. This permits input values to be evaluated at arbitrary positions in

the input, not just those defined at the sample points. Interpolation reconstiucts the signal

lost in the sarnpling process by smoothing the data samples with an interpolation

function. For equally spaced I -D data, interpolation can be expressed as

where h is the interpolation kemel weighted by coefficients ck and applied to N data

sarnples, xk. Equation (13) formulates interpolation as a convolution operation. GenerdIy,

h is a symmetric kernel, i-e- h(-x)=h(x) and c k coefficients are the data sarnples. The

computation of one interpolated point is illustrated in Figure 65. The interpolating

function is centered at x, the Iocation of the point to be interpolated. The value of that

point is equal to the sum of the values of the discrete input scaled by the corresponding

values of the interpolation kernel, The illustrated interpolation function extends over six

points. E x is offset from the nearest point by distance d, where d is between O and 1, we

sanipie the kernel at h(-d). h(-1-d), h(-2-4, h(l-d), h(2-d) and h(3-d)-

Figure 65- 1-D Interpolation.

Although interpolation has been presented in terms of convolution, it is rarely

implemented in this manner. Instead, it is simpler to directly evaluate the corresponding

interpolating polynomial at the resarnpling positions. The discussion of interpolation

kernels is necessary due to the cornparison between different interpolation techniques.

7-1.4 InterpoIation Kernels

The numerical accuracy and computational cost of interpolation algorithms are directly

tied to the interpolation kemel[52], [53]. Consequently, interpolation kemels are the

target of design and analysis in the creation and evaluation of interpolation algorithms.

They are subject to conditions influencing the tradeoff between accuracy and efficiency.

7-1-4.1 Nearest Netetgh bor

The simplest interpolation algorithm from a computational standpoint is the nearest

neighbor algorithm, where each interpolated output pixel is assigned the value of the

nearest sample point in the input image as shown in Figure 66. This technique is

expressed by the following interpolating polynomial.

Figure 66- Nearest Neighbor Interpolation.

It can be achieved by convolving the image with a one-pixel width rectangle in the spatial

domain. The interpolation kemel for the nearest neighbor algorithm is defined as

Box filter, sarnple-and-hold function and Fourier window are alternative narnes for this

kemel. This kernel corresponds to multiplication with a sinc function in frequency

domain. Due to the prominent side lobes and infinite extent, a sinc function makes a poor

low-pass filter. Hence, the nearest neighbor algorithm has a poor frequency domain

162

response. In this technique, shift errors of up to one-haif pixel are possible. For large-

scaie changes, nearest neighbor interpolation produces images with a blocky appearance.

The main advantage of this technique is the simplicity, which makes it possible to

irnplement using a general-purpose processor in reai-the.

Linear interpolation is a first-degree method that passes a straight line through every two

consecutive points of the input signal. Given an interval (xo, x,) and fûnction values fo and

fi for the endpoints. the interpolating polynomial is

The corresponding interpolation kernel is

Figure 67- Linear interpolation.

Kernel h is referred to as a triangle filter, tent filter, roof function, Chateau function, or

Baalett window. This interpolation kernel corresponds to a reasonably good low-pass

filter in the frequency domain. The side lobes are far less prominent, indicating improved

performance in the stop-band. Linear interpolation is widely used for reconstruction since

163

it produces reasonably good results at moderate cost. 2-D linear interpolation is achieved

by separable ID interpolation as shown in Figure 67. In the fmt step, two linear

interpolations are executed to obtain the intensity value of B' and B" pixels. Then in the

next step, another 1D Linear-interpolation within these two pixels is perfomed to

caIcuIate the intensity value of the desired pixel B.

7.1.4.3 2-D Area Based Interpoultion

W e recall from section 7-1.1 that a modified algorithm of four-corner mapping will

increase the speed while maintaining a similar performance. This algorithm is illustrated

for forward mapping in section 7.1.1. In this section, the algorithm is illustrated in Figure

68 for backward mapping-

f =
C fi- Ai

C Ai

Figure 68- 2D Area Based Interpolation.

As shown in the figure, the intensity value of the desired input pixel is easily obtained

using the fiactional part of the pixels that it covers as a weighting function. The

justification of this method lies in the fact that the intensity value of each pixel in the

lattice input grid is the average of the illumination received by the sarnpling device (e.g,

scanner).

7.1.5 Experimental R e d ts

In this section, we propose a method to compare the results of different techniques. Since

none of interpolation techniques achieves the ideal solution, it is not possible to directly

compare the re-produced images. However, we propose to employ the original image as a

reference and apply different rotation dgorithms as examples of general a s n e

transforrns. We then derive the reconstructed image by applying the inverse rotation. The

integrity of the reconstructed image compared to the original image is used as a basic for

cornparison-

The test 256x256 Lena image has 256 gray levels. The employed fidelity criteria are the

Mean Square Error (MSE) and Signal to Noise Ratio (SNR) which are defined in

Equation (1 7) and (1 8), respectively.

The expenmental results for three different interpolation techniques are tabulated in

Table 5-

MSE

Table 5- Experimentai Results.

SNR = 1010~

It can be seen that the nearest neighbor technique is sensitive to the angle, while the

proposed area based and linear interpolation techniques maintain a similar quality for

different angles of rotation, The area based algorithm (which c m be executed in 8.23

seconds) outperforxns the linear interpolation (9.59 seconds) in terms of the speed of

operation.

7.1.6 Interpolation Filter Implementation

Interpolation filter belongs to the category of linear filters. We propose a general

implementation of these filters which then enables the Fractal Engine not only to perforrn

general interpolation tasks and affine transfonns but also dl other linear filtering such as

DCT and DWT. The general form of a linear filter is expressed in (19).

The basic operations in linear fütering are multiplication and accumulation. We now

present a pipeline and scalable architecture for accumulation and multiplication.

7.1.6.1 AccumuI;aîion

The simple form of accumulation is expressed in (20).

Q c - Q t I N At every dock cycle (20)

We note that a simple pipeIine adder is unsuitable for accumulator, since the adder will

stdl for multiple clock cycles until the result of previous addition is available before

starting the new addition.

Our proposed architecture outputs the result in every clock cycle after an initial latency.

The basic ce11 of the accumulator is shown in

Figure 69. The ce11 is a fast, compact and simple adder with an 80 MHz frequency of

operation implemented in BiCMOS .8p technology.

Figure 69 - Basic accumulator cell

The accumulator consists of several ACC-CELL based om the data width. An example of

12 bit accumulator with three level pipeline is s h o w in Figure 70. We note that there are

also load and stop accumulation controls introduced in the design. Load control will set

the Q output for a specified value and stop halts the operation of the module.

Figure 70 - 12 bit, 3 level-pipelined atccurnulator

Scalability

The accumulator is modular and scalabte. To demonstrate the scalability of the design, we

show an example of constmcting a 24-bit accumulator with 6 pipeline levels using two

12-bit accumulators and delay modules. The complete design is shown in Figure 7 1. After

the first 3 clock cycles, ACC-1 processes data and the partial result is ready at point C and

carry out of the ACC-I (point B) enters the second unit CACC-2). At the same time, the

input data is output from the delay module D l at point A .and is ready to enter the second

accumulator. After the next 3 clock cycles, the output is ready at points D and E and at

every dock cycle, the new output is processed.

Carry
out

3

+ DeIays > 12 bit
DI v ACC - 2 -

@, -
12 bit 3

ACC - 1 -
u Delays - D2 Q(0-i

Carry
in

Figure 71 - Scalable accumulator

7.1.6.2 Multiplier

We propose a fast pipelined multiplier based on a Cbit multiplier. The synthesized 4-bit

unsigned multiplier in BiCMOS .8p has a delay of 15 ns which corresponds to a

maximum frequency of 66MHz. This speed of operation is adequate for Fractal Engine

and hence, we utilize this ce11 to implement Our multiplier. The block diagram of an 8-bit

multiplier is shown in Figure 72.

1 -1-

Figure 72 - Block diagram of an 8-bit multiplier

We demonstrate the function of multiplier by an example shown in Figure 73. In the first

clock, cycle number A (nibbles al and a2) and number B @1 and b2) are entered into the

multiplier. In the next clock cycle, C and D enter the module followed by subsequent

operands. The partial results of rnultiplying the nibbles are shifted accordingly to produce

the result as shown in Figure 73.

After the first clock cycle, results al .b 1 at poh t D (Figure 72), a l .b2 at point C and a2.b 1

at point F are ready. In the next clock cycle, alh2 plus a2.bl at point G, and aZb2 at

point E are calculated. At this tirne, both of al-bl and &.b2 are available in point H and

they are appropriately added. In the next clock cycle, the final result is computed and

output to point 1. After this initial latency of three dock cycles, at every clock cycle the

multiplication results are ready and output-

Figure 73 - A multiplication example

7.2 Peripheral Section

Control, communication, storage and interface in the Fractal Engine are implemented in

the Peripheral Section. Programmability in the Fractal Engine is acquired by

communication between an external CPU with CPU-IF (CPU interface) module. This

module is implemented using an SRAM FPGA like an Altera 10K[34] device or Xilinx

4000[35] series.

7.2.1 Random access memory (RAM):

This module stores input data, intermediate results and output data The description of

each item follows:

Input Data

The input data essentially consists of the image or the frarne to be coded. In the

Fractal Engine, two fiames are processed simultaneously in different stages. While

the second frame enters the ARM for mean and variance calculations, the first frame

is loaded into AFM. Hence, two frames are required to be stored in the RAM module.

Intermediate Results

171

The mean and variance of every block in the fiame are cdculated in FBP by ARM.

The result is only used to normalize each domain block with respect to a range block

and is hence considered as an intermediate result-

Output Data

The ultimate output of the system is the bit-stream representing the input frarne. For

each range block, the index of the closest domain biock with the parameters of

selected f i n e transform is stored as output data,

In order to have the maximum speedup, it is important to distribute the data among all

modules for concurrent data access. This necessitates parallel and simultaneous accesses

to multiple memory elements. Existing architectures for multi-access memory modules

fail in two main categorîes namely multi-port RAM and rnulti-block RAM.

Multi-port mernories with a large number of ports are quite expensive but are however

flexible. Parallel access to any combination of memory cells is possible in multi-port

mernories. In a multi-block RAM architecture, severai single port memory modules are

employed to store the different blocks of data, Although sirnultaneous accesses to the

memory celis within each block is not feasible, multi-block memory modules have a

simpIer architecture and occupy less space than multi-port memory modules.

In Our design, we present an efficient memory map which fulfills the requirement of all

simultaneous memory accesses in the Fractal Engine by using a multi-block memory

architecture.

Memory map configuration in the Fractal Engine is as follows:

One memory block is allocated as a buffer to store the frame data prïor to the s t a a of

fractal operations. This btock has a 14-bit address bus and an 8-bit data bus. As soon

as data is Ioaded into this block, ARM starts the mean and variance calculation.

The second memory block is allocated to store intemediate results such as the mean

and variance of range and domain blocks,

The major block is allocated to store the image data. Each memory ce11 and hence, the

data bus width is 16x8 bits. Every 16 adjacent pixels are grouped together to forrn a

128-bit ce11 of the memory. At every clock cycle, 128 bits of data are read from the

memory or written into the memory. h 4x4 mode, every 32 bit segment of the

memory ce11 corresponds to a row of 4 x 4 blocks in the image and four rows are

processed in parallel in the Affine and Scale modules.

7.2.2 Control Unit (CU):

This module essentially consists of finite state machines with different inputs and outputs.

The state machines control SRAM, AFM and M L It also broadcasts a global signal to al1

modules to select between 8x8 or 4x4 modes of operation. The implementation of CU

and IMI are detailed in Chapter 7.

7.2.3 CPU-IF module

This module communicates with an extemal CPU to control the execution of Fractal

Engine- The CPU c m write and read intemal registers to and from the FPGA. These

regis ters include:

Mode flag (write register): This flag is set by the CPU to indîcate the 8x8 mode

operation for al1 modules in Fracta1 Engine. Resetting the flag to O hnplies 4x4

operation of the engine.

Affine flag (write register): This flag is set to high to indicate that the CM

(comparator module) compares the distortion between the affine transformed version

of blocks with the range block. When the flag is set to zero, CM compares the range

block with the domain blocks only.

Output register: This register is -en by the Fractal Engine. CPU reads this register

through C P U module. This register indicates the best candidate for the current

range block in process. It shows the domain block number and affine parameters

corresponding to the best match for the range block.

Error register: In addition to the output register, the CPU accesses error register to

determine the distortion value between the range block and the best candidate chosen

by the Fractal Engine. Based on the value for error threshold, the CPU either accepts

the affine parameters or rejects those values.

Address registers: CPU writes the start and end addresses for a burst transfer, which is

executed by the MI module-

7.2.4 Intelligent memory interface (IMI):

It is important to match the VO and compute bandwidth in any processor design.

Operations must be carefully overlapped, balanced and sequenced to ensure the most

efficient use of al1 the modules in the processor. The IMI ensures that the required data

are delivered to the processing modules in parallel and on time. This module acts as a

DMA (Direct Memory Access) device in the Fraictal Engine. There are 4 address

registers, 2 data registers and 2 counters in IMI for two paralle1 access to the RAM. CPU

sets the start address and end address registers and EMI starts the burst transfer. After a

pipeline latency in each ciock cycle, data is entered ïmto the affine module of the Fractal

Engine. The external selected RAM module is a fast asynchronous static RAM with an

access time of 15ns which allows clock fiequencies u p to 66 MHz. The timing diagram of

a typical burst transfer by IMI is shown in Figure 74.

Clock l I Il I I

Figure 74 - Burst transfer example faor a 66MHz clock

7.3 Summary

Fractd Engine is designed in order to accomplish major multimedia task especially in

visual domain in an optirnized manner. Several level mf enhancements have been applied

on the engine. In this section the finai stage of completfion the Fractal Engine is presented.

First, interpolation in digitai domain and the interpolaion filter is proposed with the new

simple and pipelined architectures for accumulators and multipliers. Finally, supporting

175

architectures for programmability features are added to FractaI Engine chipset. An FPGA

implementation for this module is selected due to reprogramability feature of the FPGA.

New revisions of FPGA are possible for further control of Fractai Engine,

Conclusions

The demands for processing multimedia data in real-tirne using unified and scalable

architectures are ever increasing with the proliferation of multimedia applications.

Multimedia processing poses challenges from the perspectives of both hardware and

software. In this thesis, we have presented a summary of the various architectural

approaches for media processing. Since, visual media represents a significant chunk of

the multimedia information, it is crucial to design high performance processors that are

reasonably optimized for video processing applications. We have denved the fundamental

operations involved in visual processing tasks and designed the generic processing

elements to map a majority of these operations. Affine transformations are expected to be

increasingly used in many visual processing applications, and hence an affine transform

video processing core has been designed. Since Fractal Block Processing encompasses a

variety of visual processing operations, we have chosen FBP as the candidate algorithm

for the design of the video processor architecture called Fractal Engine. FractaI Engine,

which is based on the ATP core, is simple, modular, scalable and is optirnized to execute

both low level and mid level operations. The individual modules of Fractal Engine have

been implemented in VHDL (VHSIC Hardware Description Language). The behavioral

description of the Fractal Engine in MIDL has been synthesized towards standard ce11

ASIC and fast SRAM FPGAs. The function of the Fractal Engine has been demonstrated

by mapping popular video processing algorithm such as fractal block coding W C) ,

vector quantization and motion estimation. Fractal Engine is capable of processing intra-

frame I inter-frame video processing and other media processing applications.

177

The new design ideas in multimedia architectures such as programmability, scdability

and critical dedicated hardware units have been incorporated in the design process of the

Fractal Engine.

8.1 Thesis Contributions

The overd contribution of this thesis is in the design of a novel, scalable and optimized

visual signal processor termed Fractal Engine. The main contributions are as follows:

8.1.1 Classification of Various Multimedia Operations

Cl Classification of fundamental operations in visual signal processing (section 2.3).

O Introduction of Fractal Processing as a candidate algorithm to design a visual

signal processor cded Fractal Engine (section 2.4).

8.1.2 Design Trends in Multimedia Hardware Architectures

O Classification of different design issues including flexibility, processor design,

data distribution, memory and granularity (sections 4.1 - 4.5).

O Review of available multimedia processors (section 4.6).

O Analysis of the merits of existing multimedia processors and investigation of the

shortcornings (section 4.7).

8.1.3 Hardware / Software Co-design for VLSI Implementation

fl Review of enabling VLSI technology including fabrication process and design

tools (section 3.2 and 3.3).

O Definition of a new VLSI design methodology employed in the design of Fractal

Engine. The methodology is based on a combination of behavioral description of

the design (using hardware description languages) and synthesis tools (section

3-3.2).

8.1.4 M i e Transform Processor

O Derivation of genenc operations in affine transforms (section 5.2).

Design of optimized hardware for implementing the generic operations (section

5-3).

8-15 Fractal Engine

O Hardware design of Fractal Engine - processing section including AiThe module,

Scale module and Arithmetic module (section 6-3).

O VLSI Implementation of scalable Affine Transform Processor (section 6.3.2)-

O Design of an Intelligent Memory Interface for communication between memory

modules and al1 processing modules (section 7.2.4).

[7 Au-mentation of Fractal Engine by the addition of prograrnmability feature into

Control Unit (section 7.2.3).

0 Interpolation FiIter Implementation in Fractal Engine (section 7.1.6).

8-2 Publications

The contributions of this thesis have been presented and appeared in several refereed

international conferences and journals [25], [88], [102J- [109]. An invited paper in the

IEEE Transactions on Circuits and Systems for Video Technology[l10] is a highlight of

the contributions of this thesis.

9 Future Work

Fractai Engine is capable of implementing a variety of visual media processing

applications. It is an open architecture and is therefore extendable to implement future

multimedia algorithms- Several challenges frorn the point of view of mapping new

algorithms as well as augmenting the Fractal Engine constitute the future work. We now

present a sampling of the promising directions of future implementations in the Fractal

Engine. In the Fust section, we present some of the existing multimedia algorithms, which

are impiementable in the Fractal Engine. In the second session, we propose new

algorithms based on affine transforms and fractal processing. These algorïthms can be

ideally mapped ont0 the Fractal Engine.

9.1 Multimedia Algorithms

Cl Scene Cut Detection - optical flow

@ The inputs to video processing algorithms are frames belonging to a shot.

However, a video sequence typicdly contains several shots. Scene cut

detection algorithms partition video into shots by detecting the shot

boundaries (scene cuts) using optical flow techniques (sirnilar to motion

estimation) which can be directly mapped ont0 the Fractal Engine.

CI Discrete Cosine Transfonn (DCT)

Ci DCT is widely used in image and video applications because it offers the

closest performance to the computationally expensive KL transfom. DCT

calculation is based on array multiplication and accumulation which can be

performed in parallel using the Fractal Engine.

Ci Discrete Wavelet Transform (DWT)

Ci Recently, wavelet theory has emerged as a powerW technique for non-

stationary signal analysis. The implementation of DWT is very similar to sub-

band coding. Wavelets offer a variety of usefuI features in image and signal

processing. D m calculation is based on array multiplication and

accumulation, which can be performed in parallel using the Fractal Engine.

17 MPEG-4 and MPEG-7 standards

C1 Upcoming MPEG-4 and future MPEG-7 standards are expected to involve a

variety of video signal processing algorithms including content based coding,

sprite coding, mesh and phase animation coding, affine transformations and

indexing. This would require a generic open architecture for video signal

processing implementation such as Fractal Engïne.

9.2 New Affine Algorithms

E Affine Motion Estimation (AME)

I7 We recall from section 6.4.4.2 that complex motion estimation requires

implementation of sophisticated affine motion functions. AME algonthms are

implementable in rd- t ime using the affine processor of the Fractal Engine.

Cl Fractal Video Compression

Fractal techniques are typically used in image processing applications. We

note that the basic element in fractal video algorithms is f i m e transform and

hence, the Fractal Engine is a perfect choice to execute these algorithms.

17 Camera operation detection using affine transfoms

O There are two sources for pixel displacement within the -es of any video

shot narnely object motions and carnera operations- Camera operaiions Iike

panning and zooming introduce sophisticated motion patterns in image

sequences, These patterns c m be captured precisely using affine operations

and hence can be impIemented in the Fractal Engine.

[l] B. Tarim and M. Ismail, 'Enhanced anolaog yields cost-effective systems-on-chip",

IEEE Circuits & Device Magazine. Vol. 15 no- 2 pp 12-22, 1999,

[2] H. Sasaki, "Future trend of VLSI technology and business", International Symposium

on Plasma Process-Induced Damage, =ID, Proceedings 1998, pp 1-6.

[3] J. Wilson et ai.,"Challenges and Trends in Processor Design", Computer Vol. 3 1 no- 1

Jan. 1998.

[4] 1. Watson, "Internet, Intranet, Extranet: managing the information bazaai', ASLIB

Proceedings. Vol. 5 1 no. 4 pp 109- 1 14, Apr. 1999.

[5] E. Ayanoglu, 'Wiieless Broadband and ATM systems", Computer Networks-The

Iternational Journal of Computer & Telecommunications Networking. Vol. 3 1 no. 4 pp

395-409, Feb. 1999.

[663 V. Bhaskaran and K. Konstantinides, "Image and Video Compression standards",

Kluwer Academic Publishers, 1996.

[7] G- K- Wallace, 'The JPEG still picture compression standard," Communications of

the ACM, Vol. 34, No. 4, pp. 30-45, April 1991.

18 J MPEG (Moving Pictures Expert Group), Find text for ISO/IEC 1 1172, Information

Technology - Coding of Moving Picîures and Associated Audio for Digital Storage Media

at up to about 1.5 Mbits/s, ISO/IEC, 1993.

[9] M- 07Docherty and C. Das kdakis, "Multimedia information systems: the

management and semantic reîrieval of al1 electronic data types," The Cornputer Journal,

Vol. 34, No. 3, pp. 225-238, 1991.

[IO] Digital Libraries, Special issue of Communications of the ACM, Vol. 38, No. 4,

April 1995.

[Il] M. Ehlers, G. Edwards and Y. Bedard, "Integration of remote sensing with

geographic Monnation systems: a necessary evolution. " Photogramrnetnnc EngUleerulg

and Remote Sensing, Vol. 55, No. 1 1, pp. 1619-1627, 1989.

1121 C. Tomlin, Geographic Infunnation System and Ca~ographic Modeling, Prentice

Hall, Englewood Clïffs, NJ., 1990.

[13] Horace Newcomb, "Encyclopedia of television", ISBN: 1 8 84964249, Chicago :

Fitzroy Dearborn Pub., 1997

[14] D. L. Gall, "MPEG: A Video compression Standard for Multimedia Applications",

Communications of the ACM, Vol. 34, No. 4, April 199 1, pp. 59-63.

[lS J RE. Anderson, etat. "Intergrationg the MPEG-2 sybsystem for digital television",

IBM Journal of Reasearch & Development. Vol. 42 no. 6 pp 795-805, Nov. 1998.

[1 61 D. Anas tassiou, "Current status of the MPEG-4 standardization effort," S P W C P ,

vol- 2308, pp. 16-24, Chicago, IL, Sep. 1994.

[17] Y. Q. Zhang, "Very low bitrate video coding standards," Proc. of SPIE: Visual

Communications and Image Processing, pp. 10 1 6- 1023, May 1995.

[18] A. Tabatabai, M. Mills and M. L. Liou, "A review of CCI'IT px64 kbps v i d a

coding and related standards", Intl. Electronic Imaging Exposition and Conf., pp. 58-6 1,

Oct. 1990.

[19] KU-T Recornmendation H.263. "Video Coding for Low Bitrate Comm~nication'~,

October 1995.

[20] "MPEG-7 FAQ", http://drogo.csel t.stet-it/mpeg/faq/faa rn~eg-7.htm.

[21] K. Aizawa and T. S. Huang, "Model-Based Image Coding: Advanced Video Coding

Techniques for Very Low Bit-Rate Applications", Proceedings of the IEEE, Vol. 83, No.

2, February 1995, pp. 259-27 1.

1221 H. Liu et al. 'Trifocal Motion Modeling for Object-Based Video Compression and

Manipulation", IEEE Transactions on Circuits & Systems for Video Technology. Vol. 8

no. 5 pp667-685, Sep. 1998.

[23] M. Stnntziz and S. Malassiotis, "Object-based coding of stereoscopic and 3D image

sequence", IEEE Signal Processing Magazine. Vol. 16 no. 3 pp 14-28 May 1999

[24] A. Saflekos, et ai-, "Coding of 3D Moving Medical Data Using a 3D Warping

Techniquey', Signal Processing Vol. 55 no. 2 pp 247-252, Dec. 1996.

[25] 0. Faterni and S. Panchanathan, "VU1 ChipSet for Afine Based Video

Compression", S P E Proceedings Vol. 2668 pp. 233-242, Feb. 96.

[26] Y. Hara and J. Yoshida " US., Iapan IC makers race to media processors" Electronic

Engineering Times, Issue 1010 June 1998.

[27] Michael Kagan, "P55C Micro-Architecture: The First Implementation of the MMX

Technology", Proceedings IEEE Hot Chips 8, Stanford CA, Aug. 1996.

htt~://infooad.eecs. berkeley.edu/HotChips8/S.W-

[28] K. Guttag, R. J- Gove and J. R. Van Aken, 'A Single-Chip Multiprocessor For

Multimedia: The MVP, IEEE Cornputer Graphics and Applications vol. 12 no- 6, Nov.

1992,

[29] Gemt Slavenburg, Selliah Rathnam, and Henk Dijkstra, 'The TriMedia TM-1 PCI

VLIW Media Processof', Proceedings lEEE Hot Chips 8, Stanford CA, Aug. 1996. .

htt~://infopad.eecs.berkeley.edu/HotChïps8/6 l/-

[301 http:f/www .c-cube.~om/pressrls/press3-3-96.html & http://www-c- -

cube.corn/prdctlst/oroducts.hûnl#996933

13 1] W. Wolf, c'Modern VLSI Design", Prentice-Hall, 1994.

[32] 2. Navabi, "VHDL: anaiysis and modeling of digital systems", New York, McGraw-

Hill. 1993

[33] Richard C. Seals and G. F. Whapshott, "Programmable Logic: PLDs and PGAs",

McGraw Ifil1 Text; ISBN: 0070572607, Apr. 1997.

[343 "ALTERA Data Book", June 1998.

1353 '"The Programmable Logic Data Book", Xilinx 1998.

[36J M. F. Barnsely and S. Demko, "Iterated fünction systems and the global constructiori

of fractals", Proc. Roy. Soc. London, vol. A399, pp. 243-275, 1985.

1371 R. C. Gonzalez and R. C. Woods, Digital Image Processing, Addison Wesley, 1992.

[38] A, K Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.

[39] 1. Beaumont, "Image data compression using fiactal techniques", BT Technology

Journal. Vol. 9 no. 4 Oct 1991 pp 93-109.

1401 "CMC Fabrication Technologies", http:ffwww.cmc.ca/Fabrication/fabo~tlook~html~

[41] A. E. Jacquin, " Fractal Image Coding: A Review", Proceeding of the IEEE; vol. 8 1,

No. 10, pp. 1451-1465, October 1993.

[42] F. Idris and S. Panchanathan, "Image Sequence Coding Using Frame Adaptive

Vector Quantization", Visual Communications and Image Processing '93, Vol. 2094, pp.

941 -952, November 1993.

[43] R. Srhivasan and K. Rao, "Predictive coding based on motion estimation, " ZEEE

Trans. on Communications, Vol. COM-33, pp. 888-896, Aug 1985.

[a] J h e , Bernd, "Digital image processingr concepts, algorithms, and scientific

applications", Berlin ; New York : Springer-Verlag, c1991.

[45] D. Westerkarnp and H. Peters, "Cornparison between progressive and interlaced

scanning for a future HDTV system with digital rate reduction," in Signal Processing cf

HDW, L. Chiariglione, Ed., pp. 15-23, Amsterdam, 1988-

[46] A. M. Tekalp, Digital Video Processing, Prentice Hall, New Jersey, 1995.

[47] H. Li, K. Liu,and S. Lo, "Fractal modeling and segmentation for the enhancement of

microcdci fications in digi ta1 mammograms", IEEE Transactions on Medical Irnaging.

Vol. 16 no. 6 pp 785-798, Dec. 1997.

[48] M. Makamura, M. Masuda and K. Shinohara, 'LMultiresolutional image analysis of

wood and other materials", Iounal of Wood Science. Vol. 45 no. 1 pp 1û-18, 1999.

[49] A. Conci and C. Proenca, ''-4 Fractal image Analysis system for fabric inspection

based on a box-counding method", Computer Networks & ISDN systems. Vol. 30 no. 20-

21 pp 1887-1895, Nov. 1998.

1501 T. Sato, M. Matsuoka and H. Takayasu, "Fracta1 Image Analysis of Natural Scenes

and Medical Images", Fractals Vol. 4 no. 4 pp 463468 Dec. 1996

[51] V. Rasche, et al., 'Xesampling of data between arbitrary grids using convolution

interpolation", IEEE Transactions on Medical Imaging. Vol. 18 no. 5 pp 385-392, May

1999.

[52] C. Banert and H. Prautzsch, "Quadric splines", Computer Aided Geomeeic Design.

Vol, 16 no. 6, pp 497-5 15, Jul. 1999

1531 R. Hanssen and R. Balmer, "Evaluation of interpolation kernels for SAR

interferometry", IEEE Transactions on Geoscience & Remote Sensing. Vol. 37 no. I pp

318-321 Jan. 1999.

[54] W. Lawton, "A Fast Algorithm to Map Functions Forward", Multidimensional

Systems & Signal Processing. Vol. 8 no. 1-2 pp 2 19-227 Jan. 1997.

1551 N. Chen and W. Zhu, "Bud-Sequence Conjecture on M Fractal Image and M-J

conjecture between C and Z planes", Couputers & Graphies. Vol. 22 no. 4 pp 537-546,

JuL-Aug. 1998,

[56] C. Kim, R. Kim and S. Lee, "A Fractal Vector Quantizer for Image Coding", IEEE

Transactions of Image Processing. Vol. 7 no. 1 1 pp 1598-1602, Nov. 1998.

[57] P. Palazzari, M. Coli and G. Bulli, "Massively paralle1 processing approach to fractd

image compression with near-optimal coefficient quantization", Jonal of S ystems

Architecture. Vol. 45 no. 10 pp765-779, Apr. 1999

[58] "Intel to Add lûû-MHz Bus to Pentium Pro", Computer. Vol- 30 no. 3, Mar. 1997

[59] R. Myrvaagnes "POWERPC Architecture Gains Vector Processing Capability",

Electronic Products Magazine. Vol. 41 no. 3 Aug. 1998

[60] D . Bursiq, "Enhanced POWERPC Architecture Delivers Vector Processing, Wider

Interna1 Bus", Ekctronic Design Vol. 46 no 18 Aug. 1998

[61] J. Krause, "PowerPC G(3) aims for 400(+) MHz in 98", Byte Vol 23 no 4 Apr. 1998

[62] N. Magotra, et aL, "Digital image processing applied to imaging interferometric

lithography", Proceedings of the 1998 32nd Asilomar Conference on Signals, Systems &

Cornputers. Vol. 2 pp 989-993, 1998.

[63] J. Procter and N. Rothwell, "Silver: An Integrated Composition System For Vlsi

Design", IEE Colloquium (Digest). Pub1 by IEE, London, Engl p 7- n 1986f68. 1-7.

[64] R. Raud, "Language environment for ASIC design", Microprocessing &

Microprograrnming. Vol. 24 no. 1, pp 219-226, Aug 1988.

[65] M. Dolle, et al., "A 32-B RISC/DSP Microprocessor with Reduced Complexity",

IEEE Journal of Solid-State Circuits. Vol. 32 no. 7 pp 1056-1066, Jul. 1997.

[66] 1. Gonzalez and A. Gonzalez, "Data value speculation in superscalar proceesors",

Microprocessors and Microsystems. Vol. 22 no. 6 pp 293-301, Nov. 1998

[61 N. Lu and C. Chung, 'Tarailelism exploitation in superscalar multiprocessing", IEE

Proceedings-E Cornputers Br Digital Techniques. Vol. 145 no. 4 pp 225-264, Jul. 1998.

1681 A. Hutton, "The Embedded Superscdar Revolution", Microelectronics Journal. Vol.

29 no. 8 pp 547-551, Aug. 1998.

[69] A. De Gloria, c'Mïcroprocessor design for Embedded System", Journal of Systems

Architecture. Vol. 45 no. 12-13 pp 1139-1 149, Jan. 1999.

[7O] C. Basoglu and Y- Kim, ' A new couse on superscalar and VLIW computer

architectures for real-tirne image and video computing", IEEE Transactions on Education.

Vol- 41 no, 4, Nov. 1998

1711 A. Desouza, E. Fernandes and A- Wolfe, "On the Balance of VLIW Architecture7*,

Vol. 43 no. 1 pp 15-22 Mar. 1997.

[72] R. Alderman, "Seriai Dataflow Architectures", Electronic Design. Vol. 46 no. 21

Sep- 1998

1731 G. Tziritas and C. Labit, "Motion analysis for image sequence coding", Amsterdam,

Netherlands: Elsevier Science, B .V. 1994.

[74] R. Clarke, "Image and video compression: A survey", International Journal of

Imaging Systems & Technology. Vol. 10 no. 1 pp 20-32, 1999

[75] K. A. Bimey and T. R. Fischer, "On the modelling of DCT and subband image data

for compression," IEEE Trans. on Image Processing, Vol. 4, pp. 186-193, Feb. 1995-

[76] K. Guttag, R J. Gove and J. R. Van Aken, "A Single-Chip Multiprocessor For

Multimedia: The MW', EEE Computer Graphics and Applications vol. 12 no. 6, Nov.

1992.

[77] Steve Purcell, ''The Impact of Mpact 2", IEEE Signal Processing Magazine, Vol. 15

No. 2 pp. 102-107, March 1998.

[78] K. Suzuki, et al. "V830R/AV - Embedded Multimedia Superscalar Risc Prcessoi',

IEEE Micro. Vol. 18 no. 2 pp36-47 Mar.-Apt. 1998.

1791 H. Terada, S. Miyata and M. Iwata, "DDDMP7s: Self-timed super-pipelined data-

driven multimedia processors", Proceedings of the IEEE. Vol. 87 no. 2 pp 282-296, Feb.

1999.

[80] http://ww W. han.~om/-woobid~apers/EI94/rnain~httnl

1811 http://www.c-cube.com:80/techsprt/faq/qav~sc~h~

[82) http://www~lsilo~~.coxn/~roducts/unit5 6d.htmI

[83] http://www.ralei~.ibrn.com/vi~/vipinfo.html

[84] ww w . 8 ~ 8 .corn/8x8/vroducts/vcp.html

[85] http://array.corn/product.html

[86] Angel L. Decegama, "Parallel Processing Architectures and VLSI Hardware",

Prentice %dl, 1989.

1871 Brian Hayes, ' A Computer with Its Head Cut Off ', American Scientist, Vol. 83 pp.

126- 130, Mar.-Apr. 1995.

1881 0- Fatemi and S. Panchanathan, "FPGA Implementation Of A Matrix Transposer",

June 1994, Proc. Canadian Workshop on Field-Programmable Devices pp. 4.4.1-4.4.7,

Kingston, Canada

[89] 'ZSI Logic Consumer Products", h~://www.Isilogic.com/Droducts/unit5 - 6z.html.

[go] S. Bose, "A single chip multi-standard video codec", Proceedings IEEE Hot Chips

V, Stanford CA, Aug. 1993.

[9 1] "8x8's Video Communication Processorcc, http://www.8x8.com~docs/chips/vcp.htm11

[92] Phi1 Bernosky and Scott Tandy, "Bringing Workstation Graphics Performance to a

Desktop Near You: ViRGENX", Proceedings IEEE Hot Chips 8, Stanford CA, Aug.

1996. htt~://infopad.ee~s.berkeley.edu/HotChivs8/9.U.

P31 "MediaGX Architectural S ystem Overview",

[94] M. Antonini, M. Barlaud, P. Mathieu and 1. Daubechies, "Image coding using

wavelet transform," ZEEE Trans. on Image Processing, Vol. 1, No, 2, April 1992.

[95] C. Caffario, C. Guaragnella, F. Bellifernine, A. Chimienti and R. Picco, "Motion

compensation and multiresolution coding," Signal Processing : Image Communication,

Vol. 6, No. 2, pp. 123-142, May 1994.

[96] 1. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[97] R. A. Devore, B. Jawerth and B- J. Lucier, "Image compression through wavelet

coding," ZEEE Trans. on Information Theory, Vol. 38, No. 12, pp. 7 19-746, March 1992.

[98] gemoetric transforrns

[99] J. R. Jain and A. K. Jain, 'Displacement measurement and its application in

interframe image coding," IEEE Trans. on Communicatiot~s~ Vol. COM-29, pp. 1799-

1806, Dec 1981.

[IO01 Y. Linde, A. Buzo and R. Gray, "An algorithm for vector quantizer design", IEEE

Tms. on Communications, pp. 84-95, Jan 1980.

[IO11 C. E. Shanon, "Coding theorems for a discrete source with a fidelity criterion, " IRE

National Convention Record, Part 4, pp. 142-163, 1959.

[102] 0. Fatemi and S. Panchanathan, "Red-Time VLSI Architecture for Video

Compression", Proc. Of the Canadian Conference on Electrical and Computer

Engineering, VoI 1, pp 128-13 1, September 95, Montreai, Canada.

[IO31 O. Fatemi, S. Zhmg and S. Panchanathan, "Optical Flow Based Mode1 for Scene

Cut Detection", Proc. Of the Canadian Conference on Electrîcal and Computer

Engineering 96, pp 470473, Calgary, Canada.

El041 O. Fatemi, F. Idris and S. Panchanathan, "FPGA Implementation Of The L W

Aïgorithm For Video Compression", IEEE Transactions on Consumer Electronics VoI

40, No 3 pp. 337-344, August 1994.

[IO51 O. Fatemi and S . Panchanathan, 'VLSI Architecture of a Scalable Matrix

Transposer", Proceedings of Eight International Conference on Innovative Systems in

Silicon, ISIS' 96, pp 382-39 1, Austin, Texas, USA.

[106] 0. Fatemi and S. Panchanathan, "Fractal Engine", SPIE' 97 (Multimedia Hardware

Architectures), SPIE Vol. 302 1 pp 88-99, San Jose, CA.

[107] 0. Fatemi and S. Panchanathan, "Block Rotation: Implementation and

Application", Proceeding of SPIE vol. 3166 pp 254-263, Parallel and Distributed

Methods for Image Processing, July 97, San Diego, CA-

[IO81 O. Faterni and S. Panchanathan, "Design Trends in Multimedia Hardware

Architectures", Proceedings of SPIE Vol. 33 11 pp 2-6, January 1998, San Jose, CA-

[log] O. Fatemi and S. Panchanathan, "Classification of Multimedia Processors", Media

Processors 1999 January 1999, San Jose, California, Proceedings of SPIE vol. 3655 pp

135- 146.

[IlO] 0. Fatemi and S. Panchanathan, "Fractal Engine: An Affine video processor for

Multimedia Applications", invited paper IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 6 no. 7 pp 892-908, Nov. 1998

