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Abstract—We investigate the problem of verifying the absence
of zeno executions in a hybrid system. A zeno execution is one
in which there are infinitely many discrete transitions in a finite
time interval. The presence of zeno executions poses challenges
towards implementation and analysis of hybrid control systems.
We present a simple transformation of the hybrid system which
reduces the non-zenoness verification problem to the termination
verification problem, that is, the original system has no zeno
executions if and only if the transformed system has no non-
terminating executions. This provides both theoretical insights
and practical techniques for non-zenoness verification. Further, it
also provides techniques for isolating parts of the hybrid system
and its initial states which do not exhibit zeno executions. We
illustrate the feasibility of our approach by applying it on hybrid
system examples.
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I. INTRODUCTION

The ubiquitous deployment of embedded control systems
has motivated the study of hybrid systems — systems which
exhibit both discrete and continuous behaviors. Hybrid au-
tomata [4], [18] are a popular formal model for hybrid systems,
which combine the finite state automaton model for discrete
systems and the differential equation/inclusion formalism for
continuously evolving dynamical systems. The interactions
between the discrete and continuous components gives rise to a
class of behaviors which are unique to hybrid systems, namely,
zeno. A zeno execution of a hybrid system is one in which
there are infinitely many discrete transitions in a finite interval
of time.

In this paper, we present automated techniques for detecting
the absence of zeno behaviors in a hybrid system. Zeno
behaviors have been studied extensively in the hybrid systems
community owing to the fact that they present technical
challenges in the design, analysis and implementability of
hybrid control systems. Below we highlight some of them.

In the logic design of switched systems, the absence of
zeno behaviors — also referred to as “chattering” or “sliding
mode” — is desirable, as they allow for a mathematically simpler
definition of solutions or executions. Hence, this is often an
objective of the control design [20], [29]. Also, several analysis
techniques assume the absence of zeno-behaviors due to lack of
methods to deal with it. For instance, Duggirala and Mitra [13]
assume “non-blocking”, same as absence of zeno executions,
to establish the soundness of the region stability analysis.

Further, the presence of zeno behaviors poses a challenge in
the simulation of hybrid systems, e.g., it affects the efficiency
and accuracy of simulations [22]. For instance, failure to
simulate beyond the limit time could end up in an erroneous
analysis. Efforts have been made to develop methods to

“remove” zenoness. For instance, regularizations [23], [14]
attempt to construct a sequence of non-zeno hybrid system
approximations which converge to the given hybrid system.

Finally, the presence of zeno executions raises concerns
regarding the implementability of the controller. Typically, a
weaker notion — the absence of time-locks — is considered as
a requirement for implementability [18], [31]. A state is said
to be in a time-lock if all executions starting from it are zeno
executions. Note that absence of zeno executions imply absence
of time-locks. Though our notion is stronger, we believe that
absence of zeno executions is a reasonable assumption for the
implementability of the controller, since, their presence implies
that the controller cannot be realized exactly.

Given the importance of zeno in hybrid systems design
and analysis, there has been substantial effort towards un-
derstanding zeno behaviors. Several results in the literature
focus on deducing necessary and/or sufficient conditions for the
existence/non-existence of zeno executions. Zhang et al. [22]
provide sufficient conditions for the non-existence of zeno
behaviors; Camlibel et al. [9], [30] show that certain subclasses
of switched linear systems do not exhibit zeno-behaviors; and
Lamperski and Ames [24] provide Lyapunov like-sufficient
conditions for the existence of zeno-behaviors. Non-zenoness
verification is shown to be decidable for timed petri nets and
timed pushdown automata [1], [17], [2]. Heymann et al. [21]
provide sufficient conditions for analyzing non-zenoness of
hybrid systems with constant rate and bounded rate dynamics.

In this paper, we present a simple, yet powerful, transfor-
mation which reduces the non-zenoness verification problem
to the termination problem, that is, a given hybrid system does
not have any zeno execution if and only if the transformed
system does not have any non-terminating execution. Essentially,
we introduce an extra variable, which is non-deterministically
initialized to some value a in the interval [0, c0) and decreases
at a constant rate of —1 until its value becomes 0. Hence,
every execution of the original system is constrained to an
interval [0, a] in the transformed system, for some a. A non-
terminating execution in the transformed system corresponds to
a zeno execution of the original system, since such an execution
exhibits an infinite number of discrete transitions in some finite
interval [0,a]. On the other hand, if the original system has
a zeno execution with a limit point < a, then the execution
in the transformed system which starts with the extra variable
value a is non-terminating. This transformation provides new
theoretical insights, but, importantly, opens up a plethora of
techniques from termination analysis [10], [3], [7], [8], [11],
[16], [25].

Below we summarize the main results of the paper. From
a theoretical point of view, we explore the boundary of



decidability for non-zenoness verification. We show that non-
zenoness verification problem is undecidable for the class
of multi-rate hybrid automata, whereas it is decidable for
initialized multi-rate hybrid automata, which includes the class
of timed automata. The latter is a new result which relies
on the transformation into a termination problem, and our
approach provides a new algorithm for deciding non-zenoness
for the class of timed automata. From a practical point of
view, we use the transformation to establish the following:
(a) non-zenoness of hybrid systems, and (b) identify initial
conditions which exclude zeno executions. This transformation
is general and can be applied to any class of hybrid systems for
which a “reachability relation” can be computed. We observe
that our method for non-zenoness verification is sound for an
over-approximation of the reachability relation, and hence, can
be applied to a large class of systems. We demonstrate the
applicability of the approach on hybrid system examples.

II. PRELIMINARIES

We introduce some notations and concepts that we will use
in the later sections.

A. Notation

a) Numbers: Let R and R>q respectively denote the
sets of real numbers and non-negative real numbers. Let [n]
denote the set of n natural numbers given by {1,2,...,n}. Let
7 denote the set of intervals of the form [a,b], (—o0, b] and
[a,00), where a and b are real numbers.

b) Euclidean space R™: Given v € R™ and a € R",
we use (¥); to denote the i-th component of ¢, and ¢ X d to
denote the vector ((¥)1, ..., (¥),,a). Given fi : [0,t] — R"
and fy : [0,t] — R, let f1 0 fo : [0,¢] — R™"! represent the
function ¢’ — f1(t') o f2(t’). Given sets A C R™ and B C R,
let Ax B={axbla€ A,be B}

¢) Rectangular sets: A n-dimensional rectangular set .S
is of the form I; x Iy x ... x I,,, where I; € Z, for 1 <i < n.
Given a rectangular set S C R", let | S| and [S] denote
the least upper bound and the greatest lower bound of S in
(RU {—o00,+00})™. Note that it always exists.

d) Trajectories: They will be used to represent the
continuous dynamics. A trajectory is a function from an interval
[0,t] to a Euclidean space R", where [0,¢] represents the
time domain of the function. Let Traj(n) denote the set of
all differentiable functions f : [0,t] — R"™, for some ¢. Let
dom(f) denote the domain of f.

B. Timed transitions systems

Next, we introduce a semantic model of hybrid systems,
namely, timed transition systems, and define the concepts of
non-zenoness and termination.

Definition 1. A timed transition system is a tuple T =
(S,80, %, —), where:

1) S is a set of states;
2) So C S is a set of initial states;

3) X is a set of action symbols; and

4) - C S xRso x X xS is a set of timed transitions.

From now on, by a transition system, we mean a timed

. . t,
transition system. We will use s -5 s’ to denote (s,t,a,8") € —.
Also, we will use —7 to denote the set of timed transitions of
a transition system 7.

An execution of a transition system 7 = (S,Sp, X, —) is a
finite or infinite sequence o = so(to, ag)s1(t1,a1)s2 ..., such
that sg € Sp and s; t—‘>l si+1 holds for every i. The execution
o is said to be finite if o is a finite sequence; otherwise, it is
infinite. The execution o is zeno if it is infinite and ) ;o t; €
R, that is, the sum of times is finite; otherwise, it is non-zeno.

Definition 2. A transition system T is said to be terminating
if none of its executions are infinite; T is said to be non-zeno
if none of its executions are zeno.

Next, we present a transformation of a transition system
such that the non-zenoness of the first is equivalent to the
termination of the second. We will later present a concrete
method to realize this transformation for transition systems
which arise from hybrid systems.

Definition 3. Given a transition system T = (S,Sp, %, —
), we define a transformed ftransition system term(T) =
(8',84,%,—") where

1) 8 =8 x Rsy;
2) S(l) = So X Rzo; and

3) — :f {((s1,11),t,a,(s2,72)) |
S’ 5128 59, 9 =11 — t}

(s1,71),(s2,72) €

The above transformation basically augments the state with
an extra non-negative component, such that in each step it is
decremented by the time ¢ used when moving from the source
to the target state in that step. The next theorem relates the
zenoness of 7 to the termination of rerm(7).

Proposition 1. T is non-zeno if and only if term(T) is
terminating.

Proof: (=) Suppose ferm(7T) is not terminating.
Then there exists an infinite execution ferm(c) =
(s0,70)(to, ao0)(s1,71)(t1,a1)(s2,72) ... of term(T). Note that
t; = T; — Ti+1, by definition of term(T ). Therefore, Z;')io t; =
S (7= Tigr) = limg oo Yor g (i = Tig1) = limy o0 (70—
Tit+1) = To — limg_ o0 Tk+1. Since ¢; > 0 and 7; > 0, we have
70 > 71 > ... > 0. Therefore, 79 > limy_, o 7+1 > 0. Hence,
Z;}io t; € [O, To}. Therefore, o = So(to, ao)sl(tl, a1)52 ... 18
a zeno execution of 7.

(<) Suppose T is not non-zeno. Then there exists a zeno
execution o = s1(t1,a1)s2... of T. Let >_.° t; = T. Define
term(a) = (S(), T‘o)(t()7 ao)(sl, Tl) (tl, al)(SQ, Tg) ..., where
T;s are defined, inductively, as Top =T, and T;4; = T; — t;
for i > 0. Note that T; =T — (tg + ...+ t;—1) > 0, for all i.

to, . . ..
Therefore, (s;,T;) ( 2;0) (8i+1,T;41) is a timed transition of

term(T ), and term(o) an infinite execution of term(7). M



III. HYBRID AUTOMATA

Hybrid automata [4], [18] are a popular formalism for
modeling systems with mixed discrete-continuous behaviors.
The discrete dynamics is modeled by a finite state system and
the continuous dynamics by differential equations or inclusions.
Next, we introduce a formal definition of hybrid automata
and highlight some special subclasses which are needed in the
sequel.

Definition 4. An n-dimensional hybrid automaton or hybrid
system is a tuple H = (Q, Init, Inv, Flow, Edges), where:

e Q is a finite set of modes or locations;
o Init: Q — 28" specifies the initial set of states;

o Inv: Q — 2R" provides invariants associated with the
locations;

e Flow : Q — 274" specifies the set of continuous
trajectories associated with the locations; and

e Edges C Q x 2R"XR" » O is the set of edges representing
the discrete mode changes and the jumps in the continuous
states.

The state-space of the hybrid automaton H is Q x R™. An
execution of the hybrid system starts in an initial state (g, ¥),
where ¥ € Init(q). Then, it takes a sequence of continuous
trajectories and edges. The system can take a continuous
trajectory f € Flow(q1) with f(0) = ¢; from a state (¢1, 1)
if the continuous states of the trajectory satisfy the invariant
of the location ¢; at all times, that is, f(t) € Inv(qy) for all
times ¢ in its domain. Traversing an edge (q1,7,g2) from a
state (q1,71) to a state (go,Ts) is possible if the continuous
states before and after the transition satisfy the jump relation
r, that is, (771,’[72) cr.

Next, we define the semantics of the hybrid automaton as
a timed transition system. We first define auxiliary relations
Pa> Ps and pq,s Where, p, defines the relation between the states
¢ and ¢’, and time ¢ such that ¥ and ¢’ are the first and last
states of a trajectory of ¢ of duration ¢; ps defines the relation
between ¢ and ¥ which corresponds to states before and after
taking the edge §; and p, ¢ is a “composition” of p, and ps.
Let g € Q and § = (q,r,¢") € Edges, and define

pq(U,t,7") = 3f € Traj(n) : [f € Flow(q) A\ dom(f) = [0, 1]
A T=fO)AT = f(t) AVt € dom(f), f(t') € Inv(q))]

2

pq,5(67t’,l7l) = 36//: pq(ﬁ7ta77/ ) A po(’U v )

Definition 5. Let H = (Q,Init, Inv, Flow,Edges) be a n-
dimensional hybrid automaton, its semantics is the transition

system [H] = (S, So, Edges,—), where:
e S=0xR"
e So={(q,?) | U € Init(q) N Inv(q)}; and

o — s glven by {((Q1,U),t,5 (QQ> )) | 0 = (Q1a7" CI2)

Edges, pq,.5(U,t,0")}

A. Special classes of hybrid automata

In this section, we present certain special subclasses of
hybrid automata and concrete representations of the same.

1) Rectangular hybrid automata: Rectangular hybrid au-
tomata are a subclass of hybrid automata in which the
invariants are rectangular sets, the flows are given by rectangular
differential inclusions and the continuous state changes during
mode changes are specified by a reset operation which is a
combination of a non-deterministic assignment to a rectangular
set and an identity operation which leaves the values unchanged.
Rectangular hybrid automata are a simple, albeit, useful subclass
of hybrid systems; they serve as useful approximations of hybrid
systems with rich dynamics [28].

More precisely, an n-dimensional rectangular hybrid au-
tomaton is a hybrid automaton which satisfies the following:

e The sets Inv(q) and Init(q) associated with a location g
are rectangular sets.

e The flows associated with a location ¢ are specified as
the solutions of a rectangular differential inclusion. Each
location ¢ is associated with a rectangular set Rare(q),
such that Flow(q) is the set of all differentiable functions
f :[0,t] = R such that £ f(t') € Rate(q), for all

"e0,t].

e An edge (q1,7,q2) of Edges is specified using a tuple
(¢1,9,h,q2), where g, referred to as the guard, is a
rectangular set, and h, referred to as the reset, is a
function h : [n] — Z U {Id}. Here, Id is a unique symbol
not in Z. The pair (g, h) represents the set r given by
{(vv)|v€gV1<z<n[(h(') Id = (v); =
("):) A (i) # 1d = (V); € h(i))]}-

Example 1. Fig. I shows a one-dimensional rectangular hybrid
automaton Happrox, With two locations q, and qo, and two edges
a1 and as. The continuous dynamics is captured using the
variable x. The rectangular sets are represented by constraints
which compare variables (or their dotted versions) to a constant
or by specifying an interval to which the values belong. For
instance, the constraint & € [—2.2,—1.8] in location q,
specifies that Rate(q1) is [—2.2,—1.8]. The invariant of ¢,
represented by the constraint 18 < x < 22, is the rectangular
set [18,22]. The guard along the edge a1 = (q1,1, q2), specified
by the constraint x < 19, represents the set (—oo,19]. The
resets are represented by constraints on primed variables; if
there are no such constraints on an edge, the reset is taken to
be Id. A sample execution of Happrox is as follows. The control
starts in location q1 with x = 21, and lets time t = 1 elapse
resulting in x having a value in [18.8,19.2], say 19. Since the
value of x is less than or equal to 19, the control can change
to location qo using the edge a1, and the value of x remains
unchanged upon mode change.

Remark 1. For a rectangular hybrid automaton, p,(Z, t,a)
and ps(Z,%') can be expressed as a conjunction of linear
constraints as follows. Below the guard and reset of § are
denoted g and h, respectively.

Pq(f,t,f’) = 7€ Inv(q) ANT+t- LRal‘E(q)J <
< &+t - [Rate(q)]

TEGA /\ze[n] h(i)=I
Mief,n(i)2a(T)i 2 h(z)

pg(f,.l;/) =



q1

&€ [-2.2,—1.8]
18 <z < 22

19<z<21 [

q2
ap:x <19

@ € [2.8,3.2]

: >
az: w2 21 18<z <22

J

Fig. 1: A rectangular hybrid automaton H.uprox

The definition of p, uses the fact that there exists a linear
trajectory (differential at all points is a constant) between any
two points reachable by some differentiable trajectory; see the
work of Alur et al. [6] for details. Hence, it suffices to check
invariants only at the end-points. In the sequel, we also allow
invariants and guards to be polyhedral sets: those specified by
linear constraints. Note that pq and ps can still be expressed
using linear constraints.

a) Initialized rectangular hybrid automata: Initialized
rectangular hybrid automata are a subclass of rectangular
hybrid automata that provide decidability of several properties
including safety by restricting the discrete dynamics [19]. A
n-dimensional rectangular hybrid automaton H is said to be
initialized if for every 0 = (q1,7,q2) € Edges, where r is
represented by a guard g and reset h, and for all i € [n],
the following holds: Rate(q;)(i) # Rate(q2)(i) implies that
h(i) # Id. The above condition states that if the flows associated
with the source and the target of an edge are different for a
particular variable, then the reset is not identity in which case
the dynamics associated with the two locations are “decoupled”.
For instance, the hybrid automaton Hp,., in Figure 1 is not
initialized, because the dynamics on ¢; and g5 are different for
x, but the reset for x is identity on the edge a;.

b) Multi-rate hybrid automata and timed automata:
Multi-rate and timed automata are subclasses of rectangular
hybrid automata, that are apt for modeling timing constraints [5].
A multi-rate hybrid automaton is rectangular hybrid automaton
such that Rate(q) is a singleton set. Fig. 3 shows a multi-rate
hybrid automaton. A timed automaton is a multi-rate hybrid
automaton in which Rate(q)(i) = {1}, for all ¢ and 4, and for
all the resets h, h(i) € {Id,{0}}. Note that a timed automaton
is initialized, since, the rate never changes, and hence, does
not have any constraints on the type of resets allowed on the
edges.

2) Affine hybrid automata: Affine dynamics are an impor-
tant class of dynamical systems extensively investigated in
control theory. In particular, control design and analysis of
non-linear systems is often conducted by considering their
linearizations. An affine hybrid automaton is a rectangular
hybrid automaton except that the flows are the solutions of
an affine dynamical system. More precisely, each location
g of an n-dimensional affine hybrid automaton is provided
with a n X n matrix, A(g), and a n x 1 matrix b(q) such
that the flows are solutions of the affine dynamical system
& = A(q)x + b(q), that is, Flow(q) consists of trajectories
f:[0,t] = R™ such that % (") = A(q)f(t') + b(q) for all
t' € [0,t]. Even when b(q) = 0, the solution of an affine
dynamical starting from a values ¥’ is given by f(t) = eA(@7,
where e4(9)t is a matrix exponential. In one dimension, the
matrix exponential is essentially the exponential function.
Hence, an affine dynamical system p, cannot, in general, be
represented by linear constraints. However, there are several

techniques which can be used to over-approximate p, by linear
constraints [28], [27], [15].

Example 2. Fig. 2 shows a one-dimensional affine hybrid
system depicting the operation of a thermostat. Location qi is
the “off” mode in which the temperature, represented by the
variable x, decreases according to the differential equation
T = —0.1x and in location qs, the “on” mode, it increases
according to © = 5—0.1x. For instance, the flow f in the “off”
mode starting at x = xq is given by f(t) = e !tx.

For the purpose of representability, we will assume that
all the constants appearing in the representation of the hybrid
automata are rational numbers.

IV. REDUCTION OF NON-ZENONESS PROBLEM TO
TERMINATION PROBLEM

In this section, we present a transformation of a hybrid
system such that the non-zenoness verification problem on
the original system is reduced to the termination verification
problem on the transformed system. In Section V, we exploit
this observation to obtain decidability results for non-zenoness
verification problem; and in Section VI, we exploit the state-
of-the-art termination verification techniques and tools for
automatic non-zenoness verification.

Definition 6. A hybrid automaton H is said to be non-zeno if
[H] is non-zeno. Similarly, a hybrid automaton M is said to
be terminating if [H] is terminating.

Example 3. Consider the hybrid system H,e,, of Fig. 3. The
executions are constrained to be in the rectangle x € [0,2],y €
[0,1] as specified by the invariants. In location qi, the system
evolves at 45 degrees. It can switch to location qy either when
it hits the line y = 1 (the top edge of C and D) or the line
x+vy =1 (the diagonal edge of A). In location qo, the system
evolves parallel to the negative y-axis. It can then switch back
to location q1, when it hits the x-axis. A sample zeno execution
is shown by the dotted lines in Fig. 3, and corresponds to
(g2,2/10,%10) (q1,2/10,0)

9/10,a3

4/10,a2
—

= (g2, 5/10,4/10) 4/11,;13
q1, 6/107 0) Q/Iig”Q
42,910, /10) 5"
q, 9/107 0) .

2/ 10403

(2,510, 210) 75 (@1, 10,0 V"

It is zeno since the time spent in each re-entry into ql (or q2) is
halved compared to the previous entry. In fact, every execution
starting in the region B U D with control in q1, or starting
in region D with control in qs, is non-zeno. From every other
state, there is a zeno execution.

Let us consider the non-zenoness verification problem.

Problem 1. Given a hybrid system H, is it non-zeno?

We will reduce it to the termination verification problem.
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Fig. 2: A affine hybrid automaton Hpermo model of a thermostat
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Problem 2. Given a hybrid system H, is it terminating?

Let us return to the question of non-zenoness verification.
Given a hybrid automaton 7, we wish to verify if it is non-zeno.
We define a transformation of A into another hybrid automaton
Ext(H) such that H is non-zeno iff Ext(#) is terminating.
Essentially, we introduce an extra variable, which is non-
deterministically initialized to some value a in the interval
[0,00) and decreases at a constant rate of —1 until its value
becomes 0. Hence, every execution of the original system is
constrained to an interval [0,a] in the transformed system,
for some a. A non-terminating execution in the transformed
system corresponds to a zeno execution of the original system,
since such an execution exhibits an infinite number of discrete
transitions in some finite interval [0, a]. On the other hand, if
the original system has a zeno execution with a limit point
< a, then the execution in the transformed system which starts
with the clock value a and “simulates” the zeno execution is
non-terminating.

Let decr(t) denote the set of all functions f : [0,t] = Rx>g

such that f(t') = f(0) — ¢/, for all 0 < ¢/ < ¢. Given r C
R™ x R™, let Ext(r) denote the set {(7 x a,v’ x a) | (7,v) €
r,a e Rzo}.
Definition 7. Let H = (Q,Init,Inv,Flow,Edges) be a
n-dimensionﬂ\hy@d\ automaton, we define Ext(H) =
(Q,I;Et,l/n;,Flow, Edges), a (n+1)-dimensional hybrid au-
tomaton, where:

o for all g, Init(q) = Init(q) x Rso;
e for all g, I/n;(q) =Inv(q) X R>o;

o Flow(q) = {fo f'|f : [0,t] = R" € Flow(q),f' €
decr(t)}; and

o Edges = {(q1, Ext(r),q2) | (1,7, q2) € Edges}.

Remark 2. Ext(H) consists of augmenting H with a variable
clk that decreases at a constant rate of —1, that is, clk =
—1; adding invariants clk > 0 to all the locations, and not
allowing the value of clk to change while traversing an edge.

For instance, Figure 5a shows a rectangular hybrid automaton
H, and Figure 5b shows its transformation Ext(H). Note that
if H is affine, rectangular or multi-rate, then so is Ext(H),
respectively. Further, if H is initialized, then so is Ext(H).
However, Ext(H) is not a timed automaton, even if H is.

The next proposition states that the effect of transforming
‘H using Ext(-) is that its transition system is transformed using
term(-).

Proposition 2. Let a = € H and & =

(q1,Ext(r), q2) € Ext(H), then

(q17 T, Q2)

- t,a N . N t,a
E(%fl)ﬁl% —term([H]) (g2, V2), m2) iff (g1, U1 X 71) —[Ext(H)]
q2,V2 X T2).

Proof: Let H = (Q, Init, Inv, Flow, Edges) be of dimen-
sion n, and let Ext(H) = (Q, Init, Inv, Flow, Edges).

((q1,71),71) ti}lterm([[’H]]) ((q2,12),72)

(q1,71) t’—>a[[7.[]] (g2, T2) A1, 7o 2 0ATe =11 —

30"3f € Traj(n): [f € Flow(q1) A dom(f) = [0,1]

ANT= f0)AT" = f(t) A (V' € dom(f), f(t') € Inv(q))

AT TYer], i, >0, =1 —t

& W'3f € Trajin+1): [f € I*{lo\w(ql) A dom(f) = [0,1]
NG = f0) AT = f(t) A (Yt € dom(f), () € Inv(q))

-, -, —

AR D)EF,D=TxT,0 =0 X1

=
=

Here f(t') = f(t') x (11 — t') and 3" = 7 X 7.

B ta ,
& (q1, V1 X 1) SEa)] (g2, V2 X T2)

Theorem 1. H is non-zeno iff Ext(H) is terminating.

Proof: H is non-zeno iff [#] is non-zeno. From Proposi-
tion 1, the non-zenoness of [#] is equivalent to termination of
term([H]), which is equivalent to termination of [Ex#(#)], by
Proposition 2, and hence, equivalent to termination of [#]. W



V. BOUNDARY OF DECIDABILITY FOR NON-ZENONESS
VERIFICATION PROBLEM

In this section, we identify a boundary of decidability for
the non-zenoness verification problem. More precisely, we show
that the problem is undecidable for the class of multi-rate hybrid
automata, where as, it is decidable for its subclass which consist
of initialized automata.

Theorem 2. Non-zenoness verification problem is decidable
for the class of initialized multi-rate hybrid automata (and
hence, for the class of timed automata).

Proof: First, observe that the transformation Exz(-) trans-
forms an initialized multi-rate automaton to an initialized
multi-rate automaton. Hence, the non-zenoness verification
problem for initialized multi-rate automata can be reduced to
the termination verification problem for initialized multi-rate
automata. We can reduce the problem further to the termination
verification of timed automata. Henzinger et al. [19] provide a
transformation from the class of initialized multi-rate automata
to the class of timed automata, such that the timed transition
systems of the initialized multi-rate automaton and its timed
automaton transformation are bisimilar. Since, bisimulation of
the timed transition systems preserves termination, we reduce
the problem of termination verification from the class of multi-
rate automata to that of timed automata.

It remains to show that the termination verification problem
is decidable for the class of timed automata. Using the region
construction [5], we can construct a finite state automaton which
is bisimilar to the timed transition system of a timed automaton.
Hence, we reduce the problem of termination verification for
the class of timed automata to that for the class of finite state
automata. The latter corresponds to the problem of checking
for the existence of cycles reachable from an initial state of
the automaton, which can be effectively computed. Hence,
non-zenoness verification problem for the class of initialized
multi-rate automata can be effectively reduced to termination
verification problem of a finite state automaton which can be
effectively checked. ]

Next, we show that non-zenoness verification problem is
undecidable for the class of multi-rate automata. Hence, in
general, we can only hope for techniques that in addition to a
yes or no answer, they can also answer don’t know. In the next
section, we discuss some such techniques for non-zenoness
verification based on termination verification.

Theorem 3. Non-zenoness verification problem is undecidable
for the class of multi-rate automata (and hence for the class
of rectangular hybrid automata).

Proof: We reduce the location reachability problem to the
non-zenoness verification problem. The location reachability
problem is the following:

Problem 3. Given a hybrid system H and a location qy, is qf
reachable by an execution of H?

The location reachability problem is undecidable for the
class of multi-rate automata [19]. Given a multi-rate automaton
‘H and a control state gy, we construct a multi-rate automaton
H’ such that gy is reachable in # iff 7’ is zeno.

We first construct a multi-rate automaton 7#; which is
equivalent to H in terms of reachability of the location g, but
does not contain any zeno executions. For this, we replace every
location ¢ of H by a sub-automaton G, as shown in Figure
4. G4 has locations q1, g2, ¢3; all the incoming transitions of
q are directed to ¢; and all outgoing transitions from ¢ are
directed out of ¢3. The location g3 is identical to ¢ in terms of
the invariants and rates. In location ¢; all the variables evolve
at rate 1 (as shown by the variable © = 1) for one time unit,
followed by spending one time unit in go with rates —1 (as
shown by the variable £ = —1). The variable ¢ is used to
ensure that exactly one time unit is spent in locations g; and gs.
Note the values of all the variables of H have the same values
while entering g3 as while entering ¢;. The new automaton
essentially introduces a time elapse of two time units before
entering any location, thereby eliminating any zeno-executions.

Next, we construct H'. H’ is similar to #; except that from
gy, there is an edge to a subautomaton (disjoint from 1) with
zeno-runs. Hence, if ¢ is reachable in , then g, is reachable
in H;, and therefore H' has zeno executions. On the other
hand, if H’ has zeno executions, then gy is reachable in Hy,
because, the part of ' corresponding to H; does not have any
zeno executions. Therefore, gy is reachable in H. [ |

VI. PRACTICAL ASPECTS

In this section we demonstrate how the transformation,
which reduces non-zenoness to an equivalent termination
problem, is applied in practice. Termination analysis has
been studied extensively for the class of linear constraints
automata [7], [16], [3]. Hence, we reduce the termination
analysis problem for hybrid automata to that of linear con-
straint automata. The formal definitions and details of the
transformation are given in Subsection VI-A. In the rest of the
section, we demonstrate how state of the art termination analysis
tools can be used for proving non-zenoness, and uncover zeno
runs in hybrid automata: Section VI-B shows how to use the
termination proof in order to prove non-zenoness; Section VI-C
shows that when failing to prove termination one can infer a
precondition on the initial states that guarantees termination;
Section VI-D show that in some cases one can detect the
presence of zeno executions using termination analysis results;
and Section VI-E shows that abstractions can be used to
establish non-zenoness of hybrid systems with rich dynamics.

A. Linear constraint automaton

Given a hybrid automaton H, the main steps in the analysis
of non-zenoness, are the following:

Step 1. H is transformed, following Definition 7, into H' =
Ext(H);

Step 2. H’ is transformed into a linear constraints automaton
Lin(H') that precisely captures the executions of H’; and

Step 3. We apply existing termination analysis tools to study
the termination behaviour of Lin(H’).

a) Step 1.: The transformation of a hybrid automaton
‘H intro Ext(H) is done following Definition 7, that is, we
introduce an additional continuous variable clk, augment all the
locations with invariant clk € [0, 00) and flow given by clk =
—1. The variable does not change its value on an edge. For



Fig. 4: Gadget G, replacing a location ¢

example, the hybrid automaton # of Figure 5a is transformed
into H' shown in Figure 5b.

b) Step 2.: A linear constraints automaton is given by
a finite directed graph (V, E') and a finite set & of real-valued
variables, where each edge e € E is labeled by conjunctions
of linear equalities and inequalities over ¥ and &’. Because it
is convenient, we represent such automaton as a pair (p, ),
where

e p is a disjunction of formulas over variables pc, T, 7’
and pc’ of the form pc = ¢ A p(Z, ") A pc’ = ¢’ where
(¢,q') € E and ¢ is its label; and

o =V cv(pc = qAy(Z)) is a formula over variables pc
and & where each 1, is a conjunction of linear constraints
over T, describing a set of valid initial states.

The semantics is given by a set of traces where a trace is a
sequence of the form (¢1, 1), (g2, ¥2), ... where (pc = ¢1 A
Z=u)=vand (pc = ¢ ANT =70 Apc = qu1 NT =
Ui+1) = p are valid for every i.

We can encode a hybrid automaton 7 as a linear constraints
automaton Lin(7), provided pqs(Z,t,2") and Init(q) are
specified as a conjunction of linear constraints. Each edge
§ = (q1,7,q2) in H yields a formula pc = ¢1 A pg, 6(Z,t, 7)) A
pc’ = g in Lin(H). Also the description on the initial states
¥ in Lin(H) is a disjunction of the formulas of the form
pc = g A Init(q). It can be proved that the executions of H and
the traces of Lin(#) are in one-to-one correspondence. Hence,
termination problem is reduced to that of linear constraints
automata. Note that, following Remark 1, in the case of
rectangular hybrid automaton, it is guaranteed that p,, 5(Z, ¢, &)
is a conjunction of linear equalities and inequalities. The same
holds for Init(q). As an example, the hybrid automaton H’ of
Figure 5b is transformed to the linear constraints automaton
Lin(H') of Figure 5c. However, for more general dynamics,
pq.6(Z,t, ") can be over-approximated by a conjunction of
linear constraints. We will see an example of this in Section
VI-C.

B. Verifying non-zenoness

In this section, we illustrate through a simple example
how non-zenoness of a hybrid system can be inferred from a
termination analysis on its linear constraint automaton.

Consider the hybrid automaton # of Figure 5a. Its trans-
formation Ext(H') is shown in Figure 5b, and the linear
constraint automaton in Figure 5c. Feeding Lin(#'), the linear
constraint automaton corresponding to the hybrid automaton
of Figure 5a to a termination analyser [7], returns a proof of
termination. The proof annotates locations ¢; and go with the
following ranking functions fy, (z, y, clk) = x+20-y+8-clk and
fou (2, y, clk) = x+8-clk+1. Note that f,, () > 0 for each ¥ €
Inv(q;) and ¢ = 1,2; and that when entering ¢; with ¢ and then
move to location g; with ¥, using any of the transitions, it holds
that f,, (¥) > f,.(¢') + 1. This prevents infinite traces since
an infinite trace (quo, ¥0), (Giy, V1), - - - would induce an infinite
decreasing chain fq, (Vo) > fq, (01)+12> fg, (T2) +1> -,
which contradicts that the f;, are bounded from below. Hence,
termination of Lin(H') is established. We can then conclude
the non-zenoness of .

C. Inference of pre-conditions for non-zenoness

Consider the hybrid automaton H of Figure 3. Define H’
to be Ext(H). The corresponding Lin(H’') is defined by (p; V
pa2 V p3, true) where

= dt: (pc:qlAtZOAclkZO
AN<z<2A0<y<1

AN =z+tAy =y+tAny =1
Aclk' = clk — t A pc’ = q2)

= dt: (pcqu ANt>0ANclk>0
N<xz<2AN0<y<1

AN =x+tANy =y+tAz +y =1
Aclk' = clk — tApc'=gs)

= dt: (pc:qg/\ t>0Aclk>0
N<z<27A0<y<l

AN =zAy =y—tAy =0
Aclk' = clk —t Apc' = q1) .

p1((Z, pc), (x', pc’))

p2((Z, pe), (x', pc’))

pd(<f7 pC>, <£;a pC’))

Feeding Lin(H') to a termination analyser [7], it fails to prove
termination. However, it provides us with useful information
that can be used to infer sets of states from which termination
is guaranteed. Next we explain how.

As in the case of Section VI-B, the termination analyzer
annotates each location ¢ with a (ranking) function f,, however,
unlike that case, some of the transitions satisfy fg,(7) >
fa, (V") 4 1, call them decreasing transitions, while the rest
satisfy f,,(7) > f,, (v'), call them non-increasing transitions.
Now since all f, are well-founded, it is easy to see that an
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(b) H' = Ext(H)

p1((Z, pe), (x', pc’))

p2((Z, pe), (a7, pc’))

=3t: pc = q1 A pay,ar (T8, T) A pc’ = g2
=3t: (pe=q At>0Aclk>0Az>0A0<y<8A
o=z —120A8=y+tAy =0Aclk =clk—tApc’ = q)
=3t: pc = g2 A Pag,as (T, 6, T) Apc’ = qu
=3t: (pe=q@At>0Ack>0Az>0A0<y<10A
¥ =2 +8tAN10=y+tAy =0Aclk =clk—tApc =q)

(c) Lin(H')

Fig. 5: An example of a hybrid automata H [26], its instrumentation Ext(H) with variable clk, and the corresponding linear

constraints automata Lin(H').

infinite trace cannot involve decreasing transitions infinitely
often, and thus it must have a suffix that consists only of non-
increasing ones. Clearly, if we stay away from states that allow
infinite traces of non-increasing transitions, then termination is
guaranteed. Those states are exactly defined by the following
greatest fixpoint [16]:

Z = gfpAX.S N pre[p'](X)

where p’ are the non-increasing transitions, pre[p’](X) o
{v| 3 € X: p(v,7")}, and S is the space of all states. Then,
to guarantee termination, traces have to start from those initial
states guaranteed not to reach any state in Z. To compute
these, it is enough to complement the set V of states that may
reach a state in Z or, stated equivalently, the predecessors of
Z. Formally, we have:

/

V = IfpAX. Z U pre[p](X) .

where p is the set of all transitions. Back to our example, we
first infer that the non-increasing transitions are ps and ps.
Then, we compute Z:

{(x7y7Clka CII) | T+ Yy S 1/\1}1\/((]1)}
W{(z,y,clk,q2) | & < LA Inv(g2)} -

and then V = Z U {(z,y,clk,q1) | = < y}. Finally, the set of
states from which Lin(#H') always terminate is the complement
of V:

{(z,y,clk,q1) |z +y>1ANx >y ANnv(qr)}
U{(z,y,clk, q2) | x> 1 Alnv(g2)} .

Note that this set coincides with those initial states of Example 3
that are claimed to have non-zeno executions.

D. Detecting zeno executions

Consider the hybrid automaton H of Figure 6, and let
‘H' = Ext(H). The corresponding linear constraints automaton
Lin(#H') includes as many relation as edges in . For simplicity,
we only give the those corresponding to a1 and bs:

o1 ((Z, pe), (2!, pe)) = 3t: (pc=q At>0Aclk>0

A >0Ay>5A2 =Ny =y—5t
A0 <2’ <BOAc =clk—tApc’ = q2)
=3t: (pe=q@At>0Ack>0N0<z
<50Ay>5Ax =x+10t Ay =y — 5t
Aa' > 45 N elk' = clk —t A pc’ = q1)

p2((Z, pe), (2, pc’))

The termination analyser [3], [7] applied on Lin(H') fails
to prove termination. Using the output of the termination
analyser, and considerations similar to those of Section VI-C,
we conclude that every non-terminating execution of Lin(H’),
and thus every zeno execution of H, if any, necessarily contains
an infinite suffix in which p; and p, alternate. Indeed, A has
a zeno execution obtained by the alternation of a; and bs.
Unfortunately, in this case, we were not able to infer any non-
trivial precondition that guarantees termination of Lin(H').

Remark that it is easy to prove non-termination of a linear
constraints automata that consists of the transitions p; and
p2, simply by checking that p; o po A & = Z is satisfiable,
e.g., for x = 45, y = 6 and clk = 1, which is a valid initial
state. This means that H has an infinite execution where time
does not elapse. More involved automatic reasoning can prove
non-termination even when time elapses in ¢; and gs.

E. Approximation based non-zenoness analysis

In the examples we have considered so far, the relation
pq.s(Z,t, 2") was expressible as a conjunction of linear con-
straints. Next, we will consider an example for which this is
not the case. Consider the affine hybrid automaton H¢ermo Of
Figure 2 which models a thermostat. We use the observation that
over-approximations preserve termination (and non-zenoness),
that is, if we can show that an over-approximation of a
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z € [0,10] as: wE[45,00) [0,50
y € [0,50]

Fig. 6: Two tank(s) hybrid automata H [26].

linear constraint automaton is terminating, then so is the
linear constraint automaton. The over-approximation of a
linear constraint automaton Lin(Ext(H)) can be obtained by
over-approximating p, s(Z,t, ") of hybrid automaton # as a
conjunction of linear constraints.

There are several approaches in the hybrid systems literature
for over-approximating the solutions of affine hybrid systems
by a conjunction of linear constraints including sampling based
methods [27], [15] and hybridization based methods [28],
[12]. Figure 1 shows a rectangular hybrid automaton over-
approximation of the hybrid automaton H qppr0s using the tech-
niques of Doyen and Henzinger [12]. Here, the affine dynamics
in each location is over-approximated by a rectangular inclusion
dynamics by optimizing over the invariants. For instance, in
location ¢;, the value of —0.1z (the right hand side of the
differential equation) is bounded by the interval [—2.2, —1.8]
when the value of x satisfies 18 < x < 22 (the invariant).
Hence, the approximate dynamics is & € [—2.2, —1.8]. Then,
we apply the termination analysis on the linear constraint
automaton corresponding to the abstract automaton Figure 1,
for which we obtain a termination proof. This illustrates the
feasibility of approximation based analysis of non-zenoness.

VII. CONCLUSION

In this paper, we investigated automated methods for
analyzing the absence of zeno behaviors in hybrid systems. Our
broad approach consisted of reducing the problem to that of
termination analysis. This enabled us to obtain decidability
results for certain subclasses of hybrid automata, as well
as practical techniques for proving non-zenoness and for
generating initial conditions from which the system has no
zeno executions. We have shown that these methods can be
applied to systems with non-trivial dynamics by using over-
approximations. Our future efforts will focus on conducting
case studies and rigorous experimentation of non-zeno analysis
involving linear and non-linear hybrid systems. Also, we intend
to explore techniques for analysing the weaker notion of absence
of livelocks in hybrid systems.
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