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Abstract— In this paper, we propose an engineering-based
image quality metric which distinguishes subtractive impairment
from additive impairment. Since the amount of subtractive im-
pairment is up-bounded by the total details within the reference
image but the same limitation can’t be applied to additive
impairment, intuitively visual quality degradation due to the
two types of impairments should be measured differently. In
the proposed metric, subtractive and additive impairments are
separated and represented in the wavelet domain, and their
influences to image visual quality is measured by different
equations. We tested the proposed metric on five subjectively-
rated databases and proved its effectiveness in objective image
quality assessment.

I. INTRODUCTION

In image processing, MSE and PSNR are extensively
adopted as objective quality metrics, mostly because of their
simplicity. However, it has been well acknowledged that these
pixel-based difference measures do not correlate well with
the Human Visual System (HVS). A better objective image
quality metric is in demand, and its success will provide
guidance to a large number of image processing algorithms,
e.g. image compression, watermarking, image fusion, feature
enhancement and detection, restoration, retrieval, etc.

In decades, many advanced image quality metrics have been
developed, and from the viewpoint of design approach, they
can be categorized into two groups: HVS-model-based metrics
and engineering-based metrics [1]. HVS-model-based metrics
employ the HVS mode to simulate the HVS response to
visual signals and gauge quality by comparing these responses.
The HVS mode used is based on experimental data from
psychophysical studies. Most of these studies used only a
few simple visual stimuli like sine-wave gratings or Gabor
patches and target at contrast threshold evaluation. This leads
to two disadvantages of HVS-model-based metrics: first, a
natural image usually is a superposition of a large number of
simple stimuli, and their interactions cannot be fully described
by a model which is based on experimental data of only
one or two simple stimuli; second, there is no justification
for the use of experimental data of contrast threshold eval-
uation in gauging visual quality, especially for images with
supra-threshold distortions. On the other hand, engineering-
based quality metrics are designed by using the engineering
methodology. Instead of founding on accurate experimental
data, engineering-based metrics are more based on assumption
and prior knowledge (assumption about feature types that are
closely related to visual quality, and prior knowledge on the

types of distortions that contaminate the visual content). In
most cases, engineering-based metrics are easy to calculate
and their performance is guaranteed by training on subjective
ratings.

Engineering-based quality metrics also have their disadvan-
tages. For example, they are not good at measuring threshold
distortions, and they intent to be specific for certain distortion
types instead of serving general purpose. In this paper, a
general-purpose engineering-based image quality metric is
proposed. It decouples subtractive impairment and additive
impairment which are considered to be two uncorrelated
distortion factors. Quality degradations due to subtractive and
additive impairments are separately calculated and weightedly
summed as the final objective metric score. Two simple
measures are proposed to gauge the quality degradation due
to the two impairment types. Since all kinds of distortions
can be decomposed into subtractive component and additive
component, the proposed metric is supposed to be versatile.

The paper is organized as follow: Section II introduces
our definitions of subtractive impairment and additive im-
pairment; Section III describes the metric design in detail,
including how to decouple subtractive/additive impairments
and how to correlate impairments with visual quality; Section
IV shows the experimental results on five subjectively-rated
image databases and discusses the possible improvement on
the current implementation; Section V gives the conclusion.

II. SUBTRACTIVE AND ADDITIVE IMPAIRMENTS

As in many full-reference1 image quality metrics, differ-
ences between reference and distorted images are taken as
the distortions, and usually the reference image will act as
the masker to adjust the distortion strength. However, it is
obvious that due to distortions not all the original information
can be restored from the distorted image anymore, so using the
reference image to mask the distortions is questionable. Actu-
ally, differences between reference and distorted images can be
decomposed into two distinguishable components: subtractive
impairment and additive impairment. Subtractive impairment
refers to distortions that cause loss of information which
originally exists in the reference image. On the other hand
additive impairment refers to artifacts that cause increment
of redundant visual information. Distortion type that only

1According to the availability of the reference information, objective visual
quality metrics can be classified into full-reference, reduced-reference, and
no-reference metrics.
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Fig. 1. Decouple subtractive and addtive impairments by comparing wavelet
transform coefficients.

causes subtractive impairment is Gaussian Blur, while most
other distortion types cause both of them, e.g., JPEG coding
brings both blurry (subtractive) and blocky/ringing (additive)
artifacts.

The necessity of decoupling subtractive and additive im-
pairments comes from the assumption that the two types of
impairments correlate with visual quality in different manners.
Subtractive impairment causes information/details loss whose
amount is limited by the total details within the reference
image, while apparently this limitation can’t be applied to
additive impairment. In the proposed metric, the ratio between
the details loss and the total details is used to predict visual
quality degradation due to subtractive impairment; visual qual-
ity degradation due to additive impairment is measured in a
way like MSE but in the wavelet domain. In [2], the authors
also argued the need of separating subtractive and additive
impairments. They claimed that quality degradation due to
subtractive and additive impairments should be weighted dif-
ferently which is also applied to our metric. Our metric is
different from the one proposed in [2] because there are 7
subtractive or additive impairments measured by their metric
while our metric only uses 2 to represent all, and moreover,
their metric is for video quality measure but ours is for image.

III. METRIC DESIGN

The proposed metric consists of the following process-
ing steps: firstly, reference and distorted image are wavelet
transformed, and the subtractive and additive impairments are
separated in the wavelet domain; secondly, the two types of
impairments are measured generating two objective scores ss

and sa; thirdly, by training on subjective ratings the ss and
sa are non-linearly mapped to pDMOSs and pDMOSa, re-
spectively, which are in the subjective scale; finally pDMOSs

and pDMOSa are weightedly summed together to generate
the objective metric score. This section gives more detail on
the proposed metric design. Two forward wavelet transforms
need to be performed as briefly introduced above, and all the
following processing will be based on the resultant wavelet
coefficient maps and use simple calculation.

(a) (b)

(c) (d)

Fig. 2. Results for distortion type JPEG coding. (a) reference image,
(b) distorted image, (c) reconstructed addtive impairment, (d) reconstructed
subtractive impairment.

(a) (b)

(c) (d)

Fig. 3. Results for distortion type white noise. (a) reference image,
(b) distorted image, (c) reconstructed addtive impairment, (d) reconstructed
subtractive impairment.

A. Decouple Subtractive and Additive Impairments

We use non-decimated db2 wavelet to transform the refer-
ence and the distorted image into 4 scales with 1 approxima-
tion subband plus 12 high frequency subbands. The rk,i,j and
dk,i,j represent the wavelet transform (WT) coefficients of the
reference and the distorted image, respectively, at subband k,
spatial position (i,j). Then the subtractive impairment sk,i,j

and additive impairment ak,i,j can be given by equation (1)
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Fig. 4. (a) Non-linearly mapping function from ss to pDMOSs with β1 =
53.06, β2 = 3.66, and β4 = 81.17; (b) Non-linearly mapping function from
sa to pDMOSa with β1 = 75.48, β2 = 5.18, and β4 = 22.71.

and (2):

sk,i,j =

⎧⎪⎪⎨
⎪⎪⎩

0 k = 1
rk,i,j k �= 1&condition 1
0 k �= 1&condition 2
rk,i,j − dk,i,j k �= 1&condition 3

(1)

ak,i,j =

⎧⎪⎪⎨
⎪⎪⎩

dk,i,j − rk,i,j k = 1
dk,i,j k �= 1&condition 1
dk,i,j − rk,i,j k �= 1&condition 2
0 k �= 1&condition 3

(2)

where k = 1 corresponds to the approximation subband, and
condition 1 to 3 are:

- condition 1: rk,i,j × dk,i,j ≤ 0
- condition 2: rk,i,j × dk,i,j > 0 & |dk,i,j | ≥ |rk,i,j |
- condition 3: rk,i,j × dk,i,j > 0 & |dk,i,j | < |rk,i,j |

Fig. 1 illustrates the function of equations (1) and (2) for k �=
1. To evaluate the performance of the proposed algorithm,
sk,i,j and ak,i,j are inverse-transformed to the spatial domain.
Due to the limitation on the paper length, we only illustrate
the performance of the proposed algorithm on distortion types
JPEG coding and white noise in Figs. 2 and 3.

B. Measure Subtractive and Additive Impairments

In the proposed metric, equations (3) and (4) are used to
measure the subtractive impairment and the additive impair-
ment, respectively:

ss =

∑
k(

∑
i,j s2

k,i,j)
1
2

∑
k(

∑
i,j r2

k,i,j)
1
2

(3)

sa =

∑
k(

∑
i,j a2

k,i,j)
1
2

N
(4)

where N in equation (4) is the total pixel number of the image.
As introduced in Section II, in our metric subtractive and
additive impairments are measured differently. The numerator
of equation (3) approximates the details loss due to subtractive
impairment and it is normalized by the total details within
the reference image approximated by the denominator. On the
other hand, in equation (4) for additive impairment, the total
pixel number is used as the denominator.

As you can see, in both equations Minkowski pooling shown
by equation (5) is employed and spatial pooling is performed
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Fig. 5. Objective score versus subjective score for subjectively-rated image
databases (a) LIVE, (b) IVC, (c) Toyama, (d) TID2008, (e) partial TID2008,
and (f) A57.

before subband pooling. The typical value for β used by
quality metrics is from 1 to 5. We choose β as 2 for spatial
pooling and as 1 for subband pooling so as to make a balance
between performance and computational complexity.

E = (
∑

i

eβ
i )

1
β (5)

C. Correlate Impairments with Visual Quality

In this step, the obtained ss and sa is non-linearly mapped
to the subjective quality scale. The mapped values pDMOSs

and pDMOSa can be regarded as in the same unit, which
makes their summation in equation (8) make sense. In our
metric, these non-linearly mapping functions are modeled by
equation (6) and (7) with β3 and β5 set to 0. {β1,β2,β4}
are derived by training on 80 (out of 779) distorted images
from the subjectively-rated image database LIVE [5] using
MATLAB function fminunc. 40 images distorted by Gaussian
blur are used to train the non-linearly relationship between ss

and pDMOSs. 40 images distorted by white noise are used to
train the non-linearly relationship between sa and pDMOSa.
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TABLE I
PERFORMANCE OF THE PROPOSED METRIC TOGETHER WITH OTHER 3 IMAGE QUALITY METRICS: PSNR, SSIM, AND VIF.

LIVE IVC Toyama TID TID (Part) A57
LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC

Proposed 0.945 0.949 0.877 0.871 0.877 0.873 0.777 0.761 0.912 0.914 0.949 0.927

VIF 0.960 0.964 0.903 0.896 0.913 0.908 0.809 0.749 0.894 0.873 0.618 0.622

SSIM 0.904 0.910 0.792 0.779 0.799 0.787 0.641 0.627 0.713 0.731 0.415 0.407

PSNR 0.871 0.876 0.720 0.688 0.636 0.613 0.570 0.579 0.762 0.772 0.696 0.619

The two non-linear functions are shown in Fig. 4.

y = β1logistic(β2, (x − β3)) + β4x + β5 (6)

logistic(τ, x) =
1
2
− 1

1 + eτx
(7)

The weighted summation of pDMOSs and pDMOSa is
the final metric score as given in equation (8). The weighting
value w equals to 0.65 which is derived by training on 215
distorted images of the database LIVE.

s = w × pDMOSs + (1 − w) × pDMOSa (8)

IV. EXPERIMENTS AND FUTURE WORK

The proposed image quality metric is testified on five
subjectively-rated image databases: LIVE [5], IVC [6], Toyama

[7], TID2008 [8], A57 [9]. Fig. 5 shows the scatter plot of the
metric score versus subjective score for each of the databases.
Since 4 (out of 17) distortion types (non eccentricity pattern
noise, local block-wise distortion, mean shift, contrast change)
in TID2008 cannot be handled by our metrics currently,
we also use part of the TID2008 database which excludes
these distortion types to test our metric. Table 1 shows the
performance of the proposed metric together with other 3
image quality metrics VIF [3], SSIM [4], and PSNR. All tested
metrics use luminance information only. The criteria used to
evaluate metric performance are Linear Correlation Coefficient
(LCC) and Spearman Rank Order Correlation Coefficient
(SROCC). Higher value of LCC and SROCC indicates better
performance with maximum value being 1 for both criteria.
Before calculating the LCC and SROCC, objective scores from
each metric are non-linearly mapped to the subjective scale by
using equation (6).

From the experimental results, we can see that the proposed
metric performs quite well on most image databases. Its
prediction accuracy is consistently better than PSNR and one
of the classic engineering-based image quality metric SSIM.

However, its shortcoming is also obvious. Firstly compared
with the state of art metric VIF, there is still a performance
gap on 4 out of the 5 tested image databases. Secondly,
its performance on database TID2008 needs to be improved
greatly. As mentioned above, there are several distortion types
in TID2008 that the proposed metric cannot deal with. This
fault will jeopardize its usage as a universal quality metric.
Thirdly, the metric score s is supposed to be linearly related
to the subjective scores, but as shown in Fig. 5, the proposed
metric failed to achieve this.

These shortcomings can be overcome by better algorithms
for decoupling subtractive and additive impairments together
with better impairment measures. For simplicity the proposed
metric decouples subtractive and additive impairments by
simply comparing values of wavelet coefficients at the same
frequency and spatial location. Better performance should be
achieved by considering the intra- and inter-scale relationships
of the wavelet coefficients, since for subtractive impairment
these relationships should be similar with those for reference
image while on the other hand will be different for additive
impairment. Moreover, in the proposed metric when measuring
the impairments only magnitude is considered. To handle local
distortions the distribution of the impairments also needs to
be taken into account. Our future work will focus on these
directions.

V. CONCLUSION

We proposed an image quality metric which separated
subtractive impairment from additive impairment. We argued
the differences between the two types of impairments and used
different measures to correlate them with visual quality. The
proposed metric was found to perform quite well on 4 out of
the 5 tested subjectively-rated image databases. Meanwhile we
also pointed out the weak points of the current implementation,
and discussed our future works on the metric’s improvement.
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