
586 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, V OL. 23, NO. 5, MAY 2004

Equivalence Checking of Arithmetic Circuits
on the Arithmetic Bit Level

Dominik Stoffel, Member, IEEE, and W olfgang Kunz, Member, IEEE

Abstract—One of the most sev ere shortcomings of currently
av ailable equiv alence checkers is their inability to v erify arith-
metic circuits and multipliers, in particular. In this paper, we
present a bit-lev el rev erse-engineering technique that comple-
ments standard equiv alence checking frameworks. W e propose a
Boolean mapping algorithm that extracts a network of half adders
from the gate netlist of an addition circuit. Once the arithmetic
bit-lev el representation of the circuit is obtained, equiv alence
checking can be performed using simple arithmetic operations.
W e hav e successfully applied the technique for the v erification of
a large number of multipliers of different architectures as well as
more general arithmetic circuits, such as multiply/add units. The
experimental results show the great promise of our approach.

Index T erms—Arithmetic bit lev el, arithmetic circuit, datapath
v erification, equiv alence checking, formal hardware v erification,
multiplier.

I. INTRODUCTION

I
N RECENT years, implementation verification by equiva-

lence checking has become widely accepted. Modern equiv-

alence checkers can handle circuits with hundreds of thousands

of gates and have replaced gate-level simulation in many de-

sign flows. Equivalence checkers can perform extremely well if

the two designs to be compared contain a high degree of struc-

tural similarity. This is usually the case after a conventional syn-

thesis flow. Similarity means that the two circuits contain a lot

of internal equivalences [1], [2], also called internal cut points

[3]. Techniques to exploit these similarities have enabled equiv-

alence checkers to verify huge combinational circuits, as has

been shown by several authors [1]–[6]. On the other hand, if

no internal equivalences exist, modern equivalence checkers fail

and even for relatively small examples verification can become

impossible.

One of the main problems encountered with equivalence

checking in industrial practice is the inability to verify integer

multipliers. The problem occurs when a register transfer level

(RT-level) description of a circuit must be compared against a

gate-level description. Typically, the latter has been generated

from the former by some synthesis tool and it is the task of

the equivalence checker to verify this synthesis process. The

equivalence checker attempts to solve the problem by synthe-

sizing a gate-level model from the RT model and by comparing

the two gate-level designs. Unfortunately, this will fail in most

Manuscript received April 25, 2003; revised July 31, 2003 and October 8,
2003.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Kaiserslautern, 67653 Kaiserslautern, Germany (e-mail:
stoffel@ieee.org).

Digital Object Identifier 10.1109/TCAD.2004.826548

cases. The problem is that the gate-level model generated by

the equivalence checker looks entirely different, compared

with the multiplier produced by the synthesis tool. Commercial

equivalence checkers offer solutions for black-boxing multi-

pliers; however, this and related solutions are cumbersome and

may easily lead to false negatives.

Several approaches for multiplier verification can be con-

sidered. W ord-level decision diagrams like binary moment

diagrams (BMDs) [7] have great promise because they can

efficiently represent integer multiplication. However, they

require word-level information about a design, which is often

not available and difficult to extract from a given bit-level

implementation. Solutions based on bit-level decision diagrams

such as binary decision diagrams (BDDs), e.g., as in [4] and

[8], suffer from high complexity and may lack robustness, even

if the BDDs are not built for the circuit outputs directly, but

certain properties of the arithmetic circuits (e.g., “structural

dependence” [8]) are exploited.

An approach based on a standard equivalence checking

engine was proposed by Fujita [9]. Some arithmetic functions

such as multiplication have special properties, which can be

expressed as recurrence equations. For the circuit to be verified,

it is checked whether the corresponding recurrence equation is

valid using a standard cut-point-based equivalence-checking

engine. The equivalence-checking problems are recursively

broken down into smaller problems by case splitting on operand

bits. The major drawback of this interesting approach is that for

the circuit to be checked, a recurrence equation must exist and

it must be known. This hampers automation of the verification

task.

A related approach has been pursued in [10] and [11]. It

is based on using certain arithmetic relationships of the im-

plemented circuit function and, like [9], applies case splits on

operand bits. The method is very promising for certain classes

of circuits and makes efficient use of the circuit structure to find

the right set of operand bits and a useful order on these bits for

performing the case splits. In some cases, a good order exists

such that the subproblems created indeed exhibit a great deal of

structural similarities, thereby significantly simplifying the ver-

ification task. However, for some architectures, such as W allace

tree, no such order exists so that the method is not robust in some

common practical cases.

Reverse engineering could be considered as a pragmatic ap-

proach to multiplier verification. Since the number of possible

architectures for a multiplier is limited, one may incorporate

a variety of architectures in the front end of the equivalence

checker and repeat the comparison for all of them. W e have not

experimented with this approach, but we believe that there are

0278-0070/04$20.00 © 2004 IEEE

STOFFEL AND KUNZ: EQ UIVALENCE CHECKING OF ARITHMETIC CIRCUITS ON THE ARITHMETIC BIT LEVEL 587

Fig. 1. Multiplication example (decimal numbers).

many obstacles. Note that even within one and the same archi-

tecture, e.g., a carry-save adder (CSA) array, there can be nu-

merous implementation styles that have hardly any similarity in

terms of internal equivalences. As an illustration, consider Fig. 1

showing four ways of multiplying two decimal numbers.

All four cases can be implemented by the same architec-

tures, but have no internal equivalences at all. The adder stage of

each row computes the accumulated sum of the previous rows.

The accumulated sum values are different in all four variations.

We experimentally verified the absence of internal equivalences

using the 16 16 bit multiplier c6288. We modified the circuit

by swapping its operands. Since multiplication is commutative

c6288 with swapped operands must be equivalent to the original

version. Proving this by our equivalence checker [12], however,

turned out to be impossible. All internal equivalences were lost,

except for the ones belonging to the partial products in the first

circuit level.

In this paper, we propose a new approach to verification of

arithmetic circuits. It can be understood as a reverse engineering

process but at a more detailed level than described above. We

propose an extraction technique which decomposes a gate netlist

of an arithmetic circuit into its smallest arithmetic units. We do

not identify word operations but bit operations and only con-

sider the addition of single bits. Our extraction technique gen-

erates an arithmetic bit-level description of the circuit. Addition

at this level is reduced to addition modulo 2 and generation of

carry signals. The arithmetic bit level permits a very efficient

verification algorithm.

Note that there have been a few approaches reported in lit-

erature based on identifying components of arithmetic circuits.

Probably the earliest work related to the method described here

is [13]. The technique is based on a logic-programming tool. It

is similar to the one described in this paper in the respect that a

higher-level representation of the circuit is extracted from a flat

gate-level netlist. However, the gates in the circuit are mapped to

component cells by syntactic pattern matching. The information

about which cells [e.g., CSA or carry-lookahead adders (CLA)

adders] have been used in the implementation must be given to

the tool. The obtained representation is not a formal, generic

arithmetic bit-level description as in our approach, but strongly

depends on the cell types.

Identifying the components in a design can also be useful for

a hierarchical verification approach. In [7], hierarchical veri-

fication was proposed for circuits that cannot be verified effi-

ciently at the bit level (such as multipliers). For each compo-

nent, a BMD is constructed which can be compared against a

specification for the component. Then, the BMDs of the com-

ponents are composed and the final BMD is compared to the

overall circuit specification. In another approach [14], a PHDD

is constructed for the circuit in a backward circuit traversal, sim-

ilar to Hamaguchi’s method [15]. The boundaries of the com-

Fig. 2. Basic multiplier structure.

ponents are used as cut lines. As the cut is moved backward

toward the primary inputs, the local Boolean functions between

the cut lines are composed into the PHDD. The components

themselves are identified by BDD-based symbolic simulation.

Note that the component identification techniques proposed

in [13] and [14] may work if the gate netlists are of highly

regular structure and consist of exactly those components that

are anticipated in the identification procedures. Unfortunately,

this is not always the case for industrial multipliers as produced

by modern synthesis tools which include various optimizations.

Sometimes, even secondary utilities, such as netlist converters,

can destroy the regularity of the circuit structure so that com-

ponent identification techniques as in [13] or [14] face severe

problems.

In contrast, the technique we propose in this paper is much

more robust, with respect to the circuits it can handle. It does

not require additional information about the cells from which

the implementation is constructed. All building blocks are auto-

matically decomposed into atomic addition operations by em-

ploying Boolean reasoning techniques on the gate netlist. In

general terms, the proposed approach can be summarized as

follows.

1) Decompose the two combinational circuits—where pos-

sible—into networks of one-bit addition primitives, such

as XOR, half adder, full adder (arithmetic bit level).

2) Prove equivalence of corresponding circuit outputs on the

arithmetic bit level using commutative and associative

laws.

II. VERIFICATION AT THE ARITHMETIC BIT LEVEL

Arithmetic functions in digital circuits, such as addition, sub-

traction, multiplication, and division, are always implemented

using addition as the base function. Subtracting a number in

twos complement notation from a number , for example, is

implemented by inverting all bits of , adding 1, and adding

. Multiplication is also based on addition. Hardware multi-

pliers are most often composed of two stages (Fig. 2). In the

first stage, the partial products are generated from two operand

vectors, and . The way the partial products are generated

depends on whether signed or unsigned numbers are processed,

and whether or not Booth recoding is used. The partial products

are inputs to the second stage which is an addition circuit. In

the sequel we will call the inputs to an addition circuit primary

addends. The addition circuit adds the primary addends up to

produce the final result . The implementation of this

addition circuit can be chosen from a variety of architectures

differing in performance or area requirements. Most common

implementations are an array of CSAs or a Wallace tree.

Note that this general structure consisting of a first stage gen-

erating primary addends and a second stage computing the arith-

588 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

Fig. 3. More general arithmetic circuit example.

Fig. 4. Half adder, schematics, and symbol.

metic sum of these primary addends is not restricted to mul-

tipliers, but is found in many arithmetic circuits. Many appli-

cations require arithmetic RTL expressions comprised of ad-

dition, subtraction, and multiplication operators. Modern syn-

thesis tools and module generators respond to this by offering

more general building blocks such as multiply/add structures.

Recently, commercial logic-synthesis tools also contain opti-

mization algorithms specifically targeting such arithmetic ex-

pressions. Multiplication operators of the RTL code are decom-

posed into partial products and addition circuits. Then, all pri-

mary addends arising in the synthesized expression (including

partial products and other addends) are accumulated in one ad-

dition circuit. This addition circuit can be constructed in a “glob-

ally” optimal structure, e.g., using a Wallace tree architecture.

Fig. 3 shows an example of such a more general circuit struc-

ture generated from the RTL expression . The

primary addends for the addition circuit consist of the partial

products from the multiplication and of the separate addend

. As a consequence, the individual multiplication operators can

no longer be identified in the generated netlist. Verification ap-

proaches relying on black-boxing of individual multipliers are

bound to fail. Note that the approach proposed in this paper is in-

sensitive to this kind of optimization since the general two-stage

structure of primary addend generation followed by an addition

circuit still prevails.

Any combinational circuit which performs the addition of bi-

nary bit vectors such as the addition stage in a multiplier can

be represented as a composition of half and full adders. Fig. 4

shows the gate schematics of a half adder. In the sequel, we will

use the half adder symbol shown on the right side of Fig. 4.

A full adder can be completely decomposed into half adders.

We make use of this fact in our choice of arithmetic bit level

representation. Fig. 5 shows a possible implementation of a full

adder and the corresponding network composed of three half

adders , . Half adder adds the two carry bits and

of the half adders and and produces the full adder carry

output . Note that because the two signals and can never

Fig. 5. Full adder decomposed into half adders.

Fig. 6. Addition graph for full adder.

assume the logic value 1 simultaneously, the carry output of

produces a constant 0.

Once we have obtained a representation of an addition circuit

that is only composed of half adders, we speak of a half adder

network or the arithmetic bit level representation of the cir-

cuit. This representation allows for a very efficient equivalence

checking procedure. In the following, we introduce a mathemat-

ical model for the arithmetic bit level and develop the theoretical

background of our verification procedure.

Definition 1: An addition graph is a triple .

is a directed acyclic graph with vertex set and edge

set . The vertex set consists of three disjoint subsets,

. The vertices in have exactly two immediate pre-

decessors, and are called sum nodes. The vertices in have no

predecessors and are called primary addends. The vertices in

have no predecessors and are called carry nodes. A vertex

is called addend of .

is a relation, and is a set of Boolean

functions.

An addition graph is associated with a half adder network

as follows. Each sum node in is associated with the sum

output of a half adder in the network. Each carry node in is as-

sociated with the carry output of a half adder. Each primary ad-

dend in is associated with an input of the half adder network.

Two vertices and are connected by a directed edge ,

if the half adder associated with has the signal associated with

as operand.

For and it is if and only if and

are associated with the output signals of the same half adder in

the network.

With each vertex we associate the Boolean function

in terms of the primary addends that is implemented by

the signal corresponding to in the half adder network.

For illustration of this definition, Fig. 6 shows the addition

graph of the full adder of Fig. 5. Note that the primary addends

and the carry nodes are the source nodes of an addition graph,

and are also referred to as addends in the following. In Fig. 6,

addends are represented by boxes, sum nodes are represented by

circles. The relation between carry and sum nodes is indicated

by dashed lines. Nodes and are sinks of the addition graph

and correspond to outputs and of the half adder network.

STOFFEL AND KUNZ: EQUIVALENCE CHECKING OF ARITHMETIC CIRCUITS ON THE ARITHMETIC BIT LEVEL 589

Fig. 7. Addition graph of Lemma 1.

The modeling of a half adder by two separate nodes in the ad-

dition graph may seem awkward. Note, however, that our def-

inition leads to a decomposition of the half adder network into

graph entities such that all but the source vertices correspond

to XOR operations. Therefore, each sum node in the graph can

be associated with the sum modulo 2 of all source nodes in its

transitive fanin. This facilitates the manipulation of the graph

structure.

In the following, without loss of generality, we assume that

the addition graph is a forest of trees. If the addition graph ob-

tained from the original half adder network does not have tree

structure, we can always generate a forest of trees by duplica-

tion of appropriate graph portions including primary addends.

Lemma 1: Let and be the operands of a sum node in

an addition graph. Further, let and be the operands of a sum

node , as shown in Fig. 7. Let and be the carry nodes of

and , respectively. Exchanging operand with operand does

not change and does not change .

Proof: Function does not change because addition

modulo 2 is commutative. The function does not

change, because .

Half adder networks implementing practical addition stages

have the special property that each addition tree computes a digit

of a binary encoded integer. The carry signals of the addition

tree for digit all feed into the addition tree for the next digit,

. This can be exploited when checking the equivalence of

addition trees in practical addition networks.

Lemma 2: The output functions of two addition trees and

(Fig. 8) are equivalent if the following conditions are true.

1) The sets of primary addends for and are identical

.

2) There exists an addition tree such that the set of all

carry nodes being addends for is identical with the set

of carries generated in . The same holds for and some

addition tree .

3) The output functions of and are equivalent.

Proof: If the output functions of and are equivalent,

then the sum modulo 2 of all carries generated in is equivalent

to the sum modulo 2 of all carries generated in . This follows

from the observation that can be transformed into by a se-

quence of operand swaps according to Lemma 1. as well as

compute the modulo 2 sum of the primary addends and the

carries of .

Once we have a representation of an addition circuit as a

half adder network, the equivalence check using Lemma 2 is

straightforward. Note that finding addition tree for addition

tree in condition 2 is trivial in practice, since is located

in the immediate structural vicinity of . The correspondences

Fig. 8. Illustration of Lemma 2.

with and with are known from the given equivalence

checking task.

Note the recursive nature of Lemma 2: the equivalence of the

output digit (tree) depends on the equivalence of digit

(tree). The terminal case of the recursion is digit 0 where no

carry-ins exist and only condition 1 of the lemma needs to be

checked. The total runtime of the equivalence check according

to Lemma 2 is linear in the number of half adders which is pro-

portional to circuit size.

Another possibility to verify addition circuits on the arith-

metic bit level is to manipulate the circuits using the opera-

tion of Lemma 1 until both circuits have the same structure and

contain enough internal equivalences for a standard equivalence

checking procedure to be successful.

The problem that remains to be solved, however, is how to ex-

tract the arithmetic bit-level representation from the gate netlist

of an addition circuit. This is the subject of the following section.

III. EXTRACTING THE HALF ADDER NETWORK

An addition circuit can be implemented in many different

ways. Different architectures, e.g., carry-save adder arrays or

Wallace trees, exist, aiming at different design goals. Also for

the components and subcomponents, there exists a variety of im-

plementation choices. As an example of an adder stage which

is not constructed from cascaded half and full adders, consider

the four-bit carry-lookahead adder of Fig. 9. In order to speed

up computation time, the carry signals in each output cone are

generated by a special logic block.

It is our goal to extract a half adder network that abstracts

from such implementation details. We seek an extraction tech-

nique that produces as output a network of half adders which is

functionally equivalent to the implementation.

A. Basic Procedure

The approach we propose is based on the following assump-

tion. The predominant operation at the bit level is the com-

putation of exclusive OR. This logic function is part of every

implementation of binary addition. We use Boolean reasoning

techniques [12] to detect XOR relationships in the original cir-

cuit. Note that there are many possibilities to implement XOR

590 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

Fig. 9. Four-bit carry-lookahead adder.

detection algorithms, e.g., using SAT, local BDDs, or structural

hashing techniques. In order to trade off performance against

quality of results, it is desirable to have several phases with

different algorithms. Although we have not experimented with

this, we believe that, as a first extraction phase, a structure-

based functional hashing technique, e.g., the technique based on

AND/INVERTER graphs of [16], could be quite efficient to extract

the majority of the XOR functions in an arithmetic circuit. The

few remaining XOR functions could then be detected by a more

powerful yet more time-consuming functional analysis based on

SAT, BDDs, or automatic test pattern generation (ATPG).

Guided by the detected XORS, we construct a network of half

adders as a reference circuit. We store implications between

nodes in the original circuit and the half adder network. The

stored implications establish a mapping between the nodes of

the original and the reference circuit.

As an example, consider the implementation of a full adder

as shown in Fig. 10.

Using Boolean reasoning techniques it is possible to prove

that the signal can be expressed as the exclusive OR of signals

and . As a consequence, in the reference circuit, we insert a

half adder node with operands and and store implications

reflecting the equivalence of the sum output of the half adder

and node . Also, signal can be expressed as the exclusive OR

of and . We insert a half adder node with operands and

and store the equivalence of the sum output with signal .

Now that the half adders and exist, it is possible to express

signal as an exclusive OR of the carry outputs of and

of . Also, we can identify the implication ,

which is equivalent to , for all possible input vec-

tors of the adder circuit. Therefore we insert half adder with

operands and , and we store the information that the carry

output of this half adder produces a constant 0. We also store an

equivalence pointer between the sum output of and the output

of the adder circuit. We now have a complete mapping of the

adder circuit as a half adder network.

Note that although function implements the majority func-

tion, , of the inputs

and not an XOR function of any of these operands, we can still

find a mapping for this node by using signals from the reference

circuit.

When detecting an XOR relationship of the form for

some signal in the original circuit, with and being signals in

the original or in the reference circuit, it is actually not sufficient

to insert a half adder with operands and . It could be that an

operand has to be inverted in order to make the half adder useful

as an operand later. Since the correct operand phases cannot be

determined by the XOR detection , we add not

only one half adder for each XOR found but all four half adders

corresponding to the four possible combinations of inversions

of the operands.

The pseudocode of Table I showing subroutine extrac-

tion_pass summarizes the basic procedure just

described. It performs one sweep over the implementation

circuit to detect XOR relationships and to construct a ref-

erence circuit by inserting the corresponding half adders.

By setting the parameter to either or , the algorithm is

controlled to identify XORs in the design or in the reference

circuit, respectively. This basic routine is being used several

times in the overall algorithm to be described in Section III-C.

The Boolean analysis underlying the presented procedure is

local and of fairly low complexity. The reason is that the ref-

erence circuit is constructed step by step guided by the XOR

functions found in the implementation circuit. The reference cir-

cuit and the implementation exhibit a great amount of structural

similarity which is represented by equivalence pointers, so that

new XOR relationships can be proven by using the equivalence

pointers as “reasoning short-cuts.”

B. Local Half Adder Network Extensions

In practical implementations, the calculation of sum and carry

signals may be locally separated and restructured, e.g., to im-

prove timing. If such local optimizations have been performed,

the basic procedure of Section III-A may not always be suffi-

cient to determine a complete mapping of the circuit. However,

since the internal nodes of our addition trees represent only XOR

functions, reverse-engineering these trees using commutative

and associative transformations is simple. We analyze the cur-

rent structure of the reference circuit and locally add promising

new half adders. Then we target the unmapped nodes again as

described in Section III-A using the new half adders as potential

XOR operands.

Table II shows pseudocode of the steps taken in this proce-

dure. It is explained using a small example. Consider the piece

of circuitry in Fig. 11. It can be viewed as part of a larger addi-

tion circuit. Signal computes the sum of the signals

and . The sum is computed as a tree which is balanced appro-

priately in order to minimize delays. Signal computes the cor-

responding carry. For simplicity, all XOR functions in this circuit

are implemented by XOR gates so that they can be easily identi-

fied by the reader.

The basic procedure described in Section III-A constructs

a half adder network for this gate netlist. The result is shown

in Fig. 12. The individual steps in the construction of this

reference circuit are as follows. Procedure extraction_pass

is called with parameters set such that XORs are

searched within circuit . For the XORs found, it inserts

corresponding half adders in and stores equivalence pointers

STOFFEL AND KUNZ: EQUIVALENCE CHECKING OF ARITHMETIC CIRCUITS ON THE ARITHMETIC BIT LEVEL 591

Fig. 10. Full adder implementation and mapped half adder network (reference circuit).

TABLE I
SUBROUTINE PERFORMING A HALF ADDER EXTRACTION PASS

between the half adder outputs in and corresponding gates

in the implementation . Signals with equivalent functions in

Figs. 11 and 12 are given the same names. For the XORs pro-

ducing the signals , and it inserts the half adders

and , respectively. In a second procedure

call, extraction_pass , XORs are searched in terms of

signals in the reference circuit. Now, signal is identified to be

expressible as an XOR of the carry outputs of the half adders

and . This XOR leads to the insertion of half adder .

Due to the local optimizations that have been done in the cir-

cuit after separating sum and carry computation, we obtain an

incomplete mapping. On one hand, the half adders and

produce carry signals which are not connected. On the other

hand, we have a “gap” in the network for which no half adders

have been inserted. Signal which is used as an operand to half

adder cannot be mapped to the output of any half adder. Ob-

viously, the facts that some half adder carry outputs are not used

(see question marks in Fig. 12) and that there is unmapped cir-

cuitry (“gap” in Fig. 12) are closely related.

In order to overcome such gaps in the reference circuit, we

need to “undo” the optimizations that have lead to an incomplete

mapping. We need to find a configuration of half adders for the

TABLE II
EXTENDED PROCEDURE TO MAP UNMAPPED CIRCUITRY

sum signal such that the unmapped circuitry can be expressed

in the carry signals of these half adders. This can be done in the

following way (Table II).

First, by a backtrace procedure, we identify the inputs of the

gap. These are signals that are either primary addends or signals

mapped to half adder sum outputs in the reference circuit. In

our example, by backtracing from signal , we identify signals

, and as inputs to the gap. Under the assumption that the

gap function computes the carry corresponding to the sum of

592 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

Fig. 11. Optimized circuitry.

Fig. 12. Reference circuit with “gaps.”

signals , and , we search in the reference circuit a signal

that computes this sum. This analysis is easy in the addition

graph (Definition 1) corresponding to the reference circuit. By

backtracing from the gap inputs, we determine all addends, i.e.,

primary addends and carry nodes, contributing to the sum. In

our example, the gap inputs and are primary addends. Gap

input computes the sum of , and . Hence, we search for

a signal that computes the sum of the addends and .

We identify this signal by a forward trace in the addition graph

starting at the addends. In our example, we identify signal .

Note that the half adders computing the sum do not make

use of signal . Therefore, we now locally extend the reference

circuit by inserting a different configuration of half adders such

that signal and all other addends being inputs to the gap are

used. One possible configuration is shown in Fig. 13. After in-

serting the half adders and in this way, we have obtained

an alternative representation of signal that makes use of the

signals at the inputs of the gap. Now by calling extraction_pass

the problematic circuitry is revisited. It determines

that signal in Fig. 13 can be expressed as an XOR of the carries

produced by half adders and . This leads to an additional

half adder completing the mapping for the circuitry in the

gap. The final result is shown in Fig. 14. We have, in effect, re-

versed the optimizations in the netlist and we can discard the

half adders , and . The resulting reference circuit is a co-

herent network of half adders.

In this example, there are three possible configurations of half

adders to sum up signals and in Fig. 13. In this case, all

Fig. 13. Local extension of the half adder network’.

three network extensions lead to a successful mapping of the

gap. In general, this may not always be the case and all pos-

sible configurations have to be tried until the correct mapping

is found. However, since this type of optimization happens very

locally, the computational effort to find the right network exten-

sion is usually very low.

Note that there are many ways to optimize the building blocks

of addition circuits [17]. Some optimizations as, e.g., a carry-se-

lect adder cannot be handled by the procedure as it is explained

in this section. In order to cope with such structures, further ex-

tensions to the approach would be necessary. However, we have

not found optimizations of this kind in our experiments.

Other optimizations are handled naturally by our approach,

including the carry-lookahead architecture. Carry-lookahead

adders are often employed for the final adder in a multiplier.

Fortunately, this can be handled by our basic procedure of

Section III-A without any extensions. Consider Fig. 9 again.

The Boolean reasoning technique detects XOR relationships for

every carry signal to , each leading to a new half adder

inserted in the reference circuit. The extracted half adders,

in fact, form a “ripple-carry” structure. Also in this case, the

extraction procedure reverses the optimizations of the netlist.

C. Algorithm

Table III shows the pseudocode of the proposed algorithm for

half adder network extraction. The algorithm consists of four

phases. The first two phases consist of the steps introduced in

the example of Fig. 10. The third phase targets the remaining

unmapped nodes as described in Section III-B. In each of these

phases, subroutine extraction pass shown in Table I is called

which performs one pass over the original circuit, analyzing

whether XOR relationships exist for every node that has not been

mapped by a half adder yet. Depending on the phase, the XOR

operands are searched either in the original or in the reference

circuit. Finally, in the last phase, a backtrace procedure is started

to collect a set of half adders forming a cover for the given ad-

dition circuit. This cover is used for the equivalence check of

Section II.

In the case that the arithmetic circuit processes signed num-

bers, e.g., signed multiplication or subtraction is performed or a

recoding technique such as Booth recoding is used, special con-

sideration has to be taken when assembling the half adders to

a coherent network. In this case, some of the primary addends

STOFFEL AND KUNZ: EQUIVALENCE CHECKING OF ARITHMETIC CIRCUITS ON THE ARITHMETIC BIT LEVEL 593

Fig. 14. Successful half adder extraction on unmapped circuitry.

TABLE III
ALGORITHM FOR HALF ADDER NETWORK EXTRACTION

may be subtracted instead of added. In two’s complement repre-

sentation this amounts to logically inverting the individual bits

and adding a constant 1 into the least significant addition tree.

In a similar way, often, sign extension of addends in addition

trees is done by inverting the most significant bit (MSB) of the

addend and adding constant 1’s into all bit positions from the

MSB up to the required bit width.

When extracting half adder networks in these cases, we have

to keep two things in mind. First, some of the primary addends

may have to be added in logically inverted phase. Second, con-

stant 1’s may have been added into an addition tree. These con-

stants simplify the logic. Fig. 15 shows the effect of a constant

addend of 1 to a half adder and to a full adder, respectively. A

half adder with one operand being constant 1 degenerates to a

simple fanout system with one inverting and one noninverting

branch. A full adder with an operand of constant 1 degener-

ates to an inverted XOR gate and an OR gate. This has conse-

Fig. 15. Logic simplification due to constant addends.

quences for the final mapping stage of Table III as well as for

the half adder extraction algorithm of Table I which relies en-

tirely on functional (Boolean) analysis to identify XORs. These

algorithms have to be extended in the following way. In addi-

tion trees with possible constant addends of 1 any XOR found in

the circuit can be mapped not only to a half adder but also to a

degenerated full adder as in Fig. 15. This has to be accounted

for when generating the reference circuit. Also, this increases

the search space for the final mapping stage.

Half adders with constant operands degenerating to simple

fanout systems as in Fig. 15 cannot be identified by XOR de-

tection. However, because of their simple structure they can

be easily identified through their carry outputs. Since the carry

signal is functionally equivalent to the nonconstant addend of

the half adder, this addend appears twice: in two addition trees

of successive output bit significance. In the final mapping stage,

these situations are identified and accounted for by a constant 1

added to the less significant of the two addition trees.

Note that our procedure is robust also in cases where the

basic building blocks of the arithmetic circuit are not half or

full adders. This has already been illustrated for carry-looka-

head adders in Section III-B.

IV. VERIFICATION FRAMEWORK

As discussed in Section I, arithmetic circuits pose great prob-

lems to current equivalence checkers. In order to circumvent

these problems, most commercial tools provide mechanisms to

black-block multipliers embedded in the designs so that at least

the remaining circuitry can be formally verified. Ideally, the

black-boxed multipliers can be checked using special verifica-

594 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

TABLE IV
ARITHMETIC BIT-LEVEL EXTRACTION ON BOOTH-ENCODED MULTIPLIER GATE NETLISTS

tion techniques. In our approach, we assume such a set-up. The

verification technique proposed in this paper can be directly ap-

plied to the black-boxed arithmetic circuitry.

After the arithmetic circuitry has been black-boxed, in-

formation about the encoding of the partial product bits is

required. Fortunately, the number of encodings used in practice

is small. In our experiments, the encoding was given to the

verification program in the form of specification circuitry for

the partial products. The extraction procedure maps signals of

the implementation to XORs expressed in signals of the specifi-

cation, using Boolean reasoning techniques. If successful, this

formally verifies the correct encoding.

In a practical application where the information about the en-

coding is not available, it may be desirable to automatically de-

termine the encoding. A straightforward approach is to simply

explore all possibilities, starting with the most probable ones.

This need not be time consuming, since the number of possible

encodings is rather small and the wrong encodings are filtered

out quickly. (The extraction procedure is aborted in an early

phase if there are no primary addends to map onto.)

Although black-boxing of arithmetic circuits is standard prac-

tice, it is still interesting to ask how the approach proposed in

this paper could be integrated directly as an additional heuristic

into existing equivalence checking frameworks. We have not ex-

perimented with this, but the following scenario of an integrated

procedure seems promising. Standard similarity-based equiva-

lence checking is run for the given circuits in the usual way. If

the circuits contain multipliers (or other arithmetic blocks), the

procedure is likely to fail. Let us assume that the front end of

the equivalence checker has generated a specification with the

same encoding of the partial product bits as in the implemen-

tation. Then, the standard techniques advance the cut frontier

up to and including these partial product bits. In the addition

network that follows, however, the procedure is likely to fail by

lack of similarity. Eventually, the equivalence checker aborts the

process.

This is the point where the proposed extraction technique can

be invoked. Whenever the equivalence checker starts “choking,”

we need to identify the partial product bits for every arithmetic

block in the implementation. This is easy because we know the

partial products in the specification and the standard equiva-

lence checking process has already identified their equivalent

counterparts in the implementation. Knowing the partial prod-

ucts in the implementation we can examine whether or not the

cut frontier has successfully traversed the corresponding ad-

dition network. If not, the extraction procedure is started and

equivalence is proved for the outputs of the arithmetic blocks.

Once this is completed, standard equivalence checking can con-

tinue making use of these new cut points.

In order to ensure that the standard equivalence checker can

match the partial product bits of the implementation with the

partial product bits of the specification, the front end of the

equivalence checker should generate all common versions of

partial product bits as candidates for cut points in the standard

procedure. As already discussed above, in our experience, the

number of different encodings being used in industrial practice

is fairly small so that the overhead for generating all the candi-

dates should be reasonable.

Note that the proposed extraction procedure will fail to ex-

tract an arithmetic bit-level description if the multiplier circuit

contains an error. This, however, is easily detected by a sim-

ulation step earlier in the verification flow. Experience from

ATPG, e.g., [18], shows that multipliers are highly random-pat-

tern testable so that a buggy design is usually detected by only

a small number of random patterns.

STOFFEL AND KUNZ: EQUIVALENCE CHECKING OF ARITHMETIC CIRCUITS ON THE ARITHMETIC BIT LEVEL 595

TABLE V
ARITHMETIC BIT-LEVEL EXTRACTION ON NON-BOOTH-ENCODED MULTIPLIER GATE NETLISTS

If it is desirable to represent the arithmetic circuit by a word-

level decision diagram, our approach can also be of interest. It

was already pointed out in [7], [14], and [19] that knowledge

about the subcomponents of a multiplier can be useful in BMD

construction. It seems likely that the arithmetic bit-level repre-

sentation as extracted by the procedure of Section III could be a

good basis for heuristically guiding a BMD construction process

along the lines of [14] and [15].

V. EXPERIMENTAL RESULTS

The described techniques have been implemented as a part of

the HANNIBAL [12] tool. Tables IV and V show some of our

results for extracting the half adder networks for multipliers of

different origin, bit widths, and architectures. They were gener-

ated by commercial tools and many of them were extracted from

real designs. The examples reflect the architectures currently

used in industrial practice. In our experiments, we found that

for multipliers generated by our own self-written generators, it

was much easier to extract the arithmetic bit-level representa-

tion than for circuits generated by commercial synthesis tools.

These circuits are much more “sophisticated” than their aca-

demic counterparts, which are constructed using common text-

book components and architectures. Therefore, we do not report

verification results for circuits generated by our own tools.

Tables IV and V list multipliers with and without Booth en-

coding, respectively. In each table, the first column shows the

origin of the circuit. We have experimented with multipliers

generated by two different commercial tools, one of them being

Synopsys Design Compiler (labeled “comm. 1”). Additionally,

we have three different versions of C6288 from the well-known

ISCAS’85 benchmark set in the table. Circuit c6288 is the orig-

inal circuit, circuit c6288nr is its nonredundant version, and cir-

cuit c6288opt is the result of optimizing c6288 using sequential

interactive synthesis (SIS) with script.rugged.

The various multipliers process signed or unsigned numbers

(column 2). The multiplier architectures are given in column 3:

“wall” means Wallace tree, “csa” is CSA array type. The mul-

tipliers labeled “wall-rc” and “wall-bk” are Wallace-tree-type

596 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

TABLE VI
ARITHMETIC BIT-LEVEL EXTRACTION ON EXPRESSIONS

multipliers with a final adder of ripple-carry or Brent-Kung type

[20], respectively. Columns 4–6 show the bit widths of the mul-

tiplication operands, and the result, . Column 7 shows

the circuit size given as the number of connections in the netlist.

The last column reports on the CPU time on a 1300 MHz PC

running Linux.

The benchmarks differ greatly with respect to the archi-

tectures used, such as Wallace trees and arrays of RCA or

CSA adders. For all these architectures, the arithmetic bit level

could be extracted within short CPU times. Note that, due to

the Boolean nature of our extraction technique, the arithmetic

bit level can also be obtained if the multiplier has been been

optimized using standard logic synthesis techniques. This is

illustrated by means of c6288opt and logic synthesis by SIS.

The CPU times needed for the extraction experiments are not in

direct proportion to the circuit sizes. The main reason for this is

that the circuits may contain different optimizations such that

the extended extraction methods as described in Section III-B

have to be invoked differently often. Compare, for example,

the extraction times for the signed and unsigned 32 32-bit

multipliers in Table V. Although both circuits are of roughly the

same size, extracting the signed multiplier takes almost twice

as long as extracting the unsigned version.

We verified the equivalence between any pair of multipliers

with the same operand widths and number interpretation

(signed/unsigned) using the equivalence check of Lemma 2.

After the arithmetic bit level was extracted, the actual equiv-

alence check in all cases took only a fraction of a second. In

the cases where a different encoding was used (Booth versus

non-Booth), each of the circuits was checked against the

reference circuit with the same encoding produced by the front

end of the equivalence checker.

In a second experiment (Table VI), we ran the arithmetic

bit-level extraction algorithm on circuits computing larger arith-

metic expressions containing several multipliers. These netlists

were generated by Synopsys DC Ultra, which features advanced

arithmetic optimization capabilities as described in Section II by

identifying and merging arithmetic addition trees.

The circuits in Table VI compute multiply/add expressions.

Circuit MAC1 computes the expression ,

circuit MAC8 computes . In the

implementation circuit, the multiplication operations cannot be

identified as individual blocks. The arithmetic optimization by

the synthesis tool has merged all addition circuits of the “ ” and

“ ” operators and optimized the resulting addition network. Al-

though the individual operators can no longer be identified, the

overall structure of the circuit is composed of a stage computing

partial products and an addition circuit, similar to the structures

shown in Figs. 2 and 3. Hence, our method can be applied in

the usual way. We generated a specification for the circuit as it

would be produced by the front-end of an equivalence checker.

Then, the extraction procedure was run on the implementation.

It generated an arithmetic bit level representation of the merged

addition circuit where the partial product bits of the specifica-

tion serve as primary addends to the half adder network. Just

like for the multipliers of Tables IV and V the correctness of the

computed expressions was verified using Lemma 2.

Column 2 of Table VI shows the number of multipliers in

each expression. The remaining columns report the bit width

of the result , the size of each circuit given as the number of

connections, and the CPU time needed to extract the arithmetic

bit-level representation.

VI. CONCLUSION

In this paper, we propose a method for equivalence checking

of arithmetic circuits including multipliers. The method is

based on a bit-level reverse-engineering approach. The main

challenge is to efficiently extract an arithmetic bit level de-

scription of a circuit from a given gate netlist. The presented

extraction algorithms have been tested on various multipliers

and other arithmetic circuits and proved very promising. The

approach effectively complements conventional equivalence

checking frameworks and can increase the robustness of

equivalence checking for arithmetic circuits.

ACKNOWLEDGMENT

The authors are grateful to S. Höreth (Infineon Technologies,

Munich, Germany) and T. Rudlof (formerly with SIEMENS

AG, Munich, currently with Mentor Graphics, Inc., Billerica,

MA) for fruitful discussions and for providing the multiplier ex-

amples generated by commercial synthesis tools.

REFERENCES

[1] D. Brand, “Verification of large synthesized designs,” in Proc. Int. Conf.

Computer-Aided Design, 1993, pp. 534–537.
[2] W. Kunz, “An efficient tool for logic verification based on recursive

learning,” in Proc. Int. Conf Computer-Aided Design, Nov. 1993, pp.
538–543.

[3] A. Kühlmann and F. Krohm, “Equivalence checking using cuts and

heaps,” in Proc. Design Automation Conf., June 1997, pp. 263–268.
[4] J. R. Bitner, J. Jain, M. S. Abadir, J. A. Abraham, and D. S. Fussell,

“Efficient algorithmic circuit verification using indexed BDDs,” in Proc.

F ault T olerant Comput. Symp., 1994, pp. 266–275.
[5] J. Jain, R. Mukherjee, and M. Fujita, “Advanced verification techniques

based on learning,” in Proc. 32nd ACM/IEEE Design Automation Conf.,
June 1995, pp. 420–426.

[6] Y. Matsunaga, “An efficient equivalence checker for combinational cir-
cuits,” in Proc. Design Automation Conf., June 1996, pp. 629–634.

[7] R. Bryant and Y. A. Chen, “Verification of arithmetic circuits with bi-
nary moment diagrams,” in Proc. Design Automation Conf., 1995, pp.
535–541.

[8] T. Stanion, “Implicit verification of structurally dissimilar arithmetic cir-
cuits,” in Proc. Int. Conf. Comput. Design., Oct. 1999, pp. 46–50.

[9] M. Fujita, “Verification of arithmetic circuits by comparing two similar
circuits,” in Proc. Int. Conf. Computer-Aided V erification., R. Alur and
T. A. Henzinger, Eds, Aug. 1996, pp. 159–168.

[10] Y.-T. Chang and K.-T. Cheng, “Induction-based gate-level verification
of multipliers,” in Proc. Int. Conf. Computer-Aided Design., San Jose,
CA, 2001, pp. 190–193.

[11] , “Self-referential verification of gate-level implementations of
arithmetic circuits,” in Proc. Design Automation Conf., 2002, pp.
311–316.

STOFFEL AND KUNZ: EQUIVALENCE CHECKING OF ARITHMETIC CIRCUITS ON THE ARITHMETIC BIT LEVEL 597

[12] W. Kunz and D. Stoffel, Reasoning in Boolean Networks—Logic Syn-

thesis and Verification Using Testing Techniques, MA: Kluwer, 1997.
[13] H. Simonis, “Formal verification of multipliers,” in Proceedings of

the IFIP WG10.2 WG10.S International Workshop on Applied Formal

Methods for Correct VLSI Design, L. J. Claesen, Ed.. North Holland,
The Netherlands, 1990, pp. 267–286.

[14] Y.-A. Chen and J.-C. Chen, “Equivalence checking of integer multi-
pliers,” in Proc. Asia South Pacific Design Automation Conf., Yoko-
hama, Japan, 2001, pp. 196–174.

[15] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of bi-
nary moment diagrams for verifying arithmetic circuits,” in Proc. Int.

Conf. Computer-Aided Design, Nov. 1995, pp. 78–82.
[16] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean

reasoning,” in Proc. Design Automation Conf., June 2001, pp. 232–237.
[17] B. Parhami, Computer Arithmetic—Algorithms and Hardware De-

signs. New York: Oxford Univ. Press, 1999.
[18] T. Larrabee, “Efficient generation of test patterns using boolean differ-

ence,” in Proc. Int. Test Conf., 1989, pp. 795–801.
[19] M. Keim, M. Martin, B. Becker, R. Drechsler, and P. Molitor, “Polyno-

mial formal verification of multipliers,” in Proc. VLSI Test Symp., 1997,
pp. 150–155.

[20] R. P. Brent and H. T. Rung, “A regular layout for parallel adders,” IEEE

Trans. Comput., vol. C-31, pp. 260–264, Mar. 1982.

Dominik Stoffel (M’95) obtained the Diplom-Inge-
nieur degree in electrical engineering from the Uni-
versity of Karlsruhe, Karlsruhe, Germany, in 1992
and the Ph.D. degree in computer science from the
University of Frankfurt, Frankfurt, Germany, in 1999.

From 1994 to 1998, he was with the Max-Planck
Fault-Tolerant Computing Group in Potsdam. From
1998 to 2001, he was with the Electronic Design
Automation Group, University of Frankfurt. Since
2001, he has been a Postdoctoral Researcher in the
Electronic Design Automation Group, University of

Kaiserslautern, Kaiserslautern, Germany. His research interests are in the field
of formal hardware verification and logic synthesis.

Wolfgang K unz (S’90–M’91) obtained the Dipl.Ing.
degree of electrical engineering from University
of Karlsruhe, Karlsruhe, Germany, in 1989 and
the Ph.D. degree from the University of Hannover,
Hannover, Germany, in 1992.

From 1993 to 1998, he was with Max Planck Fault-
Tolerant Computing Group, University of Potsdam,
Potsdam, Germany. From 1998 to 2001, he was a Pro-
fessor in the Computer Science Department, Univer-
sity of Frankfurt, Frankfurt, Germany. Since 2001, he
has been with the Electrical Engineering Department,

University of Kaiserslautern, Kaiserslautern, Germany. He conducts research in
the areas of logic and layout synthesis, equivalence checking, and ATPG.

Prof Kunz has received several awards including the IEEE Transactions on
Computer-Aided Design Best Paper Award.

