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Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by
pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these
maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice
for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has
been demonstrated, however this approach has its own limitations and has not seen widespread clinical use.
Here we show that spontaneous and task-based mapping can be performed together using the same
pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be
combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our
approach are quantified through comparison with electrical cortical stimulation mapping in eight patients
with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through
prospective replication in an independent dataset of six patients from a different center. In both cohorts and
every individual patient, we see a significant improvement in signal to noise andmapping accuracy independent
of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that
modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly
improves functional localization in pre-operative patients. Because this method requires no additional scan
time or modification to conventional pre-operative data acquisition protocols it could have widespread utility.

© 2015 Published by Elsevier Inc.
Introduction

The most common clinical application of functional magnetic reso-
nance imaging (fMRI) is pre-operative brain mapping to help guide
neurosurgical intervention (Dimou et al., 2013; Matthews et al., 2006;
Vlieger et al., 2004). The traditional pre-operative mapping approach
uses intermittent periods of task to activate and identify brain areas to
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be avoided during surgery, such as finger tapping to identify primary
motor cortex. First used for pre-operative mapping over 20 years ago
(Desmond et al., 1995; Jack et al., 1994), this task-based strategy
continues to dominate clinical practice. FMRI maps obtained using this
approach correlate with intra-operative electrophysiology (Vlieger
et al., 2004), electrical stimulation mapping (Mehta and Klein, 2010;
Qian et al., 2013), Wada testing (Adcock et al., 2003; Binder et al.,
1996; Desmond et al., 1995), and loss-of-function post-operatively
(Haberg et al., 2004; Richardson et al., 2004). However, pre-operative
mapping patients frequently lack the ability to perform tasks well due
to age or disability (Pujol et al., 1998), maps are frequently confounded
by artifact (Lee et al., 1999), accuracy and clinical utility can vary widely
across patients and studies (Dimou et al., 2013; Giussani et al., 2010),
and task-based mapping utilizes only a small percentage of total fMRI
variance (Fox et al., 2006, 2007).
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A complimentary mapping approach that circumvents some of
these limitations assesses correlations in spontaneous brain activity
that occurs during rest. Termed resting state functional connectivity
(rs-fcMRI), this technique has proven valuable for mapping functional
networks including the motor system (Biswal et al., 1995; Fox and
Raichle, 2007). Spontaneous activity mapping can be performed when
subjects are asleep (Fukunaga et al., 2006; Horovitz et al., 2006) and
sedated (Greicius et al., 2008; Kiviniemi et al., 2003; Peltier et al.,
2005; Vincent et al., 2007), expanding applicable patient populations.
Several articles have recently shown proof of concept for rs-fcMRI as a
pre-operative mapping tool in patients with neurosurgical conditions
(Kokkonen et al., 2009; Liu et al., 2009; McCormick et al., 2013;
Mitchell et al., 2013; Shimony et al., 2009; Zhang et al., 2009). These ar-
ticles report good correlation between rs-fcMRI results, task-based
mapping, and intra-operative cortical stimulation. However, rs-fcMRI
is confounded by different but equally problematic artifacts (Buckner
et al., 2013; Fox and Raichle, 2007), and most patients can perform
tasks at least partially leading to a reticence to abandon task-based
pre-operative mapping in favor of rs-fcMRI.

In theory, one could perform both spontaneous and task-based
mapping in the same patients to potentially improve pre-operative
functional localization. However, it remains unknown if the two
approaches provide independent or redundant information andwhether
the combination would provide any advantage. Even if beneficial, the
combination may not be practical. Performing both types of scans
would require a doubling of MRI scan time, an unattractive option
from the perspective of cost, patient convenience, and data quality as
movement artifact becomesworse the longer patients are in the scanner.

Here we propose a novel processing approach for pre-operative
fMRI data based on the concept that the fMRI signal acquired during a
task is a superposition of underlying coherent spontaneous activity
and task-based modulation (Arfanakis et al., 2000; Fox et al., 2006,
2007; Krienen et al., 2014). Using standard pre-operative mapping
fMRI data, we hypothesize that one can separate these two signals,
obtain two different spatial maps based on these signals, then combine
themaps to get amore robust pre-operativemapping result (see Fig. 1).
In the current article, we develop this approach and test its performance
against direct electrical cortical stimulation (ECS).

Materials and methods

Two independent datasets were included in the present article.
The first dataset (eight patients) was used for initial development and
testing of our processing algorithm. The second dataset (six patients)
was used to prospectively confirm utility in an independent cohort
Task 

Sponta

Fig. 1. Methodological approach for combo mapping. Raw BOLD signal obtained from the lef
task-related variance (middle panel, top) and residual spontaneous variance (middle panel, b
(middle panel, top) while the residual spontaneous variance is used to generate a functional
map are combined in a weighted fashion to generate a combo map (right panel).
from a different center. Both datasets consisted of patients with intrac-
table epilepsy undergoing pre-surgical workup including a preoperative
fMRI scan, surgical implantation of subdural electrode grids, and direct
electrical cortical stimulation (ECS) mapping using these grids. In both
datasets, electrode grids were placed independent of the functional
MRI data and based solely on clinical need.

Dataset 1

Participants
Eight patients (age 19.5 ± 5.0; 3 male) were included. This was

a subset of patients from a published study of cortical mapping
using gamma-band oscillations recorded from subdural electrode
grids (Qian et al., 2013). Detailed demographic information appears in
Table S1. No seizures were observed one hour before or after the fMRI
or ECS in all patients. Written consent was obtained from each patient
or their parents and the experiment was approved by the Ethics
Committees of the Second Affiliated Hospital of Tsinghua University.

MRI data acquisition
MRI data was collected on a Philips Achieva 3.0 Tesla TX whole

bodyMR scanner using an 8-channel SENSE head coil. Structural images
were acquired using a sagittal magnetization-prepared rapid
gradient echo T1-weighted sequence (TR = 8.1 ms, TE = 3.7 ms,
TI = 1000 ms, flip angle = 8, FOV = 230 mm × 230 mm, matrix
size= 230 × 230, slices = 180, voxel size= 1 × 1 × 1mm). Functional
data was collected using an echo planar imaging sequence (TR =
3000 ms, TE = 30 ms, flip angle = 90, FOV = 192 mm × 192 mm,
matrix size = 64 × 64, slices = 47, voxel size = 3 × 3 × 3 mm).

Two types of functional runs were collected, task activation runs
(all eight subjects) and resting state or spontaneous activity runs (six
of eight subjects). Task activation runs included self-paced movements
of the left hand, right hand, left foot, right foot, or tongue. Each subject
completed five task runs, one run for each type of movement. Each
task run was 144 s long and consisted of six 12-second task blocks
interleaved with six 12-second rest intervals. Patients performed
motor tasks according to the instructions presented on the computer
screen using the Psychophysics Toolbox in MATLAB (The MathWorks,
Inc.). A mirror mounted on the head coil enabled subjects to see the
screen in the scanner.

Six subjects also underwent two resting-state runs (360 s each run),
duringwhich theywere asked tofixate on a crosshair in the center of the
screen. These pure resting state runs were collected for comparison pur-
poses with the maps created based on spontaneous activity extracted
from the task runs.
Activation Map

neous Activity Map

Combination Map

t motor cortex during tongue movement is extracted (left panel) and decomposed into
ottom). The task-related variance is used to generate a conventional task activation map
connectivity map (middle panel, bottom). The task-based map and spontaneous activity
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Electrical cortical stimulation data acquisition
All implanted grids had an electrode spacing of 10 mm. After an ad-

equate number of seizures had been recorded, direct electrical cortical
stimulation mapping was performed at the bedside to identify motor
and somatosensory cortices (Qian et al., 2013). Using an Ojemann
Cortical Stimulator (Integra Life-Sciences), trains of 60-Hz biphasic
pulses lasting for 2–5 s were delivered to selected pairs of electrodes.
The current intensity of the stimulation started at 2 mA andwas gradu-
ally increased until patients showed or reported symptoms related
to the sensory motor cortex or the stimulus strength reached 15 mA.
As each stimulation involved a pair of electrodes, both electrodes were
considered positive when a hand or tongue movement or sensation
was produced. If any movement or sensory response was observed at
any stimulus strength the electrode was considered “positive” while
the lack of any response designated an electrode as “negative”. ECS
mapping was not performed for the foot area.

Registering intracranial electrodes to cortical surface and ROI definition
A post-implantation CT scan was obtained within 24–48 h after

the implant surgery for localizing the electrodes. The post-implantation
CT images were registered to the T1-weighted MRI images with a
mutual-information-based linear transform algorithm (Qian et al.,
2013). Cortical surfaces were reconstructed from high-resolution
T1-weighted images using the Freesurfer 4.5.0 pipeline (Fischl et al.,
2002). To facilitate the extraction of electrode coordinates, the 3D pial
surface was overlaid with semitransparent CT images using our in-
house visualization toolbox. The effects of surgical intervention may
cause the exposed brain to move away from the skull and some of the
electrodes extracted from post-implantation CT images may appear off
the surface reconstructed from pre-surgical MR images. In order to
correct this non-linear distortion of the brain surface, these electrodes'
locations were manually adjusted according to the grid shape and
other electrodes on the 3D pial surface. This manual adjustment was
done prior to the functionalMRI data processing andwith no knowledge
of subsequent functional information.

Dataset 2

Participants
Six patients (age 34 ± 11.0; 1 male) were included in this cohort.

This is the first report analyzing preoperative mapping data from this
cohort and detailed demographic information is available in supple-
mentary material (Table S1). Participants were recruited through the
North Shore-LIJ Comprehensive Epilepsy Center and gave informed
consent to contribute these data for research purposes in accordance
with a research protocol approved by the local Institutional Review
Board. All patients with pharmacologically intractable epilepsy under-
going intracranial electrode implantation as part of their evaluation for
epilepsy surgery were candidates for participation in this study.

MRI data acquisition
Prior to electrode implantation, MRI data were acquired on a GE

Signa HDx 3 T whole-body scanner with an eight-channel head coil.
All subjects had a T1-weighted anatomical MRI using a 3D spoiled
gradient recalled sequence, although the exact parameters varied. For
the first three patients (Sub1–3) the anatomical scan was acquired
using axial sections (TR = 7.8 ms, TE = 3.0 ms, TI = 650 ms, flip
angle = 8, FOV = 256 mm, matrix = 256 × 256, slices = 180,
voxel size = 1 × 1 × 1 mm) while for the remaining three patients
the anatomical scan was acquired using sagittal sections (TR =
6.5 ms, TE = 2.8 ms, TI = 600 ms, flip angle = 8, FOV = 240 mm,
matrix = 256 × 256, slices = 170, voxel size = 1.2 × 0.9 × 0.9 mm).

Finger tapping functional imaging data were acquired using a gradi-
ent echo, echoplanar (EPI) sequence (2000 ms TR, 28 ms TE, 220 mm
FOV, 70 degree flip angle, 64 × 64matrix size, 4mm thickness, 34 trans-
verse slices, 120 volumes, voxel resolution = 3.4 × 3.4 × 4 mm).
Patients were asked to tap their fingers against their thumbs with one
or both hands for a 30 second block of time followed by 30 s of rest.
This procedure was repeated four times for a total task time of four
minutes. Patients were instructed to tap or rest via instructions
presented using text projected onto a mirror mounted on the head
coil. These instructions were presented using E-Prime (Psychology
Tools, Pittsburgh, PA) on an IFIS-SA system (In-vivo, Orlando, FL).
An experimenter observed patient behavior to ensure that they
accurately followed instructions.

Electrical stimulation mapping
All electrode grids had 10mmspacingbetween electrodes except for

one subject (Sub 2) inwhich some strips/grids with 4mmspacingwere
also used. Electrical stimulation mapping was performed with a Grass
S-12 Isolated Biphasic Stimulator. Bipolar stimulation was delivered to
adjacent electrode pairs according to clinical protocol (50 Hz, 200 ms
pulse width, 2–10 s trains). Current amplitudewasmanually controlled
and ranged from 4 to 8 mA, limited by after-discharge threshold,
to find the minimal current necessary to elicit a functional response.
Motor areas were identified when stimulation resulted in clonus.
Stimulation sites yielding motor or sensory responses of the hand and
or tongue were identified and those without such responses were
defined as “clear.”

Electrode localization
To localize electrodes relative to the pre-implantMRIs, all participants

received 1 mm axial CT (Siemens Somatom Definition) and 1.5 T T1 MRI
(GE Signa Excite Scanner) scans within 24–48 h following electrode
implantation. Electrode locations were manually identified on the CT
scan using BioImage Suite (Version 3, http://www.bioimagesuite.org)
(Papademetris et al., 2006). These locations were then mapped to the
pre-implantMRI via a six degree of freedomaffine (i.e., rigid) transforma-
tion derived from co-registering the pre-implant MRI and post-implant
CT scans to the post-implant MRI scan. All co-registration was done
using FSL's FLIRT (Jenkinson and Smith, 2001). The reconstructed pial
surface was computed from the pre-implant MRI using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) and the electrode coordinates
projected to the pial surface to correct for possible brain shift caused by
electrode implantation and surgery (Dykstra et al., 2012). This pial surface
projection method has been shown to produce results that closely corre-
spond with intraoperative photographs with a median disagreement of
~3 mm (Dykstra et al., 2012).

Data analysis (both datasets)

MRI data analysis
MRI data from both datasets were processed in surface-space using

previously described procedures (Wang et al., 2013; Yeo et al., 2011b).
Surface mesh representations of the cortex from each individual
subject's structural images were reconstructed and registered to a com-
mon spherical coordinate system (Fischl et al., 1999). The structural and
functional images were aligned using boundary-based registration
(Greve and Fischl, 2009). The BOLD fMRI data were then aligned to
the common spherical coordinate system via sampling from themiddle
of the cortical ribbon in a single interpolation step. See Yeo et al. (2011b)
for details.

To facilitate comparison between ECS mapping results and fMRI
data, MRI surface vertices within a 6mm radius of electrodes associated
with hand or tongue responses were defined as positive while all other
vertices were defined as negative. The 6 mm radius was chosen based
on the electrode spacing (10 mm), however results did not differ if
one used a 4 mm or 8 mm radius instead (Fig. S2). The resulting mask
was smoothed with a 6 mm full-width-half-maximum kernel across
vertices. This ECS surface map was used to generate hand or tongue
regions of interest for the analysis of fMRI signal to noise ratios.

http://www.bioimagesuite.org
http://surfer.nmr.mgh.harvard.edu/
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Task activation mapping. Conventional task-evoked activation maps
for hand and tongue movements were estimated using the general
linear model as implemented in SPM2 (Wellcome Department
of Cognitive Neurology, London, UK). Regressors of no interest
included motion correction parameters and low frequency drift.
Task induced BOLD response was modeled by convolving the
hemodynamic response function with the experimental design.
The significance of the task activation at each vertex was calculated in
SPM2 using a t-test. Resulting p values were converted into − log
(p) values for visualization and further processing, for example 10−6

became 6.
Spontaneous activity mapping. Maps based on spontaneous activity
were constructed from two sources, residual spontaneous activity
underlying task-evoked activity from the task runs (datasets 1
and 2) and pure resting state runs that consisted entirely of sponta-
neous activity (dataset 1 only). Data were band-passed filtered
(0.01–0.08 Hz) and several sources of spurious or regionally nonspe-
cific variance were regressed out. Nuisance regressors included six-
parameter rigid body head motion obtained from motion correction,
the signal averaged over the whole brain (the global signal), the sig-
nal averaged over the lateral ventricles, and the signal averaged over
a region centered in the deep cerebral white matter (Fox et al., 2005;
Van Dijk et al., 2010; Yeo et al., 2011b). Because inclusion of the glob-
al signal in nuisance regression can be controversial, we repeated our
analysis without this processing step (Fig. S2). For processing of the
task-based data, an extra nuisance regressor was included consisting
of the modeled task-related response. This additional regressor
removes much of the task-related variance from the task runs, leav-
ing behind spontaneous activity. This procedure has been used pre-
viously for estimation of functional connectivity from task data
(Fair et al., 2007; He et al., 2007), and includes spontaneous
activity throughout the task run, not just from the rest blocks. The
data from all five types of movement tasks were concatenated for
spontaneous activity analysis.

Functional maps based on spontaneous activity were generated
using a parcellation approach that segments the cortex into distinct
functional areas based on the correlation of each brain vertex
with multiple pre-set regions of interest. A similar approach has
been used previously to segment the thalamus into distinct nuclei
(Zhang et al., 2008, 2010). Our pre-set regions of interest consisted
17 regions per hemisphere, or 34 regions total, divided into 8 func-
tional networks (Fig. S1). These regions and networks were taken
from a previous cortical parcellation study, with the somatomotor
network subdivided into separate hand and tongue regions based
on the higher order parcellation (Yeo et al., 2011a). For each brain
vertex in the diseased hemisphere, correlations to the 17 regions
in the opposite healthy hemisphere were calculated. Only cross-
hemisphere correlations to the healthy hemisphere were used to
render the technique robust to local perturbations in anatomy.
These 17 regional correlation values were reduced to 8 network
correlation values by averaging the results from multiple regions
within a network (see Fig. S1). Each vertex was identified as part
of the network to which it showed the strongest positive correlation
(winner-take-all). The intensity of each vertex within a network
is the ratio of the vertex's correlation with that network over
the vertex's correlation to the next highest network. As such, voxels
with the highest values are those that clearly belong to one network
and not other networks. This cortical parcellation approach thus
allows hand and tongue maps to be identified for each subject
based on spontaneous activity. A parcellation approach was used
in favor of the simpler seed-based mapping as preliminary analyses
suggested that parcellation was less susceptible to artifact and
provided more distinct and reproducible cortical boundaries in
individual subjects.
Combo mapping. The task-evoked activation map and spontaneous ac-
tivity map produced above were combined into a single functional
map using a weighted average. The weighting was allowed to vary
across subjects since the robustness of the task activation map is likely
to vary based on howwell a subject performed the task. The robustness
of the task activation map for each subject was quantified by averaging
the− log(p) values of the most activated vertices, defined as the verti-
ces where the − log(p) value is more than two standard deviations
away from the mean. If the mean − log(p) value of these top vertices
was larger than 6, the map was considered robust and the task-
evoked and spontaneous activity maps were weighted equally. If the
average − log(p) value of the top vertices was above this threshold,
the spontaneous activity map was weighted more heavily than the
task activation map according to the following equation.

Combo Map ¼ 1−
x

2� th

� �
� Spontaneous Activity Mapþ x

2� th
� Task Activation Map

where x is the mean −log(p) values of the top vertices and th is the
threshold. In our data, we used a threshold of −log(p) = 6. Note that
in the limiting case where subjects are unable to perform the task, the
combo map would become identical to the spontaneous activity map.

Because the task activation map and spontaneous activity map are
based on different scales, both were normalized to a maximum value
of 1 by dividing all vertices by the value of the peak vertex prior to
combining the maps.

Signal to noise calculation for fMRI data
To compare signal to noise ratios between processing approaches,

we extracted fMRI time courses from ECS-defined hand and tongue
ROIs after the fMRI data had been corrected for linear drift and
movement. Signal was defined as the amount of fMRI variance utilized
in computing a given map while noise was any residual variance not
utilized in map creation (Fox et al., 2006, 2007). Variance utilized in
task activation mapping was computed based on the hemodynamically
convolved task model. Variance utilized in spontaneous activity
mapping was computed as variance of spontaneous activity multiplied
by the square of the correlation coefficient between the regional
timecourse and the somatomotor ROI in the opposite hemisphere.
Differences in signal to noise ratio between mapping strategies were
compared using a Wilcoxon paired non-parametric test.

Comparing the task fMRI and combo fMRI mapping with ECS findings
Results of different mapping modalities were projected to each

individual's brain surface for the comparison with the ECS findings.
Taking the ECS findings as the reference, sensitivity and specificity of
the activation map and combo map were quantified. Results for tongue
and hand in dataset 1 were combined within a subject. Sensitivity was
computed by dividing the number of true positives (fMRI positive
vertices that were also positive by ECS) by the number of true positives
plus false negatives (i.e. total vertices positive by ECS). The specificity
was computed by the number of true negatives (fMRI negative vertices
thatwere also negative by ECS) divided by the number of true negatives
plus false positives (i.e. total vertices negative by ECS). Receiver
operating characteristic (ROC) curves were obtained by calculating
the sensitivity and specificity across a wide range of different thresholds.
These ROC curves were constructed for each subject individually. The
area under the curve was computed for each subject and compared
across methods using aWilcoxon paired non-parametric test. Numerical
values in the text and tables reflect these single-subject measurements,
or the average across these single subject measurements, and are the
values upon which all statistical comparisons were made. However, for
display purposes group-level ROC curves were also constructed for
each method, combining data across all subjects within a dataset.
These group-level ROC curves provide a useful graphical illustration of



718 M.D. Fox et al. / NeuroImage 124 (2016) 714–723
the benefit of one method relative to another, but cannot be used for
statistical comparisons.

Alternative approaches
In addition to the combomapping approach detailed above, we also

tested several alternative approaches to combination mapping and
compared their performance to that of our primary analysis. These
alternative approaches were all tested using dataset 1.

1) Anatomical weighting: Rather than combine task activation maps
with spontaneous activity maps, the task activation map could
be combined with anatomical information to improve accuracy.
This approach is similar to the mental process many clinicians use
when viewing conventional pre-operative fMRI maps; greater
emphasis is placed on activations close to the expected anatomical
location than those distant from it. Two anatomical weighting ap-
proaches were used. In the first approach, the automatic anatomical
parcellation generated by Freesurfer surface registration was used as
subject-specificmasks of the pre- andpost-central gyri. In the second
approach, the putative hand and tongue seed regions obtained by the
functional connectivity analysis as described in Yeo et al. (2011b)
ECS Activation Combo

Tongue
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1.3   -log(p)   7 

Fig. 2. Tongue and handmotor areas localized by electrical cortical stimulation (ECS), traditiona
eight patients from dataset 1. The three columns on the left illustrate the tongue regions whil
indicate negative electrodes (no symptoms related to sensory or motor cortex when stimulate
maps (−log(p) = 1.3) and the combo maps (i = 0.35) were selected to correspond to the sam
fMRI results, the combo maps are more consistent with the ECS findings.
(see Fig. S1) were employed as anatomical masks. In each case, hy-
brid maps were produced by masking the task activation maps
with anatomical maps. As the accuracy of this approach can depend
on the accuracy of the anatomical parcellation, this analysis was re-
peated after excluding subjects with any anatomical distortion (see
Fig. S3).

2) True resting state data: In six of eight subjects data pure resting
state data was collected for comparison with spontaneous activi-
ty extracted from the task runs. As in the main analysis described
above, the same weighting algorithm was used, but with sponta-
neous activity parcellation maps generated based on true resting
state data from each subject. This analysis provides information
regarding whether there is benefit to acquiring separate resting
state and task activation scans to generate the two maps or
whether both maps can be generated using the same task-based
dataset as proposed here.

For all of these alternative combo mapping strategies, ROC curves
were generated and the area under the curve was compared with that
of our primary combo mapping analysis.
Hand

ECS Activation Combo

10.351.3   -log(p)   7 

l task activation fMRI (Activation), and our novel combomapping algorithm (Combo) in all
e the three columns on the right are for the hand regions. The blue dots in the ECS maps
d) and the yellow dots indicate positive electrodes. Display thresholds for task activation
e sensitivity (60%) with respect to the cortical stimulation results. Compared to the task
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Results

All initial analyses were performed using dataset 1, then key results
were confirmed in dataset 2. In themotor regions of interest defined by
ECS, task-related activity accounted for 32.5% of the total variance in the
BOLD signal. In traditional task activationmapping, the rest of the BOLD
variance including coherent spontaneous activity is discarded as noise.
In the combo mapping approach, underlying coherent spontaneous
activity that persists throughout the task run is used as an additional
signal for functional mapping along with the task-related activity.
On average, combo mapping results in a 43.2% increase in signal to
noise ratio (p b 0.001) compared to the conventional task activation
approach (Table S2).

Next, we determined whether this improvement in signal to noise
ratio translated into more accurate pre-operative maps, using electrical
cortical stimulation as our standard (Fig. 2). Conventional task activa-
tion maps often implicated regions outside the sensorimotor strip
including portions of the temporal and occipital lobes. Combining the
task-activation map with the map based on underlying spontaneous
activity appeared to improve specificity and correspondence to results
obtained with cortical stimulation across all eight subjects.

To compare the performance of combo mapping with traditional
task activation mapping independent of threshold, we constructed
ROC curves for each individual subject as well as a single ROC curve
for the entire group (Fig. 3). ROC curves indicate the sensitivity and
specificity of a technique across different thresholds. For example, if
one were to threshold maps for a specificity of 80% combo mapping
would improve sensitivity from 62% to 82% compared to task activation
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Fig. 3. Combomapping improves signal to noise and better matches electrical stimulation
results compared to traditional task activation mapping. Group-level receiver operating
characteristic (ROC) curves show improved sensitivity and specificity of the new combo
mapping approach (red curve) compared to traditional task activationmapping approach
(black curve) independent of threshold (A). Averaging across single-subject results shows
a significant improvement in signal to noise ratio (SNR) and area under the ROC curve
(AUC) for combomapping compared to traditional task activation mapping (B). * p b 0.01.
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Fig. 4. Comparison of combination mapping to alternative mapping approaches using
receiver operating characteristic (ROC) curves. The current combo mapping algorithm
(red) outperformed traditional task activation mapping alone (black), spontaneous
activity mapping alone (purple), a combination of task activation and anatomical
parcellation using FreeSurfer (blue), and a combination of task activation and a priori
anatomical regions of interest in the hand and tongue areas (green) (A). Combo mapping
based on underlying spontaneous activity recorded during task (red) was similar
to combo mapping based on “pure” spontaneous activity acquired in a dedicated
resting-state scan (green) and both were superior to traditional task activation mapping
(black) (B). Adding anatomical parcellation to the current combo mapping approach
(black) provided little benefit beyond standard combomapping combining task activation
and underlying spontaneous activity (red) (C).
mapping. If one were to threshold for a sensitivity of 70%, combo
mapping would increase specificity from 71% to 95% compared to task
activation mapping. A larger area under the curve (AUC) indicates a
more sensitive and specific technique across all thresholds. Combo
mapping showed a significant improvement over conventional task
activation mapping (AUC of 0.882 vs 0.767, p b 0.01) (Fig. 3, see also
Table S3). Note that this improvement came from the combination of
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the two mapping approaches, not just the accuracy of the spontaneous
activity map alone, as the combo map performed significantly better
than spontaneous activity by itself (AUC of 0.882 vs 0.757, p b 0.01;
Fig. 4).

Although combo mapping showed significant improvement across
all subjects, some subjects showed more improvement than others
(Table S2, S3). Subjects that showed the greatest improvement in signal
to noise also showed the largest improvement in AUC (r = 0.92,
p b 0.005) providing a nice internal validation of the two metrics.
Much of this inter-subject variability can be attributed to differences
in the quality of the initial task activation map. Subjects that showed
the greatest improvement with combo mapping were the ones that
showed the weakest task activation, measured by either signal to
noise (r = −0.76, p b 0.05) or AUC (r = −0.82, p b 0.005).

An important question is whether the spontaneous activity
mapping is contributing anything to the combo map beyond simple
anatomical weighting. We recomputed combo maps based on anatom-
ical weighting (see Methods). The anatomy-weighted combo map
showed some improvement in AUC (0.812 for Freesurfer anatomical
parcellation and 0.823 for pre-determined seeds) beyond the conven-
tional task activation approach (p b 0.01 for both approaches), but
was significantly worse than our main combo mapping approach
using underlying spontaneous activity (p b 0.01 for both approaches)
(Fig. 4, see also Table S3). To ensure that this was not due to poor
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Fig. 5. Replication of combomapping benefit in an independent dataset consisting of 6 patients
shown for each patient in dataset 2 (A). The blue dots in the ECS maps indicate negative electr
yellow dots indicate positive electrodes. Group-level receiver operating characteristic (ROC) cu
and compared between the combo mapping approach and traditional task activation mapping
anatomical parcellation, we examined anatomical results for each
subject (Fig. S3) and excluded subjects with anatomical distortion.
Combo mapping continued to outperform anatomical weighting (AUC
0.879 vs 0.822, p b 0.05). Finally, we asked whether adding anatomical
weighting to our combo mapping approach would further improve
the technique, and the change was insignificant (AUC 0.882 vs
0.878, p N 0.3).

Another important question is whether combo mapping would be
even better if one used a dedicated resting state fMRI scan to compute
the spontaneous activity map rather than the spontaneous activity
underlying the task-based signal. Although the ROC curve was slightly
better using a dedicated resting state scan, the difference was small
and not significant (AUC 0.882 vs 0.905, p N 0.15) (Fig. 4, see also
Table S3). We also investigated whether global signal regression made
a difference in the accuracy of our approach, and although there
was no significant difference our approach performed slightly better
with global signal regression than without (Fig. S2, AUC 0.882 vs
0.851, p N 0.2).

Finally, we tested whether our results would replicate across other
centers, MRI machines, and patient cohorts. We prospectively validated
our processing algorithm using an independent cohort of 6 patients,
again using ECS mapping to assess the accuracy of the fMRI results.
Results were similar and in fact showed even greater improvement
than observed in our initial cohort. Compared to the conventional
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. * p b 0.01.
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processing approach, our combomapping algorithm improved signal to
noise ratio by a factor of eight and significantly improved the sensitivity
and specificity of fMRI mapping (AUC 0.856 vs 0.643, p b 0.01) (Fig. 5,
Table S4, Table S5).

Discussion

Herewe present a novel approach for processing pre-operative fMRI
data that greatly improves signal to noise, sensitivity, and specificity,
compared to the conventional processing approach. These results
provide insight into the relationship between spontaneous and task-
evoked activity and have potential implications for improving clinical
practice.

Our technique is based on the premise that the fMRI signal recorded
during a task paradigm is composed of task-based modulation and
underlying coherent spontaneous activity, and that both provide
information useful for functional mapping. Prior work has shown that
coherent spontaneous activity doesn't disappear during task paradigms,
but continues (Arfanakis et al., 2000; Fox et al., 2006, 2007). To a rough
approximation, there is a linear superposition between task-evoked and
spontaneous activity (Arieli et al., 1996; Fox et al., 2006), although some
interaction between these two types of activity does occur (Fox et al.,
2007; He, 2013; Nir et al., 2006). Only the task-evoked component has
routinely been used for functional mapping, however one can generate
maps based on the spontaneous activity underlying the task-evoked
activity (Fair et al., 2007), and it has been hypothesized that this
might be useful for pre-operative mapping (Zhang et al., 2009).
Nevertheless it was unknown whether maps generated using underly-
ing spontaneous activity contained any useful information for function-
al localization beyond the information already available from task-
evokedmaps. It was also unknownwhether this additional information
would be better or worse than information obtained from anatomy
or “pure” spontaneous activity recorded during independent resting
state scans. To our knowledge, this is the first study to examine these
questions, in part because answering them requires patient cohorts
that have both pre-operative fMRI and electrophysiological mapping
data allowing for validation and quantitative comparison between
different fMRI results.

In the pre-operative fMRI literature, imaging results are frequently
related to intra-operative direct electrical cortical stimulation (ECS)
as a gold standard. However the correspondence between the two
techniques is often reported qualitatively and findingmetrics to address
this quantitatively has been challenging (Vlieger et al., 2004). One
approach is to measure the distance between the center of fMRI and
ECS localizations (Kapsalakis et al., 2012), however the extent is likely
as important as the center when the goal is to avoid post-operative
deficits. Other studies have reported the number of ECS points that fall
within the activated area of fMRI, however this is critically dependent
on the threshold used to differentiate “activated” from “non-activated”
voxels and the spatial locations of ECS-negative points are often not
recorded (Vlieger et al., 2004). In the current study, we utilized some-
what unique datasets where the spatial location of both positive and
negative ECS electrodes was well characterized. Further, we used ROC
analysis to assess sensitivity and specificity independent of threshold
(Park et al., 2004). The use of ROC curves in evaluating the sensitivity
and specificity of preoperative fMRI mapping allows us to characterize
that utility of different mapping approaches with high accuracy
(FitzGerald et al., 1997; Kunii et al., 2011; Mitchell et al., 2013).

An important feature of our fMRI processing algorithm is that it
requires no additional tasks or scan time to improve functional localiza-
tion. Other approaches such as adding additional tasks (Ramsey et al.,
2001) or performing separate task and rest scans (Kokkonen et al.,
2009; Liu et al., 2009; Shimony et al., 2009; Zhang et al., 2009) may
be limited by these practical considerations. Interestingly, we found
little benefit to performing separate task and rest runs compared to
extracting underlying spontaneous activity from the task data. The
amount of pure rest data (2 runs × 360 s = 720) was identical
to the amount of data from the task runs (5 runs × 144 s = 720).
This is important as it suggests that our combo mapping approach
performs well when only task data is available. However, this analysis
was based on only six subjects, and if time and resources permit there
may be some advantage to dedicated rest runs (Fair et al., 2007).
This question should be re-addressed in larger cohorts with greater
statistical power.

An interesting aspect of our study is the comparisonwith anatomical
weighting. Although the focus of this study was on combining task
activation with underlying spontaneous activity, the combination of
task activation and anatomical weighting also improved results beyond
task activation alone. This improvement was not as robust as using
spontaneous activity, however future improvements in anatomical reg-
istration and parcellation such as myelin mapping may prove valuable
(Glasser and Van Essen, 2011; Robinson et al., 2014).

A major strength of our study is the use of two independent
datasets from different centers, different MRI scanners, and different
pre-operative mapping paradigms. Some fMRI processing parameters
were adjusted for optimal performance on dataset 1, however these pa-
rameters were all held constant when the algorithm was prospectively
validated on dataset 2. The consistency of our results across datasets
and the fact that our approach improved individualized fMRI mapping
accuracy in each of the fourteen patients examined suggest that our
processing approach will be broadly applicable. However, there are
still limitations. First, both datasets consisted exclusively of patients
with intractable epilepsy. This patient population was selected because
their implanted electrode grids allow for comprehensive electrophysio-
logical mapping necessary for ROC analysis and quantification of fMRI
results. Our technique remains to be tested in other patient populations
such as those undergoing pre-operative fMRI for tumor resection or
those in which fMRI scanning is difficult such as children or patients
with cognitive impairment. That said, there is reason to believe that
our algorithmwill perform well in other patient groups. First, the algo-
rithm is designed to adjust to varying levels of ability to perform the
task, defaulting to complete spontaneous activity mapping in a patient
with no task activation. This is an advantage for impaired patient popu-
lations or children in whom predicting task compliance a priori may be
difficult. Second, our spontaneous activity mapping is only dependent
on correlations assessed with remote regions of interest, in this case
in the opposite hemisphere. This should make the algorithm robust to
local disturbances in anatomy like brain tumors, and in fact the algo-
rithm performed well in one of our patients in who epilepsy was due
to a large frontal brain tumor (subject 3, dataset 2).

Another limitation of the current study is that it was restricted to
mapping of eloquent motor cortex and not tested for other functions
such as language or memory. This choice was intentional as localization
of eloquent motor cortex with ECS is reasonably straightforward,
providing a solid electrophysiological standard against which we
could validate our fMRI technique. Mapping functions such as language
or memory with ECS is much more complicated, with no clear consen-
sus on what constitutes functional disruption versus sparing (Giussani
et al., 2010; Hamberger, 2007). Now that our technique is validated
with motor mapping, there is good motivation to begin testing it for
language and memory. Pre-operative fMRI mapping of these functions
tends to be less robust than motor mapping and thus there is greater
need for improvement (Hirsch et al., 2000; Kapsalakis et al., 2012;
Mehta and Klein, 2010). Further, there is good reason to think that
our algorithm will prove useful in these other domains. Similar to
the somatomotor system, language and memory systems have been
mapped using spontaneous activity recorded with fMRI (McCormick
et al., 2013; Tie et al., 2014; Vincent et al., 2006). There is no reason
to think that incorporation of spontaneous activity into preoperative
mapping will be any less useful for these other systems. Also, our
combo mapping algorithm showed the greatest benefit in patients
with the poorest task activation. This suggests that language or
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memory mapping, which generally produce weaker activation maps,
could benefit even more from combo mapping than localization of
somatomotor cortex.

There are a few additional limitations in this study that deserve
mention. First, our ROC analysis in each patient was restricted to the
area of the brain covered by the electrode grid. This means that mouth
or tongue areas were not fully covered in all patients (e.g. subject 4
and 8, Fig. 2). Second, ECS was used as an electrophysiological “gold”
standard upon which to validate and compare our fMRI results, howev-
er ECS itself is not a perfect technique. For example, in one patient
ECS mapping failed to identify a likely tongue area identified on fMRI
(subject 5, Fig. 2). Future work using post-operative deficits as an out-
come measure will be important. Third, our combo mapping algorithm
relied on an empirically derived p-value to determine the “robustness”
of an activation map and the weighting to be used when combining it
with the spontaneous activity map. We chose a p value of 10−6 based
on dataset 1, and this cutoff performed well in dataset 2. However this
value may vary when attempting to map different functions. Future
work could parametrically vary this value and the weighting algorithm
to establish the best way to combine maps.

Finally, there are limitations to pre-operative fMRI in general
that are not addressed by the current algorithm. First, motion is a
problem for both task activation and spontaneous activity mapping
and improved algorithms for motion correction would be valuable.
Second, registration issues due to intraoperative brain shift can reduce
the utility of pre-operative maps in the OR, however intraoperative
MRImay help address this problem. Third, the fMRI signal is a hemody-
namic correlate of neuronal activity and can therefore bias results
towards draining veins or prove unreliable if neurovascular coupling is
altered by medications or pathology (Dimou et al., 2013; Vlieger et al.,
2004). Finally, fMRI identifies brain areas that correlate with function,
but cannot demonstrate whether a region is necessary for function.

Conclusion

By utilizing both the task-based andunderlying spontaneous activity
components of standard preoperative fMRI data from neurosurgical
patients we have developed a method to significantly improve the
signal to noise ratio, sensitivity, and specificity of preoperative fMRI
maps. Because the processing algorithm requires no modification to
standard MRI acquisition protocols it may find widespread utility.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.09.030.
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