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State-Machine and Deferred-Update
Replication: Analysis and Comparison

Paweł T. Wojciechowski, Tadeusz Kobus, and Maciej Kokociński

Abstract—In the paper, we analyze and experimentally compare two popular replication schemes relying on atomic broadcast: state
machine replication (SMR) and deferred update replication (DUR). We estimate the lower bounds on the time of executing requests by
the SMR and DUR systems running on multi-core servers. We also consider variants of systems that can process read-only requests
with a lower overhead. In the analysis of DUR, we consider conflict patterns. We then formally show the scalability of SMR and DUR,
which reflects the capacity of systems to effectively utilize an increasing number of processor cores. Next, we compare SMR and DUR
experimentally under different levels of contention, using several benchmarks. We show throughput, abort rate (in DUR), and network
congestion. The key results of our work are that neither system is superior in all cases, and that the theoretical and experimental
results are heavily influenced by the dominance of either the CPU execution time or atomic broadcast time. We therefore propose to
combine both replication schemes and gain the best of both worlds.

Index Terms—State machine replication, deferred update replication, distributed transactional memory.
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1 INTRODUCTION

WITH the emergence of cloud computing, where ser-
vices in the cloud can be accessed by a large num-

ber of clients in parallel, there was an explosion of inter-
est in various approaches to replication. Replication can
improve service availability and reliability by processing
client requests in parallel and tolerating machine failures.
A replicated service is deployed on several interconnected
servers, each of which may fail independently and can only
access its own local memory (or storage). The accesses are
coordinated using a replication scheme, so that the system
maintains a consistent state view despite failures of some
servers or communication links. However, each replication
scheme incurs the performance overhead due to the re-
quired synchronization.

In this paper we formally analyze and experimentally
compare under various conditions the performance of two
well-known replication schemes. They gave rise to numer-
ous systems that were developed for full replication of ser-
vices without resorting to any central coordinator. However,
the systems vary widely, making it hard to compare the
schemes.

State machine replication (SMR) [1], [2] is a classical ap-
proach for building fault-tolerant systems. It assumes that
a process (service) being replicated can be modelled as
a state machine which executes arbitrary but deterministic
computation. Replicated processes are coordinated, so that
exactly the same sequence of commands are executed by
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every process. In particular, each client request (which may
consist of a sequence of read/write operations) is executed
by every process. Since processes are deterministic, starting
from the same initial state, each of them will produce the
same state change. Therefore crash of some servers can be
tolerated.

Deferred update replication (DUR) [3] was introduced in
the context of replicated databases but the idea is more
general. A client request can be sent to any non-faulty
server (database replica) that executes the request as an
atomic transaction—a sequence of read/write operations on
the database. Once a finished transaction is successfully
certified, all replicas are updated with the values written
by the transaction. Transaction certification means checking
if a transaction conflicts with local or remote concurrent
transactions that have already committed. If any conflicts
were detected, the conflicting transaction is aborted and
reexecuted.

The two replication techniques are fundamentally dif-
ferent: SMR supports arbitrary (but deterministic) compu-
tation. DUR supports non-deterministic computation and
requires rollbacks. SMR typically implements linearizability
[4] while DUR typically implements serializability [5]. SMR
ensures that command execution always succeeds (provided
enough replicas exist). In DUR, an atomic transaction may
abort and never complete, even after successive reexecu-
tions.

We therefore propose a common framework of transac-
tional replication (TR) and performance models of SMR and
DUR that allow us to compare the two techniques according
to a few metrics, including performance and scalability.
Our study shows under what circumstances each technique
performs at its best (considering low and high network
capacity). We also present benchmark performance results
obtained with two prototype systems: JPaxos [6] for SMR,
and Paxos STM, which we developed to experiment with
DUR.
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We only regard the SMR and DUR systems that use a
total-order (atomic) broadcast protocol (or an abcast protocol,
in short). SMR requires the protocol to send a client request
to all replicas for replica coordination, while DUR requires
the protocol to send transaction read-sets and any state
updates to all replicas as part of agreement coordination. As
shown in [7], [8], agreement coordination relying on abcast
has several advantages: it prevents deadlocks and allows
better scalability than when using a two-phase commitment
protocol (see also [9], [10]). JPaxos and Paxos STM share
the same implementation of a fault-tolerant abcast protocol,
which uses the Paxos algorithm [11].

1.1 Motivations and contributions
The motivations to conduct our research were twofold.
Firstly, there was no prior work on the rigorous analysis and
comparison of SMR and DUR. Secondly, reasoning about the
advantages, limitations, and possible optimization paths of
the replication schemes is difficult without a performance
model that abstracts from any uninteresting details. Al-
though the modus operandi of SMR and DUR may appear
simple, concurrency and network capacity make the model
quite subtle.

The main contributions of our work are the following:
• We defined a performance model of SMR and DUR,

and also their typical optimized variants, where read-
only requests are processed in an unconstrained way,
in parallel with update requests;

• We estimated the lower time bound on the execution
of requests by servers with multi-core processors,
parameterized by workload type, network capacity
(modelled by capacity of abcast), and the number of
servers/CPU cores and conflicts (in DUR);

• We used the model to analytically compare the two
replication schemes with their optimized variants,
and showed when SMR can be faster than sequential
processing of requests. We also analyzed the worst
possible conflict patterns in DUR;

• We formally analyzed the scalability of the SMR and
DUR systems on multi-core processors by inferring
the speedup and efficiency of the parallel systems
with the estimated lower bounds;

• We experimentally compared the throughput and
scalability of JPaxos and Paxos STM using two mi-
crobenchmarks (Hashmap and Bank), and also com-
pared their execution with a non-replicated service
executing all requests sequentially and with predic-
tions made by our performance model.

This paper is a largely revised and extended version of
[12]. To our best knowledge, we are the first to formally
analyze parallelism and scalability of SMR and DUR and to
compare their performance under varying contention in a
uniform communication environment.

1.2 Paper structure
The paper has the following structure. First, we discuss
related work in §2. Then, we present the analytical model
in §3 and §4. We discuss our evaluation experiments and
compare SMR and DUR in §5. Then, we propose to combine
them in §6. Finally, we conclude in §7.

2 RELATED WORK

Replication is one of the most researched topics by the dis-
tributed systems community. Different models and replica-
tion techniques have emerged in the due course of years (see
[3] for a survey). In our model, we consider full replication
with strong consistency, i.e., each data is replicated on every
live server. Below we briefly describe some of the work most
closely related to ours.

The idea of state machine replication was introduced in
[1], [2], [13] and has evolved considerably since then. The
SMR systems typically use fault-tolerant distributed agree-
ment protocols (e.g., Paxos) that guarantee progress if each
protocol message is received by a quorum of processes (see
also the quorum-based replication in [14]).

Deferred update replication [3] employs a distributed
multi-master replication protocol, where multiple server
processes are peers that can execute transactions concur-
rently and propagate the transactions’ updates eagerly or
lazily to all replicas. The blocking protocol can use e.g.,
two-phase commit (2PC) [15]. In our model, however, we
consider DUR relying on atomic broadcast (see e.g., [7], [16],
[17] among others), which avoids blocking, thus increasing
parallelism and performance (see e.g., [7], [8], [17] and also
[9], [10]).

Various optimizations of the DUR scheme are possible.
E.g., in Postgres-R [18], read-sets of update transactions are
not broadcast but an extra communication phase is required
to broadcast the decision regarding committing or restarting
a transaction. In our model and implementation, we used
multiversioning [19]—a more general optimization technique
that enabled us to optimize read-only requests. Multiver-
sioning allows for multiple versions of transactional objects.
However, each transaction has access to only one version of
an object. Object versions are immutable, thus they can be
accessed concurrently without any synchronization.

There exist many other replication schemes that build
on the basic SMR and DUR schemes that we modelled but
differ among themselves in a number of ways, e.g., they
use speculative executions or explore other models of data
distribution and failure. Below we give example references
to the most recent work.

Romano, Palmieri, Quaglia, Carvalho, and Rodrigues
[20] (see also [21]) explored speculative replication protocols
for transactional systems. The key idea of their approach is
to run an optimistic atomic broadcast (OAB) algorithm that
is used to provide an early, possibly erroneous guess on
transactions’ serialization order and to determine the actual
order.

Marandi, Primi, and Pedone [22] optimized the SMR
scheme by using speculative execution to reduce the re-
sponse time and state partitioning to increase the through-
put of SMR. In the follow-up paper [23], the authors pro-
posed parallel state-machine replication (P-SMR), which op-
timizes SMR by exploiting service semantics to determine
when commands can execute concurrently and when serial
execution is needed.

In [24], Arun, Hirve, Palmieri, Peluso, and Ravindran
observed that in DUR even in case when remote transactions
rarely conflict with each other, the conflicts among local
transactions (on the same replica) can significantly decrease
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performance. They explored speculation to optimize this
scenario and prevent some local transactions from aborting
each other.

Sciascia, Pedone, and Junqueira [25] proposed scalable
deferred update (S-DUR) aimed at increasing scalability of
DUR through optimizing the execution of update transac-
tions. The key idea of their approach is to divide the state
into logical partitions, replicate each one among a group
of servers, and orchestrate the execution and termination
of transactions across partitions using a 2PC-like protocol.
Pacheco et al. [26] built on this idea to scale DUR on multi-
core processors. In [27], Sciascia and Pedone researched the
application of DUR to geo-replicated storage systems, and
also discussed two optimizations of DUR for geo-replication
which explore delaying and reordering of transactions.

In [28], the authors examined tradeoffs in distributed
database systems that use the primary copy approach for
data replication. Under the pessimistic two-phase locking
(2PL), replication degraded the system performance. Un-
der the time-stamp-based optimistic protocol and semi-
optimistic protocol (a combination of the optimistic one with
2PL), replication can improve response time. Moreover, with
replication, the last protocol usually yields the best perfor-
mance. We study different protocols and models but draw a
similar conclusion: combining two replication protocols can
bring benefits.

Jiménez-Peris, Patiño-Martı́nez, Kemme, and Alonso
[29] analyzed a scale-out factor for the read-one write-all
available (ROWAA) replication scheme, which indicates how
much of the nominal capacity of the system remains after
replication has been taken into consideration. The scale-
out depends on the number of replicas, the percentage of
update transactions, and the cost of a remote transaction
(work a site has to do on behalf of other sites, e.g. installing
the updates) to the cost of a local one. These results are
complementary to our analysis. In [30], they compared the
ROWAA and quorum-based data replication schemes, and
concluded that the former approach outperforms the latter
in most cases.

Several authors proposed analytical models targeting
replicated and nonreplicated transactional systems. Ciciani
et al. [28] examined the performance trade-offs of data repli-
cation in distributed database systems, in terms of the com-
munication overhead and delay, response time constraints,
CPU power, and fraction of read-only transactions. Nicola
and Jarke [31] surveyed and classified a variety of ana-
lytical performance models for distributed and replicated
database systems. They also developed an analytical model
of a replicated database, which focuses on the interplay be-
tween replication and communication. However, the model
is limited to the primary copy replication approach. More
recently, Didona et al. [32] proposed a system for prediction
of performance of replicated in-memory transactional data
grids, that relies on the joint use of analytical modeling
and machine learning. The above work is in contrast to our
work, which aims to estimate the key trade-offs underlying
two popular replication schemes.

It is also worth to mention work on modeling the perfor-
mance of atomic broadcast. Borran et al. [33] presented a tim-
ing analysis and quantitative comparison of selected consen-
sus algorithms. However, they only focused on round-based

consensus algorithms, so the model is not directly applicable
to other consensus algorithms, like Paxos. Couceiro et al.
[34] investigated the use of machine learning methods to
predict latency of abcast. Santos and Schiper [35] analyzed
the performance benefits of using pipelining and batching in
Paxos. They studied analytically what are the combinations
of a batch size and the number of parallel instances that
maximize the system throughput.

Paxos STM, which we developed to evaluate the repli-
cation schemes, provides a fault-tolerant distributed (repli-
cated) transactional memory (TM), but its design is unique
compared to other such systems. DiSTM [36] can either use
a mutual exclusion protocol or a lease-based protocol to
serialize concurrent transactions, both depend on a central
coordinator which creates a bottleneck. In [37], DiSTM is
extended with object replication using 3PC. Like our sys-
tem, D2STM [38] uses an optimistic transaction certification
based on abcast and multiversioning, and shared objects
are replicated on all nodes. In the follow-up work [39], the
leases were used to limit abort rate under high contention.
However, all these systems use an ad hoc replication protocol
built on top of a non-distributed TM while our system has
been built from the ground up to experiment with DUR.

3 SYSTEM MODEL AND PROPERTIES

A replicated process P = {P1, ..., PN} consists of N processes
Pi (i = 1..N ) running on independent servers (replicas)
connected via a network. Each server has access to its own
volatile memory and stable storage; the combined content
of the two constitutes a local state Si. S = {S1, ..., SN} is a
replicated state, where Si is a local state of Pi. A transaction
executed by process Pi can only access objects that belong
to local state Si. We assume full replication—all objects are
replicated on every server. Each server can receive requests
from clients. The clients are independent and do not commu-
nicate with each other directly. The only possible interaction
is through the replicated service.

We assume a distributed asynchronous system: There
is no central coordinator and the processes communicate
solely by exchanging messages using bidirectional fair-loss
links [40]. Processes may fail and messages may be lost
and no upper bound on message transmission is known.
The failure pattern of messages is independent from the
one of processes. No assumption is made on the relative
computation speeds of processes. The processes can use a
suitable failure detector, implemented with extensions to the
described model.

Our experimental implementations of SMR and DUR
support crash recovery, i.e., a server that crashed may later
restart and recover its local state (either from stable storage
or, preferably, from other replicas). However, we analyze the
fault-free operation, where processes do not fail. Therefore,
we assume a simpler crash-stop model. In this model, a pro-
cess is faulty if it crashes at some time during the execution.
It is said to be correct if it never crashes and executes an
infinite number of steps.

A client request executed by a server (more precisely:
by some process located on a server) can be regarded as a
transaction that can execute any legal program containing
operations r(o)v and w(o)v which, respectively, read and
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write a value v from/to some object o, where the object
is part of the replicated state. Read-only (RO) transactions
(requests) may only consist of read operations. Read-write
(RW) or update transactions (requests) must contain at least
one write. Transactions are atomic, i.e., the intermediate
states of transaction execution are not visible to any other
transactions. We use r, x, y to denote requests; Tx denotes
a transaction spawned by request x. A request spawning a
RO transaction is called a query.

We say that state Si is updated by process Pi as the result
of executing a transaction Tx, if Si is updated with the
new state of all shared objects modified by Tx and other
transactions can see the modifications. A replicated state S
is updated if states Si of all non-crashed processes have been
updated. Each transaction Tx executed by a non-crashed
process will eventually commit, with a replicated state S
being updated accordingly, or explicitly abort, leaving state
S unchanged.

We say that transaction Tx precedes transaction Ty (de-
noted Tx ≺ Ty) iff Tx has completed execution before Ty

begins (on the same or other server). If neither Tx ≺ Ty

nor Ty ≺ Tx, then Tx and Ty are concurrent. A transaction
Tx (request x) conflicts with some concurrent but already
committed transaction Ty (request y), if Tx can read any ob-
ject modified by Ty . To prevent inconsistent reads, conflicting
transaction Tx is rolled back and reexecuted.

We define transactional replication by a set of properties
that describe the handling of requests by a replicated pro-
cess (R1-R7) and the interaction with clients (C1-C4). We
require two properties for ordering of state updates (R6, R7)
and one property for ordering messages between the clients
and the replicated process (C4). We use the symbol −→ to
denote a happened-before relation [1]. We regard serializability
as a safety property. In this paper, we assume that all SMR
and DUR protocols guarantee these properties.

Properties of a replicated process P :

R1: Validity: If a process Pj modifies object o with v and state
Sj is updated with the modification, then some process Pi

(i = j or i $= j) has executed an operation w(o)v as part of
some transaction that commits.
R2: Termination: If a transaction Tx commits, the local state
of every non-crashed process is updated with the new state
of all objects modified by Tx.
R3: Integrity: No process updates its local state twice as the
result of executing a transaction Tx.
R4: Agreement: No two non-crashed processes update their
local state differently as the result of executing a transaction
Tx.
R5: Atomicity: All updates of the local states of all non-
crashed processes, which stem from the execution of a
transaction Tx, are performed atomically (not partially).
R6: Local order: No process Pi updates state Si as the result
of request r2 unless Pi has already updated Si as the result
of any update request r1, such that r1 −→ r2.
R7: Global order: Let r1 and r2 be any two requests. Let Pi

and Pj be any two processes that update state as the result
of r2. If Pi updates state on r1 before r2 then Pj updates
state on r1 before r2.

Properties of client-P interaction:

C1: Validity: If a correct client sends a request r to a cor-
rect process Pi then replicated process P executes Tr and
eventually returns the response to r to the client.
C2: No creation: If a request r is handled by some process Pi,
then r was previously sent by some client.
C3: No duplication: No response is delivered more than once.
C4: Causal order: Let r1 and r2 be any two requests such
that r1 −→ r2. If res1 and res2 are responses to r1 and r2,
respectively, which have been delivered to the client, then
res1 is delivered before res2.

In the SMR approach, no transactions are considered.
The SMR protocol is used to synchronize commands of a
replicated state machine. But if we regard a command
as a single-op transaction, then the above properties hold
since all commands are processed serially by every process,
and the protocol ensures that command execution always
succeeds (provided enough replicas exist). This notion can
be extended to an arbitrary (but deterministic) computation,
with important restrictions. In DUR, transactions can be
aborted (and possibly restarted). In SMR, rollback is not pos-
sible and transactions can only commit. In DUR, concurrent
transactions may conflict since they are executed optimisti-
cally. In SMR, transactions never conflict. In DUR, state is
updated on commit while in SMR objects are modified in
place, so state is updated immediately.

4 PERFORMANCE MODEL

4.1 Definitions
We can identify four phases in SMR and DUR protocols:

1) Sending a client request,
2) Replica coordination (in SMR only), trc = tr ,
3) Request CPU processing, eo = e+ to,
4) Agreement coordination (in DUR only), tac = tu,
5) Sending a system response (or answer).

The request CPU processing time has two components: e is
the time of executing the transaction code only, and to is
the overhead time of a DUR scheme, excluding the time of
network communication required for abcast; in SMR, to = 0
by definition of to. For simplicity, we assume that the time e
is the same for all requests and all processes. Then, we have
a total time eo = e+ to. We use tr and tu to denote the mean
times of an atomic broadcast in SMR and DUR, respectively.
The values tr and tu depend on the size of transmitted data
and can differ significantly.

Then, the total time T rs of processing n given requests
by a replicated service rs equals P(n, eo, t{rc,ac}), where
function P depends on the parallelism enabled by repli-
cation scheme and the underlying execution environment.
n = nq + nrw, where nq and nrw denote correspondingly,
the number of read-only requests (queries) and read-write
(update) requests.

In the model, we assume c processor cores per server,
and abstract away any hardware restrictions on parallel
executions. For simplicity, we allow at most c concurrent
threads on each server at any time, with no thread inter-
leaving. Thus, in our analysis, we can take as granted that
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transactions are indivisible. We also assume that the threads
do not wait for replies to be delivered to the clients to
start new transactions. All servers are assumed to be inter-
connected via a perfect, reliable network. In the following
sections, we will deduce lower bound Tlowb on time T rs,
which corresponds to processing n given requests by SMR
or DUR systems without any delay.

The abcast protocol is optimized using batching and
pipelining, which bring performance benefits (see e.g., [35]).
Batching means broadcasting a batch of messages (if avail-
able) by only one protocol instance. Pipelining allows the
protocol leader to initiate several instances of the protocol
in parallel (as in [11]). In our model, we use β1 and β2 to
denote respectively, the number of messages broadcast per
protocol instance (batch size), and the maximal number of
concurrent instances of abcast at a time. Then, β = β1β2.
We assume that the bandwidth of a computer network is
large enough for β.

4.2 State machine replication: SMR and LSMR
We model a service (required to be deterministic) as a
deterministic state machine processing client requests, and use
the SMR scheme to replicate the state machine on N c-core
servers. In such a system:

1) each client can send each request to any non-faulty
server (replica) Pi (i = 1..N ), which then atomically
broadcasts the request in a group of all replicas for
replica coordination1, where trc = tr ,

2) all client requests are executed sequentially and in
the same order by every replica, with no additional
overhead (so to = 0),

3) while a request is being transmitted to other replicas
by a replica Pi, replica Pi can execute other requests
in parallel.

The above rules hold for the basic SMR scheme which
does not recognize the type of requests. By incorporating
the readers/writers locks optimization, we get SMR with
Locks (LSMR), where RO requests can access a consistent
snapshot of object versions with no need for inter-node
synchronization. To describe LSMR, we restrict rules 1 and
2 to RW requests only, and add new rules:

4) request types (RO or RW) are known a priori,
5) each RO request can be sent by a client to any non-

faulty server (replica) which then executes it locally,
in parallel with any other RO requests (no replica
coordination is required),

6) RO and RW requests are processed by concur-
rent threads of replica Pi within a critical section
guarded by the shared/exclusive (or readers/writers)
locks [41]. Thus, we allow multiple threads to read
shared local state Si concurrently, but a thread
modifying Si must do so when no other thread is
accessing Si. In effect, a RW transaction is executed
in isolation and RO transactions—in parallel.

The optimized SMR is nontrivial, as follows. Consider,
e.g., two single-op requests executed by a replicated state

1. In systems using leader-based protocols, such as Paxos, the server
sends the request to a current leader which then broadcasts it.

machine in the following order: the first request writes
object o and the second one reads o. SMR ensures that the
read will see o’s update. In the optimized SMR, however, RO
requests are not globally ordered, so the read may not see
the update. To guarantee the causal order defined by rule
C4, additional machinery is required, which however does
not impact the lower bound estimation. Essentially, clock
values are piggybacked on requests and responses, so the
order can be established by delaying some actions (see e.g.,
[42] for details).

Note that LSMR cannot ensure linearizability, since it is
not possible to construct a sequential history that is correct
according to the sequential definition of replicated objects.
Consider an object o that is updated first with v on replica
P1 and then with z on replica P2. Next, o is correctly read
on P2, giving z. Next, o is read on P1. Since RO and RW
transactions are not synchronized, the 2nd update on P1

may occur later than the 2nd read, so v can be returned
instead of z, which is at odds with the sequential definition
of the object.

Below we compute the lower bounds on the total time
of processing n requests, assuming, for simplicity, that n

β =
%n
β & in SMR, and nrw

β = %nrw
β & in LSMR.

4.2.1 Lower bound for SMR
In the best case, the system exploits as much concurrency
as possible, so that the replica coordination phase and the
execution of requests proceed in parallel. Then, the lower
bound on the time of processing n given requests is twofold,
depending on which of the parallel parts will last longer
(expressed by a function max(a, b) which returns a if a ≥ b,
or b if a ≤ b):

T SMR
lowb = max(

n

β
tr, ne) + δSMR = max(

tr
β
, e)n+ δSMR (1)

where δSMR =

{
βe if max( trβ , e) = tr

β

tr if max( trβ , e) = e .
(2)

If tr
β ≥ e, so δSMR = βe, we say that the abcast time

is dominant (e.g., the network is slow or the requests are
short). If e ≥ tr

β , so δSMR = tr , we say that the execution time
is dominant (e.g., the network is fast or the requests are long).
We illustrate both cases for N = 3, n = 2, and unoptimized
abcast (β = 1) in Fig. 1.

4.2.2 Lower bound for LSMR
In the optimized SMR, a RO request is processed only by
one server (replica) and is not broadcast to other servers.
As before, execution of requests and broadcasting of RW
requests are independent, so they can occur in parallel. On
multi-core processors (c > 1), a RO request can be processed
in parallel with other RO requests but serially with respect
to RW requests.

a) If each server has only one CPU core (c = 1), the lower
bound on the time of processing n requests is:

T LSMR
lowb = tSMR

rw +∆, where (3)

tSMR
rw = max(

nrw

β
tr, nrwe) + δSMR = max(

tr
β
, e)nrw + δSMR .
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T2

tr e

b) T SMR = tr + 2e

Fig. 1. SMR with abcast time dominance (a) and execution time domi-
nance (b), where N = 3, β = 1, and n = 2.

We estimate ∆ as follows. First, we assume that RO
requests are executed by any free server that currently does
not execute any RW request. Those RO requests which
are processed in parallel with message broadcasting take
tA = tSMR

rw −nrwe time units and can be neglected since they
do not increase the total time of processing RW requests.
Then, ∆ is the time of processing by N single-core servers
any remaining RO requests after all RW requests have been
executed, or ∆ = 0 if none such a request exists:

∆ =

{
∆′ if ∆′ > 0

0 if ∆′ ≤ 0
(4)

where ∆′ =
⌈nq

N

⌉
e− tA =

⌈nq

N

⌉
e− (tSMR

rw − nrwe)

=

{
(%nq

N &+ nrw − β)e− nrw
β tr if tr

β ≥ e

%nq

N &e− tr if e ≥ tr
β .

b) If each server has c CPU cores (c ≥ 1), the lower
bound on the time of processing n requests is:

T LSMR
lowb = tSMR

rw +Π (5)

where Π is estimated as follows. Let us assume that RO
requests that before were executed on single core servers for
∆ time units are now executed on c−1 extra cores that each
server has at its disposal. This takes tB = ∆

c−1 time units. A
certain number of RO requests are executed in parallel with
abcast for tA time units. Then, Π is the time of processing
any other RO requests by all available c cores of each server,
or Π = 0 if none exists:

Π =

{
%Π′& if Π′ > 0

0 if Π′ ≤ 0
(6)

where Π′ =
(tB − tA)(c− 1)

c
=

∆− (tSMR
rw − nrwe)(c− 1)

c

=

{
∆−( tr

β nrw+βe−nrwe)(c−1)

c if tr
β ≥ e

∆−tr(c−1)
c if e ≥ tr

β .

Note that extra cores do not make any difference for RW
requests, as they are processed sequentially by each server.
Note also that if c = 1, then as expected Π = ∆.

Let us compare the performance of SMR and LSMR,
assuming that both systems process requests optimally:

Lemma 1. The difference in elapsed time of processing n requests
without any delay by LSMR compared to SMR is:

Tdiff
SMR
LSMR = T SMR

lowb − T LSMR
lowb

=

{
nq

β tr −Π if tr
β ≥ e

nqe−Π if e ≥ tr
β .

(7)

Note that by definition of Π, if nq = 0 then Π = 0. Thus,
if nq = 0 then Tdiff

SMR
LSMR is also 0, as expected.

The time taken by an algorithm to execute on a single-
core processor is called the sequential execution time, denoted
T SEQ. The execution time TNc of the corresponding parallel
algorithm run on N identical c-core processors is called
the parallel execution time. The task of processing n client
requests on a single-core processor can be accomplished
sequentially in T SEQ = ne time units. The best parallel
algorithm matching our specification of LSMR takes at least
TNc = T LSMR

lowb time units.
Let us compare a highly available and reliable repli-

cated service built using the best LSMR algorithm with a
non-replicated counterpart that lacks these properties. The
time difference between processing n requests on N c-
core servers by the replicated service and processing them
sequentially by one CPU core is:

Tdiff
SEQ
LSMR = T SEQ − T LSMR

lowb = ne− tSMR
rw −Π

= ne−max(
tr
β
, e)nrw − δSMR −Π .

(8)

Theorem 1. In the best case, a service replicated using LSMR and
executed on N multi-core servers (c ≥ 1) is faster than processing
requests sequentially if

(n− β)e >
nrw

β
tr +Π (9)

when the abcast time is dominant, and if

nqe > tr +Π (10)

when the execution time is dominant.

Proof: It is straightforward by rewriting of (8).

4.2.3 SMR and LSMR scalability
Together, a parallel system architecture and the parallel
algorithm running on it constitute a parallel system. The
speedup (S) obtained from a parallel system is defined as
the ratio of the sequential execution time to the parallel exe-
cution time. The efficiency (E) of a parallel system is defined
as the ratio of the speedup obtained to the total number
of processor cores used. We define the problem size as the
number of operations the best sequential algorithm executes
in order to solve the problem on a single-core processor. For
instance, the size of the best algorithm executing n requests
sequentially is n.

For a given problem instance, the efficiency drops as the
number of processors increases. A parallel system is scalable
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Nc → 2 4 8 16 32
nq nrw n ↓

3 1 4 0.8 0.57 0.36 0.21 0.11
22 2 24 0.92 0.8 0.63 0.44 0.28
81 3 84 0.96 0.90 0.8 0.65 0.47

236 4 240 0.98 0.95 0.89 0.8 0.66
615 5 620 0.99 0.98 0.95 0.89 0.8

Fig. 2. LSMR’s efficiency vs no. of c-core processors.

if efficiency can be kept constant as the number of processors
is increased, provided that the problem size is also increased
[43], [44]. Then, we get

Theorem 2. LSMR scales and SMR does not scale.

Proof: The speedup and efficiency of a system repli-
cated using LSMR in the best possible case are given by:

SLSMR = T SEQ/T LSMR
lowb

ELSMR =
T SEQ

T LSMR
lowb Nc

=
ne

(tSMR
rw +Π)Nc

.
(11)

Consider Π > 0. Then we have

ELSMR
Π>0 ≈ n

(%nq

N &+ nrwc)N
≈ n

nq + nrwNc
. (12)

For a given problem instance, the efficiency of the LSMR
system drops with an increasing number of processors. In
order to ensure that the LSMR efficiency does not decrease
as the number of processors increase, the number of RO
requests should increase (see example instances in Fig. 2).
Thus, if the number of RO requests is large enough, LSMR
scales.

If Π = 0, then

ELSMR
Π=0 =

{
ne

(nrw
β tr+βe)Nc if tr

β ≥ e
ne

(tr+nrwe)Nc if tr
β ≤ e .

(13)

In both cases, the LSMR system also scales if the number of
RO requests (in the numerator) will be sufficient to compen-
sate for an increasing number of cores (in the denominator),
so that efficiency is constant.

If the SMR system is unoptimized, there is no need to
distinguish between RO and RW requests (i.e., nq = 0, n =
nrw, Π = 0) and we get

ESMR =
T SEQ

T SMR
lowbNc

=
ne

T SMR
lowbNc

= ELSMR
Π=0 where nrw = n .

(14)
It is easy to see that the efficiency ESMR cannot be main-
tained at a constant value when increasing the number of
processors/cores since if we increase the problem size n in
the numerator, then the denominator increases even more.
Thus, we have proven that SMR does not scale.

4.3 Deferred update replication: DUR and MvDUR

We model a (possibly nondeterministic) service as a state
machine processing client requests, which is replicated on
N c-core servers, and use the DUR scheme to maintain
consistency of the replicated state. In such a system:

1) each client can send each request to any non-faulty
server (replica), which then processes the request by
executing a local atomic transaction,

2) transactions operate on their own (local) copies
of shared objects. Shared objects are replicated on
every server. On commit of a RW transaction, all
replicas must agree upon the globally consistent
state and update their objects accordingly. For this,
the transaction’s read-set (a set of memory locations
or objects read by the transaction) and the updates
are atomically broadcast to all servers (replicas) for
agreement coordination, where tac = tu. However, no
agreement coordination is required for RO transac-
tions, since they do not update state,

3) concurrent transactions are executed optimistically
with no locking. To avoid inconsistencies, before a
transaction executes a read operation and if it wrote
to any objects then also on transaction commit, the
transaction must be certified—i.e., checked if it does
not conflict with any other concurrent transactions
that have committed. If certification fails the trans-
action is aborted and reexecuted. Otherwise, the
transaction finally commits and all replicas update
their state accordingly (this operation and the final
certification are done atomically).

By certifying transactions on every read, conflicts are
detected as soon as possible, so a conflicting transaction can
be aborted before its completion. For simplicity, we ignore
this in the model and assume a uniform CPU execution time:
eo = e + to for RW and e′o = e + t′o for RO transactions,
where to/t′o are the mean overhead times per transaction of
certification and housekeeping operations (e.g., creating/re-
moving object copies, collecting read-sets and updates) that
are specific for RW/RO transactions. to also includes the
mean time of state update of all RW transactions (taking 0
for aborted ones).

By incorporating multiversioning, we obtain DUR with
Multiversioning (MvDUR) that requires additional rules:

4) on a transaction Tx’s commit, an immutable version
of each object that was modified by Tx is created, to
be accessed atomically by any future transactions.
Each transaction Ty can only access one version of
a given object—the last one before Ty commenced.
Thus, each read operation returns consistent state,
so it does not require certification. A transaction is
certified on commit, if its updates are not null,

5) RO transactions never conflict and always commit,
so do not need certification; if they are known a
priori, the overhead is null, thus t′o = 0, so e′o = e.

The DUR and MvDUR algorithms are quite subtle (see
e.g., [42]), so our performance model only approximates
their behavior and hides details. E.g., the updates of several
transactions delivered by a single abcast are applied to local
state of every replica sequentially. However, since updating
can proceed concurrently with the abcast and with the
execution of other transactions that can commence before
the state update is finished, we do not clutter the model
with the sequential part, and assume that eo is the mean
CPU time of executing a RW transaction (excluding abcast
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time), which also includes any overhead on a local site and
on remote sites. Also, concurrent threads must occasionally
synchronize access to some shared variables, but it is a very
short time relatively, so we can neglect it in our analysis.

Let K be the total number of conflicts due to process-
ing n requests (transactions). Then, K is also the number
of transaction reexecutions caused by the conflicts. K de-
pends on the number of concurrent transactions trying to
modify and read the same objects. Note that write-only
transactions cannot conflict according to the definition in
§32. K cannot be statically predicted in case of optimistic
concurrency control. However, we can estimate the upper
bound, as follows. If n RW transactions are executed con-
currently, the number of conflicts cannot be greater than
(n− 1) + (n− 2) + . . .+ 1 = (n−1)n

2 .
Below we derive the lower bound on the total time

of processing n requests by DUR. We first assume the
unoptimized DUR, no conflicts (K = 0), and no read-
only transactions (n = nrw). Then, we include conflicts.
Finally, we extend the model with read-only transactions
and analyze the optimized DUR and conflict patterns.

4.3.1 Lower bound for DUR
In the best case, transactions are executed in parallel by
all Nc processor cores and concurrently with agreement
coordination. Thus, we obtain the lower bound on the time
of processing n given requests as:

TDUR
lowb = max(tDUR

a , tDUR
e ) (15)

where tDUR
a is attributed (at large) to abcast time, while tDUR

e
is attributed (at large) to CPU time, as given below. If tDUR

a ≥
tDUR
e then we say that the abcast time is dominant. If tDUR

a <
tDUR
e then the execution time is dominant.

In the simplest case, when there are no conflicts and no
RO requests (K = nq = 0) and the abcast protocol is not
optimized, so it can broadcast only one message at a time
(β = 1), the lower bound on processing at least one RW
request (nrw > 0) is as follows:

T
DUR

K=nq=0

β=1

lowb = max(eo + nrwtu,
⌈nrw

Nc

⌉
eo + tu) . (16)

In Fig. 3a-c., we show example executions for N = 2, c = 1,
β = 1, and nrw = 3, where abcast dominance is illustrated
in a-b and execution dominance in c.

In practical systems the abcast protocol is optimized:
β1 messages are broadcast in one instance and at most β2

instances of the protocol are executed in parallel. In our
model, we assume that 0 < β1 ≤ Nc and3 β2 is some natural
number, s.t. β = β1β2 ≥ Nc. Then, we have:

TDURK=nq=0

lowb = max(tDUR
a , tDUR

e ), where

tDUR
a = eo +

⌈nrw

β

⌉
tu

tDUR
e =

⌈nrw

Nc

⌉
eo + tu .

(17)

2. In object-based TM, e.g. Paxos STM, write-only transactions appear
as read-write transactions since they usually modify only a subset of
object fields but the whole object is read and replaced on commit.

3. Note that β1 > Nc is not desirable since abcast would be delayed,
causing objects to be updated less frequently, so increasing likelihood
of conflicts and thus downgrading the optimization.

a)

leader P1

P2

T1

T2

T3

eo tu β = 1, nrw = 3

b)

leader P1

P2

T1

T2

T3

eo tu β = 1, nrw = 3

c)

leader P1

P2

T1

T2

T3

eo tu β = 1, nrw = 3

d)

leader P1

P2

T1

T2

T3

T4

T5

1, 2 3, 4 5

eo tu β = 4, nrw = 5

Fig. 3. DUR with abcast time dominance (a-b, d) and execution time
dominance (c), where N = 2 and c = 1.

We illustrate case when tDUR
a ≥ tDUR

e (abcast dominance) in
Fig. 3d, where we show an example execution for N = 2,
c = 1, β = 4, and nrw = 5. Note that if a network had
greater capacity (β ≥ 5), the execution time is dominant.
E.g., if β = 5 then tDUR

a = eo + tu < tDUR
e = 3eo + tu.

If K transactions conflict, then each of them is reexe-
cuted. Thus, from (17), we have:

TDURK≥0,nq=0

lowb = max(eo+
⌈nrw +K

β

⌉
tu,

⌈nrw +K

Nc

⌉
eo+tu) .

(18)
Let us now consider RO transactions. In case of the

unoptimized DUR, RO transactions may conflict, so require
certification, but do not update state, so do not require
agreement coordination. We use e′o to denote the mean CPU
time of executing a RO request, where e′o < eo, and we
have tu = 0 for RO requests. If the number of conflicts for
RW and RO transactions is respectively, Krw and Kq (where
Krw +Kq = K), then we can approximate the lower bound
by extending (18) as follows:

TDURK≥0,nq≥0

lowb = max(tDUR
a , tDUR

e ), where

tDUR
a = eo +

⌈nrw +Krw

β

⌉
tu

tDUR
e ≈

⌈nrw +Krw

Nc

⌉
eo + τ1

τ1 = max(tu,
⌈nq +Kq

Nc

⌉
e′o) .

(19)

Note that if %(nrw + Krw)/Nc& = (nrw + Krw)/Nc, then
equation (19) is not approximate but exact.
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4.3.2 Lower bound for MvDUR
In MvDUR, read-only transactions never conflict (Kq = 0)
and do not require certification, so we approximate their
execution time e′ as e′ ≈ e. By modifying (19) we then
obtain the lower bound for MvDUR:

TMvDUR
lowb = max(tMvDUR

a , tMvDUR
e ), where

tMvDUR
a = eo +

⌈nrw +Krw

β

⌉
tu

tMvDUR
e ≈

⌈nrw +Krw

Nc

⌉
eo + τ2

τ2 = max(tu,
⌈ nq

Nc

⌉
e) .

(20)

If tu ≥ % nq

Nc&e (so τ2 = tu) then we say that the abcast
dominates RO requests. If tu < % nq

Nc&e (so τ2 = % nq

Nc&e) then
the RO requests dominate abcast.

It is important to emphasize that the main advantage of
MvDUR when compared to the unoptimized DUR is not
much due to the fact that e < e′o but because Kq = 0.
In MvDUR-based systems, there are less conflicts (thus less
transaction rexecutions), which greatly decreases the total
time of processing n concurrent requests.

Let us compare the performance of DUR and MvDUR:

Lemma 2. If the abcast time is dominant, tDUR
a = tMvDUR

a , so
there is no difference between DUR and MvDUR. Otherwise, the
difference between the elapsed time of processing n given requests
without any delay by DUR compared to MvDUR is:

Tdiff
DUR
MvDUR = TDUR

lowb − TMvDUR
lowb = tDUR

e − tMvDUR
e = τ1 − τ2 .

(21)

Proof: Straightforward from (20) and (19).
Thus, if the abcast dominates RO requests, Tdiff

DUR
MvDUR

is equal 0 since τ1 = τ2 = tu, which is as expected since
the performance gain due to optimizing RO requests is
counteracted by the high cost of broadcasting updates of
the last update request. If RO requests dominate abcast,
Tdiff

DUR
MvDUR = %nq+Kq

Nc &e′o − % nq

Nc&e ≈
Kq

Nce if e′o ≈ e.
In practice, the time eo of processing an RW request

in MvDUR is shorter than in DUR, as shared objects can
be implemented more efficiently (with no locks). Therefore,
Tdiff

DUR
MvDUR > τ1 − τ2 if the execution time is dominant, and

Tdiff
DUR
MvDUR > 0 if the abcast time is dominant.

4.3.3 Analysis of transaction conflicts
Now let us analyze the behavior of MvDUR for specific
conflict patterns, assuming the worst possible case. In the
worst case, all concurrent transactions conflict with each
other and there are no RO transactions. Thus, we can use
(18) to compute the lower bound on processing n given
requests, where nrw = n. We can also derive the lower
bound for a particular conflict pattern.

We consider two conflict patterns, assuming at most c
concurrent transactions on each server.

a) Transactions never wait for conflicts to be resolved:
In this case, only the first transaction commits and the

remaining Nc − 1 transactions abort and repeat execution
in parallel with a new fresh transaction that is processed
by a free core. This process repeats until the last new fresh
transaction appears. Then, again one transaction commits

and all but one are reexecuted, and so on until the last
transaction is executed.

Thus, the time of processing n given requests assuming
that the execution time is dominant:

tDUR
e (a) = eo + (n−Nc)eo + (Nc− 1)eo + tu

= neo + tu .
(22)

The number of conflicts is

Ka = (n−Nc)(Nc− 1) +
(Nc− 1)Nc

2

= n(Nc− 1) +
Nc− (Nc)2

2
.

(23)

b) Transactions wait until conflicts are resolved:
In this case, we execute the first Nc transactions in

parallel. Since they all conflict, we wait with processing
the next batch of Nc transactions until all conflicts are
resolved and the conflicting transactions are reexecuted. We
repeat this process until all transactions are executed. Since
in the last iteration the number of fresh new transactions
can be smaller than Nc, we use µ to describe their time of
execution.

Thus, the time of processing n given requests assuming
that the execution time is dominant:

tDUR
e (b) =

(⌊ n

Nc

⌋
+ (Nc− 1)

⌊ n

Nc

⌋
+ µ

)
eo + tu,

where µ = n−
⌊ n

Nc

⌋
Nc

= neo + tu .

(24)

The number of conflicts is

Kb =
(Nc− 1)Nc

2

⌊ n

Nc

⌋
+

(µ− 1)µ

2

=
(Nc)2

2

⌊ n

Nc

⌋
+

µ2 − n

2
≈ n(Nc− 1)

2
.

(25)

Thus, if the execution time is dominant then the lower
bound is the same for both conflict patterns. However, the
number of conflicts differ. If n ≥ Nc then Kb < Ka, which
means that in case b less processor power is used.

If the abcast time is dominant, the time of processing n
given requests for conflicts patterns a and b is, by (20):

tDUR
a = eo +

⌈nrw +K

β

⌉
tu . (26)

where K = Ka or K = Kb, respectively. Since typically
n ≥ Nc, so Kb < Ka, thus it takes more time to complete
the processing in case of conflict pattern a. Thus, one way
to optimize abcast dominant DUR systems is to delay trans-
action processing in order to reduce the number of conflicts
(transaction reexecutions).

4.3.4 MvDUR vs. sequential execution
Compared to sequential request processing, an MvDUR sys-
tem has the advantage of replication which makes it possible
to tolerate machine failures and distribute workload evenly
since each transaction can be processed on any replica.
However, neither system outperforms the other in terms of
performance in every case.

Let us assume that the execution time is dominant,
so TMvDUR

lowb = tMvDUR
e . Then an MvDUR system is likely

to outperform sequential execution since Nc transactions
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are processed in parallel. The time of processing n given
requests sequentially is T SEQ = ne. To compute tMvDUR

e ,
the number of transactions is divided by Nc but it is also
enlarged by the number of conflicts (20). If Nc = 1, then
no conflicts can occur and tMvDUR

e = nrweo + τ2, which
gives nrweo + tu if abcast dominates RO requests, and
nrweo + nqe ≈ ne otherwise (assuming e ≈ eo). On the
other hand, if we assume that Nc > 1 and all transac-
tions conflict, then tMvDUR

e = tMvDUR
e (a|b) = nrweo + tu

(since nq = 0). Thus, we can stipulate that on average the
modelled MvDUR system is never much slower than its
sequential counterpart if eo ≈ e, and can be faster if the
number of processors/cores is large enough.

If the abcast time is dominant, so TMvDUR
lowb = tMvDUR

a ,
then an MvDUR system can be faster than its sequential
counterpart only if the number of processors/cores is large
enough and the abcast time tu is short enough.

4.3.5 MvDUR scalability
Note that the number of transaction conflicts may grow with
the number of RW requests and processors/cores (since
more transactions are processed in parallel). We say that the
number of conflicts explodes for a parallel system if it grows
at least linearly with the problem size (n). E.g., Ka and Kb

explode.
Below we consider scalability of a replicated system

in the best possible case, separately for the execution and
abcast time dominance. Then, we get

Theorem 3. When the execution time is dominant, MvDUR
scales if the number of conflicts does not explode.

Proof: The best possible parallel algorithm matching
the specification of MvDUR takes at least TNc = TMvDUR

lowb
time units. Thus, by (20), if the execution time is dominant,
the speedup and efficiency of an MvDUR system in the best
possible case are, respectively:

SMvDUR = T SEQ/tMvDUR
e

EMvDUR =
T SEQ

tMvDUR
e Nc

≈
{

ne
σ+tuNc if tu ≥ % nq

Nc&e
ne

σ+nqe
if tu ≤ % nq

Nc&e
where σ = (nrw +Krw)eo .

(27)

In case when e ≈ eo, efficiency can be approximated to

EMvDUR ≈
{

n
nrw+Krw+ tuNc

e

if tu ≥ % nq

Nc&e
n

n+Krw
if tu ≤ % nq

Nc&e .
(28)

Thus, if abcast dominates RO requests (i.e., tu ≥ % nq

Nc&e),
then the MvDUR-based system scales if the number of
requests n is large enough to compensate for an increasing
number of cores and the number of conflicts does not
explode. If RO transactions predominate (tu < % nq

Nc&e), then
the system scales perfectly if the number of conflicts does
not explode.

For example, if Krw = Kb, then the number of conflicts
explodes and EMvDUR

tu≤$ nq
Nc %e

≈ 2n
2nq+nrw(1+Nc) , i.e., the system

does not scale since the efficiency cannot be maintained at
a constant value by simultaneously increasing the number
of processors (or cores) and the size of the problem. E.g., if
nq = 0, then the efficiency is 2

1+Nc .

Theorem 4. When the abcast time is dominant, MvDUR scales
worse than when the execution time is dominant, and it does not
scale if all requests are updating.

Proof: In case of abcast time dominance, the speedup
and efficiency of the MvDUR system in the best possible
case are, respectively:

SMvDUR = T SEQ/tMvDUR
a

EMvDUR =
T SEQ

tMvDUR
a Nc

=
ne

(eo + %nrw+Krw
β &tu)Nc

(29)

Note that in the denominator Nc is multiplied by the
number of RW requests and conflicts which are variables
that are likely to grow in proportion to the problem size.
Thus, the system scales worse than when the execution time
was dominant, since in the latter case in the denominator
Nc was either multiplied by a constant value tu or the
efficiency did not depend on Nc at all, so it was easier to
maintain efficiency at a constant value when increasing the
number of processors/cores. However, if the number of RW
requests is constant and the number of conflicts does not
explode, then if the abcast time is dominant, the MvDUR
system can scale for RO requests. But if nq = 0, then none
increase of problem size n = nrw is able to keep efficiency
constant once the number of processor cores increases (note
that Krw can only grow and other parameters are constant
values).

5 EXPERIMENTAL EVALUATION

In this section, we present the results of experimental
evaluation of SMR and MvDUR under different workload
types and varying contention levels, obtained using popular
microbenchmarks: Hashtable and Bank. For each benchmark,
we developed a non-replicated service (SeqHashtable and Se-
qBank) executing requests sequentially on one machine, and
a replicated, fault-tolerant counterpart, where the program
code and data structures (hashtable and bank accounts)
were fully replicated on N nodes, each one equipped
with a c-core processor. The replicated service was built
using JPaxos, which utilizes the state machine replication
approach, and Paxos STM, which implements the MvDUR
algorithm [42].

As in the original state machine replication approach,
JPaxos does not recognize requests types, so it implements
the SMR scheme. Paxos STM can execute requests in parallel
on multicores. Moreover, multiversioning ensures that RO
transactions never conflict (so never abort), thus it imple-
ments the MvDUR scheme. Both systems use the imple-
mentation of abcast based on Paxos [11], with support of
message batching and pipelining.

Both systems allow replicas to crash and later re-
cover and seamlessly rejoin. Notably, nonvolatile storage is
scarcely used during regular (nonfaulty) system operation.
During recovery, a recovering replica can obtain the current
state from other live replicas (if at least a majority of replicas
is operational all the time). In the paper, we compared the
performance of the two systems during regular (nonfaulty)
execution. But in all our experiments, we ran both systems
with the recovery protocol enabled, so they were fully fault-
tolerant.
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The Hashtable benchmark features a hashtable of size h,
storing pairs of key and value, and accessed using the get,
put, and remove operations. A run of this benchmark consists
of a load of requests which are issued to the hashtable. As in
the model, we consider two types of requests (transactions):
A read-only (RO) request executes a series of get operations
on a randomly chosen set of keys. A read-write (RW) request
executes a series of get operations, followed by a series of
update operations (either put or remove). The Hashtable is
prepopulated with h

2 random integer values from a defined
range, thus giving the saturation of 50%. The saturation
level is preserved all the time: If a randomly chosen key
points at an empty element, a new value is inserted using
put; otherwise, the element is removed using remove.

We used three Hashtable configurations: Default, Pro-
longed, and High-Contention, which represent various
workload types, modeled by varying the number and length
of operations in RO and RW transactions. In all cases, each
RO request scans a vast amount of data using 100 get
operations. In contrary, RW requests have fewer operations
(10 in Default and Prolonged and 50 in High-Contention),
where 20% are update operations. In Prolonged Hashtable,
each RO and RW transaction is prolonged 1 ms, which
simulates a computation-heavy workload for execution time
dominance.

The Bank benchmark features a replicated array of 250k
bank accounts. A run of this benchmark consists of a load of
RW and RO requests accessing the accounts. A RW request
transfers money between two accounts, by executing two get
and two put operations on the replicated array. A RO request
computes a balance, by reading all accounts and summing
up the funds.

For each benchmark, we examined three test scenarios,
obtained by the following mix of RW and RO requests in the
test load: 10%, 50%, and 90% of RW requests. RO requests
were known a priori. In Paxos STM, different test scenarios
allow us to simulate variable contention in the access to data
shared by concurrent transactions.

We ran tests in a cluster of 20 nodes connected via 1Gb
Ethernet network. Each node had 28-core Intel E5-2697 v3
2.60GHz processor, 64GB RAM, and used Scientific Linux
CERN 6.7 with Java HotSpot 1.8.0.

The abcast protocol used by JPaxos and Paxos STM was
configured to have at most two concurrent instances of
consensus and the batch capacity 64KB. We experimentally
established an optimal number of threads in Paxos STM
to be 160 for Hashtable and 280 for Bank (these values
were used in all our tests). In all of our tests, the number
of threads is high and far exceeds the number of physical
cores, to compensate for threads that are blocking on I/O
(network) operations. This way we can fully exercise the
hardware, and show the peak performance of JPaxos and
Paxos STM, which corresponds to our model.

To reduce the overhead caused by client-server commu-
nication, the clients ran on replicas. The number of clients in
JPaxos and Paxos STM was constant per replica, and equal
the number of threads in Paxos STM.

5.1 Benchmark results
For all benchmarks, we present throughput—the number of
handled requests (committed transactions) per second. In

services built using Paxos STM, concurrent transactions may
conflict and abort, so we also present the abort rate—the
percentage of transactions aborted due to conflicts out of
a total number of transaction executions (i.e., K

n+K 100%,
where n is the number of requests and K is the number
of conflicts). The abort rate gives a useful insight into the
level of contention. We also measured data transfer in Mb/s
to witness network congestion, as it is a limiting factor in
many tests.

In Fig. 4, we give the measured results and the optimal
throughput n/Tlowb of SMR and MvDUR for N = 3..20
replicas, where Tlowb was calculated using (1) and (20); n,
nrw, nq and c are constant input data; tr , tu, e, eo, and
message size are obtained separately for each benchmark and
test scenario through measurements of JPaxos and Paxos
STM; β1 = 64KB/message size, where 64KB is the capacity of
abcast batch, and β2 = 2. These parameters are constant in
each test scenario. Only Krw (the actual number of conflicts)
changes with N . The abcast times tr and tu were measured
when network was not congested. Below we summarize the
results. See the supplemental material for more discussion.

The experimental results in Fig. 4 and 5 corroborate the
model in §4. Not surprisingly, the sequential, non-replicated
implementations of our benchmarks outperform JPaxos.
More interestingly, Paxos STM and sequential services gave
variable results. E.g., Paxos STM was the clear winner for
Prolonged Hashtable (see Fig. 4b and 5b) and for Bank with
10% and 50% of RW requests (see Fig. 4d and 5d). This is
credited to Paxos STM’s ability of executing transactions
in parallel, thus being able to fully utilize the multi-core
hardware. In other cases, the sequential, non-replicated ser-
vices demonstrated higher throughput. However, they are
vulnerable to system failures. In contrast, replicated services
can tolerate failures of machines and communication links,
thus ensuring service reliability and availability.

JPaxos executes all requests sequentially, thus if the
execution time is dominant, it performs poorly compared
to Paxos STM which can process transactions in parallel
and can scale by Theorem 3 (see Fig. 4b). Paxos STM
behaves well especially in test scenarios involving many RO
transactions, but suffers under high contention (evidenced
by abort rate). Then, JPaxos is clearly better since it delivers
predictable and stable performance (see Fig. 4c for 50%
and 90% RW). However, the overhead caused by abcast,
and by the network that often gets saturated, severely
reduce the performance of both systems. By Theorem 4,
abcast dominance can overshadow the gain of parallelism
in Paxos STM and, in consequence, reduce scalability. If at
least RO requests dominate abcast, then efficiency could be
kept constant by decreasing the number of conflicts, e.g. by
contention management.

The optimizations of abcast give Paxos STM consider-
able performance boost. This is especially visible in Bank
(see Fig. 4d) where replicas can get a lot of transactions
ready to commit at the same time, so the abcast protocol
with batching can broadcast them all at once.

As expected, the calculated throughput of SMR is con-
stant for all numbers of replicas, since by Theorem 2 the
SMR scheme does not scale for any workload type. How-
ever, when SMR is abcast time dominant (Fig. 4a,c), JPaxos
does not perform uniformly, and the peak throughput is
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Fig. 4. Model predictions and benchmark results for 10%, 50%, and 90% of RW requests (or transactions).

Test scenario → 10% RW 50% RW 90% RW
a) SeqHashtable Default 657785 1002342 2270151
b) SeqHashtable Prolonged 994 996 998
c) SeqHashtable High-Cont. 468966 528255 650705
d) SeqBank 40477 73174 208853

Fig. 5. Throughput of sequential services (req/s).

when the network is nearly saturated (see the network
congestion plot). Before that, JPaxos’s throughput grows
with the number of replicas. This is because with replicas are
collocated clients that can now produce more requests, but
still their quantity and capacity are not enough to effectively
utilize the abcast protocol, i.e., the number of requests per
abcast batch is lower than declared β1 while in the model
it is always equal β1. (The network saturation occurs later
in Bank where message sizes are small.) Once the network
becomes saturated, the throughput is deteriorating as the

cluster size increases, since threads (CPUs) are exhausted by
abcasts and execute less requests. When SMR is execution
time dominant (Fig. 4b,d), the throughput of SMR and
JPaxos are uniform, and slightly higher for SMR, as the
overhead caused by the inter-thread communication and
message (un)marshalling was not modelled.

The calculated throughput of MvDUR and the measured
one of Paxos STM, vary for workload types. In the abcast
time dominant workloads (Fig. 4a,c, and the 90% RW in
Fig. 4b,d above network saturation), it decreases with an
increasing number of replicas, since the number of conflicts
grows. Like in JPaxos, Paxos STM underutilizes the network
when a number of replicas (clients) is small, and underper-
forms once the network is saturated. In the execution time
dominant workloads (Fig. 4b until the network is saturated,
and Fig. 4d, except 90% RW above network saturation), the
results for MvDUR and Paxos STM look similar, but the
measured throughput is lower due the overhead of inter-
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thread communication and message (un)marshalling.

5.2 Analytical model vs. experimental evaluation
For all benchmarks, we measured the actual throughput of
JPaxos and Paxos STM, and calculated the throughput of
SMR and MvDUR using equations for lower bounds, where
the values of parameters were measured in separate tests
using JPaxos and Paxos STM (see the Supplemental material
for details on how these values were obtained). The actual
and calculated throughputs differ, which is not surprising.
Our analytical model aims to estimate the upper bounds on
the performance achievable by using well-known transac-
tional replication schemes, assuming an idealized execution
environment, while the measured throughput reflects the
actual conditions when executing benchmarks. E.g., the
network was slow compared to the computational power of
our grid, and often got saturated, so the processors were un-
derutilized when running benchmarks. On the other hand,
to predict the throughput using the model, we measured all
parameters when the network was not congested, and ne-
glected some overhead (e.g. due to message (un)marshalling
and thread synchronization). Moreover, in our calculation
the abcast protocol was always fully utilized, so the peak
performance was achieved also for a small number of nodes.

6 COMBINING SMR AND DUR
The analytical and experimental results clearly indicate that
neither replication scheme is superior. One should choose
SMR or DUR depending on the expected workload. In the
follow-up work [45], we proposed the Hybrid Transactional
Replication (HTR) scheme, which combines SMR and DUR
for better performance and scalability. Depending on the
current workload, a HTR request can be processed either as
a state machine (SM) transaction, or a deferred update (DU)
transaction. SM transactions are handled as in SMR: all
requests are executed sequentially and in the same order
by all processes. DU transactions are executed as in DUR—
optimistically and in isolation. The final certification of DU
transactions and installing the updates must be serialized
with the execution of SM transactions, to avoid inconsistent
reads. But multiple DU transactions can execute in parallel
with a single SM transaction. RO requests are always exe-
cuted as DU transactions. The algorithm is in [45].

Having two modes of transaction execution has several
advantages. Firstly, the system performance is improved for
various workloads. CPU intensive workloads can benefit
from the concurrent execution of DU transactions. On the
contrary, transactions that generate large readsets, writesets
or updates are better off in SM mode. This is because a SM
transaction usually only requires to broadcast a reference to
the code to be executed, which is far less costly than broad-
casting the updates resulting from the execution of a DU
transaction. Moreover, SM transactions are guaranteed to
commit. Therefore SM transactions are suitable for requests
that generate high contention. Secondly, HTR offers richer
semantics than SMR or DUR alone, as it introduces rollback
capabilities to SMR and equips DUR with the support for
irrevocable operations (which cannot be rolled back).

In HTR, the programmer (or system) is free to choose
the SM/DU execution mode for each transaction’s run. The

decision depends on the characteristics of the transaction
(e.g., read-only, CPU intensive, accessed objects) and the
current system load (e.g., abort rate, network saturation).
The programmer specifies the desired decision rules within
an oracle, queried before each transaction’s run. Since the
oracle has access to a vast number of parameters describing
the system’s performance, it allows for adapting to the
changing workload.

7 CONCLUSIONS

In our study of SMR and DUR, we have proven several
results. The key corollary is that neither replication scheme
is superior in all cases. This is due to the differences between
SMR and DUR in sensitivity to various workloads. Execu-
tion dominated workloads are handled much better when
using DUR since this approach can execute multiple re-
quests concurrently, contrary to classical SMR. In particular,
DUR achieves higher throughput than SMR for read-write
requests with a majority of read operations that do not cause
conflicts (which is a typical workload of web services). How-
ever, performance gains from parallel request execution are
overshadowed by high costs of atomic broadcast, which is
especially visible in the abcast-dominated workloads.

As formally proven, DUR exercises the ability to scale
on multicores if certain conditions are met, so one would
expect that it outperforms SMR. But the overhead of the
transactional machinery makes SMR a better choice in some
cases. One can also observe poor efficiency of replicated
services compared to their non-replicated variants, due to
the high cost of abcast. This cost can be compensated in
DUR by the ability to process requests in parallel. If there are
few conflicts, in execution-dominated workloads, a service
replicated using DUR performs much better than when not
replicated. We showed that a suitable conflict pattern can
reduce conflicts.
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[42] T. Kobus, M. Kokociński, and P. T. Wojciechowski, “Introduction
to transactional replication,” in Transactional Memory: Foundations,
Algorithms, Tools, and Applications. COST Action Euro-TM IC1001,
ser. LNCS. Springer, 2015, vol. 8913, pp. 309–340.

[43] A. Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Measuring
the scalability of parallel algorithms and architectures,” Journal
of IEEE Parallel and Distributed Technology: Systems & Applications,
vol. 1, no. 3, pp. 12–21, Aug. 1993.

[44] V. P. Kumar and A. Gupta, “Analyzing scalability of parallel
algorithms and architectures,” Journal of Parallel and Distributed
Computing, vol. 22, no. 3, pp. 379–391, Sep. 1994.
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1 INTRODUCTION

THIS is an appendix to the article: “State-machine and
deferred-update replication: analysis and comparison”

by P. T. Wojciechowski, T. Kobus, and M. Kokociński. It
contains a list of symbols in Table 1, the proofs of lemmas
and theorems in Section 2, some additional results for LSMR
in Section 3, description of state machine replication with
multiversioning in Section 4, and a thorough description of
the experimental evaluation results in Section 5.

2 PROOFS

2.1 State machine replication: SMR and LSMR

Below we compute the lower bounds on the total time of
processing n requests, assuming, for simplicity, that n

β =
!n
β " in SMR, and nrw

β = !nrw
β " in LSMR.

2.1.1 Lower bound for SMR

By definition

T SMR
lowb = max(

n

β
tr, ne) + δSMR = max(

tr
β
, e)n+ δSMR (1)

where δSMR =

{
βe if max( trβ , e) = tr

β

tr if max( trβ , e) = e .
(2)

If tr
β ≥ e, so δSMR = βe, we say that the abcast time

is dominant (e.g., the network is slow or the requests are
short). If e ≥ tr

β , so δSMR = tr , we say that the execution time
is dominant (e.g., the network is fast or the requests are long).
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reprints@ieee.org, and reference the Digital Object Identifier below.
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TABLE 1
A list of symbols

Pi ith process (server)
P replicated process (server)
N number of processes (servers)
Si (local) state of Pi
S replicated state
o object
nq number of read-only (RO) requests (queries)
nrw number of read-write (RW) update requests
n total number of requests (n = nq + nrw)
r, x, y requests
Tx transaction spawned by request x
≺ transaction precedence relation
−→ happens-before relation
trc time of replica coordination (in SMR)
tac time of agreement coordination (in DUR)
e time of executing the transaction code only
to DUR overhead time per RW transaction, excl. abcast time
t′o DUR overhead time per RO transaction, excl. abcast time
eo eo = e+ to (in DUR)
e′o e′o = e+ t′o (in DUR)
tr time of request abcast (in SMR)
tu time of update abcast (in DUR)
T rs total time of processing requests
T rs
lowb lower bound on time T rs

c number of CPU cores
β1 number of messages broadcast per abcast instance
β1 number of concurrent abcast instances at a time
β β = β1β2

T SEQ sequential execution time
TNc parallel execution time (on N c-core CPUs)
Srs speedup of system rs
Ers efficiency of system rs
Krw number of RW conflicts (in DUR)
Kq number of RO conflicts (in DUR)
K total number of conflicts (in DUR) (K = Kq +Krw)
krw number of conflicts per RW transaction (krw = Krw

nrw
)

2.1.2 Lower bound for LSMR
a) If each server has only one CPU core (c = 1), the lower
bound on the time of processing n requests is:

T LSMR
lowb = tSMR

rw +∆, where (3)

tSMR
rw = max(

nrw

β
tr, nrwe) + δSMR = max(

tr
β
, e)nrw + δSMR .

(4)

We estimate ∆ as follows. First, we assume that RO
requests are executed by any free server that currently does



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ?, AUGUST 2016 2

not execute any RW request. Those RO requests which
are processed in parallel with message broadcasting take
tA = tSMR

rw −nrwe time units and can be neglected since they
do not increase the total time of processing RW requests.
Then, ∆ is the time of processing by N single-core servers
any remaining RO requests after all RW requests have been
executed, or ∆ = 0 if none such a request exists:

∆ =

{
∆′ if ∆′ > 0

0 if ∆′ ≤ 0
(5)

where ∆′ =
⌈nq

N

⌉
e− tA =

⌈nq

N

⌉
e− (tSMR

rw − nrwe)

=

{
(#nq

N $+ nrw − β)e− nrw
β tr if tr

β ≥ e

#nq

N $e− tr if e ≥ tr
β .

Proof: If tr
β ≥ e then, by (2) and (4), δSMR = βe and

tSMR
rw = tr

β nrw + βe. Then

∆′ =
⌈nq

N

⌉
e− tA =

⌈nq

N

⌉
e− (tSMR

rw − nrwe)

=
⌈nq

N

⌉
e+ nrwe−

(
tr
β
nrw + βe

)

=
(⌈nq

N

⌉
+ nrw − β

)
e− nrw

β
tr .

If e ≥ tr
β then, by (2) and (4), δSMR = tr and tSMR

rw = enrw+tr .
Then

∆′ =
⌈nq

N

⌉
e− tA =

⌈nq

N

⌉
e− (tSMR

rw − nrwe)

=
⌈nq

N

⌉
e+ nrwe− (enrw + tr) =

⌈nq

N

⌉
e− tr .

b) If each server has c CPU cores (c ≥ 1), the lower
bound on the time of processing n requests is:

T LSMR
lowb = tSMR

rw +Π (6)

where Π is estimated as follows. Let us assume that RO
requests that before were executed on single core servers for
∆ time units are now executed on c−1 extra cores that each
server has at its disposal. This takes tB = ∆

c−1 time units. A
certain number of RO requests are executed in parallel with
abcast for tA time units. Then, Π is the time of processing
any other RO requests by all available c cores of each server,
or Π = 0 if none exists:

Π =

{
#Π′$ if Π′ > 0

0 if Π′ ≤ 0
(7)

where Π′ =
(tB − tA)(c− 1)

c
=

∆− (tSMR
rw − nrwe)(c− 1)

c

=

{
∆−( tr

β nrw+βe−nrwe)(c−1)

c if tr
β ≥ e

∆−tr(c−1)
c if e ≥ tr

β .

Proof: tA = tSMR
rw − nrwe and tB = ∆

c−1 by definition.
Hence

Π′ =
(tB − tA)(c− 1)

c

=
[ ∆
c−1 − (tSMR

rw − nrwe)](c− 1)

c

=
∆− (tSMR

rw − nrwe)(c− 1)

c
.

Now let us consider two cases. If tr
β ≥ e then, by (2) and (4),

δSMR = βe and tSMR
rw = tr

β nrw + βe. Then

Π′ =
∆− (tSMR

rw − nrwe)(c− 1)

c

=
∆− ( trβ nrw + βe− nrwe)(c− 1)

c
.

If e ≥ tr
β then, by (2) and (4), δSMR = tr and tSMR

rw = enrw+tr .
Then

Π′ =
∆− (tSMR

rw − nrwe)(c− 1)

c

=
∆− (enrw + tr − nrwe)(c− 1)

c

=
∆− tr(c− 1)

c
.

Below we show another result for ∆. Let us consider the
case when Π′ > 0.

Π′ > 0 =⇒ ∆− (tSMR
rw − nrwe)(c− 1)

c
> 0

=⇒ ∆ > (tSMR
rw − nrwe)(c− 1)

=⇒ ∆

c− 1
> tSMR

rw − nrwe .

Then, by definition of Π if ∆
c−1 > tSMR

rw −nrwe then Π = #Π′$
and if ∆

c−1 ≤ tSMR
rw − nrwe then Π = 0.

Note that extra cores do not make any difference for RW
requests, as they are processed sequentially by each server.
Note also that if c = 1, then as expected Π = ∆.

Let us compare the performance of SMR and LSMR,
assuming that both systems process requests optimally:

Lemma 1. The difference in elapsed time of processing n requests
without any delay by LSMR compared to SMR is:

Tdiff
SMR
LSMR = T SMR

lowb − T LSMR
lowb

=

{
nq

β tr −Π if tr
β ≥ e

nqe−Π if e ≥ tr
β .

(8)

Proof: By (6) we obtain

Tdiff
SMR
LSMR = T SMR

lowb − T LSMR
lowb

= T SMR
lowb − (tSMR

rw +Π) .

If tr
β ≥ e then, by (2) and (4), δSMR = βe and tSMR

rw = tr
β nrw+

βe. Then, by (1), we get

Tdiff
SMR
LSMR =

tr
β
n+ βe− (

tr
β
nrw + βe+Π)

=
tr
β
(n− nrw)−Π =

tr
β
nq −Π =

nq

β
tr −Π .

If e ≥ tr
β then, by (2) and (4), δSMR = tr and tSMR

rw = enrw+tr .
Then, by (1), we get

Tdiff
SMR
LSMR = en+ tr − (enrw + tr +Π)

= e(n− nrw)−Π = nqe−Π .
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Theorem 1. In the best case, a service replicated using LSMR and
executed on N multi-core servers (c ≥ 1) is faster than processing
requests sequentially if

(n− β)e >
nrw

β
tr +Π (9)

when the abcast time is dominant, and if

nqe > tr +Π (10)

when the execution time is dominant.

Proof: If tr
β ≥ e then, by (2) and (4), δSMR = βe and

tSMR
rw = tr

β nrw + βe. Then, by (6), we get

T SEQ > T LSMR
lowb

=⇒ ne > tSMR
rw +Π

=⇒ ne >
tr
β
nrw + βe+Π

=⇒ (n− β)e >
nrw

β
tr +Π .

If e ≥ tr
β then, by (2) and (4), δSMR = tr and tSMR

rw = enrw+tr .
Then, by (6), we get

T SEQ > T LSMR
lowb

=⇒ ne > tSMR
rw +Π

=⇒ ne > enrw + tr +Π

=⇒ nqe > tr +Π .

2.1.3 SMR and LSMR scalability
Theorem 2. LSMR scales and SMR does not scale.

Proof: The speedup and efficiency of a system repli-
cated using LSMR in the best possible case are given by:

SLSMR = T SEQ/T LSMR
lowb

ELSMR =
T SEQ

T LSMR
lowb Nc

=
ne

(tSMR
rw +Π)Nc

.
(11)

Consider Π > 0. Then we have

ELSMR
Π>0 =

T SEQ

T LSMR
lowb Nc

=
ne

(tSMR
rw +Π)Nc

=
ne(

tSMR
rw +

⌈
∆−(tSMR

rw −nrwe)(c−1)
c

⌉)
Nc

≈ ne

(tSMR
rw c+∆− (tSMR

rw − nrwe)(c− 1))N

≈ ne

(tSMR
rw c+∆− (tSMR

rw c− tSMR
rw − nrwe(c− 1)))N

≈ ne

(tSMR
rw c+∆− tSMR

rw c+ tSMR
rw + nrwe(c− 1))N

≈ ne

(∆ + tSMR
rw + nrwec− nrwe)N

≈ ne

(%nq

N &e− tSMR
rw + nrwe+ tSMR

rw + nrwec− nrwe)N

≈ ne

(%nq

N &e+ nrwec)N

≈ n

(%nq

N &+ nrwc)N
≈ n

nq + nrwNc
.

(12)

For a given problem instance, the efficiency of the LSMR
system drops with an increasing number of processors. In
order to ensure that the LSMR efficiency does not decrease
as the number of processors increase, the number of RO
requests should increase. Thus, if the number of RO requests
is large enough, LSMR scales.

If Π = 0, then

ELSMR
Π=0 =

T SEQ

T LSMR
lowb Nc

=
ne

(tSMR
rw +Π)Nc

=
ne

tSMR
rw Nc

=
ne

(max( trβ , e)nrw + δSMR)Nc
.

(13)

If tr
β ≥ e then, by (2), δSMR = βe, so

ELSMR
Π=0 =

ne

( trβ nrw + βe)Nc
=

ne

(βe+ nrw
β tr)Nc

.

If e ≥ tr
β then, by (2), δSMR = tr , so

ELSMR
Π=0 =

ne

(enrw + tr)Nc
=

ne

(tr + nrwe)Nc
.

Hence, we obtain

ELSMR
Π=0 =

{
ne

(nrw
β tr+βe)Nc if tr

β ≥ e
ne

(tr+nrwe)Nc if tr
β ≤ e .

(14)

In both cases, the LSMR system also scales if the number of
RO requests (in the numerator) will be sufficient to compen-
sate for an increasing number of cores (in the denominator),
so that efficiency is constant.

If the SMR system is unoptimized, there is no need to
distinguish between RO and RW requests (i.e., nq = 0, n =
nrw, Π = 0) and we get

ESMR =
T SEQ

T SMR
lowbNc

=
ne

T SMR
lowbNc

= ELSMR
Π=0 where nrw = n .

(15)
It is easy to see that the efficiency ESMR cannot be main-
tained at a constant value when increasing the number of
processors/cores since if we increase the problem size n in
the numerator, then the denominator increases even more.
Thus, we have proven that SMR does not scale.

2.2 Deferred update replication: DUR and MvDUR

2.2.1 Lower bound for MvDUR
By definition

TMvDUR
lowb = max(tMvDUR

a , tMvDUR
e ), where

tMvDUR
a = eo +

⌈nrw +Krw

β

⌉
tu

tMvDUR
e ≈

⌈nrw +Krw

Nc

⌉
eo + τ2

τ2 = max(tu,
⌈ nq

Nc

⌉
e) .

(16)

If tDUR
a ≥ tDUR

e then we say that the abcast time is
dominant. If tDUR

a < tDUR
e then the execution time is dominant.

If tu ≥ % nq

Nc&e (so τ2 = tu) then we say that the abcast
dominates RO requests. If tu < % nq

Nc&e (so τ2 = % nq

Nc&e) then
the RO requests dominate abcast.
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2.2.2 Analysis of transaction conflicts

We consider two conflict patterns, assuming at most c con-
current transactions on each server.

a) Transactions never wait for conflicts to be resolved:

In this case, only the first transaction commits and the
remaining Nc − 1 transactions abort and repeat execution
in parallel with a new fresh transaction that is processed
by a free core. This process repeats until the last new fresh
transaction appears. Then, again one transaction commits
and all but one are reexecuted, and so on until the last
transaction is executed.

Thus, the time of processing n given requests assuming
that the execution time is dominant:

tDUR
e (a) = eo + (n−Nc)eo + (Nc− 1)eo + tu

= eo + neo −Nceo +Nceo − eo + tu
= neo + tu .

(17)

The number of conflicts is

Ka = (n−Nc)(Nc− 1) +
(Nc− 1)Nc

2

= nNc− n− (Nc)2 +Nc+
(Nc− 1)Nc

2

=
2nNc− 2n− 2(Nc)2 + 2Nc+ (Nc)2 −Nc

2

=
2nNc− 2n− (Nc)2 +Nc

2

= n(Nc− 1) +
Nc− (Nc)2

2
.

(18)

b) Transactions wait until conflicts are resolved:

In this case, we execute the first Nc transactions in
parallel. Since they all conflict, we wait with processing
the next batch of Nc transactions until all conflicts are
resolved and the conflicting transactions are reexecuted. We
repeat this process until all transactions are executed. Since
in the last iteration the number of fresh new transactions
can be smaller than Nc, we use µ to describe their time of
execution.

Thus, the time of processing n given requests assuming
that the execution time is dominant:

tDUR
e (b) =

(⌊ n

Nc

⌋
+ (Nc− 1)

⌊ n

Nc

⌋
+ µ

)
eo + tu,

where µ = n−
⌊ n

Nc

⌋
Nc

=
(⌊ n

Nc

⌋
+Nc

⌊ n

Nc

⌋
−
⌊ n

Nc

⌋
+ µ

)
eo + tu

=
(
Nc

⌊ n

Nc

⌋
+ n−

⌊ n

Nc

⌋
Nc

)
eo + tu

= neo + tu .

(19)

The number of conflicts is

Kb =
(Nc− 1)Nc

2

⌊ n

Nc

⌋
+

(µ− 1)µ

2

=
(Nc)2 −Nc

2

⌊ n

Nc

⌋
+

µ2 − µ

2

=
(Nc)2

2

⌊ n

Nc

⌋
− Nc

2

⌊ n

Nc

⌋
+

µ2

2
− n

2
+

Nc

2

⌊ n

Nc

⌋

=
(Nc)2

2

⌊ n

Nc

⌋
+

µ2 − n

2
=

1

2

(
(Nc)2

⌊ n

Nc

⌋
+

+ n2 − 2nNc
⌊ n

Nc

⌋
+
(
Nc

⌊ n

Nc

⌋)2 − n
)

≈ 1

2

(
nNc+ n2 − 2n2 + n2 − n

)

≈ 1

2

(
nNc− n

)
≈ n(Nc− 1)

2
.

(20)

2.2.3 MvDUR scalability

Below we consider scalability of a replicated system in the
best possible case, separately for the execution and abcast
time dominance. Then, we get

Theorem 3. When the execution time is dominant, MvDUR
scales if the number of conflicts does not explode.

Proof: The best possible parallel algorithm matching
the specification of MvDUR takes at least TNc = TMvDUR

lowb
time units. Thus, by (16), if the execution time is dominant,
the speedup and efficiency of an MvDUR system in the best
possible case are, respectively:

SMvDUR = T SEQ/tMvDUR
e

EMvDUR =
T SEQ

tMvDUR
e Nc

=






ne
(!nrw+Krw

Nc "eo+tu)Nc
if tu ≥ $ nq

Nc%e
ne

(!nrw+Krw
Nc "eo+! nq

Nc "e)Nc
if tu ≤ $ nq

Nc%e

≈
{

ne
(nrw+Krw)eo+tuNc if tu ≥ $ nq

Nc%e
ne

(nrw+Krw)eo+nqe
if tu ≤ $ nq

Nc%e

≈
{

ne
σ+tuNc if tu ≥ $ nq

Nc%e
ne

σ+nqe
if tu ≤ $ nq

Nc%e
where σ = (nrw +Krw)eo .

(21)

In case when e ≈ eo, efficiency can be approximated to

EMvDUR ≈
{

n
nrw+Krw+ tuNc

e

if tu ≥ $ nq

Nc%e
n

nrw+Krw+nq
if tu ≤ $ nq

Nc%e

=

{
n

nrw+Krw+ tuNc
e

if tu ≥ $ nq

Nc%e
n

n+Krw
if tu ≤ $ nq

Nc%e .

(22)

Thus, if abcast dominates RO requests (i.e., tu ≥ $ nq

Nc%e),
then the MvDUR-based system scales if the number of
requests n is large enough to compensate for an increasing
number of cores and the number of conflicts does not
explode. If RO transactions predominate (tu < $ nq

Nc%e), then
the system scales perfectly if the number of conflicts does
not explode.
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Theorem 4. When the abcast time is dominant, MvDUR scales
worse than when the execution time is dominant, and it does not
scale if all requests are updating.

Proof: See the article.

3 ADDITIONAL RESULTS FOR (L)SMR
From Lemma 1, we can infer the time difference between
SMR and LSMR for the simplest system, where c = 1 (so
Π = ∆) and N = 1:

Lemma 3. If N = c = 1 then

Tdiff
SMR
LSMR =

{
( trβ − e)n+ βe if ∆′ > 0
nq

β tr if ∆′ ≤ 0
(23)

when the abcast time (network communication) is dominant, and

Tdiff
SMR
LSMR =

{
tr if ∆′ > 0

nqe if ∆′ ≤ 0
(24)

when the execution time (CPU processing) is dominant.

Proof:
If tr

β ≥ e then by (5):

If ∆′ > 0

Tdiff
SMR
LSMR =

nq

β
tr −Π =

nq

β
tr −∆

=
nq

β
tr − (nq + nrw − β)e+

nrw

β
tr

=
n

β
tr − (n− β)e =

n

β
tr − ne+ βe

=

(
tr
β

− e

)
n+ βe .

If ∆′ ≤ 0, then Π = ∆ = 0, so

Tdiff
SMR
LSMR =

nq

β
tr .

If e ≥ tr
β then by (5):

If ∆′ > 0

Tdiff
SMR
LSMR = nqe−Π = nqe− nqe+ tr = tr .

If ∆′ ≤ 0, then Π = ∆ = 0, so

Tdiff
SMR
LSMR = nqe .

From Theorem 1, it is easy to show as below:

Lemma 4. In a system with single core CPUs (c = 1), in the best
case, a service replicated using LSMR and executed on N servers
is not slower than processing requests sequentially if ∆ > 0. If
∆ =0 then LSMR is not slower if (n − β)e ≥ nrw

β tr when the
abcast time is dominant, or if nqe ≥ tr when the execution time
is dominant.

Proof: Consider ∆ > 0. When the abcast time is
dominant (i.e., tr

β ≥ e) then δSMR = βe and by (5):

∆ = ∆′ =
(⌈nq

N

⌉
+ nrw − β

)
e− nrw

β
tr

and from Theorem 1 we get that LSMR is not slower than
its sequential counterpart if

(n− β)e ≥ nrw

β
tr +Π .

Since we assumed that c = 1, there is Π = ∆ and we get

(n− β)e ≥ nrw

β
tr +

(⌈nq

N

⌉
+ nrw − β

)
e− nrw

β
tr

=⇒ ne− βe ≥
⌈nq

N

⌉
e+ nrwe− βe

=⇒ ne ≥
⌈nq

N

⌉
e+ nrwe

=⇒ (n− nrw)e ≥
⌈nq

N

⌉
e

=⇒ nqe ≥
⌈nq

N

⌉
e

=⇒ nq ≥
⌈nq

N

⌉
.

But nq ≥ %nq

N & is always true, which means that LSMR is
always not slower than its sequential counterpart when the
abcast time is dominant.

When the execution time is dominant (i.e., e ≥ tr
β ) then

δSMR = tr and by (5):

∆ = ∆′ =
⌈nq

N

⌉
e− tr

and from Theorem 1 we get that LSMR is not slower than
its sequential counterpart if

nqe ≥ tr +Π .

Since we assumed that c = 1, there is Π = ∆ and we get

nqe ≥ tr +
⌈nq

N

⌉
e− tr

=⇒ nqe ≥
⌈nq

N

⌉
e

=⇒ nq ≥
⌈nq

N

⌉
.

But nq ≥ %nq

N & is always true, which means that LSMR is
always not slower than its sequential counterpart.

Consider ∆ = 0 (so Π = 0). When the abcast time is
dominant then from Theorem 1 we immediately get that
LSMR is not slower than its sequential counterpart if

(n− β)e ≥ nrw

β
tr .

When the execution time is dominant then from Theorem 1
we immediately get that LSMR is not slower than its se-
quential counterpart if

nqe ≥ tr .

We can reduce LSMR to SMR by failing to distinguish
RO and RW requests (nq = 0) and suppressing multicores
(c = 1). Then, we get as expected:

Theorem 5. A service replicated using SMR and executed on N
servers is always slower than its sequential counterpart.

Proof: In SMR, we do not distinguish between RO
and RW requests, so n = nrw (or nq = 0) and Π = ∆ = 0.
Hence, by Lemma 4, when the abcast time is dominant, SMR
is not slower if (n − β)e ≥ n

β tr . From definition of abcast
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time dominance n
β tr ≥ ne. Hence (n− β)e ≥ ne, so 0 ≥ βe,

but then we get contradiction since β > 0 and e > 0. When
the execution time is dominant, SMR is not slower if nq ×
e ≥ tr , so we get 0 ≥ tr since nq = 0, but this is false since
tr > 0. Hence SMR is slower than its sequential counterpart.

4 STATE MACHINE REPLICATION WITH MULTIVER-
SIONING (MVSMR)
In this section, we propose State Machine Replication with
Multiversioning (MvSMR)—a variant of the state machine
replication scheme that uses multiversioning instead of
readers/writers locks to optimize read-only requests. We are
not aware of any concrete implementation of such a system,
so our proposal is arbitrary. To describe MvSMR, we use
the assumptions and rules 1-3 describing SMR (see Section
“State machine replication: SMR and LSMR” of the article),
but restrict rules 1 and 2 to RW requests only, and add new
rules:

4) request types (RO or RW) are known a priori,
5) RW requests are executed sequentially and in the

same order by all servers. A RO request is processed
in parallel with other RO/RW requests by any (but
one) server, thus no coordination is required,

6) once a RW transaction Tx completes, an immutable
version of each object that was modified by Tx is
created, to be accessed exclusively by any future RO
transactions. Each RO transaction Ty can only access
one version of a given object—the last one before Ty

commenced.

Note that if RW transactions were allowed to execute on
each server in parallel (optimistically), they might conflict.
Conflicting transactions would have to be aborted and
reexecuted. Moreover, distributed agreement coordination
would be required to ensure consistency among servers.
Thus, effectively the MvSMR replication scheme would
become very much similar to MvDUR. Since the lack of
conflicts is one of the main advantages of SMR compared
to DUR, we regard this further optimization in potentia as
counteracting.

The serial execution of RW transactions in MvSMR in-
volves some overhead due to creation of object versions.
But contrary to MvDUR, this overhead is smaller since there
is no overhead due to transaction certification. Also, main-
taining each object only in two copies at a time is sufficient
in MvSMR since RW transactions are executed sequentially.
Therefore, we neglect this overhead and assume that the
time of processing RW and RO requests is the same and
equal e. (Similarly, we neglected the overhead of locks in
LSMR.)

The potential advantage of SMR with multiversioning
when compared with SMR with readers/writers locks is
that the former scheme enables more parallelism since
RO transactions can be executed in parallel with a RW
transaction. However, SMR equipped with multiversioning,
like DUR, requires a layer of memory management (to
coordinate access to heap/object versions). On the contrary,
any service can be easily replicated and deployed on a
custom system using basic SMR scheme (with or without

readers/writes locks) simply by intercepting and broadcast-
ing requests sent to the service. In LSMR, it is necessary
to instrument shared objects with locks, which is, however,
much easier to ensure in a custom system than to provide
memory management. This simplicity is a great advantage
of SMR and LSMR that do not use multiversioning.

The theoretical analysis of the performance of MvSMR
and the results obtained are exactly the same as for LSMR
in Section “State machine replication: SMR and LSMR” of
the article, but instead of Π′ one should use Π′

mv , which is
derived as follows:

Π′
mv =

[∆N/(N(c− 1))− tSMR
rw ]N(c− 1)

Nc

=
∆− tSMR

rw (c− 1)

c
and then we have:

Πmv =

{
$Π′

mv% if Π′
mv > 0

0 if Π′
mv ≤ 0

=

{⌈
∆−tSMR

rw (c−1)
c

⌉
if ∆

c−1 > tSMR
rw

0 if ∆
c−1 ≤ tSMR

rw .

(25)

As expected, the time Π′
mv for MvSMR is shorter than

Π′ for LSMR, and the difference is attributed to nrwe which
does not need to be subtracted from tSMR

rw (as with reader-
s/writers locks in LSMR), since RO transactions in MvSMR
with multiversioning can be now executed in parallel with
RW transactions.

5 EXPERIMENTAL EVALUATION
In this section, we give a complete description of the re-
sults of our experimental evaluation of JPaxos (SMR) and
Paxos STM (MvDUR). We also explain how we obtained
the experimental data that we used to estimate the ideal
throughput, based on the lower bounds from the model. For
convenience, we included in this section the figure and some
text fragments that appeared in the article; see the article for
the summary and conclusions.

We present the results of experimental evaluation of
SMR and MvDUR under different workload types and vary-
ing contention levels, obtained using popular microbench-
marks: Hashtable and Bank. For each benchmark, we devel-
oped a non-replicated service (SeqHashtable and SeqBank)
executing requests sequentially on one machine, and a
replicated, fault-tolerant counterpart, where the program
code and data structures (hashtable and bank accounts)
were fully replicated on N nodes, each one equipped
with a c-core processor. The replicated service was built
using JPaxos, which utilizes the state machine replication
approach, and Paxos STM, which implements the MvDUR
algorithm [1].

As in the original state machine replication approach,
JPaxos does not recognize requests types, so it implements
the SMR scheme. Paxos STM can execute requests in parallel
on multicores. Moreover, multiversioning ensures that RO
transactions never conflict (so never abort), thus it imple-
ments the MvDUR scheme. Both systems use the implemen-
tation of abcast based on Paxos [2], with support of message
batching and pipelining.
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Hashtable: RO requests RW requests
Default 100 get 8 get + 2 put/remove
Prolonged 100 get+1 ms 8 get + 2 put/remove+1ms
High-Contention 100 get 40 get + 10 put/remove

Fig. 1. No. of operations per Hashtable’s configuration.

Both systems allow replicas to crash and later re-
cover and seamlessly rejoin. Notably, nonvolatile storage is
scarcely used during regular (nonfaulty) system operation.
During recovery, a recovering replica can obtain the current
state from other live replicas (if at least a majority of replicas
is operational all the time). In the paper, we compared the
performance of the two systems during regular (nonfaulty)
execution. But in all our experiments, we ran both systems
with the recovery protocol enabled, so they were fully fault-
tolerant.

5.1 Benchmarks
The Hashtable benchmark features a hashtable of size h,
storing pairs of key and value, and accessed using the get,
put, and remove operations. A run of this benchmark consists
of a load of requests which are issued to the hashtable. As in
the model, we consider two types of requests (transactions):
A read-only (RO) request executes a series of get operations
on a randomly chosen set of keys. A read-write (RW) request
executes a series of get operations, followed by a series of
update operations (either put or remove). The Hashtable is
prepopulated with h

2 random integer values from a defined
range, thus giving the saturation of 50%. The saturation
level is preserved all the time: If a randomly chosen key
points at an empty element, a new value is inserted using
put; otherwise, the element is removed using remove.

We used three Hashtable configurations: Default, Pro-
longed, and High-Contention, which represent various
workload types, modeled by varying the number and length
of operations in RO and RW transactions (see Fig. 1). In
all cases, each RO request scans a vast amount of data
using 100 get operations. In contrary, RW requests have
fewer operations (10 in Default and Prolonged and 50 in
High-Contention), where 20% are update operations. In Pro-
longed Hashtable, each RO and RW transaction is prolonged
1 ms, which simulates a computation-heavy workload for
execution time dominance.

The Bank benchmark features a replicated array of 250k
bank accounts. A run of this benchmark consists of a load of
RW and RO requests accessing the accounts. A RW request
transfers money between two accounts, by executing two get
and two put operations on the replicated array. A RO request
computes a balance, by reading all accounts and summing
up the funds.

For each benchmark, we examined three test scenarios,
obtained by the following mix of RW and RO requests in the
test load: 10%, 50%, and 90% of RW requests. RO requests
were known a priori. In Paxos STM, different test scenarios
allow us to simulate variable contention in the access to data
shared by concurrent transactions.

5.2 Experimental environment
We ran tests in a cluster of 20 nodes connected via 1Gb
Ethernet network. Each node had 28-core Intel E5-2697 v3

2.60GHz processor, 64GB RAM, and used Scientific Linux
CERN 6.7 with Java HotSpot 1.8.0.

The abcast protocol used by JPaxos and Paxos STM was
configured to have at most two concurrent instances of
consensus and the batch capacity 64KB. We experimentally
established an optimal number of threads in Paxos STM
to be 160 for Hashtable and 280 for Bank (these values
were used in all our tests). In all of our tests, the number
of threads is high and far exceeds the number of physical
cores, to compensate for threads that are blocking on I/O
(network) operations. This way we can fully exercise the
hardware, and show the peak performance of JPaxos and
Paxos STM, which corresponds to our model.

To reduce the overhead caused by client-server commu-
nication, the clients ran on replicas. The number of clients in
JPaxos and Paxos STM was constant per replica, and equal
the number of threads in Paxos STM.

5.3 Performance measures and parameters
For all benchmarks, we present throughput—the number
of handled requests (committed transactions) per second.
In Paxos STM-based service, concurrent transactions may
conflict and abort, so we also present the abort rate, denoted
R—the percentage of transactions aborted due to conflicts
out of a total number of transaction executions:

R =
K

n+K
100% (26)

where n is the number of requests and K is the number
of conflicts. The abort rate gives a useful insight into the
level of contention. We also measured data transfer in Mb/s
to witness network congestion, as it is a limiting factor in
many tests.

In Fig. 4, we give the measured results and the optimal
throughput n/Tlowb of SMR and MvDUR for N = 3..20
replicas, where Tlowb was calculated using (1) and (16); n,
nrw, nq and c are constant input data; tr , tu, e, eo, and
message size are obtained separately for each benchmark and
test scenario through measurements of JPaxos and Paxos
STM; β1 = 64KB/message size, where 64KB is the capacity of
abcast batch, and β2 = 2. These parameters are constant in
each test scenario. Only Krw (the actual number of conflicts)
changes with N . The abcast times tr and tu were measured
when network was not congested. Below we explain in more
detail how the values of the parameters were established.

We obtained the experimental and theoretical results
for the number of replicas N ranged from 3 to 20, since
our Paxos-based abcast protocol requires N ≥ 3 to make
progress. The total number of requests n was chosen to be
large enough to compute the meaningful (optimal) through-
put, and was constant through all tests. In order to establish
values of other parameters, we conducted additional exper-
iments, as follows.

We configured the Paxos-based abcast protocol used
by JPaxos and Paxos STM to ran in all tests two parallel
instances of the protocol, with the abcast batch capacity
equal 64KB, as this was an optimal configuration. Then, we
get β1=64KB/message size and β2 = 2. Separately for each
benchmark and each test scenario, we measured the average
size of messages carrying requests in SMR, and read-sets
and updates in MvDUR. This way we obtained 24 message
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sizes (4 benchmarks × 3 test scenarios × 2 systems) which
we then used to establish 24 different values of β = β1β2.
The message sizes varied from circa 60B (Bank in JPaxos) to
almost 800B (High-Contention Hashtable in Paxos STM).

The values of tr and tu in SMR and MvDUR respectively,
were measured for the abcast protocol that is part of the
JPaxos and Paxos STM implementation. For this, we used
the protocol to broadcast a continuous stream of messages
filled with a random content, and counted the messages
delivered during T seconds (say x). Then, the elapsed time
of a single abcast is t{r,u} = T

x/β1
β2 = T

x β. We ran this
experiment for all message sizes that we measured when
executing our benchmarks. In effect, we obtained 12 values
of tr (or tu), which correspond to the best possible times of
abcast in our benchmarks, but established when the network
was not saturated, and the processors were not burdened
by any additional tasks, as we executed the abcast protocol
alone.

However, tr and tu do not include the time of the tasks
that are required to prepare a message for a broadcast or use
(message marshalling/unmarshalling), and for inter-thread
communication, as a part of the regular system operation.
This was intentional, since, according to the performance
model, tr and tu describe only the abcast activity which
can be parallelized with other computation. As such, these
values are the optimal times of broadcasting a message
atomically using the underlying network infrastructure.

The mean request execution time e in SMR and eo/e
(of RW/RO requests) in MvDUR were measured separately
for each test scenario by running the actual benchmarks
under JPaxos and Paxos STM, respectively. We used the
ThreadMXBean interface for managing threads in JVM to
obtain CPU times. In JPaxos, e was measured as the CPU
time of processing the code of a request, from the receipt of a
request till a response to the request was generated. In Paxos
STM, the request execution time is the CPU time required
by a thread to process a transaction from the transaction
start till the transaction commit is executed, but before the
abcast is launched, so this time does not include the time of
the final certification and installing the updates since these
two operations are executed after abcast message delivery.
The measured times incorporate the overhead mentioned
in the definition of to (i.e., transaction certification, creat-
ing/removing object copies, and collecting read-sets and
updates). But both in SMR and MvDUR, the overhead of
inter-thread communication and message (un)marshalling
were not measured, as they do not logically belong to a
request.

To calculate the MvDUR throughput, the number of
conflicts Krw per n requests was counted in each run of
the Paxos STM test. Krw can also be calculated from the
abort rate using the following formula:

Krw =
nR

100%−R
(27)

which was derived from (26) taking K = Krw, where n
is the total number of requests (or committed transactions)
and R is the abort rate (given in %).

The average number of conflicts per update transaction
(or the average number of times each update transaction

Cluster size → 3 6 9 11 14 17 20
a) H. Default

10% RW 0.41 0.89 1.33 1.63 1.98 1.90 2.35
50% RW 0.42 0.91 1.34 1.65 1.95 1.93 2.56
90% RW 0.42 0.91 1.34 1.65 1.97 1.92 2.29

b) H. Prolonged
10% RW 0.15 0.43 0.76 1.00 1.45 2.15 2.42
50% RW 0.39 0.91 1.38 1.68 2.12 2.07 2.49
90% RW 0.41 0.95 1.41 1.72 2.13 2.05 2.46

c) H. High-Cont.
10% RW 5.08 10.24 15.91 19.15 18.99 22.05 25.59
50% RW 5.09 10.27 16.02 18.41 18.00 19.74 25.03
90% RW 5.10 10.34 15.98 19.09 20.26 19.85 25.99

d) Bank
10% RW 0.00 0.00 0.00 0.00 0.00 0.00 0.01
50% RW 0.01 0.01 0.02 0.03 0.04 0.05 0.06
90% RW 0.01 0.02 0.03 0.04 0.05 0.07 0.08

Fig. 2. krw—the number of conflicts per update transaction in the Paxos
STM-based benchmarks.

Test scenario → 10% RW 50% RW 90% RW
a) H. Default SMR 3-20a

MvDUR 3-20a
b) H. Prolonged SMR 3-20e

MvDUR 3-14e,15-20a 3-5e,6-20a 3e,4-20a
c) H. High-Cont. SMR 3-20a

MvDUR 3-20a
d) Bank SMR 3-20e

MvDUR 3-20e 3-6e,7-20a

Fig. 3. The abcast time (a) vs. execution time (e) dominance for a
number of replicas N=3..20 (3-20).

is reexecuted), denoted krw, can be derived from (27), as
follows:

krw =
Krw

nrw
=

nR

(100%−R)nrw
=

R

(100%−R)p
(28)

where p = nrw
n equals 0.1, 0.5, and 0.9, respectively, for

the 10%, 50%, and 90% RW test scenarios. In Fig. 2, we
show how krw changes in Paxos STM-based benchmarks
with an increasing number of nodes, considering all three
test scenarios (we only show example nodes for illustra-
tion). The results showed some variation, due to factors
beyond us, e.g. the variable speed of Java garbage collector.
Interestingly, given any Hashtable benchmark and a cluster
size, krw is similar across test scenarios. Of course, the
abort rate is larger for 10% RW than for 90% RW, but
since the number of RW requests also increases, the average
number of conflicts per update transaction is similar in our
benchmark configurations.

Once we obtained the values of all parameters, as de-
scribed above, we used formulas (1) and (16) to calculate
the lower time bounds Tlowb on processing n requests. De-
pending on the benchmark used, a given test scenario, and
the number of replicas, the concrete values of parameters
revealed either abcast time dominance or execution time
dominance for SMR and MvDUR, as summarized in Table 3.
The optimal throughput n/Tlowb for SMR and MvDUR is
given in Fig. 4.

5.4 Benchmark results
5.4.1 Default Hashtable
Default Hashtable replicated using JPaxos executes all re-
quests sequentially on each node. Thus, it cannot scale
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Fig. 4. Model predictions and benchmark results for 10%, 50%, and 90% of RW requests (or transactions).

Test scenario → 10% RW 50% RW 90% RW
a) SeqHashtable Default 657785 1002342 2270151
b) SeqHashtable Prolonged 994 996 998
c) SeqHashtable High-Cont. 468966 528255 650705
d) SeqBank 40477 73174 208853

Fig. 5. Throughput of sequential services (req/s).

with an increasing number of nodes. No transactions are
ever reexecuted, since they never conflict. However, the
performance of JPaxos is not uniform across the whole range
of cluster sizes (see Fig. 4a). In all three test scenarios, JPaxos
achieves the peak throughput when the network is nearly
saturated (see the network congestion results in Fig. 4a), and
later the throughput decreases with an increasing number
of nodes, because the network is saturated, so the time of
abcasting to a higher number of replicas also grows. On the
other hand, before the network gets saturated, the increase

in throughput in the low range of cluster sizes can only
be attributed to gradually better utilization of the abcast
protocol. When the number of nodes is small, the number of
clients is also small, as they are collocated with the replicas,
and, in effect, there are not enough requests produced by
the clients to fully utilize the abcast protocol and harness
its potential. Thus, effectively the number of requests per
abcast batch was lower than the declared value of β1, while
in the model every instance of abcast carries β1 requests,
where β1 is chosen to be a constant value such that the ab-
cast protocol is utilized optimally. The results in Fig. 4a show
that the execution time in Default Hashtable under JPaxos
is not dominant, since otherwise the throughput would be
constant. Thus, this benchmark is abcast dominated, and
processors often wait for requests to arrive. JPaxos achieves
the highest performance in the 90% RW test scenario that
features the highest percentage of short RW requests, hence
we infer that the abcast protocol was best utilized in this



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ?, AUGUST 2016 10

test compared to other test scenarios, i.e., a larger number
of requests was delivered per protocol instance.

As expected, the calculated (optimal) throughput of SMR
for this benchmark is constant across the range of cluster
sizes, because SMR does not scale by Theorem 2. We have
used the optimal value of β which is constant per test
scenario and across the range of cluster sizes. The optimal
throughput is higher for a larger percentage of RW requests,
since then the average message size is smaller, thus β1 (so β)
is larger, so the calculated time Tlowb of processing requests
by SMR is shorter; see (1) and (2) for abcast dominance.

Conversely to JPaxos, the Default Hashtable benchmark
replicated under Paxos STM gives better performance for
a higher percentage of RO requests. This is not surpris-
ing since RO requests do not require agreement coordina-
tion, hence the costly abcast operation. The plots obtained
through experimental evaluation of Paxos STM have a sim-
ilar shape as for JPaxos, i.e., the throughput increases until
the network is saturated, and later steadily drops as abort
rate raises (see abort rate in Fig. 4a). The explanation of this
behavior is the same as it was in case of Default Hashtable
replicated with JPaxos. The abort rate is low for the 10%
RW test scenario, moderate for the 50% RW test scenario,
and high (ranging from 27% up to 67%) when 90% of
transactions are updating. When Paxos STM had the highest
throughput, then for all test scenarios on average every RW
transaction was conflicting and had to be reexecuted at least
once before it could commit, as krw ≈ 1.3 (see Fig. 2). For
three replicas, on average every second RW transaction was
executed (krw ≈ 0.4), while for 20 replicas on average every
RW transaction was reexecuted at least twice (krw ≈ 2.3).
A high number of conflicts means wasted resources and
lower overall throughput, which was more than two times
worse compared to JPaxos in the same scenario (in the 10%
and 50% RW scenarios, Paxos STM always performed better
than JPaxos).

The calculated (optimal) throughput of MvDUR shows
that Default Hashtable is abcast time dominant for all test
scenarios and cluster sizes (see Fig. 3). By comparing the
results predicted by the model with the results obtained
in the experimental evaluation of Paxos STM, one can see
that Paxos STM underutilizes the abcast protocol for a small
number of replicas until the network becomes saturated. As
it was explained before, the clients which are collocated with
the replicas are not able to produce enough requests, so the
number of update transactions (only those require agree-
ment coordination using abcast) is not large enough to fully
exercise the capability of the abcast protocol. Conversely,
the calculated throughput of MvDUR does not expose this
behavior since β is constant for each test scenario, and the
abcast batch is always full of requests. Thus, for a small
number of nodes, MvDUR enjoys the highest throughput
since the number of transaction conflicts is minimal. But
since the number of conflicts Krw (counted by running the
Default Hashtable benchmark with Paxos STM) grows with
the cluster size, then also the time TMvDUR

lowb increases; see (16)
for abcast dominance. Therefore, the optimal throughput of
MvDUR diminishes. However, it is higher than the mea-
sured throughput of Paxos STM also for a larger number
of nodes, since in the model the network is never saturated,
thus the abcast protocol is always used optimally (the abcast

time tu is optimal and constant for the whole range of clus-
ter sizes). On the other hand, in the experimental evaluation
of Paxos STM, when the network became saturated, the
abcast time grew with an increasing number of nodes.

In all evaluation tests, the non-replicated Default Se-
qHashtable surpasses the performance of JPaxos- and Paxos
STM-based replicated counterparts (see Fig. 5a). But this
immense throughput is achieved at the cost of no fault tol-
erance and scaling capability. The throughput values among
test scenarios vary since the time of executing RO and RW
requests is different. In the best 10% RW scenario, Paxos
STM-based Default Hashtable reaches at most about half of
the performance of its non-replicated counterpart.

5.4.2 Prolonged Hashtable

In contrast to Default Hashtable, where the abcast time
was dominant, the Prolonged Hashtable benchmark aims
at mimicking a computation-heavy workload with the ex-
ecution time dominance. For this, we have used exactly
the same set of operations in a transaction as in Default
Hashtable, but the execution of each request is prolonged
by 1 ms.

Prolonged Hashtable replicated using JPaxos has a stun-
ningly uniform throughput of about 965 req/s, regardless
of the number of nodes (see Fig. 4b). This indicates that the
lengthy execution time of each request entirely covers up the
cost of replica coordination. Since all requests are processed
sequentially, the parallel architecture does not bring any
gain in throughput. Moreover, the lengths of RO and RW
transactions are similar, thus despite the execution time
dominance, there is no difference in performance between
the 10%, 50%, and 90% RW scenarios. Our performance
model correctly predicts the execution time dominance for
Prolonged Hashtable with SMR. The calculated throughput
is constant and equal 994 req/s. Note that JPaxos does
not quite reach the optimal throughput of SMR, due to
the overhead caused by inter-thread communication and
message (un)marshalling which were not modelled.

In contrast, Prolonged Hashtable replicated using Paxos
STM shows excellent scaling. In the 10% RW scenario, the
throughput increases with the number of nodes almost
linearly, up to the cluster with 14 replicas, when the network
becomes saturated. In other scenarios, Paxos STM scales
pretty well up to 10 nodes. Then, the network gets satu-
rated and the performance drops. The overall throughput is
significantly higher than it is for JPaxos-based Prolonged
Hashtable, even for just three nodes. This is credited to
Paxos STM’s ability of executing transactions in parallel,
thus taking the advantage of the multi-core hardware. Note
that the abort rate is nearly the same as in the Default
Hashtable benchmark. The model predictions for MvDUR
are consistent with the results that we obtained experimen-
tally for Paxos STM—the workload is execution time domi-
nant for a small number of replicas, and changes into abcast
time dominant for a higher number of replicas. In the 50%
and 90% RW scenarios, the calculated results for MvDUR
show that the workload is already abcast time dominant
from a small number of nodes (see Fig. 3). As it was in case
of JPaxos, Paxos STM does not reach the calculated (optimal)
throughput of MvDUR, due to the overhead of inter-thread
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communication and message (un)marshalling that were not
modelled.

The non-replicated Prolonged SeqHashtable has the
throughput in the range of 994–998 req/s, depending on
the scenario (see Fig. 5b), which is very similar to the one of
JPaxos-based replicated counterpart, where all requests are
also processed sequentially. This is as expected since the Pro-
longed Hashtable benchmark replicated using JPaxos has
the execution time dominant workload, thus broadcasting a
message atomically takes a relatively small amount of time
compared to the duration of request execution. In contrast
to Default SeqHashtable, the non-replicated Prolonged Se-
qHashtable does not even come close to the performance of
Paxos STM-based replicated counterpart that was superior
in all test scenarios and delivered a much higher through-
put.

5.4.3 High-Contention Hashtable
The High-Contention Hashtable benchmark aims at testing
a replicated system in a high contention environment. Thus,
compared to Default Hashtable’s configuration, the number
of read and update operations in RW requests grew 5
times: to 40 get and 10 put/remove operations. Note that
the execution time of a RW transaction is longer in High-
Contention Hashtable than in Default Hashtable. However,
it is still much shorter than the time of abcast, which is
dominant in this benchmark both for JPaxos and Paxos STM.

The High-Contention and Default Hashtables, which
were replicated using JPaxos, have a very similar perfor-
mance (see Fig. 4c). The slight difference in the overall
throughput stems from the larger size of RW requests in
the High-Contention Hashtable benchmark. Therefore, the
maximum throughput which is achieved by JPaxos-based
High-Contention Hashtable is just a few percent lower com-
pared to the maximum throughput of JPaxos-based Default
Hashtable across all scenarios.

The High-Contention Hashtable benchmark, which is
implemented using Paxos STM, suffers from a very high
contention level (a large number of concurrent transactions
try to access the same data). The increased level of con-
tention (compared to contention in Default and Prolonged
Hashtables) causes a larger number of transactions to be
aborted due to conflicts and reexecuted, which diminishes
the overall throughput. The abort rate under Paxos STM,
starts from 34% in the 10% RW test run on three nodes,
and reaches striking 96% in the 90% RW test run on 20
nodes (see abort rate in Fig. 4c). Therefore, on average,
every RW transaction is reexecuted due to conflicts around
5 times in the former case, and 26 times in the latter case,
before it finally commits (see Fig. 2). Compared to JPaxos,
Paxos STM-based High-Contention Hashtable performs bet-
ter only in the 10% RW scenario. In other cases, JPaxos
greatly outperforms Paxos STM, which is especially visible
in the 90% RW scenario, where on average High-Contention
Hashtable performs 10 times better under JPaxos than under
Paxos STM which suffers from a very high abort rate.

The non-replicated High-Contention SeqHashtable has a
visibly worse throughput than Default SeqHashtable (see
Fig. 5a,c). The lower performance can be attributed to
the higher execution time of RW requests. However, the
throughput variation across test scenarios is smaller. This

is because the execution times of RO and RW requests
are approximately the same. Therefore, since the overall
throughput is lower, the difference among test scenarios
is less noticeable as the number of RW requests increases.
However, in all test scenarios, the performance of the non-
replicated High-Contention SeqHashtable service trumps
the performance of its fault-tolerant counterparts, and the
throughput is a few times larger than the best throughput
achieved by the implementations using JPaxos and Paxos
STM.

5.4.4 Bank Benchmark
Contrary to the Hashtable benchmarks, the number of op-
erations executed as the result of RO and RW requests are
very different in the Bank benchmark: A RO request reads
all 250 000 elements of the array, which represent bank
accounts. On the other hand, a RW request is very short—it
just reads two randomly chosen elements of the array and
subsequently modifies them. In effect, the cost of executing
a RO transaction is much higher compared to the cost of
a RW transaction. However, a huge number of operations
executed per each RO request does not lead to large abcast
messages in JPaxos, as a RO request only contains a single
command to read the bank accounts and calculate a total
of funds. Therefore, the processing CPUs have become the
bottleneck in this benchmark, not the computer network.

In the 10% and 50% RW test scenarios, the throughput of
Bank replicated using JPaxos is constant across cluster sizes
(see Fig. 4d), and it is clearly restricted by the CPU time of
processing requests. The model predictions for SMR confirm
our guess and also indicate the execution time dominance
for all three test scenarios (see Fig. 3). In case of the 90%
RW scenario, the situation is slightly different. For a small
number of nodes (3-7), JPaxos-based Bank experiences the
abcast time dominance, while for a larger cluster size, the
execution time is dominant. In the range of 3-7 nodes, the
throughput grows linearly, similarly as in case of other
abcast time dominant tests. This behavior is attributed to
a relatively low number of submitted requests, which make
JPaxos underutilize the abcast protocol. However, on the
contrary to other abcast time dominated benchmarks, when
the throughput reaches its peak value, it stays constant in-
stead of deteriorating with an increasing number of replicas.
This is because the peak performance is not bounded in this
test by the network bandwidth, but rather by the available
processing power. In fact, the network is far from being
saturated for every cluster size. Hence, for a high number
of nodes, the throughput of JPaxos is only limited by the
time of processing requests. This has been predicted by
our performance model, and the throughput of SMR sets
a ceiling for the performance of JPaxos-based Bank (see
Fig. 4d). However, the model predicts the execution time
dominance for every cluster size, while for a low number
of nodes, the JPaxos system was first limited by the abcast
protocol rather than by processing time.

Bank implemented using Paxos STM also experiences
the abcast time dominance only for the 90% RW scenario.
As in the most of other tests, the system improves the
performance up to the point when the network becomes
saturated. Since the contention levels are relatively small for
the 90% RW scenario, the degradation of performance for a
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higher number of replicas is relatively benign. In the 10%
and 50% RW scenarios, JPaxos-based Bank is execution time
dominant and the system scales almost linearly across the
whole range of cluster sizes. This behavior can be attributed
to the ability of Paxos STM to use the underlying parallel
multicore architecture well and process many requests in
parallel using a large number of available processor cores.
These good results were heavily influenced by the optimiza-
tions of the abcast protocol, namely, batching and pipelin-
ing. Without these optimizations, the abcast protocol would
perform much worse, given a very small size of agreement
coordination messages that carry transaction read-sets and
updates (each message has only 76 bytes), extremely short
RW transaction execution times, and a large number of RW
transactions performed concurrently.

Note that the performance results that we got for Bank
are quite different from the results obtained by running
the Hashtable benchmarks. In all variants of Hashtable, test
scenarios with a larger number of RO requests gave a higher
throughput for all cluster sizes. Now, the opposite is true—
the best results are obtained for the 90% of RW requests.
This behavior can be easily explained if we recall that it
takes significantly more time to execute a RO request than a
RW request.

The non-replicated SeqBank outperforms its replicated
counterparts for the 90% RW scenario, with the throughput
reaching 208k req/s (see Fig. 5d). However, in both 10% and
50% RW scenarios, SeqBank performs better than JPaxos-
based Bank for all cluster sizes, but worse than Paxos STM-
based Bank for larger cluster sizes. E.g., in the cluster with
20 nodes, in the 10% RW scenario, SeqBank has half the
throughput of Paxos STM-based Bank, and in the 50% RW
scenario, it reaches 3/4 of the throughput that is achieved
by Paxos STM-based Bank. Note that the implementation of
SeqBank does not incur any overhead that is characteristic
for the replicated counterparts. This fact, together with a
very short time of RW requests compared to RO requests,
enabled SeqBank to perform five times better when the
number of RW requests grew from 10% to 90%.
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