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Abstract—Digital watermarking is an emerging technique to [2]. It embeds hidden secondary data into digital multimedia
protect data security and intellectual property right. Identification  products for copyright notification and protection, content
or verification of watermarking patterns can be achieved by 4 thentication, transaction-tracing, and covert communication.

detecting watermarks in received signals. However, one of the Th . dvant f ¢ i is that it id
biggest challenges in watermarking detection is that the strengths € main advantage of walermarking IS that It provides a

of the watermark signals will change after being distorted by an Way to deliver side information through primary multimedia
attacker in a watermarking channel. Meanwhile, the embedding contents in a seemingly innocuous and standards-compliant
strengths may be adapted to original signals, which are unknown fashion, such that many novel functionalities can be enabled.
at the receiver end. Further, the original signals are often hl_ghly In steganography or security applications, secret messages
non-Gaussian. Although some work has been done on optimum . .

detection of watermarks, the uncertainty of watermark signal may be trans_,mltted C‘?"ef“}’ through a perceptually '””OC‘?“t
strengths and real statistical behavior of multimedia contents have image or audio. In multimedia database retrieval, watermarking
not been taken into account simultaneously. Much more study is patterns associated with annotations or keywords may be im-
needed to enhance the performance of watermarking systems. printed seamlessly into host media to facilitate future accurate
Since multiplicative watermarks are robust and well suited for - 50055 1n broadcast monitoring and copy control techniques,
copyright protection, this paper presents our investigation on . . . . . o
robust optimum detection of multiplicative watermarks. For Wate_rmar_klng can ac_tlvel_y_and cost-ef_‘fectlve_lyldentlfy spec_|f|c
sub-band transformed domains such as the discrete cosine trans- Multimedia contents in digital TV, audio, or video broadcasting
form (DCT), discrete wavelet transform (DWT), and pyramid or playing back such that royalty collection can be automated
transform, a class of generalized correlators is constructed o jllegal copying prevented.

based on the generalized Gaussian distributions. Thresholding Since the inception of digital watermarking around the early

methods to achieve a given false alarm rate, and the performance - .
analyses are provided. The square-root detector is designed and 1990s, there have been a variety of methods proposed in the

demonstrated to have near optimal performance for a large literature, and there are many ways to classify them. For ex-
set of natural images and can be employed as a “universally ample, some approaches deal with the signals in the sample
optimal” detector or decoder for images and video. The locally (spatial or time) domain, while others deal with transformed
most powerful detection method is then extended to DFT domain data. Some private watermarking schemes need the knowledge
multiplicative watermarking, with the magnitudes of coefficients fh X ¢ timedia si Is in decodi h blind wat
modeled by the Weibull distributions. Another class of detectors 0 O_S mulimedia signals in _EC(_) Ing, W erea§ Ind water-
is built based on this statistical modeling. The robust optimum Mmarking schemes do not. We will view watermarking as the fol-
detection of multiplicative watermarks can be applied to copyright lowing information system with side information available only
notification, enforcement, and broadcast monitoring. We have to the embedder [3]-[7]. A secret message or pattern is encoded
aPS!'Ed tge .rgb”St Opt'm“rﬂ.watermark'”g detection to combined  py, an encoder or embedder into a watermark and hidden into the
audio and video watermarking. host medium within an embedding distortion level. The com-
Index Terms—Digital watermarking, generalized correlationde-  posite signal is then input into the watermarking channel, where
tector, ge”era"ze(? Gaussu\:;l\? %Sltl”s’.““c_’g' robust optimum detec- 4 attacker attempts to disrupt the watermark by introducing ad-
tion, square-root detector, Weibull distribution. ditional distortions. The channel output is a corrupted or noised
composite signal. A decoder decodes the watermark bit by bit
I. INTRODUCTION or symbol by symbol, or a detector detects or verifies the exis-

M ULTIMEDIA watermarking has attracted increasing[er;?e OfC? Sp?C";'ﬁ watlerma:crkln? patteLn (:r sp;euf_lc tmh_es_se;ge.
interest from many areas as the data security and copy- ccording to the roles of watérmarks to piay In this intor-

right protection issues are becoming increasingly important | ,atlon system, th? existing schemes are classified into two
ategories. In the first category, watermarks serve as transmis-
sion codes, where an ordinary communication channel model
_ _ _ _is used, and where a message is encoded by the embedder and
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high rates, and the original host signals will not form a noider multiplicative watermarks in many sub-band transformed
source to interfere with the decoding. However, these schenaesnains such as the discrete cosine transform (DCT), discrete
are usually not very robust [13] since the robustness of thesavelet transform (DWT), and pyramid transforms. For multi-
schemes depends on tolerance zones or minimum intersympiatative watermarks embedded in the magnitudes of DFT co-
distances that are always very limited due to the perceptu@dlicients, the correlator can work, but it is optimal only when
quality requirement [13]. the magnitudes follow the exponential distribution.

In the second category, watermarks serve as verificationTo obtain the best performance, optimum detection of the
codes, where full decoding is not really necessary, but only maultiplicative watermarks needs to be investigated. In this
decide whether or nad particular message or hypothesizedpaper, a class of robust optimum detection statistics taking
pattern is present or has been transmitted. Thus, a binary #e account perceptual masking effects and attacks is derived,
cision is often required. In copyright protection or notificatiofpased on the generalized Gaussian distributions for multiplica-
and broadcast monitoring, such verification watermarkirigye watermarks in sub-band transformed domains such as
usually suffices [7]. Remarkably, a double exponential numbBXCT, DWT, and pyramid transforms. The performance of the
of messages can be verified reliably in a verification channgiroposed detector is examined using the ordinary Gaussian
Instead, an exponential number of messages can be reliatilstribution. The commonly used Laplacian distribution is
transmitted in an ordinary watermarking transmission modela special case of the GGD law, and the optimum detector

In most watermarking verification schemes, without detegorresponding to it is also examined in this paper. Their perfor-
ministic mapping from set partition of host signal space to warances are compared with the optimum detector corresponding
termark symbols, host signals are often modeled as noise, &@hape parametdr/2, which is identified as a “universally
many approaches have been taken to suppress noise from gpimum” detector for its near-optimal performance for a large
host signals and attacks to improve detection effectiveness. B6t of natural images. The methodology is then extended to
example, the additive spread spectrum scheme spreads theWaltiplicative watermarks embedded in the magnitudes of DFT
termark signal to many components [14], and the maximum weeefficients. Another class of optimum detectors is obtained by
termark strengths are obtained from just-noticeable-differendéging the Weibull distribution. The threshold achieving a given
(JND) [15]-[17]. Since a number of samples collectively corfalse alarm probability is provided. The effectiveness of the
tribute to the detection of a watermark pattern, such verific@ptimum detection is demonstrated by extensive experiments.
tion watermarking usually has high robustness, even thoughTige robust optimum detection for multiplicative watermarks
ability to recover more than one information bit might not béan be applied to copyright notification, enforcement, and
as great as that of transmission watermarking. Thus, it is mdr@adcast monitoring. In this paper, an application of the
suitable for applications such as copyright protection or notifptimum detector to combined audio and video watermarking
cation, copy control, device control, and broadcast monitorintg. proposed for the purpose of content authentication.

Identification or verification of watermarking patterns can be The rest of this paper is organized as follows. Multiplicative
achieved by detecting the watermarks in the received signals [ghbedding rule is introduced in Section Il. The robust optimum
[18]. However, one of the biggest challenges in watermarkirgtection rule for GGD is derived in Section IIl. The method-
detection is that the strengths of the watermark signals wo@tPgy is extended to DFT-domain multiplicative watermarking
change after being distorted by the attacker in the watermarkifigSection IV. Experiments are conducted in Section V to val-
channel. Meantime, the embedding strengths may be adaptei§igde the analysis. Section VI applies the optimum detector to
the original signals that are unknown at the receiver end. Furthi&g combined audio and video watermarking. Section VIl con-
the original signals are often highly non-Gaussian. AlthougHudes the paper.
some work has been done on optimum detection of watermarks,
robust optimum detection still needs much study. In the litera- [l. MULTIPLICATIVE WATERMARK EMBEDDING
ture, the watermarks are often embedded in either an additive RULE AND DETECTIONS
way ora multiplicative way. An optimum detection structure fop Multiplicative Embedding Rule and Correlator
additive watermarks has been derived [20]-[23], and accurate

performance analyses have been developed based on the eﬁgridentification or verification watermarking channel, awa-
fermark pattern is embedded at the transmission end. In the liter-

eralized Gaussian distributions (GGDs). Multiplicative water= ; i -
marks are automatically image content dependent [19] and ajure, the embedding makes use of either an additive watermark

automatically embedded mainly into the perceptually most sigmPedding rule or a multiplicative one. ,

nificant components of the image. The perceptual models based "€ commonly used additive embedding rule is [14], [19]
on Weber's law can be easily exploited. Due to these desired
properties, multiplicative watermarks have considerable robust-
ness, and they are well-suited for copyright protection. For Myyherex = {1, ..., 2y} is a sequence of data from the (trans-
tiplicative watermarks, a correlation detector is often used [14prmed) original imagew = {wr, ..., wy} is a sequence of
[19]. Itis simple and intuitively appealing; however, its employyatermark signalsy is a gain factor, angt = {y1, ..., yn } is

ment for the detection of multiplicative watermarks cannot bg sequence of watermarked data. Using the same notation, the

justified, and in the discrete Fourier transform (DFT) domaiRommonly used multiplicative embedding rule is [14], [19]
a new detection structure has been derived [24], [25]. In Sec-

tion Il, it is to be shown that the correlator actually cannot work yi = z;(1 + yw;) 1=1,..., N. (2)
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For detection or verification, the receiver needs to verify if wherez = {2,} , is a sequence of output of the watermarking
specificwatermarking pattern exists or not. For full decoding ofhannel (see Section 111-C).
a message similar to ordinary communication, orthogonal mod-To achieve near-optimal performance for a large set of natural
ulation combined with code division multiple access (CDMA)mages or video frames, a “universally optimal” detector is
can be applied [26], [27]. To these ends, a correlator is often

used [19]: 1 X s
N 6(Z) = N Z |ZL| / w;
1 . i=1
Ryw =+ Z yiw; >T = wispresent
i=1 which is particularly simple in form and is a special case of the

<T = wisnotpresent (3) robust optimum detector (see Section IlI-C).

_ N For multiplicative watermarks embedded into the DFT mag-
where T" is a threshold. For additive watermarks, the cohjtudes, the robust optimum detector is

relator can work, but it is optimal only if the distribution

is Gaussian. Optimum detectors as well as the performance N L\ P
analysis for additive watermarks have been investigated [18], 6(z) = Z pi <_‘> w;
[20]-[23]. For multiplicative watermarks embedded in many i=1 i

sub-band transformed domains, such as DCT, DWT, and . o
pyramid transforms, it is shown as follows that this correlatd¥N€réai andp; are the parameters of the Weibull distribution
actually cannot work at all when the watermark is independef€€ Section V). _ _
of the original signal. Indeed, for sub-band coefficients Derivations and approp_rlate threshqlds for _these detection
i =1, ..., N, consider the verification ofw,}. When there structures are developed in the following sections. Computa-
is no channel attack at all; = =, if there is no watermark: tional complexjties of Fhese detectors are compared with that of
then, Ry.., = (1/N) Z£V=1 z;w; ~ 0 sincez; is zero mean; on the_correlator in _Sectlon l-C. The performanc_e of the ro_bust
the other handy; = z; + va;w; if there is such a watermark; optimal d_etector is compared with that of the u_mformly optimal
then, Ry., = (1/N) Zﬁ\;l ziw; +(1/N) Ziil yzaw? & 0. A det_ector in 5, where the performance evaluations of the robust
simple fix to this problem is to change the embedding rule b@Ptimal detectors are also conducted.

keep the detection rule. For example, the following rules can

be usedy; = x;(1 + ~ sign(z;)w;) ory; = |z;|(1 + yw;), . OPTIMUM DETECTION FORMULTIPLICATIVE WATERMARKS

wheresign(z;) is the signum function of;, namely, itis 1 £ 5yqitive watermarks, the optimum detector has been
whenz; > 0; ptherwlse, I 'S_.l' In this way, the g:orrelator derived, and the performance analysis has been conducted
can work bgt it is still not optimum. Anot.her fix is to k,eepbased on the GGD model [20]-[23]. To obtain the best perfor-
the embedding r_ule bu_t change the_detectlon rul_e. In doing TRance for multiplicative watermarks, we analyze the optimum
we are able 1o investigate the _opt|mum detection for mUItHe ection of the multiplicative watermarks and provide novel
pllcat|ye watermarks embedQed in many sub-band tra_nsfor_ imum detectors effective to various transformed domains.
domains. The methodollogy Is also gxtended 0 muItlpI-|c-at| ecifically, the optimum detection statistic is derived for a
wgtermarks embedded in the magmtuQes of DFT coefﬁuengass of general distributions, namely, the generalized Gaussian
It IS demonstrated tha_t the_ correlator is outperformed by trEil?stributions. The methodology is extended to multiplicative
optimum detectors derived in this paper. watermarks cast in the magnitudes of DFT coefficients, where
the magnitudes may be statistically described using the Weibull

. ) . _distribution.
For the convenience of making comparisons, hew optimum

detectors constructed in this paper are listed in the followinﬂ. GGD Model for Sub-band Coefficients

The details of the development of these detection structuresare .
in Sections 11l and IV. Multiplicative watermarks are often embedded in the trans-

For multiplicative watermarks embedded into the sub-bafgrmed domains, such as DFT, DCT, DWT, and pyramid trans-

transformed domains, such as DCT, DWT, and pyramid trarf@fms. The coefficients of DCT, DWT, and Pyramid transform

forms, if the embedding depthg are known to the detector, an be statistically modeled using GGD. Optimum detection
the uniformly most powerful detector is for additive watermarks using GGD has been studied [20]-[22],

and large deviation bounds for performance analysis have also
. e been developed [22], [23]. Many watermarking techniques in
Lly) = Z |Biil ™ (1= (1 47 wi) ™) the DFT domain employ amplitude modulation, taking advan-

i=1 tage of the translation or shift invariance. GGD is not suitable

whereg; andc; are the parameters of GGD (see Section llI-AYor these techniques since DFT magnitudes are positive. We pro-
Taking account of visual modeling and attacks, the robust opeed by first modeling sub-band transform coefficients using a

B. List of New Optimal Detection Structures

N

timum detector is global stationary GGD and construct both uniformly most pow-
N erful detectors and robust optimum detectors; then, we model
§(z) = L Z ¢l Bizi | w; the magnitudes of DFT coefficients using Weibull distribution
N = and constructing corresponding robust optimum detectors.
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The probability density function (pdf) of the generalizedvhich the gain factor of noise can be as high as 2% of the local

Gaussian distribution is luminance without being perceived by human eyes [28]. Be-
cause of other masking effects such as the frequency sensitivity
px(z) = Ae~1Ale—m)I (4) and the contrast masking, the actual valueyahay be even
higher than 0.02 without incurring perceptual degradation. For
where stronger robustness or higher data rates, biggan be applied.
1/2 However, ify is too big, the perceptual quality will degrade. The
4= 1 (F(3/C)) _ B embedding process may depend on multimedia content and em-
o \T'(1/c) ’ 2I(1/¢) ploy visual masking models to vasy In adddition, differentys

. . o ~_ may be adopted, for example, from frame to frame in video wa-
andm is the meang is the standard deviation of the distributionermarking. It is reasonable to use

andI'(t) = [;°u'~'e™" du is the Gamma function. The dis-
tribution is denoted a&€G D(¢; m, o). Many image transforms ¥ = (1 4+ yw;) (5)
are orthogonal transforms and the mean value of coefficients in ) ) )
the AC sub-bands is close to zero, ire. = 0 [28]. The power of whereyzls are different embeleng strengths for differeps.
the exponent is the shape parameter. The smatli, the more ASSuming the actual embedding strengtfisare known to the
impulsive the shape, and the heavier the tails. The GGD mod§tector, a simple hypothesis testing is as follows:
contains the Laplacian and the Gaussian distributions as special
cases, withe = 1 andc = 2, respectively. Whea — 0, it ap-
proaches a Dirac impulse. Wher- oo, it tends to the uniform Denote the pdf undefl; asps, # = 0, 1. For GGD lawsz; ~
distribution. It has been found out that for AC coefficients in IOVGGD(ci; 0, 0;). The likelihood ratio test (LRT) leads to
or middle frequency sub-bands, generdlly < ¢ < 1, with
most images havingaround).5. The imperceptibility require- p(y
ment of watermarking implies that the magnitudes of Watermaﬁé’) = po(y)
signals have to be small compared with the original image, and
the total watermark energy should not be very large either. In this N (14 ~rw;)% — 1

- exp Grywi) T2 @)

Hy:v; =0 versus ﬁlzfyi:”yf. (6)

)
= H(l + oy wy)

=1

typical weak-signal scenario, good estimationg @hdo can Z |Biyil“ 1+ 7w
be obtained from the watermarked image instead of the orig- i=1 i i
inal. For example, the values ofands for the original Lena By taking logarithm, it can be simplified into
are0.48 and11.80; for watermarked Lena using multiplicative
embedding rule withy = 0.20 and after JPEG compression N
with quality factor 75, the estimated values are= 0.47 and L(y) = Z |Biyi
o = 11.78. The differences from those of the original image are i=1
indeed insignificant. In cases where the estimation of paramad the optimum test in the sense of the Neyman—Pearson
ters is undesirable, a “universally optimal” detector identified iemma is
Section IlI-C can be utilized. It does not need to estimate the pa- .
rameters for each image yet achieves near optimal performance L(y)>T* = H
for a large set of _natural images. <T* = H, Q)

A globally stationary GGD can be employed to model the
sub-band coefficients, where the distribution has a single vawhereT* is a properly chosen threshold to maximize the detec-
ance. An alternative is to make use of a nonstationary Gaussii@m probability for a given false alarm rate. Its performance can
model, where a model of parallel Gaussian channels is usatso be investigated in a way similar to additive watermarking
with zero mean and with variance of each Gaussian channeli@sf22] and [23]. However, other optimum detection structures
timated individually. In the parallel Gaussian model, the hosate pursued, which are optimal in the sense of locally most pow-
signal is segmented into subsignals, and each subsignal wheal detection [30].
size is relatively small is modeled approximately by a stationary
Gaussian model. Since a certain subsignal is always difficult@ Robust Optimum Detection of Multiplicative Watermarks

model using the Gaussian distribution even if the size becomesittacks usually change the gain values. In the watermarking
small—for example, a subimage containing an edge on a simplgannel, an attacker attempts to disrupt the watermark while
background will typically have a high peak in the histogrargreserving the image quality. The attacker introduces a source

which the Gaussian model does not have [29]—stationary GGRPnoise, and the output of the attacking channet {2}V,
can be used to provide a more reasonable model for sub-bggdomes

coefficients even for signals with small size.

L= L+ w) ") ®)

2k = Yr +er = T +YVrwrTr + ek, k=1,..., N (10)

B. Uniformly Most Powerful Detector N . . .
where{e; };_, is the attack noise. Decomposing the noise as

The gain factory for the multiplicative rule in (2) is smalldue ¢, — ), ;-.5, | the watermark strengths after attacks are
to perceptual constraints. The multiplicative embedding rule re- o

lies on Weber’s law as its perceptual model [19], according to Yo = Vi + Fks k=1,...,N. (1D
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If 4% is positive, the attacker helps to increase the embeddifiben

strength. In the case of robust watermarking, the largest gain

factor v, could be determined using the just noticeable dif-

ference (JND), representing the largest permissible modulation pi(z) = ANF(7) exp (_
strength without incurring perceptual degradation. For positive

Y&, 71, €xceeds JND, and the perceptual quality of the imageadad

degraded. An ideal attacker, which is the worst case for the em- N —w;

bedder, may introduce negative to decrease the embedding = P = (Z m) F). (15)
strengths or better obliterate it. To account for the attacks, we i=1 et

set a tolerance zone and seek the robust optimum detectiorépnfCe is a ZEro-mean Sequence
multiplicative watermarks. w q

Assimilating attacks as well as visual masking effects, the

(1 + yjw; )

K2

N

|Bizil“ ) (14)

1

following composite hypothesis testing is considered to derive 1 S 1 X
robust optimum detectors: N YTFT)ym0 =5 > w (16)
=1
Hy: 7y, =0 vs. Hy:y >0, k=1,...,N. (12) which does not depend om and tends to 0 av= — oo

by the weak law of large numbers (WLLN). Thus,
If the attacking channel is assumed known to the embedder(iry N)p; ' (z)(d/d¥ )pi(z)|y=o Yields the locally optimum
some sense, a watermarking detection game may be formulatgskision statistiq(1/N) Zi\;l wic; 3|z, which is sum-
where the attacker attempts to maximize the probability of dgrarized in the following theorem.
tection errors, whereas the embedder minimizes it, subject torheorem 1: Assumex — {z1, ..., zy} is a sequence of
certain constraints. Often, it is difficult to find a closed-form somdependent random variables with ~ GGD(c;; 0, o), and

lution to this minimax optimization problem except for some aty, — {wn, ..., wy} is @ known, zero-mean sequence valued
tacking channels with certain strict restrictions [31]. For generigj [—1, 1], which is statistically independent &f For the mul-

attacking channels, our approach leads to a class of generaligggkcative watermarks in (2) withh < ~; < 1, the robust op-
correlation detectors, which are simple in form, intuitively apimum decision statistic is given by

pealing, and optimal at the same time.

The alternative H; is a composite hypothesis with
non-Gaussian noise. LRT leads to the critical region
I' = {z: l(z) > T}, which depends o’ = (7}, ..., ¥x),
and no UMP test is available for this composite hypotheses
testing [32]. Without UMP, now we seek an optimum decision <n =No w a7
rule in the sense of locally most powerful detection (LMP). ) o

For the transformed coefficients of DCT, DWT, or pyramidvherer is a proper threshold, and= {zi}iL, is a sequence of
transformsg; ~ GGD (c;; 0, o;), whose parameters can be esQutput of the watermarking channel.
timated using the moments method, the goodness-of-fit method T he locally most powerful detection is also known as lo-
or the minimum relative entropy method. Parallel channels 6@lly optimum detection (LOD) [32], [33]. It is optimum for
generalized Gaussian distributions are used, which include ¥gak signals [34] and can still perform very well even when the

global stationary GGD, with; ands; fixed for alli, as a special signal strengths become large [35]. From the Pitman—Noether
case. Undefly, y; ~ GGD(c;; 0, o), zi ~ GGD(c;; 0, 0;); theorem, it can be shown that LOD is the most efficient asymp-

and under Hy, y; ~ GGD(ci; 0, (1 + ~w;)oi), totically [32], [33]. Since the optimum detectors in the above
2z ~ GGD(c;; 0, (1 + ~vw;)oy). ’ theorem correlate watermark signals with the observation mag-

To conserve the mean value of the transformed coefficientsdgdes raised to the power of, we call them generalized cor-
that there is no “change of lighting conditions” undergone to tﬁgl_at_lon detectors or gene_rallzed correlatqrs. If the sub-band co-
watermarked image, zero-mean watermarks are used, which§fficients are modeled using a global stationary GED, o),
clude the CDMA sequence [14], [19] and the random sequenté@ dec_|S|on statistic can be made even simpler w/ﬁ_ﬁ ab-
drawn uniformly from{—1, 1]. Sincey, represent the allowable sorbed into the thrgshold. The valuewfcan be determined by
variations of watermark signals relative to the local neighboP€rceptual evaluations for watermarked images. The layger
hood, from Weber’s lawy; are small, and modulated “physical”Under perceptual constraints, the more rolé(sj is.
watermarks are typical weak signals. Due to the imperceptibility The computational complexities of the LOD and UMP de-
requirementy; < 1 in watermarking applications, and actually{€ctors are compared. For each term in the summands in (8)

(see Section V). further reduce the computational complexity, we demonstrate

Now, denote in Section V that the following detector can be employed as a
“universally optimdl detector, in the sense that parameters of

N GGD need not be estimated for each image or video frame any

F) = H 1 — (13) longer ('Fhe estimatipn may pose cgmputational t_)urdens for wa-
i (1 +~vjw;) termarking applications in DVD, video, or real-time systems),

N

1 .
6(z) = ~ § cilBizi|“w; >n = w  exists
=1
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TABLE |
COMPUTATIONAL COMPLEXITY COMPARISONS OFEACH TERM IN SUMMANDS OF LOD AND UMP DETECTORS CORRELATOR AND SRD. GOMPUTATIONS ARE
ADDITION (ADD.), MULTIPLICATION (MULT.), TAKING POWER (POWER), AND ESTIMATION (EST.) OF GGD PARAMETERS 3 AND ¢

Est. of

Add. Mult. Power Bandc
SRD 0 1 1 No
LOD 0 2 1 Yes
UMP 2 3 2 Yes
Correlator 0 1 0 No

and near-optimal performance can be obtained for a large seDof LODs for Laplacian and Gaussian Models

natural images and video frames: DCT coefficients in AC sub-bands can be reasonably mod-

N eled using the Laplacian law [28], [36], which is a GGD law
= 1 Z |Zi|1/2wi >7 = w exists with ¢ = 1. The coefficients of sub-band transforms as well as

N im1 those of the pyramid transform may also be reasonably modeled

<i =>No w (18) using the Laplacian law [36]. The pdf of the Laplacian law is
. . _ L i)

wherejij is a proper threshold; = {2}, is a sequence of p(z) = 735 : (23)
output of the watermarking channel, ands a watermark to be g
verified. Since the square roots of the observation magnitudegr a global stationary Laplacian model, under the same condi-
are correlated with the watermark, we call it the square-ro®n as in Theorem 1, a generalized linear correlator is obtained:
detector (SRD). N

The mean and.vanance of the decision statistic in (17) can §(z) = 1 Z w;zi] (24)
help us to determine a proper threshgldUnder H,, the mean
and the variance of(z) are

i=1

To derive the mean and the variance for the Laplacian model,
1 X in addition to the conditions in Theorem 1, we assume that
E(6(z|Ho) =+ Z E([zi|)=0  (19) the watermark signals are i.i.d. random variables, \ith;, =
1=1 Ew? = 0, Bw? = 02, and Bw} = k4,4 = 1,..., N.
ThIS is true if the pdf ofw; is symmetric about the or|g|n for
example, the CDMA pseudo-noise sequence or the watermark
signal drawn from the uniform distribution ir-1, 1] has this

property. Then, undeH

and
N

Var(3(alHo) = 1 B(e) Y B((w:)?)  (20)

=1

wherez ~ GGD(¢; 0, o). Sincew; is valued in[—1, 1],

E((w;)?) is bounded above by 1, and the upper bound is E(6(z)|Ho) =0 (25)

achieved by a CDMA pseudo-noise sequence with= 1 or o202

—1 equiprobably. Thus(1/N2) >~ | E((w;)?) < 1/N, and Var(8(2)|Ho) = —-=- (26)

Var(6(z)|Hyg) — 0 asN — oo, namely, the decision statistic ) . i

underH, asymptotically approaches 0 Asincreases. Under H,, using straightforward computations ar]z|
Letz2 = (1/N) I, E(w;)?. It can be shown that o/V2

1 24527 (24 1)
N g

E(6(z)|H1) = @7)

— Foo?
0} := Var(6(z/Ho) = (21) f !
1

N (20%02 + 7202 (264 — o)) (28)

wherel'(+) is the Gamma function. Using Gaussian approxima- Var(6(z)|Hy) =
tion, underH,, 6(z) ~ N (0, o2), for any given false alarm rate

N
p%, also known as the significance level, we obtain a thresholiherey = (1/N) Zk vk andy? = (1/N) 35, 7
The Gaussian noise model is commonly used in the literature,

T= aLQ_l(p}) (22) which is a special GGD law with = 2. For a global stationary
Gaussian model, under the same condition as in Theorem 1, a

whereQ~'(-) is the inverse of)(-), which is the tail proba- generalized quadratic correlator is obtained:
bility of a unit Gaussian distribution, namely(¢) = (1/v/2x)

[ e=(W?/2) gy,
t . 0(z) = — Z w; 2}
The mean and variance 6{z) under H; generally do not N < L
have explicit forms; however, for special cases wits 1 and
¢ = 2, simple expressions for them are shown in following To determine the mean and variancé @f), similar to the ap-
sections. proach in the Laplacian case, we assume that the watermark sig-

(29)
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TABLE I
DESCRIPTION OF THEVISUAL QUALITY OF MULTIPLICATIVELY WATERMARKED IMAGES IN THE DCT DOMAIN WITH DIFFERENTVALUES OF v
Embedding Strength o Lena Bridge Couple
0.08 Identical Identical Identical
0.15 Identical Identical Identical
0.19 Identical Identical Identical
Little distortions
0.20 Identical Identical at some edges
ATittle distortions
0.25 Less sharp at some edges | Tiny stains on bridge body at some edges
More distortions
0.30 Scar around an edge Some stains on bridge body at some edges
More distortions
0.35 Scar around an edge More stains on bridge body at some edges
Distortions at plain area
0.40 obvious near edges Many stains on bridge body | Distortions spread image

nals are i.i.d. random variables, withy; = Fw} = Ew? = 0, of consumers when the detectors are located inside consumer

Ew? = 02, Ew} = k4, andEwd = Ke,i =1, ..., Ninad- devices for controlling record and playback. Therefore, con-
dition to the conditions in Theorem 1. Then, by some straigtgaumer electronic manufacturers require that the false alarm
forward computation and usingz* = 30*, we get error ratio be extremely low. Accurate performance analysis of
the corresponding watermarking methods is also completely
E(6(z)|Ho) =0 (30) necessary before they can actually be applied in the practice of
302 ot law enforcement.
Var(8(z)|Ho) = —— (31)  Letw; = wi|Bizi|,i =1, ..., N. Assume{z;} | are in-
dependent and follow a stationary GGD and;}¥ | are i.i.d.;
Under H, then,u = {uy, ..., uy} is a sequence of i.i.d. random vari-
ables. From the original and the watermarked images, we can
E(6(z)|Hy) =2y0%07, (32) estimate the mean undéfy, me = E(u;|Hy), and the vari-

ance undetdy, V, = Var(u;|Hy), whered € {0, 1}. Using
the central limit theorem (CLT) [37}(z) ltlv"/\/(mg, (Vs/N)).
(33) Therefore, the probability of a false alarm is

1
Var(6(z)|Hy) = N (304(012” + 67 %k4 + 74#;5)—47204031)

where —
P =g =m) VN (33)
N N vV
5=~ > w  F= L3y
N &&= N = whereQ(z) = (1/v2x) [°° ¢=(*/2) dt. The probability of
and a miss is
Ly VA (1~ 1)
—4 _ 2.2 N (mq —
DI IE — 35
N? =i =Q ( VWi (33)

To maximize the detection probability under a given sigand the ROC is
nificance level, namely, to achieve the optimality using the 1
Neyman-Pearson criterion, the threshold given in (22) can p, _ () <\/V0Q (Py) + VN mg — \/Nrm) . (36)
be utilized withc = 2. Alternatively, for equal priors and vVi

uniform cost [37], a threshold may be chosemas Fo20?2, to

w

minimize the probability of detection errors. Since; is often very small, which implies thaf Vo ~ V1,
andmy is close to zero for orthogonal transforms, the approxi-
E. Performance Analysis mate ROC is

In the detection of a specific watermark, there are two \/Nm1> (37)

kinds of errors: A false alarm occurs when there is no such a Pi=Q (Q_I(Pf) - W
watermark but the detector reports its existence, and a miss
occurs when there is such a watermark but the detector repdite above performance analysis makes use of CLT, hence
its nonexistence. The detection errors undermine the credibil®Baussian approximations, to approximate the performance.
of the watermarking system and thus need to be controll&hce sub-band coefficients are typically non-Gaussian, CLT
strictly. Especially, the false alarms are against the interestn only provide crude analysis in this scenario. Future research
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TABLE Il
DESCRIPTION OF THEVISUAL QUALITY OF MULTIPLICATIVELY WATERMARKED IMAGES IN DWT DOMAIN WITH DIFFERENTVALUES OF o
Embedding Strength o Lena Bridge Couple
0.08 Identical Identical Identical
0.12 Identical Identical Identical
0.21 Identical Identical Identical
Barely see Iittle shadow
0.22 at certain edge Identical Identical
Small “burn-out” Little ripple
0.30 at some edges on bridge body Little stain on the door
Small ripples
0.40 at some edges Ripples on bridge body Stains on the door
Texture-like artifacts Texture-like artifacts
0.50 Small ripples replace edges on bridge body on the door and the wall
can be done to provide accurate performance analysis beyond TABLE IV
CLT, as has been done in [23]. DECODING ERRORS FORBOTH UMP DETECTOR ANDLOD DETECTORAFTER

JPEG @OMPRESSIONWITH DIFFERENTQUALITY FACTORS SHORT CODEWORD
IS USED TODISCRIMINATE DECODING CAPABILITIES

IV. OPTIMUM DETECTION OFMULTIPLICATIVE WATERMARKS Quality
IN DFT DOMAIN Factor | 100 [ 95 | 90 | 85 [ 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45

UMP 21 | 21122123 |21 |22 |21 (22|21 |21 (20]22
LOD 21 | 2112223 (21 (22|21 (22|21 |21 |20 |22

Optimum detection for multiplicative watermarks in
sub-band transformed domains such as DCT, DWT, a
pyramid transform has been constructed. The methodology is
extended in this section to the optimum detection of multiplica-
tive watermarks in DFT magnitude domain. For mult|pI|cat|v¢feO
watermarks in DFT domain, a decoding rule other than tI?J
correlator has been proposed [24], [25]. However, this decoding
rule d_oes not take into account th_e attacks_ as well as visual yi = T + 5, i=1,..., L (41)
masking effects [24]. A new detection rule is constructed for

multiplicative watermarks cast in the DFT domain, which iﬁ/herexi are DFT magnitudeS, anﬁ are modulated watermark
different from the one derived in [24] and [25] in terms okjgnals. Assuming the decoder knows or can learn from the test
both derivation method and result. The Weibull distribution |§igna| of the modulated Watermark, a Simp'e hypothesis testing

adopted, similar to [24], to statistically describe the magnitudegn be formed. Assuming; ~ Weibull (p;, «;) and using
of DFT coefficients. The attacks as well as visual maskingRT, an optimum decoder is

effects are incorporated into the formulation.

Using this statistical model, a UMP decoding or detection rule
r additive watermarks in the domain of DFT magnitudes can
% obtained. The additive embedding rule is

yZ (yi — si)P ) 85
A. Statistical Model for Magnitudes of DFT Coefficients Z +(pi —1)log (1 - ;) :
The magnitudes of the DFT coefficients are modeled using (42)
the Weibull distribution [24], [25]: The optimality is in the sense of the Neyman—Pearson lemma.

Its derivation and theoretical performance analysis can be done
in an analogous way to [23]. Using the additive rule, one con-
p (T p—1 T\P . . e . .
fx(z) =L (_) exp [_ (_) } (38) straintis|s;| < x; due to the positivity ofj;. Since there is no
ata @ explicit perceptual model for the DFT magnitudes, while a mul-
wherea andp are positive constants controlling the mean, varfiplicative watermark achieves high perceptual quality, we focus
ance, and shape of the distribution. It is denotedAfesbull ©Nn multiplicative watermarking in the DFT magnitude domain.
(p, «). The exponential and Rayleigh distributions are special
cases withp = 1 andp = 2, respectively. The meany and the B. Previous Work

standard deviatioax are The detection of multiplicative watermarks in the DFT do-
main is often based on a correlation detector. Recently, the de-
tection of multiplicative watermarks in the DFT domain has
px =al ( —) (39) been considered with the embedding equation (2), wheaee

the magnitudes of DFT coefficients [24], [25]. Two hypotheses
> _.2r (1 2 9 (40) are defined [24]: The system contains a certain watermwark
Ox =« + o) Hx- {wf, ..., wi} (hypothesisKy), or the system does not contain
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Fig. 1. ROCs for Lena with (a) = 0.08 and (b)y = 0.12.

this parameter (hypothesi, ). The parameter space can be de- Assuming that the observationgy;}Y, are independent
fined as under both hypotheses, we hafey|K;) = [T, f(vi|K}),
wheref € {0, 1}. Invoking LRT [32] and taking the logarithm,
Barni's detector in (45) can be obtained.

As shown above, Barni's detector is literally obtained from
testing K| versusK], both of which are simple hypotheses.
Since visual masking changes the value ~of in casting
watermark{w;}¥_,, different;s (derived from JND) may be
The watermark components are assumed to be uniformfyeq for differentr;s. The attacks also change the values of

distributed in[-1, 1], and M, is composed by an infinite . Testing a single value of* neglects the modeling of these
number of watermarks. By considering the Weibull distributiogffects.

of the magnitude of the DFT coefficients, it is demonstrated
that fy(y|Mo) can be approximated byy (y|0) [24]. Using D. Robust Optimum Detection of Multiplicative DFT Domain
this simplification, by invoking LRT, a decision statistic iS\WWatermarks

obtained [24]:

M = My U M, (43)

where

Mo={w#w"), Mi={w) (@4

In this section, robust optimum detectors for multiplicative
watermarks in DFT domain are derived. Considering the visual
masking and attacking effects, as discussed in Section Ill, the
following hypothesis testing is conductefly: v/ > 0 versus
wherep; is the shape parameter for, and ), is a properly Hg: v = 0for z; = z;(1 + vjwy), which is a composite
chosen threshold. For a given false-alarm rate, a suitaléPothesis versus a simple one.
threshold may be determined utilizing CLT. Due to the invisibility constraini; is small. Watermarkv* is

As noted by the authors in [24], the derivation does not cofeduired to be zero mean to guarantee that there is no “change of
sider attacks as well as visual masking effects. In the embeddligdting conditions” to the watermarked image. CDMA pseudo
stage, a visual masking method is exploited, which modifies tRendom sequence [14], [19] is a special case of these water-
embedding strengths pixel-wise [24]. That isy; is different marks. By adopting LOD, the following result for the detection
for differentz;,. In the derivation of the detector, a single embed?f the multiplicative watermark in DFT domain is obtained.

ding strengthy* is assumed for employing the Neyman—Pearson Theorem 2: Assumex = {z1, ..., xn} is a sequence of in-
lemma [24]. dependent random variables with obeying Weibull(p;, «;),

andw* = {wf, ..., wi} is a known, zero-mean sequence
C. Barni's Detector From a Simple Hypothesis Testing valued in[—1, 1], which is statistically independent of At
The decoder in [24] can be obtained, actually, through the féh_e_z transmitter end, the mu_ltiplicative watermarks are embedded
lowing simple hypothesis testing’|: v = v* versusk: v =0 YS9y = zi(1+ viwy) with 0 < »; < 1. The watermarked
for the same embedding rulg: = =; + vw*z;, i =1, ..., N. image is th.en sgnt through the wapermarkmg channel, V\_/h|ch in-
Indeed, undeis’,, y; has the same distribution as, namely, troduces distortions to the composite image. At the receiver end,

F(y:|K?) = f(x:|K}); underK?, by changing variables, has for the output sequenee= {z;}¥ ,, the optimum decision rule

>\

N Pi *\pi __

1 [ +ywp)le

the following distribution: is given by
. . (pi—1) 2\ Pi
K = Pi Yi §(z) = 1(_2) ?> = w*
fuilka) a;(1+~ywf) <ai(1+vw?)> ) ; o) 2T
e i/ (i (ywi))™  (46) <n =no w* (47)
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(@) (b)

Fig. 2. Difference images between (a) watermarked Lena and the original and (b) watermarked Barbara and the original (magnitudes amplifiecoby a facto
100 for viewing purpose).

wheren is a properly selected threshold. where Q(z) is defined asQ(z) = (1/V2n) j;:“x’
Letv; := p;(z:i/a;)Piwy, and the sum of; is defined ash  exp(—(t2/2)) dt. Therefore, for a given false-alarm rate,

for convenience, namely, = 6(z) = vazl v;. Denote the pdf we have

of h underHg as fi(h|H{). For a given false alarm rage;, s

the value of; can be determined from the decision rule (47) by n=pn+onQ(p}). (54)

solving In particular, giverp} = 107, we have

“+o0
Py = / Fu (B HE) dh. (48) 0=+ 47500, (55)
7 n

To figure out pdffy, (h|HY), we will first find out the pdf ofv;
underH¢. Under such a circumstancg, = z;, andz; will be
a noisy version ofz;. To proceed without assuming any fixed Experiments are conducted to demonstrate the effectiveness
distribution of the attacks, we consider = g(z;), and under of the new detection structures constructed in the paper. Multi-
Hy, g(x;) = pi(zi/a;)Pwf. Sinceg(z;) is a monotonically plicative watermarks are embedded in both DCT and DWT do-
increasing or decreasing functionfaccording to the sign of mains. For DWT domain embedding, a three-level DWT using
wy, the pdf ofv; underHg can be evaluated by the followingDaubechies’ linear-phase 9/7 biorthogonal filterbanks is used.

V. EXPERIMENTS

expression [24], [38]: The watermarks are cast in HH sub-bands at Level 3, which
‘ are CDMA pseudo-noise sequences with= 1 or —1. First,
Jo, (0i|HE) = f’”j (i) u(v;) (49) the perceptual quality in multiplicative watermarking is evalu-
9" ()] ated. For embedding depthbelow 0.3, a small stepsize equal
wherev; = g(x;), ¢'(-) is the first derivative ofy(-), andu(-) is 10 0.01 is taken to evaluate the perceptual quality of@bove
the Heaviside function. Therefore, we have 0.3, a stepsize 0.05 is taken to judge the severity of perceptual
degradations. The subjective evaluations have been conducted
fo (i HE) = 1 _exp <_ i *> u(vy). (50) by two young viewers with normal HVS under normal viewing
piw; Piw; conditions for images displayed on computer screens. The re-

psults are tabulated in Table Il for DCT domain embedding and
in Table Il for DWT domain embedding. It can be seen that
QWT domain watermarking has better perceptual quality than
in the DCT domain. In the DCT domain, wheris below 0.20,
good fidelity can be obtained; in the DWT domain, wheis

It can be seen that; is distributed as an exponential pdf wit
mean p;w; and variance(p;w?)?. It follows from CLT that
h = SN v underHy can be assumed to have a normal di
tribution, with mean and variance given by

N below about 0.22, excellent imperceptibility is obtained. Even
Hh = Z piw; (51) asa becomes as large as above 0.30, perceptual distortions are
i=1 not so annoying; especially on plain, featureless areas, visual
N distortions are not as severe as those of additive watermarking.
ol = Z (piw?)?. (52) To evaluate the proposed LOD detector in (8), it is compared
i=1 to the UMP detector in (17). A fixed embedding strength is used

and multiple-symbol messages are encoded into watermarks in
a way similar to CDMA embedding [26], [27] by dividing the

x N~ Hh image into nonoverlapping embedding regions. Each codeword
Pr=Q (53)

Therefore, the false-alarm probability is

on has 32 bits, and one message bit is encoded into one codeword
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320

using binary phase shift keying (BPSK) [26]. The length of the
codeword is short and many decoding errors are incurred, which 300}
discriminates well the decoding capabilities of both detectors.
The decoding errors are tabulated in Table IV. It can be seen
that LOD has the same decoding capabilities as UMP.

To compare the performances of LOD detectors, we have
fixed some shape parameters for the GGD model in our experi-
ments. The detectors used are generalized quadratic correlator,
generalized linear correlator, and SRD.

Lena is watermarked using = 0.08 andy = 0.12. Such
embedding strengths are used here so that ROC curves can be
used to compare the performance. With largeROC curves 0 20 0 60 80 100
are all straight lines with detection probabilities all equal to 1. Qualy Factor
The PSNRs for the watermarked images are 57.99 and 54.47 dB, @
respectively. The ROC curves are plotted in Fig. 1. It can be seen 35 ' '
that SRD outperforms the other two since the shape parameter
of HH sub-band at Level 3 of Lenais 0.47, which is close to 0.5. 3

Then, the robustness of the detectors is tested using extensive
experiments. The embedding deptlwis= 0.2. The differences
between the watermarked and original images are displayed in
Fig. 2, with magnitudes magnified by 100 for viewing purposes.
The watermarked images are compressed using JPEG with dif-
ferent quality factors from 100 to 1, and the compressed im-
ages are tested using the proposed detectors. The resulting de-
cision statistics are plotted in Fig. 3. Without watermarking, the

Decision statistic
o n n
N @ ®
S S S

n
n
o

n
(=3
S

®
ts3

Decision statistic

decision statistics are 49.99, 0.43, and 0.029, respectively, for 1 2 m " m 700
¢ =2, 1,and1/2. JPEG compressed watermarked images can Quality Factor
be detected. (b)
The ROC curves are plotted for= 2, ¢ = 1, andc = 1/2 055 ‘
after severe attacks for a large set of images (over 3000 natural 05¢
images in our database with size 128 28). For example, Fig. 4 0.45
plots the ROCs for JPEG compression with quality factor 10 and oal

5. Figs. 5-7 plot the ROCs for median, average, and Wiener fil-
tering, respectively, with window sizesx33 and 7x 7. Fig. 8

plots the sample images of Lena after intensity scaling, Gaussian
noise adding, and salt-and-pepper noise adding, respectively.
Fig. 9 plots the ROCs after these attacks. It can be seen that after

Decision statistic
o
w

severe attacks the SRD still has the best performance since the 015

shape parameters for natural images are usually in the range of o1y

[0.4, 1] [22], [39], and many around 0.5. The generalized cor- 0.05; m - " m 100

relator corresponding to = 1/2 (SRD) can be employed as a Quality Factor

fixed robust detector for good overall performance for a large (©)

set of images. Fig. 3. (a) Decision statistics after JJEG compression with 2, (b) with

The performance analysis derived in Section IlI-E is also im-= 1, and (c) withc = 1/2.
vestigated. Experiments are conducted usirg0.12. The em-
pirical ROCs forc = 2, ¢ = 1, andc = 1/2 are obtained by =~ Watermarks are embedded into the DFT domain by modi-
varying the threshold, and the key to the pseudo-random seying a set of full-frame DFT coefficients of the image. The wa-
guence. They are plotted in Fig. 10. The theoretical ROCs asgmarks consist of 1000 length-bipolar zero-mean pseudo
also plotted. It can be seen that the empirical and theoretical pemdom sequences. One of these sequences is chosen and em-
formances are in good agreement if the sub-band coefficiebedded adopting the multiplicative embedding rule. A visual
are modeled using the Gaussian model. If the Laplacian modehsk similar to that in [24] is utilized. The watermark is cast
or GGD model withc = 1/2 is used, then the theoretical perinto the middle-frequency region of the image. Since the magni-
formance analysis using (36) is more conservative than the ettdes of the DFT coefficients are symmetric about the center, the
pirical performance. This is because the actual shape parametatermark is cast to half the DFT image and mirrors the water-
for middle- or low-frequency sub-bands is usually in the rangeark to the other half. Without loss of generality, it is assumed
of [0.4, 1] [22], [23], whereas CLT is employed for the theoretthatx = {z;}X¥ , is drawn from a single Weibull distribution.
ical analysis, which is crude for non-Gaussian random variabl&s; using maximum likelihood estimation, the original data are
More accurate performance analysis is a line of future researfihto Weibull distribution. For Lena, the estimated exponent is
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Fig. 4. ROCs for a large set of images after JPEG compression with (a) quality factor 10 and (b) quality factor 5.
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Fig. 6. ROCs for a large set of images after average filtering with size of fag3and (b) 7x 7.

917

p = 1.45. The 500th watermark is embeddedms andé(z) of is also compared with that of the correlator after attacks. It can
our new detection scheme are plotted in Fig. 11. It shows that the seen from Fig. 13 that the new detectors outperform the cor-
decision statistic differentiates well the embedded one from thedator after JPEG compression wih?’ = 5.

rest. After attackings(z) still performs very well. For example, The experiments have demonstrated the power of the pro-
the decision statistics after the JPEG compression with qualggsed robust optimum detectors. In the following sections, an
factor 5, and those after median filtering with window size 7 application of the new detection scheme to combined audio and
7 are plotted in Fig. 12. The performance of the new detectonsleo watermarking is proposed.
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VI. APPLICATION TO COMBINED AUDIO AND disturbed; however, the content or the semantics of the audio-
VIDEO WATERMARKING visual data may be totally changed. Therefore, it is necessary
to protect against alteration of one of the components without

The robust optimum detection method can be applied to maPrP(erfering with the other. Watermarking both components may

wate_rmgrkmg systems. n th'.s paper, we particularly fpcus on %Povide a solution to this problem. However, if the watermarks
application to combined audio and video watermarking.

for the components are independent, the copy attack [40] may
) _ i be used to copy a watermark from a legitimately watermarked
A. Combined Audio and Video Watermarking for material to another without knowing the embedding system and
Authentication cryptographic keys. Since audiovisual data may undergo several

Digital watermarking includes the robust watermarking to ngost production operations such as cutting, editing, and setting
tify or protect the copyrights and the fragile watermarking ti other audiovisual data, the integrity and synchronization of
authenticate the multimedia content. The fragile watermarkitgth components in each segment are more important than the
modifies the host signal in a way such that the modification cantegrity of one component alone. An approach to countering
hardly be detected by human eyes or ears, but with a spedifiese attacks and ensuring integrity and synchronization is to
cally designed detector, it can reliably test the authenticity wfatermark the combined audio and video, where a crypto-
the image or even localize the tampered regions. graphic signature is linked to the multimedia content. In the

The fragile watermarking for multimedia authentication i$terature, Dittmanret al. [41] proposed two solutions for the
different from the classical cryptographic authentication such peotection of combined audio and video data. The first one is
message authentication code (MAC). It does not need a sepatati@sert the same time code to both audio and video data. The
file to append to the original one, and it is capable of verifyingudio and video data are not combined, and copy attack can
only the content instead of the data, which allows more toldpe used to make unauthorized embedding of watermarks. The
ance to commonly used data manipulations in transmission &&tond one uses the changing of the signs of the audio sequence
storage. The basic requirements for fragile watermarking are & an audio feature, which is encoded into the video as the
visibility, fragility, and reliability: The watermarks should bevideo watermark; it uses the Canny edge detector extracting
transparent to human eyes or ears; they should be fragile to cthe edge information of a video frame and embeds the feature
tent editions or alterations, and the verification scheme showldde into the audio as the audio watermark. The audio feature
make a vanishingly small number of errors since the verificis low-level and not very robust to audio compressions. We
tion results may be used in the legal process. The multimedigploit the characteristics of the audiovisual data and propose
authentication systems may be of interest to any parties waadew combined video and audio watermarking method. The
want to tamperproof the content of the multimedia so that theyel-frequency cepstra are employed to extract the content
can ensure that the content has not been edited, altered, or diafiermation from audio. The feature codes of audio are mapped
aged. These systems have applications in commerce, defetsayatermark patterns cryptographically and imprinted using
journalism, and law. multiplicative watermarking into video. The optimum detector

In the literature, most research in authentication has focuded multiplicative watermarking is applied. The scheme is tol-
only on single media like video or audio, but the typicagrable to common video and audio compressions but sensitive
multimedia stream consists of both video and audio dat®, content changes.
and watermarking only one medium might not guarantee the
integrity of the multimedia data. For example, in journalisrﬁ"
or teleconferencing, it is quite possible that the watermarkedOur goal is to embed the information of one media into the
video may not be altered, but its accompanying audio could bgher to verify the integrity of audiovisual data. The human au-
edited. In this case, the watermark embedded in the video is ddbry system (HAS) is much more sensitive to noise than the

Information Extraction From Audio
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cepstrum domain representation. The warped cepstral distance
has been defined accordingly [42]:

35,8 = [ 1logs(60) - s S GO 35 (50)

whereb is frequency in Barks§(6(b)) is the spectrum on a Bark
scale,B is the Nyquist frequency in Barks, adds a nonlinear
function mapping the Bark scaleto the linear scale. If two
audio signals have similar subjective contents, the warped cep-
strum distance should be small.

To incorporate the critical band phenomena into the cepstrum
domain representation and to simulate the subjective spectrum
efficiently, a filterbank spaced uniformly on the mel scale is
used. The modified spectrum &f(w) consists of the output
power of these filters whef(w) is the input. Denoting these
power coefficients by, k = 1, 2, ..., K, the mel-frequency
cepstrum coefficients (MFCG@), are defined as [43]

. K ~ 1\«
cn—;(logsk)cos[n<k—§>g], n=12 ..., L

(57)
whereL is the length of the cepstrum, aiid is the number of
filters in the filterbank.

Since the audio signal might undergo many manipulations,
the extracted features need to be robust against all allowed at-
(b) tacks, such as filtering, compression, or MP3 encoding. As long
as the content has not been modified, the extracted features need
to be similar. Toward this end, we choose to make use of the first
MFCC of the truncated audio signals with a sliding window, for
its well capturing the envelope of the audio signals, and for its
robustness. The original audio signals are first downsampled to
a low sampling rate; then, the filterbank is applied to compute
the MFCC. Fig. 14 shows the first MFCC before and after the
IMA ADPCM compression with bandwidth 4 kHz. The original
speech has bandwidth 22.05 kHz. The downsampling factor is
4. It can be seen that the shapes are approximately the same.

C. Embedding Feature Code Into Video

The audio features are extracted by using MFCC so that they
are audio content-dependent but at the same time insensitive to

(©
Fig. 8. Lena, a sample image from a large set of images. (a) After intensityanipulations. To further reduce the sensitivity, we make use

scaling with scaling factor 0.3. (b) After Gaussian noising with variance 0.008

(c) After adding salt-and-pepper noise with intensity 0.05. f the first MFCC coefficient only and quantize the centralized

MFCC to several crude levels.

The audio MFCC frame rate is chosen so that each video

human visual system (HVS). Powerful audio-processing fregame corresponds to several MFCCs. These MFCCs are
ware is available on the Internet, which can change the structyignped using a secret function to an integer, which is used
of audio signals dramatically while retaining acceptable subjegs the cryptographic key to generate a bipolar pseudorandom
tive quality. With these difficulties in mind, we choose to expgise patternw = {wy, ..., wy}. It is the watermark to be
tr_act audio subjective-content information and embed it into thepedded into the video. For a simple example, the number
video. of MFCCs could be chosen as 2 for each frame, and the
The well-known technique of mel-frequency cepstra hapiantization level is chosen as 4; then, there are 16 possible
proven to be highly effective in automatic speech recognitidsi-tuple patterns. The encoding function is a one-to-one bijec-
and in modeling the subjective pitch and frequency conteiidn between 16 bi-tuple vector patterns and 16 pseudorandom
of audio signals. Psychophysical studies have found the plmeise patterns, which are mutually orthogonal.
nomena of the mel pitch scale and the critical band, and theMany schemes have been proposed for video watermarking
frequency scale-warping to the mel or Bark scale has led to fi®], [44]-[47]. A joint watermarking and compression of the
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Fig. 11. Decision statistic for the watermarks embedded into the DFT
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value compared with the others.

watermark formed from the audio features, andis the wa-
termark strength. Since theframes are intracoded using DCT
only, we set corresponding, to a small value, which roughly
represents the Weber’s fraction [19], [48]. TRdérames are for-
ward predicted using the motion-compensated prediction, and
the residual errors are compressed using DCT. The degradation
due to compression is more than thatloframes. The corre-
spondingy,, is set larger. Thé3 frames are coded most aggres-
sively, and the degradation due to coding is the largest. More-
over, the watermarks embedded in the B frames do not propa-

Fig. 9. ROCs for alarge set of images after (a) scaling with scaling factor 0ggte. The corresponding, is the largest.
(b) Gaussian noise adding with variance 0.002. (c) Salt-and-pepper noise adding

with intensity 0.05.

D. Verification of Audiovisual Data

video scheme has been proposed [46]. The amount of comThe features of the accompanying audio are first extracted
pression of the most recently coded frame of the same ty{é the test audiovisual data. The extraction is similar to the em-
as the current frame was monitored, and the watermark add&diding process, and the parameters such as the audio frame
was adapted according to the degradation due to coding. In tfe, the quantization level, and the encoding function are ex-
paper, we only adapt the watermark strengths to the frame typR&lly the same. The extracted features are encoded and mapped
We adopt a multiplicative watermarking rule in the DCT doto @ bipolar pseudorandom sequenice). If there is no modi-

main:

wherex(™ = {z{" .
of thenth video framew (™) = {w

(1 + anw,(cn)) , k=

(n)
1 e

1,...,N

fication to the original accompanying audio data ataff’) =
w(™)_ Ifthere is a certain digital data processing’) ~ w(™).
However, if the audio data have been edited or falsified, there
will be little similarity betweenw (™ andw (™, which can be

., '} is a series of DCT coefficients measured using the Hamming distance. To guarantee the mu-
, w%’)} isthe bipolar tual verification, we need to detect the watermark embedded in
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To validate our proposed combined audio and video water-
marking system, we have conducted experiments on the Flower
Garden sequence accompanied with a segment of audio signal

Zo7l whose sampling rate is 44.1 Hz. The features extracted from
goe_ the audio data are the first coefficients of the MFCC with the
< audio frame rate 60 Hz. Fdrframes, the watermarks are mod-
g% ulated witha,, = 0.16, which is the same as that in [46]. FBr

8 0.4 frames,q,, is taken as 0.18. FaB frames, we takey,, = 0.22.

Here, we adapt,, simply to the types of frames. The DCT-do-
main adaptive scheme proposed in [46] may be incorporated

0.2% —&~ optimum detection |1 . ) .
into our framework to further improve the detection results. We

- 102 107 10° userny = 0.15 and the number of GOPE = 4 in our experi-
False-alarm Probability ments.

Fig.13. Comparison of ROC of the new detector after JPEG compression withSubjective evaluations of watermarked video have shown
quality factor 5 to that of the correlator. The watermark is embedded into thgy appreciable perceptual quality loss incurred due to wa-
DFT domain. termarking. For 48 frames, the results &fy(™) for both

. . . . watermarked and unwatermarked video are shown in Fig. 15.
the video data. The decision statistic for the watermarking is d?he corresponding authenticity indicator is 1

fined as the generalized quadratic correlator: To show that watermarks are persistent after video compres-

1 X 1/2 sion, we use MPEG-1 to compress the watermarked video se-
6 (y(")) =N > ‘U;in) . (59) quence. Fig. 16 shows the resultingy™)) for compressed
k=1 video with data rate 1.152 Mb/s, which corresponds roughly to
Fig. 15 shows the decision statistic for a segment of Flow#te VHS quality. The authenticity indicator is 1.
Garden with accompanying audio. To show the effectiveness of the proposed scheme after audio

For L. GOPs of audiovisual data, we define the authenticigompression, we use IMA ADPCM to compress the audio signal
indicator asAT = u((1/LN,) ZrLLJ:Vi’ §(y(™) > o) toindicate with bandwidth 4 kHz. This aggressive compression is often
the authenticity of the content, wherg is a properly chosen used in speech coding with telephone quality. Fig. 17 shows the
threshold,N,, is the number of frames in one GOP, am(l) resulting decision statistics. The results are exactly the same as
is the Heaviside function. The binary value of Al indicates théose without any audio compression.
authenticity or nonauthenticity of this GOP. For a different segment of the same audio data, which is used

The video watermarking needs to be tolerant to certain de- falsify the original audio data, the results of the decision
grees of video compression, such as MPEG-1. The robustnstistic are shown in Fig. 18. The authentication indicator is
of a video watermarking scheme to MPEG first depends on tBen this case.
chosen bitrate and second on the variation of the embedded sigkhe proposed combined audio and video watermarking
nals over consecutive frames. It has been proposed that the mathod is also compared with that in [41], which extracts
termark be the same for at least the length of a complete GOtfanging of signs as audio features to embed into video,
[49]. Since the GOP structure might be changed after reeand extracts edge information as video feature to embed into
coding, here, we choose to generate different watermarks &rdio. For comparison, the results of the decision statistic
different frames. watermarked video are shown in Fig. 19, with audio and video
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Fig. 16. Decision statistic for compressed watermarked video data.
Fig. 18. Decision statistic for falsified audio.

both compressed. Compared with Fig. 17, better results

obtained using the proposed method. %%mull distribution have also been constructed. The experi-

ments have validated the theoretical analysis. The results can be
applied to multiplicative watermarking systems for copyright
notification and protection and fingerprinting. It may also
In this paper, novel optimum detectors for multiplicativdind applications in content-based multimedia indexing and
watermarks are derived using locally optimum detection foetrieval. We have applied the robust watermarking detection
the generalized Gaussian distributions. Special cases for thecombined audio and video watermarking. It can tolerate
Laplacian model and the Gaussian model have been examireammonly used audio and video compressions but is sensitive
The square-root detector has been shown to be nearly optimiancontent changes. It can be applied to audiovisual content
for majority natural images. Novel optimum detectors for thauthentication in commerce, law, defense, and journalism.

VIl. CONCLUSION AND FUTURE RESEARCH
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Fig. 19. Decision statistic using Dittmann’s method.
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For future research, more performance analyses are needed
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and incorporation of any refined perceptual model for[23]

multiplicative watermarks can be investigated.
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