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Robust Optimum Detection of Transform Domain
Multiplicative Watermarks
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Abstract—Digital watermarking is an emerging technique to
protect data security and intellectual property right. Identification
or verification of watermarking patterns can be achieved by
detecting watermarks in received signals. However, one of the
biggest challenges in watermarking detection is that the strengths
of the watermark signals will change after being distorted by an
attacker in a watermarking channel. Meanwhile, the embedding
strengths may be adapted to original signals, which are unknown
at the receiver end. Further, the original signals are often highly
non-Gaussian. Although some work has been done on optimum
detection of watermarks, the uncertainty of watermark signal
strengths and real statistical behavior of multimedia contents have
not been taken into account simultaneously. Much more study is
needed to enhance the performance of watermarking systems.
Since multiplicative watermarks are robust and well suited for
copyright protection, this paper presents our investigation on
robust optimum detection of multiplicative watermarks. For
sub-band transformed domains such as the discrete cosine trans-
form (DCT), discrete wavelet transform (DWT), and pyramid
transform, a class of generalized correlators is constructed
based on the generalized Gaussian distributions. Thresholding
methods to achieve a given false alarm rate, and the performance
analyses are provided. The square-root detector is designed and
demonstrated to have near optimal performance for a large
set of natural images and can be employed as a “universally
optimal” detector or decoder for images and video. The locally
most powerful detection method is then extended to DFT domain
multiplicative watermarking, with the magnitudes of coefficients
modeled by the Weibull distributions. Another class of detectors
is built based on this statistical modeling. The robust optimum
detection of multiplicative watermarks can be applied to copyright
notification, enforcement, and broadcast monitoring. We have
applied the robust optimum watermarking detection to combined
audio and video watermarking.

Index Terms—Digital watermarking, generalized correlation de-
tector, generalized Gaussian distribution, robust optimum detec-
tion, square-root detector, Weibull distribution.

I. INTRODUCTION

M ULTIMEDIA watermarking has attracted increasing
interest from many areas as the data security and copy-

right protection issues are becoming increasingly important [1],
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[2]. It embeds hidden secondary data into digital multimedia
products for copyright notification and protection, content
authentication, transaction-tracing, and covert communication.
The main advantage of watermarking is that it provides a
way to deliver side information through primary multimedia
contents in a seemingly innocuous and standards-compliant
fashion, such that many novel functionalities can be enabled.
In steganography or security applications, secret messages
may be transmitted covertly through a perceptually innocent
image or audio. In multimedia database retrieval, watermarking
patterns associated with annotations or keywords may be im-
printed seamlessly into host media to facilitate future accurate
access. In broadcast monitoring and copy control techniques,
watermarking can actively and cost-effectively identify specific
multimedia contents in digital TV, audio, or video broadcasting
or playing back such that royalty collection can be automated
or illegal copying prevented.

Since the inception of digital watermarking around the early
1990s, there have been a variety of methods proposed in the
literature, and there are many ways to classify them. For ex-
ample, some approaches deal with the signals in the sample
(spatial or time) domain, while others deal with transformed
data. Some private watermarking schemes need the knowledge
of host multimedia signals in decoding, whereas blind water-
marking schemes do not. We will view watermarking as the fol-
lowing information system with side information available only
to the embedder [3]–[7]. A secret message or pattern is encoded
by an encoder or embedder into a watermark and hidden into the
host medium within an embedding distortion level. The com-
posite signal is then input into the watermarking channel, where
an attacker attempts to disrupt the watermark by introducing ad-
ditional distortions. The channel output is a corrupted or noised
composite signal. A decoder decodes the watermark bit by bit
or symbol by symbol, or a detector detects or verifies the exis-
tence of a specific watermarking pattern or specific message.

According to the roles of watermarks to play in this infor-
mation system, the existing schemes are classified into two
categories. In the first category, watermarks serve as transmis-
sion codes, where an ordinary communication channel model
is used, and where a message is encoded by the embedder and
the decoder carries out full decoding to extract the message
[3]–[6]. The embedding often needs to partition or enforce the
host signal space into subsets that are mapped to the values
taken by the watermark. For example, sign enforcement [8],
[9] and table-lookup [10], [11] are two basic ways to do the
partition. More sophisticated approaches incorporate the Costa
scheme [12] for high channel capacity, and quantization is
exploited for set partitioning [6], [13]. These schemes have
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high rates, and the original host signals will not form a noise
source to interfere with the decoding. However, these schemes
are usually not very robust [13] since the robustness of these
schemes depends on tolerance zones or minimum intersymbol
distances that are always very limited due to the perceptual
quality requirement [13].

In the second category, watermarks serve as verification
codes, where full decoding is not really necessary, but only to
decide whether or nota particular message or hypothesized
pattern is present or has been transmitted. Thus, a binary de-
cision is often required. In copyright protection or notification
and broadcast monitoring, such verification watermarking
usually suffices [7]. Remarkably, a double exponential number
of messages can be verified reliably in a verification channel.
Instead, an exponential number of messages can be reliably
transmitted in an ordinary watermarking transmission model.

In most watermarking verification schemes, without deter-
ministic mapping from set partition of host signal space to wa-
termark symbols, host signals are often modeled as noise, and
many approaches have been taken to suppress noise from both
host signals and attacks to improve detection effectiveness. For
example, the additive spread spectrum scheme spreads the wa-
termark signal to many components [14], and the maximum wa-
termark strengths are obtained from just-noticeable-differences
(JND) [15]–[17]. Since a number of samples collectively con-
tribute to the detection of a watermark pattern, such verifica-
tion watermarking usually has high robustness, even though its
ability to recover more than one information bit might not be
as great as that of transmission watermarking. Thus, it is more
suitable for applications such as copyright protection or notifi-
cation, copy control, device control, and broadcast monitoring.

Identification or verification of watermarking patterns can be
achieved by detecting the watermarks in the received signals [7],
[18]. However, one of the biggest challenges in watermarking
detection is that the strengths of the watermark signals would
change after being distorted by the attacker in the watermarking
channel. Meantime, the embedding strengths may be adapted to
the original signals that are unknown at the receiver end. Further,
the original signals are often highly non-Gaussian. Although
some work has been done on optimum detection of watermarks,
robust optimum detection still needs much study. In the litera-
ture, the watermarks are often embedded in either an additive
way or a multiplicative way. An optimum detection structure for
additive watermarks has been derived [20]–[23], and accurate
performance analyses have been developed based on the gen-
eralized Gaussian distributions (GGDs). Multiplicative water-
marks are automatically image content dependent [19] and are
automatically embedded mainly into the perceptually most sig-
nificant components of the image. The perceptual models based
on Weber’s law can be easily exploited. Due to these desired
properties, multiplicative watermarks have considerable robust-
ness, and they are well-suited for copyright protection. For mul-
tiplicative watermarks, a correlation detector is often used [14],
[19]. It is simple and intuitively appealing; however, its employ-
ment for the detection of multiplicative watermarks cannot be
justified, and in the discrete Fourier transform (DFT) domain,
a new detection structure has been derived [24], [25]. In Sec-
tion II, it is to be shown that the correlator actually cannot work

for multiplicative watermarks in many sub-band transformed
domains such as the discrete cosine transform (DCT), discrete
wavelet transform (DWT), and pyramid transforms. For multi-
plicative watermarks embedded in the magnitudes of DFT co-
efficients, the correlator can work, but it is optimal only when
the magnitudes follow the exponential distribution.

To obtain the best performance, optimum detection of the
multiplicative watermarks needs to be investigated. In this
paper, a class of robust optimum detection statistics taking
into account perceptual masking effects and attacks is derived,
based on the generalized Gaussian distributions for multiplica-
tive watermarks in sub-band transformed domains such as
DCT, DWT, and pyramid transforms. The performance of the
proposed detector is examined using the ordinary Gaussian
distribution. The commonly used Laplacian distribution is
a special case of the GGD law, and the optimum detector
corresponding to it is also examined in this paper. Their perfor-
mances are compared with the optimum detector corresponding
to shape parameter , which is identified as a “universally
optimum” detector for its near-optimal performance for a large
set of natural images. The methodology is then extended to
multiplicative watermarks embedded in the magnitudes of DFT
coefficients. Another class of optimum detectors is obtained by
using the Weibull distribution. The threshold achieving a given
false alarm probability is provided. The effectiveness of the
optimum detection is demonstrated by extensive experiments.
The robust optimum detection for multiplicative watermarks
can be applied to copyright notification, enforcement, and
broadcast monitoring. In this paper, an application of the
optimum detector to combined audio and video watermarking
is proposed for the purpose of content authentication.

The rest of this paper is organized as follows. Multiplicative
embedding rule is introduced in Section II. The robust optimum
detection rule for GGD is derived in Section III. The method-
ology is extended to DFT-domain multiplicative watermarking
in Section IV. Experiments are conducted in Section V to val-
idate the analysis. Section VI applies the optimum detector to
the combined audio and video watermarking. Section VII con-
cludes the paper.

II. M ULTIPLICATIVE WATERMARK EMBEDDING

RULE AND DETECTIONS

A. Multiplicative Embedding Rule and Correlator

For identification or verification watermarking channel, a wa-
termark pattern is embedded at the transmission end. In the liter-
ature, the embedding makes use of either an additive watermark
embedding rule or a multiplicative one.

The commonly used additive embedding rule is [14], [19]

(1)

where is a sequence of data from the (trans-
formed) original image, is a sequence of
watermark signals, is a gain factor, and is
a sequence of watermarked data. Using the same notation, the
commonly used multiplicative embedding rule is [14], [19]

(2)
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For detection or verification, the receiver needs to verify ifa
specificwatermarking pattern exists or not. For full decoding of
a message similar to ordinary communication, orthogonal mod-
ulation combined with code division multiple access (CDMA)
can be applied [26], [27]. To these ends, a correlator is often
used [19]:

is present

is not present (3)

where is a threshold. For additive watermarks, the cor-
relator can work, but it is optimal only if the distribution
is Gaussian. Optimum detectors as well as the performance
analysis for additive watermarks have been investigated [18],
[20]–[23]. For multiplicative watermarks embedded in many
sub-band transformed domains, such as DCT, DWT, and
pyramid transforms, it is shown as follows that this correlator
actually cannot work at all when the watermark is independent
of the original signal. Indeed, for sub-band coefficients,

, consider the verification of . When there
is no channel attack at all, if there is no watermark;
then, since is zero mean; on
the other hand, if there is such a watermark;
then, . A
simple fix to this problem is to change the embedding rule but
keep the detection rule. For example, the following rules can
be used: or ,
where is the signum function of , namely, it is 1
when ; otherwise, it is 1. In this way, the correlator
can work but it is still not optimum. Another fix is to keep
the embedding rule but change the detection rule. In doing so,
we are able to investigate the optimum detection for multi-
plicative watermarks embedded in many sub-band transformed
domains. The methodology is also extended to multiplicative
watermarks embedded in the magnitudes of DFT coefficients.
It is demonstrated that the correlator is outperformed by the
optimum detectors derived in this paper.

B. List of New Optimal Detection Structures

For the convenience of making comparisons, new optimum
detectors constructed in this paper are listed in the following.
The details of the development of these detection structures are
in Sections III and IV.

For multiplicative watermarks embedded into the sub-band
transformed domains, such as DCT, DWT, and pyramid trans-
forms, if the embedding depths are known to the detector,
the uniformly most powerful detector is

where and are the parameters of GGD (see Section III-A).
Taking account of visual modeling and attacks, the robust op-

timum detector is

where is a sequence of output of the watermarking
channel (see Section III-C).

To achieve near-optimal performance for a large set of natural
images or video frames, a “universally optimal” detector is

which is particularly simple in form and is a special case of the
robust optimum detector (see Section III-C).

For multiplicative watermarks embedded into the DFT mag-
nitudes, the robust optimum detector is

where and are the parameters of the Weibull distribution
(see Section IV).

Derivations and appropriate thresholds for these detection
structures are developed in the following sections. Computa-
tional complexities of these detectors are compared with that of
the correlator in Section III-C. The performance of the robust
optimal detector is compared with that of the uniformly optimal
detector in 5, where the performance evaluations of the robust
optimal detectors are also conducted.

III. OPTIMUM DETECTION FORMULTIPLICATIVE WATERMARKS

For additive watermarks, the optimum detector has been
derived, and the performance analysis has been conducted
based on the GGD model [20]–[23]. To obtain the best perfor-
mance for multiplicative watermarks, we analyze the optimum
detection of the multiplicative watermarks and provide novel
optimum detectors effective to various transformed domains.
Specifically, the optimum detection statistic is derived for a
class of general distributions, namely, the generalized Gaussian
distributions. The methodology is extended to multiplicative
watermarks cast in the magnitudes of DFT coefficients, where
the magnitudes may be statistically described using the Weibull
distribution.

A. GGD Model for Sub-band Coefficients

Multiplicative watermarks are often embedded in the trans-
formed domains, such as DFT, DCT, DWT, and pyramid trans-
forms. The coefficients of DCT, DWT, and Pyramid transform
can be statistically modeled using GGD. Optimum detection
for additive watermarks using GGD has been studied [20]–[22],
and large deviation bounds for performance analysis have also
been developed [22], [23]. Many watermarking techniques in
the DFT domain employ amplitude modulation, taking advan-
tage of the translation or shift invariance. GGD is not suitable
for these techniques since DFT magnitudes are positive. We pro-
ceed by first modeling sub-band transform coefficients using a
global stationary GGD and construct both uniformly most pow-
erful detectors and robust optimum detectors; then, we model
the magnitudes of DFT coefficients using Weibull distribution
and constructing corresponding robust optimum detectors.
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The probability density function (pdf) of the generalized
Gaussian distribution is

(4)

where

and is the mean, is the standard deviation of the distribution,
and is the Gamma function. The dis-
tribution is denoted as . Many image transforms
are orthogonal transforms and the mean value of coefficients in
the AC sub-bands is close to zero, i.e., [28]. The power of
the exponent is the shape parameter. The smalleris, the more
impulsive the shape, and the heavier the tails. The GGD model
contains the Laplacian and the Gaussian distributions as special
cases, with and , respectively. When , it ap-
proaches a Dirac impulse. When , it tends to the uniform
distribution. It has been found out that for AC coefficients in low
or middle frequency sub-bands, generally , with
most images havingaround . The imperceptibility require-
ment of watermarking implies that the magnitudes of watermark
signals have to be small compared with the original image, and
the total watermark energy should not be very large either. In this
typical weak-signal scenario, good estimations ofand can
be obtained from the watermarked image instead of the orig-
inal. For example, the values ofand for the original Lena
are and ; for watermarked Lena using multiplicative
embedding rule with and after JPEG compression
with quality factor 75, the estimated values are and

. The differences from those of the original image are
indeed insignificant. In cases where the estimation of parame-
ters is undesirable, a “universally optimal” detector identified in
Section III-C can be utilized. It does not need to estimate the pa-
rameters for each image yet achieves near optimal performance
for a large set of natural images.

A globally stationary GGD can be employed to model the
sub-band coefficients, where the distribution has a single vari-
ance. An alternative is to make use of a nonstationary Gaussian
model, where a model of parallel Gaussian channels is used,
with zero mean and with variance of each Gaussian channel es-
timated individually. In the parallel Gaussian model, the host
signal is segmented into subsignals, and each subsignal whose
size is relatively small is modeled approximately by a stationary
Gaussian model. Since a certain subsignal is always difficult to
model using the Gaussian distribution even if the size becomes
small—for example, a subimage containing an edge on a simple
background will typically have a high peak in the histogram
which the Gaussian model does not have [29]—stationary GGD
can be used to provide a more reasonable model for sub-band
coefficients even for signals with small size.

B. Uniformly Most Powerful Detector

The gain factor for the multiplicative rule in (2) is small due
to perceptual constraints. The multiplicative embedding rule re-
lies on Weber’s law as its perceptual model [19], according to

which the gain factor of noise can be as high as 2% of the local
luminance without being perceived by human eyes [28]. Be-
cause of other masking effects such as the frequency sensitivity
and the contrast masking, the actual value ofmay be even
higher than 0.02 without incurring perceptual degradation. For
stronger robustness or higher data rates, biggercan be applied.
However, if is too big, the perceptual quality will degrade. The
embedding process may depend on multimedia content and em-
ploy visual masking models to vary. In adddition, different s
may be adopted, for example, from frame to frame in video wa-
termarking. It is reasonable to use

(5)

where s are different embedding strengths for differents.
Assuming the actual embedding strengthsare known to the
detector, a simple hypothesis testing is as follows:

versus (6)

Denote the pdf under as , . For GGD laws,
GGD . The likelihood ratio test (LRT) leads to

(7)

By taking logarithm, it can be simplified into

(8)

and the optimum test in the sense of the Neyman–Pearson
lemma is

(9)

where is a properly chosen threshold to maximize the detec-
tion probability for a given false alarm rate. Its performance can
also be investigated in a way similar to additive watermarking
in [22] and [23]. However, other optimum detection structures
are pursued, which are optimal in the sense of locally most pow-
erful detection [30].

C. Robust Optimum Detection of Multiplicative Watermarks

Attacks usually change the gain values. In the watermarking
channel, an attacker attempts to disrupt the watermark while
preserving the image quality. The attacker introduces a source
of noise, and the output of the attacking channel
becomes

(10)

where is the attack noise. Decomposing the noise as
, the watermark strengths after attacks are

(11)
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If is positive, the attacker helps to increase the embedding
strength. In the case of robust watermarking, the largest gain
factor could be determined using the just noticeable dif-
ference (JND), representing the largest permissible modulation
strength without incurring perceptual degradation. For positive

, exceeds JND, and the perceptual quality of the image is
degraded. An ideal attacker, which is the worst case for the em-
bedder, may introduce negative to decrease the embedding
strengths or better obliterate it. To account for the attacks, we
set a tolerance zone and seek the robust optimum detection of
multiplicative watermarks.

Assimilating attacks as well as visual masking effects, the
following composite hypothesis testing is considered to derive
robust optimum detectors:

v.s. (12)

If the attacking channel is assumed known to the embedder in
some sense, a watermarking detection game may be formulated,
where the attacker attempts to maximize the probability of de-
tection errors, whereas the embedder minimizes it, subject to
certain constraints. Often, it is difficult to find a closed-form so-
lution to this minimax optimization problem except for some at-
tacking channels with certain strict restrictions [31]. For general
attacking channels, our approach leads to a class of generalized
correlation detectors, which are simple in form, intuitively ap-
pealing, and optimal at the same time.

The alternative is a composite hypothesis with
non-Gaussian noise. LRT leads to the critical region

, which depends on ,
and no UMP test is available for this composite hypotheses
testing [32]. Without UMP, now we seek an optimum decision
rule in the sense of locally most powerful detection (LMP).

For the transformed coefficients of DCT, DWT, or pyramid
transforms, GGD , whose parameters can be es-
timated using the moments method, the goodness-of-fit method,
or the minimum relative entropy method. Parallel channels of
generalized Gaussian distributions are used, which include the
global stationary GGD, with and fixed for all , as a special
case. Under , GGD , GGD ;
and under , GGD ,

GGD .
To conserve the mean value of the transformed coefficients so

that there is no “change of lighting conditions” undergone to the
watermarked image, zero-mean watermarks are used, which in-
clude the CDMA sequence [14], [19] and the random sequence
drawn uniformly from . Since represent the allowable
variations of watermark signals relative to the local neighbor-
hood, from Weber’s law, are small, and modulated “physical”
watermarks are typical weak signals. Due to the imperceptibility
requirement, in watermarking applications, and actually,
it is found out that usually, in perceptual evaluations
(see Section V).

Now, denote

(13)

Then

(14)

and

(15)

Since is a zero-mean sequence

(16)

which does not depend on and tends to 0 as
by the weak law of large numbers (WLLN). Thus,

yields the locally optimum
decision statistic , which is sum-
marized in the following theorem.

Theorem 1: Assume is a sequence of
independent random variables with GGD , and

is a known, zero-mean sequence valued
in , which is statistically independent of. For the mul-
tiplicative watermarks in (2) with , the robust op-
timum decision statistic is given by

exists

No (17)

where is a proper threshold, and is a sequence of
output of the watermarking channel.

The locally most powerful detection is also known as lo-
cally optimum detection (LOD) [32], [33]. It is optimum for
weak signals [34] and can still perform very well even when the
signal strengths become large [35]. From the Pitman–Noether
theorem, it can be shown that LOD is the most efficient asymp-
totically [32], [33]. Since the optimum detectors in the above
theorem correlate watermark signals with the observation mag-
nitudes raised to the power of, we call them generalized cor-
relation detectors or generalized correlators. If the sub-band co-
efficients are modeled using a global stationary GGD ,
the decision statistic can be made even simpler with ab-
sorbed into the threshold. The value ofcan be determined by
perceptual evaluations for watermarked images. The larger
under perceptual constraints, the more robust is.

The computational complexities of the LOD and UMP de-
tectors are compared. For each term in the summands in (8)
and (17), the computations needed are tabulated in Table I. To
further reduce the computational complexity, we demonstrate
in Section V that the following detector can be employed as a
“universally optimal” detector, in the sense that parameters of
GGD need not be estimated for each image or video frame any
longer (the estimation may pose computational burdens for wa-
termarking applications in DVD, video, or real-time systems),
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISONS OFEACH TERM IN SUMMANDS OF LOD AND UMP DETECTORS, CORRELATOR, AND SRD. COMPUTATIONS ARE

ADDITION (ADD.), MULTIPLICATION (MULT.), TAKING POWER (POWER), AND ESTIMATION (EST.) OF GGD PARAMETERS� AND c

and near-optimal performance can be obtained for a large set of
natural images and video frames:

exists

No (18)

where is a proper threshold, is a sequence of
output of the watermarking channel, andis a watermark to be
verified. Since the square roots of the observation magnitudes
are correlated with the watermark, we call it the square-root
detector (SRD).

The mean and variance of the decision statistic in (17) can
help us to determine a proper threshold. Under , the mean
and the variance of are

(19)

and

(20)

where GGD . Since is valued in ,
is bounded above by 1, and the upper bound is

achieved by a CDMA pseudo-noise sequence with or
equiprobably. Thus, , and

as , namely, the decision statistic
under asymptotically approaches 0 asincreases.

Let . It can be shown that

(21)

where is the Gamma function. Using Gaussian approxima-
tion, under , , for any given false alarm rate

, also known as the significance level, we obtain a threshold

(22)

where is the inverse of , which is the tail proba-
bility of a unit Gaussian distribution, namely,

.
The mean and variance of under generally do not

have explicit forms; however, for special cases with and
, simple expressions for them are shown in following

sections.

D. LODs for Laplacian and Gaussian Models

DCT coefficients in AC sub-bands can be reasonably mod-
eled using the Laplacian law [28], [36], which is a GGD law
with . The coefficients of sub-band transforms as well as
those of the pyramid transform may also be reasonably modeled
using the Laplacian law [36]. The pdf of the Laplacian law is

(23)

For a global stationary Laplacian model, under the same condi-
tion as in Theorem 1, a generalized linear correlator is obtained:

(24)

To derive the mean and the variance for the Laplacian model,
in addition to the conditions in Theorem 1, we assume that
the watermark signals are i.i.d. random variables, with

, , and , .
This is true if the pdf of is symmetric about the origin; for
example, the CDMA pseudo-noise sequence or the watermark
signal drawn from the uniform distribution in has this
property. Then, under

(25)

(26)

Under , using straightforward computations and

(27)

(28)

where , and .
The Gaussian noise model is commonly used in the literature,

which is a special GGD law with . For a global stationary
Gaussian model, under the same condition as in Theorem 1, a
generalized quadratic correlator is obtained:

(29)

To determine the mean and variance of , similar to the ap-
proach in the Laplacian case, we assume that the watermark sig-
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TABLE II
DESCRIPTION OF THEVISUAL QUALITY OF MULTIPLICATIVELY WATERMARKED IMAGES IN THE DCT DOMAIN WITH DIFFERENTVALUES OF�

nals are i.i.d. random variables, with ,
, , and , in ad-

dition to the conditions in Theorem 1. Then, by some straight-
forward computation and using , we get

(30)

(31)

Under

(32)

(33)

where

and

To maximize the detection probability under a given sig-
nificance level, namely, to achieve the optimality using the
Neyman–Pearson criterion, the threshold given in (22) can
be utilized with . Alternatively, for equal priors and
uniform cost [37], a threshold may be chosen as to
minimize the probability of detection errors.

E. Performance Analysis

In the detection of a specific watermark, there are two
kinds of errors: A false alarm occurs when there is no such a
watermark but the detector reports its existence, and a miss
occurs when there is such a watermark but the detector reports
its nonexistence. The detection errors undermine the credibility
of the watermarking system and thus need to be controlled
strictly. Especially, the false alarms are against the interests

of consumers when the detectors are located inside consumer
devices for controlling record and playback. Therefore, con-
sumer electronic manufacturers require that the false alarm
error ratio be extremely low. Accurate performance analysis of
the corresponding watermarking methods is also completely
necessary before they can actually be applied in the practice of
law enforcement.

Let , . Assume are in-
dependent and follow a stationary GGD and are i.i.d.;
then, is a sequence of i.i.d. random vari-
ables. From the original and the watermarked images, we can
estimate the mean under , , and the vari-
ance under , , where . Using

the central limit theorem (CLT) [37], .
Therefore, the probability of a false alarm is

(34)

where . The probability of
a miss is

(35)

and the ROC is

(36)

Since is often very small, which implies that ,
and is close to zero for orthogonal transforms, the approxi-
mate ROC is

(37)

The above performance analysis makes use of CLT, hence
Gaussian approximations, to approximate the performance.
Since sub-band coefficients are typically non-Gaussian, CLT
can only provide crude analysis in this scenario. Future research
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TABLE III
DESCRIPTION OF THEVISUAL QUALITY OF MULTIPLICATIVELY WATERMARKED IMAGES IN DWT DOMAIN WITH DIFFERENTVALUES OF�

can be done to provide accurate performance analysis beyond
CLT, as has been done in [23].

IV. OPTIMUM DETECTION OFMULTIPLICATIVE WATERMARKS

IN DFT DOMAIN

Optimum detection for multiplicative watermarks in
sub-band transformed domains such as DCT, DWT, and
pyramid transform has been constructed. The methodology is
extended in this section to the optimum detection of multiplica-
tive watermarks in DFT magnitude domain. For multiplicative
watermarks in DFT domain, a decoding rule other than the
correlator has been proposed [24], [25]. However, this decoding
rule does not take into account the attacks as well as visual
masking effects [24]. A new detection rule is constructed for
multiplicative watermarks cast in the DFT domain, which is
different from the one derived in [24] and [25] in terms of
both derivation method and result. The Weibull distribution is
adopted, similar to [24], to statistically describe the magnitudes
of DFT coefficients. The attacks as well as visual masking
effects are incorporated into the formulation.

A. Statistical Model for Magnitudes of DFT Coefficients

The magnitudes of the DFT coefficients are modeled using
the Weibull distribution [24], [25]:

(38)

where and are positive constants controlling the mean, vari-
ance, and shape of the distribution. It is denoted asWeibull

. The exponential and Rayleigh distributions are special
cases with and , respectively. The mean and the
standard deviation are

(39)

(40)

TABLE IV
DECODING ERRORS FORBOTH UMP DETECTOR ANDLOD DETECTORAFTER

JPEG COMPRESSIONWITH DIFFERENTQUALITY FACTORS. SHORT CODEWORD

IS USED TODISCRIMINATE DECODING CAPABILITIES

Using this statistical model, a UMP decoding or detection rule
for additive watermarks in the domain of DFT magnitudes can
be obtained. The additive embedding rule is

(41)

where are DFT magnitudes, and are modulated watermark
signals. Assuming the decoder knows or can learn from the test
signal of the modulated watermark, a simple hypothesis testing
can be formed. Assuming Weibull and using
LRT, an optimum decoder is

(42)
The optimality is in the sense of the Neyman–Pearson lemma.
Its derivation and theoretical performance analysis can be done
in an analogous way to [23]. Using the additive rule, one con-
straint is due to the positivity of . Since there is no
explicit perceptual model for the DFT magnitudes, while a mul-
tiplicative watermark achieves high perceptual quality, we focus
on multiplicative watermarking in the DFT magnitude domain.

B. Previous Work

The detection of multiplicative watermarks in the DFT do-
main is often based on a correlation detector. Recently, the de-
tection of multiplicative watermarks in the DFT domain has
been considered with the embedding equation (2), whereare
the magnitudes of DFT coefficients [24], [25]. Two hypotheses
are defined [24]: The system contains a certain watermark

(hypothesis , or the system does not contain
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(a) (b)

Fig. 1. ROCs for Lena with (a) = 0:08 and (b) = 0:12.

this parameter (hypothesis . The parameter space can be de-
fined as

(43)

where

(44)

The watermark components are assumed to be uniformly
distributed in , and is composed by an infinite
number of watermarks. By considering the Weibull distribution
of the magnitude of the DFT coefficients, it is demonstrated
that can be approximated by [24]. Using
this simplification, by invoking LRT, a decision statistic is
obtained [24]:

(45)

where is the shape parameter for, and is a properly
chosen threshold. For a given false-alarm rate, a suitable
threshold may be determined utilizing CLT.

As noted by the authors in [24], the derivation does not con-
sider attacks as well as visual masking effects. In the embedding
stage, a visual masking method is exploited, which modifies the
embedding strengths pixel-wise [24]. That is, is different
for different . In the derivation of the detector, a single embed-
ding strength is assumed for employing the Neyman–Pearson
lemma [24].

C. Barni’s Detector From a Simple Hypothesis Testing

The decoder in [24] can be obtained, actually, through the fol-
lowing simple hypothesis testing: : versus :
for the same embedding rule: , .
Indeed, under , has the same distribution as, namely,

; under , by changing variables, has
the following distribution:

(46)

Assuming that the observations are independent
under both hypotheses, we have ,
where . Invoking LRT [32] and taking the logarithm,
Barni’s detector in (45) can be obtained.

As shown above, Barni’s detector is literally obtained from
testing versus , both of which are simple hypotheses.
Since visual masking changes the value of in casting
watermark , different s (derived from JND) may be
used for different s. The attacks also change the values of

. Testing a single value of neglects the modeling of these
effects.

D. Robust Optimum Detection of Multiplicative DFT Domain
Watermarks

In this section, robust optimum detectors for multiplicative
watermarks in DFT domain are derived. Considering the visual
masking and attacking effects, as discussed in Section III, the
following hypothesis testing is conducted: : versus

: for , which is a composite
hypothesis versus a simple one.

Due to the invisibility constraint, is small. Watermark is
required to be zero mean to guarantee that there is no “change of
lighting conditions” to the watermarked image. CDMA pseudo
random sequence [14], [19] is a special case of these water-
marks. By adopting LOD, the following result for the detection
of the multiplicative watermark in DFT domain is obtained.

Theorem 2: Assume is a sequence of in-
dependent random variables withobeyingWeibull ,
and is a known, zero-mean sequence
valued in , which is statistically independent of. At
the transmitter end, the multiplicative watermarks are embedded
using with . The watermarked
image is then sent through the watermarking channel, which in-
troduces distortions to the composite image. At the receiver end,
for the output sequence , the optimum decision rule
is given by

no (47)
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(a) (b)

Fig. 2. Difference images between (a) watermarked Lena and the original and (b) watermarked Barbara and the original (magnitudes amplified by a factor of
100 for viewing purpose).

where is a properly selected threshold.
Let , and the sum of is defined as

for convenience, namely, . Denote the pdf
of under as . For a given false alarm rate ,
the value of can be determined from the decision rule (47) by
solving

(48)

To figure out pdf , we will first find out the pdf of
under . Under such a circumstance, , and will be
a noisy version of . To proceed without assuming any fixed
distribution of the attacks, we consider , and under

, . Since is a monotonically
increasing or decreasing function ofaccording to the sign of

, the pdf of under can be evaluated by the following
expression [24], [38]:

(49)

where , is the first derivative of , and is
the Heaviside function. Therefore, we have

(50)

It can be seen that is distributed as an exponential pdf with
mean and variance . It follows from CLT that

under can be assumed to have a normal dis-
tribution, with mean and variance given by

(51)

(52)

Therefore, the false-alarm probability is

(53)

where is defined as
. Therefore, for a given false-alarm rate,

we have

(54)

In particular, given , we have

(55)

V. EXPERIMENTS

Experiments are conducted to demonstrate the effectiveness
of the new detection structures constructed in the paper. Multi-
plicative watermarks are embedded in both DCT and DWT do-
mains. For DWT domain embedding, a three-level DWT using
Daubechies’ linear-phase 9/7 biorthogonal filterbanks is used.
The watermarks are cast in HH sub-bands at Level 3, which
are CDMA pseudo-noise sequences with or 1. First,
the perceptual quality in multiplicative watermarking is evalu-
ated. For embedding depthbelow 0.3, a small stepsize equal
to 0.01 is taken to evaluate the perceptual quality; forabove
0.3, a stepsize 0.05 is taken to judge the severity of perceptual
degradations. The subjective evaluations have been conducted
by two young viewers with normal HVS under normal viewing
conditions for images displayed on computer screens. The re-
sults are tabulated in Table II for DCT domain embedding and
in Table III for DWT domain embedding. It can be seen that
DWT domain watermarking has better perceptual quality than
in the DCT domain. In the DCT domain, whenis below 0.20,
good fidelity can be obtained; in the DWT domain, whenis
below about 0.22, excellent imperceptibility is obtained. Even
as becomes as large as above 0.30, perceptual distortions are
not so annoying; especially on plain, featureless areas, visual
distortions are not as severe as those of additive watermarking.

To evaluate the proposed LOD detector in (8), it is compared
to the UMP detector in (17). A fixed embedding strength is used
and multiple-symbol messages are encoded into watermarks in
a way similar to CDMA embedding [26], [27] by dividing the
image into nonoverlapping embedding regions. Each codeword
has 32 bits, and one message bit is encoded into one codeword
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using binary phase shift keying (BPSK) [26]. The length of the
codeword is short and many decoding errors are incurred, which
discriminates well the decoding capabilities of both detectors.
The decoding errors are tabulated in Table IV. It can be seen
that LOD has the same decoding capabilities as UMP.

To compare the performances of LOD detectors, we have
fixed some shape parameters for the GGD model in our experi-
ments. The detectors used are generalized quadratic correlator,
generalized linear correlator, and SRD.

Lena is watermarked using and . Such
embedding strengths are used here so that ROC curves can be
used to compare the performance. With larger, ROC curves
are all straight lines with detection probabilities all equal to 1.
The PSNRs for the watermarked images are 57.99 and 54.47 dB,
respectively. The ROC curves are plotted in Fig. 1. It can be seen
that SRD outperforms the other two since the shape parameter
of HH sub-band at Level 3 of Lena is 0.47, which is close to 0.5.

Then, the robustness of the detectors is tested using extensive
experiments. The embedding depth is . The differences
between the watermarked and original images are displayed in
Fig. 2, with magnitudes magnified by 100 for viewing purposes.
The watermarked images are compressed using JPEG with dif-
ferent quality factors from 100 to 1, and the compressed im-
ages are tested using the proposed detectors. The resulting de-
cision statistics are plotted in Fig. 3. Without watermarking, the
decision statistics are 49.99, 0.43, and 0.029, respectively, for

, and . JPEG compressed watermarked images can
be detected.

The ROC curves are plotted for , , and
after severe attacks for a large set of images (over 3000 natural
images in our database with size 128128). For example, Fig. 4
plots the ROCs for JPEG compression with quality factor 10 and
5. Figs. 5–7 plot the ROCs for median, average, and Wiener fil-
tering, respectively, with window sizes 33 and 7 7. Fig. 8
plots the sample images of Lena after intensity scaling, Gaussian
noise adding, and salt-and-pepper noise adding, respectively.
Fig. 9 plots the ROCs after these attacks. It can be seen that after
severe attacks the SRD still has the best performance since the
shape parameters for natural images are usually in the range of

[22], [39], and many around 0.5. The generalized cor-
relator corresponding to (SRD) can be employed as a
fixed robust detector for good overall performance for a large
set of images.

The performance analysis derived in Section III-E is also in-
vestigated. Experiments are conducted using . The em-
pirical ROCs for , , and are obtained by
varying the threshold and the key to the pseudo-random se-
quence. They are plotted in Fig. 10. The theoretical ROCs are
also plotted. It can be seen that the empirical and theoretical per-
formances are in good agreement if the sub-band coefficients
are modeled using the Gaussian model. If the Laplacian model
or GGD model with is used, then the theoretical per-
formance analysis using (36) is more conservative than the em-
pirical performance. This is because the actual shape parameter
for middle- or low-frequency sub-bands is usually in the range
of [22], [23], whereas CLT is employed for the theoret-
ical analysis, which is crude for non-Gaussian random variables.
More accurate performance analysis is a line of future research.

(a)

(b)

(c)

Fig. 3. (a) Decision statistics after JPEG compression withc = 2, (b) with
c = 1, and (c) withc = 1=2.

Watermarks are embedded into the DFT domain by modi-
fying a set of full-frame DFT coefficients of the image. The wa-
termarks consist of 1000 length-bipolar zero-mean pseudo
random sequences. One of these sequences is chosen and em-
bedded adopting the multiplicative embedding rule. A visual
mask similar to that in [24] is utilized. The watermark is cast
into the middle-frequency region of the image. Since the magni-
tudes of the DFT coefficients are symmetric about the center, the
watermark is cast to half the DFT image and mirrors the water-
mark to the other half. Without loss of generality, it is assumed
that is drawn from a single Weibull distribution.
By using maximum likelihood estimation, the original data are
fit to Weibull distribution. For Lena, the estimated exponent is
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(a) (b)

Fig. 4. ROCs for a large set of images after JPEG compression with (a) quality factor 10 and (b) quality factor 5.

(a) (b)

Fig. 5. ROCs for a large set of images after median filtering with size of (a) 3� 3 and (b) 7� 7.

(a) (b)

Fig. 6. ROCs for a large set of images after average filtering with size of (a) 3� 3 and (b) 7� 7.

. The 500th watermark is embedded as, and of
our new detection scheme are plotted in Fig. 11. It shows that the
decision statistic differentiates well the embedded one from the
rest. After attacking, still performs very well. For example,
the decision statistics after the JPEG compression with quality
factor 5, and those after median filtering with window size 7
7 are plotted in Fig. 12. The performance of the new detectors

is also compared with that of the correlator after attacks. It can
be seen from Fig. 13 that the new detectors outperform the cor-
relator after JPEG compression with .

The experiments have demonstrated the power of the pro-
posed robust optimum detectors. In the following sections, an
application of the new detection scheme to combined audio and
video watermarking is proposed.
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(a) (b)

Fig. 7. ROCs for a large set of images after Wiener filtering with size of (a) 3� 3 and (b) 7� 7.

VI. A PPLICATION TO COMBINED AUDIO AND

VIDEO WATERMARKING

The robust optimum detection method can be applied to many
watermarking systems. In this paper, we particularly focus on an
application to combined audio and video watermarking.

A. Combined Audio and Video Watermarking for
Authentication

Digital watermarking includes the robust watermarking to no-
tify or protect the copyrights and the fragile watermarking to
authenticate the multimedia content. The fragile watermarking
modifies the host signal in a way such that the modification can
hardly be detected by human eyes or ears, but with a specifi-
cally designed detector, it can reliably test the authenticity of
the image or even localize the tampered regions.

The fragile watermarking for multimedia authentication is
different from the classical cryptographic authentication such as
message authentication code (MAC). It does not need a separate
file to append to the original one, and it is capable of verifying
only the content instead of the data, which allows more toler-
ance to commonly used data manipulations in transmission and
storage. The basic requirements for fragile watermarking are in-
visibility, fragility, and reliability: The watermarks should be
transparent to human eyes or ears; they should be fragile to con-
tent editions or alterations, and the verification scheme should
make a vanishingly small number of errors since the verifica-
tion results may be used in the legal process. The multimedia
authentication systems may be of interest to any parties who
want to tamperproof the content of the multimedia so that they
can ensure that the content has not been edited, altered, or dam-
aged. These systems have applications in commerce, defense,
journalism, and law.

In the literature, most research in authentication has focused
only on single media like video or audio, but the typical
multimedia stream consists of both video and audio data,
and watermarking only one medium might not guarantee the
integrity of the multimedia data. For example, in journalism
or teleconferencing, it is quite possible that the watermarked
video may not be altered, but its accompanying audio could be
edited. In this case, the watermark embedded in the video is not

disturbed; however, the content or the semantics of the audio-
visual data may be totally changed. Therefore, it is necessary
to protect against alteration of one of the components without
interfering with the other. Watermarking both components may
provide a solution to this problem. However, if the watermarks
for the components are independent, the copy attack [40] may
be used to copy a watermark from a legitimately watermarked
material to another without knowing the embedding system and
cryptographic keys. Since audiovisual data may undergo several
post production operations such as cutting, editing, and setting
in other audiovisual data, the integrity and synchronization of
both components in each segment are more important than the
integrity of one component alone. An approach to countering
these attacks and ensuring integrity and synchronization is to
watermark the combined audio and video, where a crypto-
graphic signature is linked to the multimedia content. In the
literature, Dittmannet al. [41] proposed two solutions for the
protection of combined audio and video data. The first one is
to insert the same time code to both audio and video data. The
audio and video data are not combined, and copy attack can
be used to make unauthorized embedding of watermarks. The
second one uses the changing of the signs of the audio sequence
as an audio feature, which is encoded into the video as the
video watermark; it uses the Canny edge detector extracting
the edge information of a video frame and embeds the feature
code into the audio as the audio watermark. The audio feature
is low-level and not very robust to audio compressions. We
exploit the characteristics of the audiovisual data and propose
a new combined video and audio watermarking method. The
mel-frequency cepstra are employed to extract the content
information from audio. The feature codes of audio are mapped
to watermark patterns cryptographically and imprinted using
multiplicative watermarking into video. The optimum detector
for multiplicative watermarking is applied. The scheme is tol-
erable to common video and audio compressions but sensitive
to content changes.

B. Information Extraction From Audio

Our goal is to embed the information of one media into the
other to verify the integrity of audiovisual data. The human au-
ditory system (HAS) is much more sensitive to noise than the
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(a)

(b)

(c)

Fig. 8. Lena, a sample image from a large set of images. (a) After intensity
scaling with scaling factor 0.3. (b) After Gaussian noising with variance 0.002.
(c) After adding salt-and-pepper noise with intensity 0.05.

human visual system (HVS). Powerful audio-processing free-
ware is available on the Internet, which can change the structure
of audio signals dramatically while retaining acceptable subjec-
tive quality. With these difficulties in mind, we choose to ex-
tract audio subjective-content information and embed it into the
video.

The well-known technique of mel-frequency cepstra has
proven to be highly effective in automatic speech recognition
and in modeling the subjective pitch and frequency content
of audio signals. Psychophysical studies have found the phe-
nomena of the mel pitch scale and the critical band, and the
frequency scale-warping to the mel or Bark scale has led to the

cepstrum domain representation. The warped cepstral distance
has been defined accordingly [42]:

(56)

where is frequency in Barks, is the spectrum on a Bark
scale, is the Nyquist frequency in Barks, andis a nonlinear
function mapping the Bark scaleto the linear scale . If two
audio signals have similar subjective contents, the warped cep-
strum distance should be small.

To incorporate the critical band phenomena into the cepstrum
domain representation and to simulate the subjective spectrum
efficiently, a filterbank spaced uniformly on the mel scale is
used. The modified spectrum of consists of the output
power of these filters when is the input. Denoting these
power coefficients by , , the mel-frequency
cepstrum coefficients (MFCC) are defined as [43]

(57)
where is the length of the cepstrum, and is the number of
filters in the filterbank.

Since the audio signal might undergo many manipulations,
the extracted features need to be robust against all allowed at-
tacks, such as filtering, compression, or MP3 encoding. As long
as the content has not been modified, the extracted features need
to be similar. Toward this end, we choose to make use of the first
MFCC of the truncated audio signals with a sliding window, for
its well capturing the envelope of the audio signals, and for its
robustness. The original audio signals are first downsampled to
a low sampling rate; then, the filterbank is applied to compute
the MFCC. Fig. 14 shows the first MFCC before and after the
IMA ADPCM compression with bandwidth 4 kHz. The original
speech has bandwidth 22.05 kHz. The downsampling factor is
4. It can be seen that the shapes are approximately the same.

C. Embedding Feature Code Into Video

The audio features are extracted by using MFCC so that they
are audio content-dependent but at the same time insensitive to
manipulations. To further reduce the sensitivity, we make use
of the first MFCC coefficient only and quantize the centralized
MFCC to several crude levels.

The audio MFCC frame rate is chosen so that each video
frame corresponds to several MFCCs. These MFCCs are
mapped using a secret function to an integer, which is used
as the cryptographic key to generate a bipolar pseudorandom
noise pattern . It is the watermark to be
embedded into the video. For a simple example, the number
of MFCCs could be chosen as 2 for each frame, and the
quantization level is chosen as 4; then, there are 16 possible
bi-tuple patterns. The encoding function is a one-to-one bijec-
tion between 16 bi-tuple vector patterns and 16 pseudorandom
noise patterns, which are mutually orthogonal.

Many schemes have been proposed for video watermarking
[16], [44]–[47]. A joint watermarking and compression of the
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(a)

(b)

(c)

Fig. 9. ROCs for a large set of images after (a) scaling with scaling factor 0.3.
(b) Gaussian noise adding with variance 0.002. (c) Salt-and-pepper noise adding
with intensity 0.05.

video scheme has been proposed [46]. The amount of com-
pression of the most recently coded frame of the same type
as the current frame was monitored, and the watermark added
was adapted according to the degradation due to coding. In this
paper, we only adapt the watermark strengths to the frame types.
We adopt a multiplicative watermarking rule in the DCT do-
main:

(58)

where is a series of DCT coefficients
of the th video frame, is the bipolar

Fig. 10. Empirical ROCs and theoretical ROCs with = 0:12.

Fig. 11. Decision statistic for the watermarks embedded into the DFT
domain. The truly embedded one (the 500th of 1000) produces a very high
value compared with the others.

watermark formed from the audio features, andis the wa-
termark strength. Since theframes are intracoded using DCT
only, we set corresponding to a small value, which roughly
represents the Weber’s fraction [19], [48]. Theframes are for-
ward predicted using the motion-compensated prediction, and
the residual errors are compressed using DCT. The degradation
due to compression is more than that offrames. The corre-
sponding is set larger. The frames are coded most aggres-
sively, and the degradation due to coding is the largest. More-
over, the watermarks embedded in the B frames do not propa-
gate. The corresponding is the largest.

D. Verification of Audiovisual Data

The features of the accompanying audio are first extracted
for the test audiovisual data. The extraction is similar to the em-
bedding process, and the parameters such as the audio frame
rate, the quantization level, and the encoding function are ex-
actly the same. The extracted features are encoded and mapped
to a bipolar pseudorandom sequence . If there is no modi-
fication to the original accompanying audio data at all,

. If there is a certain digital data processing, .
However, if the audio data have been edited or falsified, there
will be little similarity between and , which can be
measured using the Hamming distance. To guarantee the mu-
tual verification, we need to detect the watermark embedded in
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(a) (b)

Fig. 12. Decision statistic for watermarked image after attacks. The watermark is embedded into the DFT domain. (a) JPEG compression with quality factor 5.
(b) Median filtering with window size 7� 7. The truly embedded one (the 500th of 1000) is detected against the others.

Fig. 13. Comparison of ROC of the new detector after JPEG compression with
quality factor 5 to that of the correlator. The watermark is embedded into the
DFT domain.

the video data. The decision statistic for the watermarking is de-
fined as the generalized quadratic correlator:

(59)

Fig. 15 shows the decision statistic for a segment of Flower
Garden with accompanying audio.

For GOPs of audiovisual data, we define the authenticity
indicator as to indicate
the authenticity of the content, where is a properly chosen
threshold, is the number of frames in one GOP, and
is the Heaviside function. The binary value of AI indicates the
authenticity or nonauthenticity of this GOP.

The video watermarking needs to be tolerant to certain de-
grees of video compression, such as MPEG-1. The robustness
of a video watermarking scheme to MPEG first depends on the
chosen bitrate and second on the variation of the embedded sig-
nals over consecutive frames. It has been proposed that the wa-
termark be the same for at least the length of a complete GOP
[49]. Since the GOP structure might be changed after reen-
coding, here, we choose to generate different watermarks for
different frames.

To validate our proposed combined audio and video water-
marking system, we have conducted experiments on the Flower
Garden sequence accompanied with a segment of audio signal
whose sampling rate is 44.1 Hz. The features extracted from
the audio data are the first coefficients of the MFCC with the
audio frame rate 60 Hz. Forframes, the watermarks are mod-
ulated with , which is the same as that in [46]. For
frames, is taken as 0.18. For frames, we take .
Here, we adapt simply to the types of frames. The DCT-do-
main adaptive scheme proposed in [46] may be incorporated
into our framework to further improve the detection results. We
use and the number of GOPs in our experi-
ments.

Subjective evaluations of watermarked video have shown
no appreciable perceptual quality loss incurred due to wa-
termarking. For 48 frames, the results of for both
watermarked and unwatermarked video are shown in Fig. 15.
The corresponding authenticity indicator is 1.

To show that watermarks are persistent after video compres-
sion, we use MPEG-1 to compress the watermarked video se-
quence. Fig. 16 shows the resulting for compressed
video with data rate 1.152 Mb/s, which corresponds roughly to
the VHS quality. The authenticity indicator is 1.

To show the effectiveness of the proposed scheme after audio
compression, we use IMA ADPCM to compress the audio signal
with bandwidth 4 kHz. This aggressive compression is often
used in speech coding with telephone quality. Fig. 17 shows the
resulting decision statistics. The results are exactly the same as
those without any audio compression.

For a different segment of the same audio data, which is used
to falsify the original audio data, the results of the decision
statistic are shown in Fig. 18. The authentication indicator is
0 in this case.

The proposed combined audio and video watermarking
method is also compared with that in [41], which extracts
changing of signs as audio features to embed into video,
and extracts edge information as video feature to embed into
audio. For comparison, the results of the decision statistic
watermarked video are shown in Fig. 19, with audio and video
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(a) (b)

Fig. 14. (a)~c for the original speech signal. (b)~c for compressed speech using IMA ADPCM with bandwidth 4 kb/s.

Fig. 15. Decision statistic for audiovisual data without and with watermarking.

Fig. 16. Decision statistic for compressed watermarked video data.

both compressed. Compared with Fig. 17, better results are
obtained using the proposed method.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, novel optimum detectors for multiplicative
watermarks are derived using locally optimum detection for
the generalized Gaussian distributions. Special cases for the
Laplacian model and the Gaussian model have been examined.
The square-root detector has been shown to be nearly optimum
for majority natural images. Novel optimum detectors for the

Fig. 17. Decision statistic for compressed audio only, and for compressed
audio and compressed video.

Fig. 18. Decision statistic for falsified audio.

Weibull distribution have also been constructed. The experi-
ments have validated the theoretical analysis. The results can be
applied to multiplicative watermarking systems for copyright
notification and protection and fingerprinting. It may also
find applications in content-based multimedia indexing and
retrieval. We have applied the robust watermarking detection
to combined audio and video watermarking. It can tolerate
commonly used audio and video compressions but is sensitive
to content changes. It can be applied to audiovisual content
authentication in commerce, law, defense, and journalism.
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Fig. 19. Decision statistic using Dittmann’s method.

For future research, more performance analyses are needed
[50], and incorporation of any refined perceptual model for
multiplicative watermarks can be investigated.
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