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Accurately estimating impervious surfaces is of considerable importance towards
understanding human impacts on the environment. In this article, a sequential mul-
tiprocess model is presented to estimate the distribution of impervious surfaces
using Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery. Unlike
typical single-thread classification processes, the multiprocess model consists of a
series of classification steps. By separating the classification task into several sub-
tasks of variable difficulty, multiple classifiers are integrated while adapting to
different levels of complexity. The results show statistically significant improve-
ments for the proposed model. An interesting finding is the uneven distribution
of simple classifiers in either highly rural or suburban/urban areas, suggesting that
the classification difficulty is concentrated in rural areas. The proposed methodol-
ogy also supports spatially explicit accuracy metrics, facilitating incorporation of
the results obtained in interdisciplinary modelling efforts and providing a guide for
further algorithmic refinement.

1. Introduction

Imperviousness is a key indicator effectively addressing a host of complex envi-
ronmental issues and can be explicitly quantified, managed and controlled in land
development (Schueler 1994, Arnold and Gibbons 1996). Impervious surface distri-
bution also indicates the extent of urban growth and sprawl. Therefore, accurately
estimating impervious surface distribution contributes to a wide range of ecosystem
studies, such as hydrology, land use planning and resource management.

Remotely sensed data (from both satellite and aerial platforms) and methods have
become increasingly important in impervious surface detection. Remote sensing meth-
ods reduce the cost, enhance the speed of ground survey and eliminate the problems
of surface access. Several impervious surface estimation studies have been conducted
based on a variety of sensors, such as Landsat Thematic Mapper/Enhanced Thematic
Mapper Plus (TM/ETM+; Haack et al. 2002, Phinn et al. 2002, Zha et al. 2003),
Satellite Pour l’Observation de la Terre (SPOT; Shaban and Dikshit 2001), IKONOS
(Cablk and Minor 2003, Lu and Weng 2009) and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER; Zhu and Blumberg 2002, Weng et al.
2009).
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366 L. Luo and G. Mountrakis

Various methods have been explored to accurately estimate the distribution of
imperviousness and encouraging results have been achieved. These methods include:
(1) regression models (Ridd 1995, Bauer et al. 2005, Yang 2006), which were used
to find the relationship between land cover types in remotely sensed data and spec-
tral characteristics; (2) spectral mixture analysis models (Wu and Murray 2003, Braun
and Herold 2004, Powell et al. 2007, De Voorde et al. 2009), which were used to cal-
culate impervious surface fractions within a pixel and model a mixed spectrum as a
combination of spectra for pure land cover types, called endmembers (Roberts et al.
1998); (3) machine learning algorithms, which adopted advanced machine learning
methods, such as decision tree models (Smith 2000, Herold 2003, Yang et al. 2003,
Dougherty et al. 2004, Crane et al. 2005), neural networks (Civco and Hurd 1997,
Flanagan and Civco 2001, Iyer and Mohan 2002, Lee and Lathrop 2006) and support
vector machines (Mountrakis et al. 2011); and (4) contextual classification models,
which took into account labelling of neighbours when seeking to determine the most
appropriate class for a pixel (Richards and Jia 2006, Luo and Mountrakis 2010, in
press, Mountrakis and Luo 2011).

Impervious surfaces, defined as the sum of roads, parking lots, sidewalks, rooftops
and other impermeable surfaces of the urban landscape, exhibit heterogeneous spa-
tial and spectral patterns for different types of man-made materials, such as asphalt
and concrete (Schueler 1994). Most of the existing impervious surface detection
approaches explored only a single classifier, that is only one classification algo-
rithm is applied on the entire dataset. However, different classifiers have their own
strengths and limitations and therefore selection of a given method implicitly suggests
a tradeoff. For example, the maximum likelihood classifiers produce accurate classi-
fication results when the image data are normally distributed. Neural networks may
be especially useful when image data are complicated and without a known statisti-
cal distribution. Studies have demonstrated that, in general, by combining multiple
algorithms together, the classification results are more accurate than a single classi-
fication approach (Hansen and Salamon 1990, Krogh and Vedelsby 1995, Breiman
1996). The idea of using hybrid approaches has been applied to impervious surface
detection. Liu et al. (2004) developed a hybrid classification approach combining
decision tree and ARTMAP neural networks and also provided a confidence map
via majority voting and other rules. Steel (2000) discussed the land cover mapping
methods of combining multiple classification rules as a single rule and using spa-
tial information for classification. Their results suggested that the product rule may
increase map accuracy with little additional expense or effort and the spatial classi-
fier is useful for increasing accuracy when patterns exist in the spatial distribution of
land cover. Shackelford and Davis (2003) presented a combined fuzzy pixel-based and
object-based approach for multispectral IKONOS imagery classification. The object-
based classifier adopted the fuzzy pixel-based classification as input and then used
shape, spectral and neighbourhood features to determine the final classification of
the segmented image. Franke et al. (2009) used a hierarchical approach and applied
Multiple Endmember Spectral Mixture Analysis (MESMA) to map four levels of
complexity of land cover classes. Mountrakis et al. (2009) developed an expert-based
hybrid multiprocess system to estimate the distribution of impervious surfaces from
satellite imagery. Luo and Mountrakis (2010) presented the concept of ‘intermediate
inputs’, where partially classified images act as intermediate layers for additional input
production to enhance the classification process.
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A multiprocess impervious surface detection model 367

In the current study, we built up an expert-based hybrid multiprocess classifica-
tion system to estimate the distribution of impervious surfaces at a binary level from
satellite imagery. This multiprocess classification system deals with the impervious
surface estimation problem by integrating multiple classifiers within a series of steps
that are arranged in a serial sequence. In each step, a single classifier is applied on a
certain subset of the entire dataset. The classifiers during subsequent steps are per-
formed on the remaining dataset from early steps. The complexity and resource costs
of the classifiers increase as the steps go on. Mathematically simple and computation-
ally efficient classifiers are used during the early steps. As the number of unidentified
pixels decreases, the classification difficulty increases. Therefore, complex and com-
putationally intensive classifiers are progressively introduced during the subsequent
steps.

The specific application of the hybrid multiprocess classification system was on
Landsat ETM+ data acquired in 2001; the aim was to detect the binary impervious
surface distribution within the study area of central New York. The adopted hybrid
multiprocess classification model consisted of eight classification steps and used two
types of classifiers: simple classifiers using only two inputs and complex classifiers with
numerous inputs using backpropagation neural network models. The working hypoth-
esis was that the proposed hybrid model would outperform single process classifiers in
terms of classification accuracy. To evaluate this hypothesis, the classification results
obtained were compared with the results of three single classifiers, namely a single
neural network model, a decision tree model and a maximum likelihood model.

2. Methodology

2.1 Study site and reference data description

The study area is composed by a Landsat 7 ETM+ scene taken on 28 April 2001
(path 15, row 30) (figure 1). It is located in the central New York region and the area
is approximately 173 km × 177 km. The Landsat ETM+ scene contains six bands

N

0 25 50
kms

Study area

Landsat Enhanced Thematic Mapper Plus (ETM+ ) imagery in 2001

kms
0 10 20 40

Figure 1. Study area located in the central New York region.

D
ow

nl
oa

de
d 

by
 [

Sy
ra

cu
se

 U
ni

ve
rs

ity
] 

at
 0

8:
09

 2
3 

Fe
br

ua
ry

 2
01

2 



368 L. Luo and G. Mountrakis

(blue, green, red, near-infrared (IR) and two mid-IR bands) with a spatial resolution
of 30 m. Typical land cover classes within this region are tree, grass, bare soil, wet-
land, water and impervious surfaces; there is also snow on mountain areas located in
the north of the scene. Our task was to create a binary impervious map at the 30 m
resolution, where any presence of impervious areas within a pixel would translate into
an impervious pixel. The underlying idea was to use this method to develop impervi-
ous masking products, followed in the future by other subpixel algorithms targeting
specifically pixels with an impervious presence.

Nineteen sites representing various land cover types were selected throughout the
entire scene to derive the reference data. The first 18 sites used Digital Orthophoto
Quarter Quads (DOQQs) acquired in 2001 with a 0.6 m spatial resolution. Binary ref-
erence data within these 18 sites were derived based on the on-screen interpretation
and digitization of the DOQQ imagery. For site 19, the immediate land cover map
with five land cover classes produced by Myeong et al. (2001) based on 0.61 m Emerge
imagery was overlapped and compared with the Landsat ETM+ scene to derive ref-
erence data with a 30 m spatial resolution and two classes of interest: impervious
surface areas (ISAs) and non-impervious surface areas (NonISAs). The Landsat pix-
els overlapping any imperviousness pixels on the high-resolution land cover map were
assigned as the impervious class, and all others belonged to the non-impervious class.
Although the classification accuracy of Myeong’s land cover map was 84.8%, there
were sufficient Emerge pixels overlapping each Landsat pixel to ensure that the ref-
erence data within site 19 were accurate enough. There is also a 2-year gap between
the Emerge imagery and Landsat ETM+ scene. However, site 19 covers the major-
ity of the city of Syracuse, whose urban areas remained mostly steady during the
2 years. The final reference dataset included 101 919 impervious pixels and 280 334
non-impervious pixels from all 19 sites; these were randomly divided into a calibra-
tion dataset and a validation dataset with a ratio of 3:7. All algorithmic training took
place on the calibration data and the accuracy metrics were reported on the validation
dataset.

The six bands of the Landsat ETM+ scene and various band statistics and combi-
nations, normalizations and spatial filtering masks were produced as candidate inputs.
These candidate inputs take advantage of spectral and/or spatial characteristics of the
remote sensing image, which include established tasseled cap transformations, normal-
ized difference vegetation index (NDVI), normalized differences between other bands,
multiple band-to-band advanced correlations and neighbourhood metrics using a
standard deviation mask (e.g. 5 × 5, 7 × 7), and others. For details of these candi-
date inputs, refer to Mountrakis et al. (2009). The inputs used in each classification
step were selected from a random search from all candidate inputs.

2.2 The hybrid multiprocess model

The potential benefits of building an integration framework for collaborative oper-
ation of multiple algorithms in remote sensing applications have been described
previously (Mountrakis 2008, Mountrakis et al. 2009). The underlying idea was to
develop a method that adjusts algorithmic complexity and transparency to classifica-
tion difficulty. In other words, use simple classifiers for relatively easy classification
tasks and leave complex methods only where they are necessary. The focus of this
article was to present a hybrid multiprocess model that is easy to train and under-
stand. The major differences from prior work are the following. First, the structure
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Original
Dataset

Dataset
After Step 2
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After Step n-1
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After Step 1

Step 1
Classifier

Step 2
Classifier

Step n
Classifier

Integrated
Classification Results

Classified
Portion 1

Classified
Portion 2

Classified
Portion n

Figure 2. The multiprocess hybrid model framework.

of the proposed hybrid classification model is more explicit as it is composed of a
series of sequential steps (figure 2) as opposed to a more complicated tree-type struc-
ture. In each step, parts of the dataset are classified using an appropriate classifier
towards high classification accuracy while the remaining pixels are forwarded to sub-
sequent classifiers. Second, the proposed hybrid classification model targets a single
class in every step (impervious or non-impervious) allowing specific class patterns to
prevail and be expressed in a single classifier. The only exception is the last classifica-
tion step where the remaining pixels are unavoidably classified into both classes. Third,
the training process of this proposed method supports a higher automation level, since
user involvement is limited in only the identification of the simple classification steps
in the early training stages.

In the sequential classification process of the hybrid multiprocess model, easy clas-
sification tasks are targeted at the beginning using fairly simple classifiers (e.g. water
extraction). As classification progresses, it becomes more difficult to label leftover pix-
els. Complex classifiers such as neural network classifiers are adopted in the later steps,
sacrificing some of the model transparency in exchange for higher classification accu-
racy. After all the pixels have been identified, the classification results from each step
are integrated together to derive the final classification results of the entire dataset.
Furthermore, a spatially explicit accuracy map can be generated based on accura-
cies obtained from each classification step, communicating to potential non-experts
algorithmic performance and limitations, an often overlooked process in classification
processes.

3. Results and discussion

3.1 Structure of the hybrid multiprocess model

The deducted hybrid multiprocess classification model comprised eight steps. During
the first four steps, preference was given to simple classifiers operating in low two-
dimensional (2D) space. A multivariant analysis was used to select the two inputs
with best impervious/non-impervious separation from all the candidate inputs. Then
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370 L. Luo and G. Mountrakis

scatter plots of all the training pixels were drawn in these 2D input spaces. Simple
geometrical shapes (e.g. line, rectangle, ellipse) were used to extract pixels belonging
to one of the two classes. From each step, all extracted pixels were assigned to either
the impervious or the non-impervious class. For example, in step 1, the two inputs
adopted were the normalized difference between wetness and band 4 and the nor-
malized difference between bands 4 and 3 (NDVI). After plotting all of the pixels, a
rectangle was used to identify non-impervious pixels (figure 3, step 1). The portion of
the input space lying within the rectangle range was identified as non-impervious pix-
els (most of them are water pixels). Points falling outside the rectangle region remained
‘unknown’ and were forwarded to subsequent steps. The process was repeated creat-
ing four sequential steps. The classifications at the input space along with the spatial
footprint of each classifier are depicted in figure 3. Table 1 lists the two selected inputs
for each simple classifier and the extracted class type during the first four steps.

After the first four steps, where pixels were extracted at a high accuracy, it became
progressively more difficult to classify leftover pixels using simple classifiers. To
address the high complexity, backpropagation neural networks were the algorithmic
choice for the subsequent classification processes. In each step, 2000 candidate neu-
ral networks were tested and the neural network with the best overall accuracy in the
training dataset was the chosen classifier for that step. In terms of network architec-
ture of the candidate networks, the following assignment process took place: the input
layer consisted of 10 randomly selected nodes from the available inputs, the node num-
ber in the hidden layers was randomly selected between 8 and 16 for the first layer and
between 0 to 6 for the second layer, and the network output layer contained two nodes,
each containing a logistic function bounded between 0 and 1. One output layer node
represented the impervious class and the other the non-impervious class. We should
note that all pixels extracted during the first seven steps were assigned to either the
impervious or the non-impervious class but not to both. However, step 8 is the last
step of the multiprocess method and therefore all leftover pixels had to be classified;
therefore step 8 identified both impervious and non-impervious pixels.

3.2 Algorithmic complexity spatial assessment

To contrast the applicability of simple vs. complex algorithms, we simulated the entire
Landsat scene to detect ISAs and NonISAs. The spatial footprint of each algorithmic
step is illustrated in figure 4; figure 5 shows the portions classified by simple (steps
1–4) and complex classifiers (steps 5–8). Summary statistics show that 60.36% of the
entire Landsat scene was identified by using simple classifiers and 39.64% was classi-
fied using complex classifiers. When looking into the spatial footprints of the simple
and complex classifiers, pixels extracted from simple classifiers possessed unique spec-
tral characteristics from other pixels (such as water pixels), as expected. Therefore,
only two inputs were adopted in every simple classifier to achieve high classification
accuracy. By contrast, complex classifiers were adopted targeting the identification of
pixels that were relatively difficult to separate (such as impervious and soil pixels).

Further statistics on simple vs. complex classifiers were calculated illustrating their
distribution within class (table 2). Most ISA pixels were classified by using complex
classifiers (about 87.98%) and most NonISA pixels were classified by simple classifiers
(about 64.53%). Among the pixels classified by simple classifiers, almost all of them
were identified as NonISA pixels while only a small portion of pixels were classified in

D
ow

nl
oa

de
d 

by
 [

Sy
ra

cu
se

 U
ni

ve
rs

ity
] 

at
 0

8:
09

 2
3 

Fe
br

ua
ry

 2
01

2 



A multiprocess impervious surface detection model 371

Impervious
Non-Impervious

0.6

0.4

0.2

0

−0.4

−0.6

−0.8

−1

Input 1

−100 −50 0 50 100

−0.2

Step 2

In
pu

t 2

Classified in previous step

Classified in this step

Unclassified
0 10 20 40

km

1

0.8
Impervious
Non-Impervious

0.6

0.4

0.2

−0.2

Input 1

Step 1

In
pu

t 2

Classified in this step

Unclassified 0 10 20 40
km−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.4

0

Impervious
Non-impervious

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0.5
0.4
0.3
0.2
0.1

–0.1
–0.2
–0.3
–0.4
−0.5

−0.6
−0.7
−0.8
−0.9

−1

0

Input 1

Step 4

In
pu

t 2

Classified in previous step

Classified in this step

Unclassified
0 10 20 40

kms

160

140

120

100

80

60

40

20

Impervious
Non-Impervious

Input 1

Step 3

In
pu

t 2

Classified in this step

Unclassified
0 10 20 40

km
−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7−0.2 0.8

Classified in previous step

Figure 3. Classification process during the first four steps. The scatter plot (left) identifies the
selected pixels from each step in the two-dimensional input space and the image (right) displays
the spatial footprint of the selected pixels.
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372 L. Luo and G. Mountrakis

Table 1. Classifiers, inputs and extracted class types during the first four steps.

Step Class type Input

1 NonISA 1: Normalized difference between wetness and band 4
2: Normalized difference between band 4 and band 3 (NDVI)

2 NonISA 1: Greenness
2: Normalized difference between band 5 and band 2

3 NonISA 1: Normalized difference between band 4 and band 3 (NDVI)
2: Band 1

4 ISA 1: Normalized difference between band 5 and band 2
2: A 5×5 filter on normalized difference between brightness and band 5

Step 1

N

Legend

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

0 10 20 40
km

Figure 4. The classification spatial footprint for each algorithmic step.

the ISA class. Therefore, when complex classifiers were involved, a higher probability
of impervious pixel presence is expected.

A further investigation was carried at neighbourhood level to assess whether sim-
ple classifiers tend to be uniformly distributed when the urbanization level of a given
neighbourhood varied. The entire scene was divided equally into 64 × 64 blocks and
each block covered an area of approximately 2.75 × 2.80 km2. ISA percentages and
simple classifier percentages were calculated for each block. In figure 6, the grey bars
show the histograms of the ISA percentage within each block using a bin size of 10%
(see right y axis). Overlaid on the bar graph are aggregated statistics on the simple
algorithm percentages; each white box represents the 25% percentile, the median value
and the 75% percentile of the simple classifier percentage within each block falling
in each ISA percentage range. The mean values within each bin are displayed as
crosses.

From the statistics reported in table 2, it was expected that the higher the ISA pro-
portion within a neighbourhood, the more difficult the classification would be and
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A multiprocess impervious surface detection model 373

Simple classifiers (steps 1–4)

Complex classifiers (steps 5–8) 0 10 20 40
km

Figure 5. The classification spatial footprint of simple and complex classifiers.

Table 2. Extracted percentage within each land cover class and each classifier.

Land cover class Classifier

ISA NonISA Simple Complex

Simple Complex Simple Complex ISA NonISA ISA NonISA

Extracted percentage 12.02 87.98 64.53 35.47 1.58 98.42 17.65 82.35

therefore the lower the proportion of simple classifiers. This pattern is evident in fig-
ure 6, following the black thick line connecting the mean values of every bin. However,
an interesting finding was that the trend of the complexity increase (i.e. smaller simple
algorithm proportion) did not continue for higher than 30–40% ISA portions as the
portion of simple classifiers started to increase after the 30–40% ISA portions. There
seems to be a turning point where, if a neighbourhood becomes highly urbanized,
more simple classifiers start contributing. In other words, the most challenging part
of the classification is not where the ISA portions reach high values (urban areas), but
where low ISA portions exist, in essence in rural and semi-rural areas.

Four representative blocks with an ISA percentage of 10–20, 30–40, 50–60 and
80–90%, respectively, were selected to show the spatial ISA patterns of different simple
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Figure 6. Box plot and histogram distribution of blocks.
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Figure 7. Spatial patterns of representative blocks, percentages show ISA proportions.

classifier percentages (figure 7). Among these blocks, the one that represented the ISA
percentage of 30–40% was the most difficult to classify, requiring the lowest simple
algorithm proportion. Its spatial pattern illustrated that this block contained complex
road networks with a limited amount of buildings. There were only simple road net-
works appearing in the block with an ISA portion of 10–20% and the other two blocks
with ISA portions of 50–60% and 80–90% were located in urban areas and contained
a higher number of buildings. The specific land cover patterns and land cover types
also affected the classification. In the block with the ISA portion of 30–40%, most
pixels belonged to the road and soil classes, which were spectrally similar. Therefore,
more complex classifiers were involved to assist in the classification of such blocks. By
contrast, blocks with lower or higher ISA portions may have allowed specific texture
statistics to resolve spectral ambiguity.

3.3 Accuracy assessment of the hybrid multiprocess model

We first assessed the internal algorithmic performance within the hybrid model. Note
that this section uses the validation dataset rather than the previous section where
statistics were calculated on the entire Landsat scene. Table 3 shows the progressive
classification of the validation dataset expressed as the extracted portion and accura-
cies for the ISA class and the NonISA class. The accuracies of pixels from all of the
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steps were calculated directly from the entire validation dataset; in essence we did not
use a weighted average of the individual accuracies in each step. Within the validation
dataset, the majority of ISAs were identified in step 4 (66.73%) and step 6 (22.66%)
and NonISAs were mostly extracted in step 2 (40.18%) and step 5 (38.47%). The over-
all accuracies in the first seven steps were relatively high, above 95%. As more pixels
were distinguished from step 1 to step 7, the classification task became more challeng-
ing, which resulted in a relatively low overall accuracy in step 8 (84.60%). This high
accuracy variability is desired because it provides a major benefit for our approach,
namely the ability to identify problematic areas. If further improvements are pursued,
experts could easily target a subset of the problem, in this case pixels belonging to
step 8. By doing so, we do not disregard prior classification efforts, rather we build on
them to target future areas for improvement.

Figure 8 illustrates the accuracy map of the entire scene based on the calculated
accuracies within the validation dataset for each step. The wide range of accuracies
obtained reflects the complexity of the problem. In some portions of the scene the clas-
sification task was relatively easy (e.g. the Adirondack area in the northeast), while in
others some difficulties do exist (e.g. the Finger Lakes area in the southwest). Accuracy
maps such as the one in figure 8 are essential to communicate to non-experts successes
and challenges of remote sensing products, especially if these products will act as input
layers to models from other disciplines (e.g. hydrological modelling).

To investigate the benefits of adopting the integration of multiple classifiers over a
single classifier, we also performed the classification by using three single classifiers: the
single neural network (NN), decision tree (DT) and maximum likelihood (MLE) clas-
sifiers. The exact 31 inputs used in the multiprocess model were introduced as inputs
for the single models to constrain any improvements to algorithmic behaviour.

The candidate structure and the training process of the single neural network model
was the same with each neural network used in the multiprocess model to allow direct
comparisons. It was composed of one input layer, two hidden layers and one output

Figure 8. Spatially distributed accuracy extrapolated from the validation dataset.
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Table 4. Classification comparison of hybrid multiprocess model with single classifiers.

Hybrid model
Single neural

network Decision tree
Maximum
likelihood

Producer’s (%) ISA 99.81 94.69 94.83 4.70
NonISA 98.58 99.55 98.92 51.98

User’s (%) ISA 94.20 98.11 95.61 2.37
NonISA 99.95 98.70 98.72 68.77

Overall (%) 98.81 98.58 98.11 42.59
Kappa (%) 96.19 95.49 94.04 −31.60

layer; 31 inputs were used as nodes in the input layer. The node number in the hidden
layers was randomly selected between 8 and 16 for the first layer and between 0 to 6 for
the second layer. The output layer contained two nodes representing imperviousness
and non-imperviousness. The decision tree model was trained using the calibration
dataset and built-in functions within Matlab. The maximum likelihood model was
implemented by calculating the distances from each pixel to the mean of the training
dataset for each class.

The producer’s, user’s and overall accuracies as well as kappa statistics of all the sin-
gle models and the multiprocess model are listed in table 4. The hybrid multiprocess
model performed better than the other three single models. Of particular note are the
improvements observed in the kappa statistic as classifications by chance are excluded.
There the hybrid method outperformed the single neural network by 0.7% and the
decision tree by 2.1%, a significant improvement considering the room for improve-
ment. The single neural network model had better accuracies than the decision tree
classifier and the maximum likelihood model fitted the validation dataset poorly. The
overall accuracy improvements in the hybrid classification model were small in abso-
lute values compared to the single neural network classifier (0.23%) and the decision
tree classifier (0.7%). However, in this implementation the two classifiers had already
reached high accuracy levels, limiting the available range for improvement. To iden-
tify relative improvement terms, the normalized relative accuracy difference between
two classification models was used. It was calculated by dividing the improvements by
the range potential for improvement of the single classifier (improvement compared
to 100% accuracy). The hybrid classification model showed a relative classification
accuracy improvement of 16.2% compared to the single neural network classifier and
37.04% compared to the decision tree classifier, and these values were significant.
Similar relative improvements were achieved for the kappa statistic: 15.5% when con-
trasted with the single neural network and 36.1% when compared with the decision
tree method.

Furthermore, as stated in §3.2, the most challenging part of the impervious surface
detection lies in the low ISA portion areas (i.e. rural and semi-rural regions). Any ISA
omission errors are highly pronounced in these areas as they can have a significant
impact on the overall ISA estimation. These small changes are of particular interest
to further scientific investigations, as it has been shown that small ISA changes at
low levels can have a significant impact on ecosystems (e.g. Klein 1979, Forman and
Alexander 1998).

To further quantify the benefit of a hybrid multiprocess model over single classifiers,
we conducted a Z-test between kappa statistics using different classification models.
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Table 5. Z-test between different classifiers, p-values in parentheses.

Maximum likelihood Neural network Decision tree

Neural network 860.76 (<0.0001) – –
Decision tree 823.10 (<0.0001) 13.64 (<0.0001) –
Hybrid model 555.08 (<0.0001) 3.46 (<0.0005) 10.43 (<0.0001)

The null hypothesis is: kappa using a hybrid classification model = kappa using a
single classification model. The Z-score between different kappa values is calculated
as (Cohen 1960):

Z-score = (K1 − K2)√
(ASE (K1))

2 + (ASE (K2))
2

(1)

where K1 and K2 represent the kappa values and ASE(K1) and ASE(K2) represent
the asymptotic standard errors (ASEs) of the two models, respectively. A p-value was
calculated using the Z-score expressing the confidence level that these two models can
produce identical results. We set the confidence level at 0.05, but note that because of
the low p-values our confidence level could have been set lower. The comparison results
between pairs of classifiers are shown in table 5, in which the calculated p-values for
the three pairs of comparisons are much smaller than the confidence level. Therefore,
the hypothesis can be rejected, meaning that the use of a hybrid multiprocess model
provided a statistically significant improvement compared to single classifiers.

4. Conclusions

The focus of this article was on developing a hybrid multiprocess classification model
for impervious surface detection. The proposed model comprised numerous classi-
fiers, some with simple structures and others with complex algorithmic underpinnings.
Experiments suggested that simple classifiers may be used in either highly rural or
highly urbanized areas, while the complex classifiers took over in other areas. The
hybrid multiprocess classification model was more accurate with regard to overall
accuracies and kappa statistics compared to three single-process classifiers, especially
when the relative room for improvement was considered. A Z-test also indicated that
the improvements were significant. The spatially distributed accuracy map was a nat-
ural by-product of the multiple algorithms within the model and supports non-expert
usage of the results obtained, but also acts as a guide for further algorithmic refine-
ments by experts. The hybrid multiprocess model presented here was for a binary
classification task, but it can be easily extended to multiclass problems. Finding a way
to incorporate multiple targeted algorithms remains an issue of investigation.
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