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Abstract

The access structure, the retrieval model, and the sys-

tem architecture of the SPIDER information retrieval

system are described. The access structure provides ef-

ficient weighted retrieval on dynamic data collections.

It is based on signatures and non-inverted item descrip-

tions. The signatures provide upper bounds for the ex-

act retrieval status values such that only a small number

of exact retrieval status values have to be computed.

SPIDER’s retrieval model is a probabilistic retrieval

model that is capable to exploit the database scheme

of semistructured data collections. This model can be

considered as a further development of the Binary In-

dependence Indexing (BII) model. The system archi-

tecture was derived systematically from a given set of

requirements such as effective and efficient retrieval on

dynamic data collections, exploitation of the database

scheme, computed views, and the integration of infor-

mation retrieval functionality and database functional-

ity.

1 Introduction.

The SPIDER project is aimed at building a next gen-

eration information retrieval system which meets the

current needs of information management. The current

needs are expressed by a list of requirements that were

identified in projects dealing with technical documenta-

tion and medical reports (Berrut & Chiaramella, 1989),

(Chiaramella et al., 1986), (Frei & Schauble, 1991a),

(Hoppe, 1992). The experiences made in these projects
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seem to indicate that future information retrieval sys-

tems will have the following salient features.

1.

2.

3.

4.

5.

Vague queries (including relevance feedback) are

processed both effectively and efficiently even when

the data collection is modified frequently.

The retrieval of information from semistructured

data collections is supported by an appropriate re-

trieval model which exploits the database scheme.

The system provides database functionality (per-

sistency, concurrency, data independence, data in-

tegrity, data model including query language and

views).

The system supports the derivation of both numeric

and non-numeric data (computed views).

The system provides access to remote data in a het-

erogeneous environment.

The SPIDER project is guided by these requirements.

In order to bridge the gap between these requirements

and the state of the art of information retrieval tech-

nology we made the following new developments that

are presented in this paper. First, a new access struc-

ture was developed which supports effective and efficient

retrieval on dynamic data collections (Section 2). The

access structure is based on signatures and non-inverted

item descriptions. The signatures provide upper bounds

for the exact retrieval status values such that only a

small number of exact retrieval status values have to

be computed. Second, we developed a novel probabilis-

tic retrieval model that takes advantage of the database

scheme (Section 3). This model can be considered as

a further development of the Binary Independence In-

dexing (BII) model (Fuhr & Buckley, 1991). Third, we

derived systematically a new system architecture from

the requirements given above (Section 4). We will see

that a new system architecture is required because con-

ventional database management systems are difficult to
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enhance by information retrieval capabilities and in-

formation retrieval systems are difficult to enhance by

database capabilities.

2 Weighted Retrieval of

Dynamic Data

In this section, we present a retrieval method together

with a novel access structure which supports eflective

and eflicient retrieval from large and dynamic data col-

lections. Effective retrieval is accomplished by weighted

retrieval including relevance feedback (Harman, 1992),

(Salton & Buckley, 1988b). A weighted retrieval method

consists of an indexing method and a retrieval function.

The indexing method determines the descriptions (i.e.

the description vectors) of the stored data items (e.g.

of documents) and the descriptions of the query items

given by the users. The retrieval function matches the

description of the query item q against the descriptions

of the stored data items dj. The result of a single match-

ing consists of the retrieval status value RSV(q, dj )

which is usually (up to an order preserving transfor-

mation) the estimated probability that dj satisfies the

user’s information need expressed by q. A user is pre-

sented a list of data items that are ranked in an optimal

order, i.e. they are ranked in decreasing order of their

retrieval status values (Robertson, 1977).

Efficient retrieval is achieved by means of an appro-

priate access structure containing the precomputed de-

scriptions of the stored data items. The existence of an

access structure implies the existence of redundant data

(up to 100 %) which, however, is conflicting the aim at

efficient up datability; particularly, if every description of

a data item is partitioned into small pieces (e.g. post-

ings) that are spread over the whole access structure.

Hence, effectiveness and efficiency are conflicting goals

when the data collection is dynamic. Before presenting

our approach, we briefly discuss existing approaches.

In information retrieval, inverted files are widely used

to support weighted retrieval on static data collections

(Harman et al., 1992). When the data collection is

dynamic, inverted files are problematic; particularly, if

long full-text documents are inserted, deleted, or mod-

ified frequently. An insertion (or deletion) of a data

item requires as many modifications of postings in the

inverted file as indexing features are contained in the

document description. As a consequence, updating an

inverted file is time consuming if large data items are

updated frequently. In the case of infrequent updates,

inverted files are highly appropriate; particularly, if an

advanced buffering scheme is used as suggested in (Cut-

ting & Pedersen, 1990).

Alternatively, signatures are appropriate to support

efficient access to dynamic data collections (Croft &

Savino, 1988), (Faloutsos, 1985), (Thanos, 1990). Ev-

ery signature represents a complete document descrip-

tion which can be updated efficiently. As signatures

are amenable to distributed environments retrieval is

particularly efficient when performed on parallel proces-

sors (Pogue & Willet, 1987), (Stanfill & Kahle, 1986).

Signatures, however, do not support document feature

weighting and hence, their retrieval effectiveness is infe-

rior to the retrieval effectiveness of a conventional fully

weighted retrieval method.

In what follows, we present a retrieval method to-

gether with a new access structure facilitating both fast

weighted retrieval and efficient updates of the access

structure. Our access structure consists of signatures

and non-inverted descriptions of data items. The sig-

natures are used to compute approximate retrieval sta-

tus values Rsvo(q, dj ) first and the non-inverted data

item descriptions are then used to determine the ex-

act retrieval status values RSV(q, dj ). The trick is that

the approximate retrieval status values provide fairly

tight upper bounds for the exact retrieval status values.

We will see how we can take advantage of these upper

bounds such that only a few exact retrieval status values

have to be computed.

The retrieval method determining the approximate re-

trieval status values and the retrieval method determin-

ing the exact retrieval status values are given by the

functions RSVO and RSV respectively. Let

@ := {Po,..., %1}l} (1)

be the indexing vocabulary (e.g. a set of terms) and let

D := {do, . . ..d1}l} (2)

be the set of retrievable data items stored in the

database (e.g. a document collection). We assume that

the signatures consist of w bits.

U(dj ) = (~(dj)[O], . . .,~(dj)[w - 1]) (3)

Every indexing feature pi is assigned a bit position

p = h(~i ) by means of a hssh function h : @ -+

{o,..., w – 1}. The function h specifies a signature a(dj )

for every data item dj by setting the bit at position p iff

dj contains a feature pi which is hashed to this position.

( 1 if 3pi E dj : h(~i) =P
U(dj)~] :=

O otherwise
(4)

We define the approximate and exact retrieval status

values by

RSVo(qj dj) := (5)
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Rsv(q, C+) := (6)

where the normalized feature frequency n~~(pi, dj ) is

determined by the feature frequency f f (pi, dj), i.e. the

number of occurrences of pi in dj, and the inverse data

item frequency idf(pi ) is determined by the data item

frequency df (pi), i.e. the number of data items contain-

ing pi.

f f (Pi, di)
rzf f (pi , dj) := (7)

rn~{ff(ph, dj) \ O ~ h < ~}

log(l + df(pi))
idf(pi) := 1 –

log(l + n)
(8)

The size I ~ I of the description vector d; is defined as

usual.

The retrieval method given by RSV differs from a

standard retrieval method (t~idf weights and cosine)

in that n$~(~i, dj) is used rather than f f (~i, dj ), The

corresponding difference in retrieval effectiveness is ne-

glectable. Experiments with test collections (CACM,

MED, CRAN) have shown that the differences in aver-

age precision at three recall points are less than 0.4 Yo.

It is easy to show that RSV(q, dj) = O if ~(q)A~(dj ) =

O. Furthermore, from the fact that pi c dj implies

~(dj)[~(~i)] = 1 and from nf f (pi, dj) < 1 follows

RSV(q, dj) < RSVo(q}dj). (lo)

Let q be the user’s query and let k be the number of

data items the user wants to retrieve. The top k exact

retrieval status values are computed efficiently by the

algorithm shown in Figure 1. Upon termination of the

first for-loop, the set J contains at least the indices j

of those data items dj which have a positive approxi-

mate retrieval status value. Upon termination of the

while-loop the indices of the desired top k data items

are contained in Jk if at least k exact retrieval status

values are positive.

The evaluation algorithm shown in Figure 1 is based

on an access structure that specifies the following func-

procedure eval(q, k, var J~);

begin

J := 0;

for all dj E D do

if o(q) A U(dj) # O then

compute approximate RSVO (q, dj );

J := J U{j};

end;

end;

sort {RSVO (q, dj ) : j ~ J} by determining

a bijective function

j:{o...l Jl}+J, r,oHj(?(o)o)

such that RSVO (q, dj(ro–l)) > Rsvo(q, dj(ro))

for TO = 1 ,...,l\ll;l;

rO := O; Jk := 0; dj(M) := –CQ;

while (rO < \Jl) and (lJkl < k) do

compute exact RSV(q, dj(ro));

INC(7’O);
for all ~(r) E {j(O),. . . ,j(rO – 1)} – Jk do

if RSV(q, dj(,)) 2 RSVo(q, dj(ro)) then

Jk := Jk U {~(?’)};

end;

end;

end;

end eval;

Figure 1: Query evaluation.

tions.

~:dj~u(d~) (11)

m : dj H {(~i, nff(Pi, dj)) : ~i s dj} (12)

idf : Pi * idf(Pj) (13)

size:dj~l~.l (14)

The functions u and ~ determine the signatures and the

non-inverted data item descriptions respectively. The

functions idf and size provide scaling and normaliza-

tion factors. The function values ~(dj ) and ~(dj ) are

determined completely by the data item dj itself. The

function values idf(~i ) and si.ze(dj ), however, depend

on dj as well as on other data items. Fortunately, the

variation of idf (Pi ) and size(dj ) is very small if the data

collection is sufficiently large. Thus, these two quantities

have to be recomputed only if the domain of the data

collection is shifting. In our system, this recomputation

of idf and size is performed within a long transaction

(see Section 4).

For a rough time analysis it is sufficient to consider the

computation of the approximate retrieval status values

while scanning the signature file. We assume that the
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= 20,000,000 = number of data items

A; = lpsec = time to process 32 bits

of a signature while

computing approx. RSVO

Q=~ = average no. of indexing

features per query

p. 16 = number of processors

Figure 2: Sample parameters.

signature file is partitioned into 32 bit columns which

are scanned simultaneously by P processors. Given the

parameters shown in Figure 2, we obtain by

(15)

an approximate response time of t = 10 seconds. This

rough time analysis seems to indicate that 16 modern

workstations may achieve response times that are only

one order of magnitude slower than the response times

achieved on a Connection Machine CM2 with 65,536

processors. A CM2 needs 1.268 seconds to search a doc-

ument collection of the same size (Stanfill, 1992, p. 481).

In terms of effectiveness, our retrieval method performs

clearly better than the CM2 method because we are

able to include both query feature and document fea-

ture weighting whereas in the CM2 approach, only the

query features a weighted (Salton & Buckley, 1988a).

The storage requirements of our approach are not

particularly moderate, since both a signature file and

non-inverted item descriptions are needed. Compress-

ing the signature file may deteriorate considerably the

update efficiency. The descriptions of the data items,

however, can be compressed with little loss of update

efficiency. At this moment, it is not clear whether com-

pression techniques developed for inverted item descrip-

tions (Moffat & Zobel, 1992) are also appropriate to

compress non-invert ed item descriptions.

3 Weighted Retrieval of

Semistructured Data

In this section, we present a novel probabilistic retrieval

model for semistructured data. We call a data collec-

tion sernistruciured if there exists a database scheme

which epecifie~ both normalized attributes (e.g. dates or

employee numbers) and non-normalized attributes (e.g.

full text or images). Normalized attributes require the

conversion of the attribute values into a canonical form

such that the usage of the equality operator is mean-

ingful. Such conversions are usually performed manu-

ally and since they are expensive, information seekers

encounter an increasing number of semistructured data

collect ions.

In contrast to conventional probabilistic retrieval

models, our model takes into account the database

scheme. We will see that our model is able to distin-

guish to which attributes the features belong. For in-

stance, “Zurich” may belong to the address of a first

person and at the same time, “Zurich” may belong to

the name of the insurance of a second person. Clearly,

these two persons should not be considered as similar

even though they have a common feature.

Our retrieval model is complementary to Norbert

Fuhr’s model designed for fact and text retrieval (Fuhr,

1990), (Fuhr, 1992). We assume a data collection con-

taining many different types of data items such that usu-

ally the user does not know which types contain relevant

data items. Norbert Fuhr, on the other hand, assumes a

single type of data items each consisting of several facts

(fact part) and of a single piece of text (text part). Nor-

bert is focusing on vague search conditions related to

the facts whereas we are focusing on an automatic and

weighted preelection of types containing relevant data

items.

Our probabilistic retrieval model is based on the data

model of the functional query language FQL* (Schauble

& Wuthrich, 1992). The building blocks of FQL* are

sets of objects and functions mapping objects (possibly

tuples of objects) to bags of objects (bags of tuples of

objects). Such sets of objects and such functions can

be grouped together to form heterogeneous algebras. A

heterogeneous algebra consists of a family of sets (called

phyla) and of a set of functions each mapping a Carte-

sian product of some phyla to a phylum (Birkhoff & Lip-

son, 1970). Furthermore, these heterogeneous algebras

are arranged within a hierarchy by means of a partial

order relation. This relation is often called subt yping,

e.g. in QUEST (Cardelli, 1989). In what follows, we

first define which algebras may belong to such a hierar-

chy and second, we define the partial ordering of these

algebras.

1. Every algebra ~ = (X; CYo,al, . . .) consists of a set

of functions ah : X - Dh and a set X in addition to

the sets ~h which are not mentioned for simplicity

in the structure ~. The common domain X of the

functions ah consists of object identifiers (OID’S).

The functions ah : X a Db are called attributes

as they determine the attribute values (properties)

of the objects z c X. Every attribute is assumed

to have a unique name. Hence, attributes having

different names are always considered as different

attributes even though they may be identical as

functions.
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2 Given two algebras x = (X; CIO, CII,. . .) and Z =

(Y; Po, /1, . . .), we define that x is a subalgebraof ~

(written as ~~ l’) iff X ~ Y and {ao, aI,...} ~

{601 PI,.. .}. The relation S iS a Partial ordering
(transitive, reflexive, and antisymmetric) represent-

ing the hierarchy of the algebras.

We say that an algebra ~ contains an object $ iff

the domain X of the algebra x cent ains x. Since an

object may belong to different algebras, our retrieval

method determines for every object as many retrieval

status values as they are algebras containing this object.

In other words, every retrievable data item dj = (x, z)

is specified by an algebraz and by an object identifier

z. Thus, the set of retrievable data items is finite and

it is defined explicitly by the hierarchy of algebras.

Given a hierarchy of algebras as described above,

we will use the following notation. Let ~ =

(X; al),...,crl-l ) be one of these algebras. Then, the

set

A(x) :={cro,..., ak_,} (16)

consists of those attributes ah that belong to the algebra

x. The set

@ := {@,.. .,$om_l} (17)

contains the features that can be derived from an at-

tribute value, e.g. reduced terms. Finally, we define the

following two sets for every data item (X, z).

w(~, z) := U {(ah, pi) I pi c CX,(Z)} (18)

Q’hCA(~)

Q’(x) x) ‘= {%’i I ‘ah: (ah, f’i) ~ ‘(x,x)} (19)

The feature sets O(Z, Z) are independent of the

database scheme whereas the sets V(X, Z) do depend

on the database scheme.

Assume that a person is interested in retrieving data

items (1’, y) that are similar to (x, x). For we adopt the

probability ranking principle by Robertson (Robertson,

1977) and we rank the data items (K, y) in decreasing or-

der of the retrieval status values RSV(~, x, ~, y). The

retrieval status value RSV(& z, ~, y) represents (up to

an order preserving transformation) the probability that

(~, y) is relevant to a person who is interested in finding

data items that are similar to (-X, Z). In conventional

text retrieval, the estimation of the retrieval status val-

ues is usually based on features only. Ignoring the at-

tributes may be inappropriate when retrieving informa-

tion from semistructured

the following example.

data collections as shown in

OID 10 12

name ] A. Meyer ! C. Maier

!! ,,

diagnosis arthrosis arthrosis 1

Table 1: Attributes of the algebra Patient.

=

OID 1

name B. Meier

address Bahnhofstr.,

Winterthur

bank UBS Zurich

Table 2: Attributes of the algebra Physician.

Example: Given are the algebras Patient =

(Patient; name, address, insurance, diagnosis) and

Physician = (Physician; name, address, bank). The

former contains two objects (OID = O and 2) and the

latter contains one object (OID = 1). The correspond-

ing attribute values are given in Tables 1 and 2. In the

following we list the feature sets @(~, Z) of the objects

shown in Tables 1 and 2.

@(Patient, O) = {Meyer, Paradeplatz, Zurich,

Winterthur, Vers., arthrosis}

@(Physician, 1) = {Meier, Bahnhofstr., Winterthur,

UBS, Zurich}

@(Patient, 2) = {Maier, Bahnhofstr., Luzern,

Berner, Allgemeine, arthrosis}

Assume that a user is interested in finding data

items that are similar to (Patient, O). When ignor-

ing the database scheme, we find that Q(Fatient, O)

and @(Physician, 1) have two common fe’atures (i.e.

“Winterthur” and “Zurich”) whereas @(Patient, O) and

@(Patient, 2) have only one common feature (i.e.

“arthrosis” ). In the former case, the common fea-

tures “Winterthur” and “Zurich” are meaningless be-

cause they were derived from unrelated attributes (i.e.

from insurance and address and from address and bank

respectively). In the latter case, the common feature

“arthrosis” is meaningful as it was derived from the same

attribute (i.e. from d;agnosis). [End of Example]

In what follows, we present our new probabilistic re-

322



trieval model which does not only cope with unrelated

attributes (like address and insurance) but also with

related attributes (e.g. like diagnosis and therapy)

The underlying probability space has been adopted from

Fuhr’s BII model (Fuhr & Buckley, 1991). In this prob-

ability y space (S2, P), an event (x, x, z, y) G Q consists

of individual uses of the item (x, z) and of the item

(~, y).

Let (~, z) be the query item, i.e. the user is searching

for data items (1’, y) that are similar to (~, z). Accord-

ing to the probability ranking principle, the data items

(1’, y) should be presented to the user in decreasing or-

der of the probabilities P(R [ ~, z, ~, Y). Analogously

to Fuhr’s BII-model, the event R consists of those pairs

of individual uses of the two data items (~, z) and (~, ?/)

where (X, y) is considered as reievant to (x, z). In order

to determine these probabilities, several assumptions are

made. These assumptions correspond bijectively to the

assumptions from which the original BII-formula for un-

structured data can be derived. See (Fuhr & Buckley,

1991) or (Schauble, 1992) for the derivation of the BII-

formula for unstructured data. In the case of semistruc-

tured data, we obtain

P(Rl&z, Ly)= (20)

c(X, X) * P(R IL v)

II P(R i CIh, L Y)
*

P(R I K, Y)
ahE-’l(&)M(l’)

where c(X, z) depends on the query item (~, z) but not

on the data item (1’, ~).

For practical retrieval, the factors occurring in the

BII-formula are approximated. The factors of the first

product of (20) are approximated by

P(R I ~))>~, Y)

P(R IL Y)
N exp(/32 * iaj(~~)2) (21)

where the inverse algebra frequency ia f (CYh) is defined

as follows.

iaf(ah) := (22)

l–
log(l + <no. of algebraa containing ffh >)

log(l + <total no. of algebras>)

Note that the approximation is exact in the case where

~b is contained in every algebra. The factors of the

second product of (20) are approximated as follows.

(23)

The normalized feature frequency n~~(~i, .X, z) is de-

termined by the feature frequency f f (pi, -X, x), i.e. the

number occurrences of the feature pi in the attribute

values of the data item (~, z).

(24)

The inverse data item frequency id$(pi ) is defined anal-

ogously to the inverse document frequency.

ia!j(p~ ) := (25)

~ _ log(l + <no. of data items containing pi>)

log(l + <total no. of data items>)

The factors of the third product of (20) are approxi-

mated as follows.

We finally assume P(R I l’, y) = co for all data items

(~, Y). When defining

RSV(& z,~, y) := (27)

log(P(R I x, Z,y, y)) – log(co) – log(c(x, z)),

we obtain the following retrieval status values where the

constants ~ and -y have to be determined experimentally.

where

‘wi (L ~) := n~j(pi, ~, x) * id~(pi), (29)

‘wi (L Y) := ~ff(~i , ~, y) * id~(pi). (30)

This retrieval formula is a generalization of the classi-

cal retrieval formula determining the cosine of vectors
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consisting of t~idf-weights. This can easily be seen by

assuming that every data item is assigned a single text

attribute ao. In this case, ia~(ao) = O and the first sum

and the last sum in (28) vanish. The remaining sum is

the classical cosine measure.

4 The System Architecture

Future retrieval systems will provide database capabili-

ties including transaction management, recovery after

failure, and a powerful data model. The traditional

way to integrate information retrieval functionality and

database functionality is to build an additional retrieval

layer on top of an existing database system, e.g. on top

of IRIS (Croft et al., 1992) or on top of ONTOS (Harper

& Walker, 1992). We consider this traditional approach

aa questionable for the following reasons. First, existing

databases do not have appropriate access structures to

support weighted retrieval. Second, the underlying data

model is usually inappropriate to express weighted re-

trieval, probabilistic behavior, and computed views be-

cause they are mostly based on finite Boolean algebras.

Third, the performance required for weighted retrieval

is far beyond the performance of most existing database

systems. As pointed out in (Cattell & Skeen, 1992),

simple Iookups using in-memory structures can be per-

formed in microseconds whereas databases typically re-

spond to queries 100,000 times slower. The architec-

ture of most databases is inherently disk oriented and

hence, it is inappropriate for efficient weighted retrieval

(including relevance feedback) which requires that the

computation of the retrieval status values is performed

in the main memory. Switching from disk orientation

to main memory orientation cannot be achieved by sim-

ply increasing the cache size (Salem & Garcia-Molina,

1990). These are the arguments why we believe that a

new system architecture is needed to integrate informa-

tion retrieval functionality and database functionality.

In this section, we derive a suitable system architec-

ture from the requirements stated in the introduction.

We start with the requirement that the system has to

support the derivation of numeric and non-numeric data

from the stored data (e.g. document indexing). The de-

rived data is often called a computed view. Examples

of computed views are data item descriptions (e.g. for

weighted retrieval), spectrograms (e.g. for editing audio

recordings), or images recovered from compressed data.

Computed views require the interpretation of attribute

values. The interpretation of attribute values contra-

dicts a basic assumption that governed the design and

implementation of DBMS’s in last decades. This ass-

umption says that the DBMS should treat the elements

of the database as uninterpreted objects (Chandra &

Harel, 1980). We abandon this assumption and we pos-

tulate explicitly an architecture where attribute values

can be interpreted efficiently within the kernel of the

system, i.e. within the query evaluator.

● The efficient interpretation of attribute values is

supported within the query evaluator.

Given that certain attribute values must be inter-

preted within the query evaluator, the next question

is how is the interpretation formulated. It seems that

many relevant interpretations such as document index-

ing, signal processing, and compression are most eas-

ily formulated in a procedural way. Hence, our system

has to be extensible by external functions that can be

written in an appropriate programming language. We

require an extensibility that is both simple and flexible.

By simple we mean that programming an external func-

tion does not require any knowledge about the internal

data structures of the DBMS (e.g. about the query tree)

nor about internal processes (e.g. about the transaction

manager). By flexible we mean that external functions

can actually “compute” a result possibly by means of

special purpose hardware (e.g. by a DSP-board for sig-

nal or image processing).

● The system is extensible in a simple and flexible

way.

Since we require a simple extensibility, the transac-

tion manager cannot impose any restrictions on the ex-

ternal functions. A straightforward approach to avoid

any interferences between the transaction manager and

the external functions is to use a serial scheduler which

does not allow overlapping transactions. When using

a serial scheduler, however> long transactions such as

recomputing id~(pi ) and I d~ [ block other transactions

for a long time. In many applications of retrieval sys-

tems, it is acceptable if long write transactions block

other write transactions because the long write transac-

tions can be executed when no other write transactions

have to be executed quickly. On the other hand, read

transactions should never be blocked by write transac-

tions. This is achieved by a sequence of ident~cal query

evaluators working in parallel. In this way, one query

evaluator may perform a long write transaction while

the other query evaluators are available to execute read

transactions.

● Concurrency is achieved by a sequence of identical

query evaluators each processing one transaction af-

ter the other (serial scheduling).

Weighted retrieval on semistructured data requires

that the corresponding read transactions are executed

within extremely short time intervals. Such short re-

sponse times cannot be achieved by a conventional ar-

chitecture of a DBMS as explained in Section 1. Instead
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Figure3: SPIDER’s system architecture.

wewillrely on an interpreter architecture that isparticu-

larlywell suited forshort response times. Theavailabil-

ity of large memories facilitates that at least the struc-

tured data can be kept in the main memory whereas

parts of the unstructured data (long texts, audio, video,

images) will still be in the secondary or tertiary storage.

● The query evaluators are organized as fast inter-

preters.

In a distributed environment where application pro-

grams and query evaluators are working in parallel, an

appropriate communication protocol has to be defined.

In order to achieve simplicity, we require that this com-

munication protocol and the query language be iden-

tical. Since the communication protocol between the

application programs and the query evaluators is a lim-

iting factor of what can be retrieved in which form,

a query language is required that has an outstanding

expressive power. As shown in (Chandra, 1988), rela-

tional query languages are based on finite Boolean al-

gebras which are inappropriate to express probabilis-

tic behavior. But expressing probabilistic behavior is

required, since the interpretation of text (e.g. proba-

bilistic indexing (Fuhr, 1989)), the interpretation of im-

ages (e.g. by OCR (Govindan & Shivaprssad, 1990)),

and the interpretation of audio (e.g. speech recogni-

tion (Lee, 1989]) are inherently probabilistic. Further-

more, finite Boolean algebras are inappropriate for the

derivation of numeric data from the stored data. Thus,

instead of a relational query language we will use the

functional query language FQL* that is appropriate to

express probabilistic behavior as well as numeric com-

putations (Schauble & Wiithrich, 1992). FQL* has an

outstanding expressive power. It was shown to be more

expressive than SQL, more expressive than Dat slog with

stratified negation, and even more expressive than fix-

point query languages. Thus, each query formulated in

one of these languages (e.g. SQL) can be translated into

an FQL* query.

. The functional query language FQL* is used as a

query language and as the communication protocol

between the application programs and the evalua-

tors.

Based on the five architectural features mentioned

above, we have developed the server-client architecture

shown in Figure 3. The server consists of a collec-

tor/distributor which is collecting requests from the ap-

plication programs. The requests are buffered in a re-

quest queue. The query evaluators are also running as

clients. They fetch the buffered requests and interpret

them. This architecture we have derived systematically

from our list of requirements is similar to the architec-

ture of the TPK prototype running on two DEC Fireflies

(Li & Naughton, 1988). TPK is also based on serial

scheduling and it also manages identical copies of the

database in the main memory.

A read transaction is executed by one evaluator

whereas a write transaction is executed by all evalu-

ators to guarantee consistency. More precisely, a write

transaction is executed by the first evaluator first. Upon

its termination it is executed by the next evaluator in

the sequence of query evaluators and so on. In this way,

all write transactions are propagated in the same order
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through the sequence of query evaluators. Hence, the

database of every evaluator was or is still equal to the

current database of the last query evaluator.

For recovery after failure we adopt the logging and

checkpointing strategies of the system M (Salem &

Garcia-Molina, 1990). The collector/distributor main-

tains a log file such that the effects of the write trans-

actions can be reconstructed in the case of a failure.

The so-called checkpoint process is copying regularly the

data collection of the first evaluator to the disk. Hav-

ing copied successfully the data collection, the check-

point process inserts checkpoints into the log file. In this

way, only transactions executed since the last checkpoint

have to be considered when reconstructing the data col-

lection after a failure.

The availability y of external functions facilitates a flex-

ible access to remote data. For instance, a relation

of a remote database can be represented by an exter-

nal FQL* function that is mapping the primary keys

to tuples containing the corresponding attribute values.

When such an external function is called, an appropriate

communication channel is established, a query is gener-

ated, the required data is then retrieved from the remote

database, and finally, the retrieved data is converted into

an FQL* function. In this way, accessing remote data is

accomplished by encapsulating the communication, the

querying, and the conversion into external functions.

In this section, we derived a system architecture which

is fairly different from the architecture of a conventional

DBMS. Nevertheless, the system seems to meet well

the requirements of many applications such as manage-

ment information systems, office information systems,

or clinic information systems (Frei & Schauble, 199 la).

5 Outlook

This paper is a step towards the SPIDER retrieval sys-

tem we have started to implement. Ongoing activi-

ties include performance evaluations of our access struc-

ture and the design and implementation of the FQL*-

evaluators. The “implementation” of the BII-formula

for semistructured data collections is fairly simple be-

cause it can easily be formulated in FQL*. The FQL*-

evaluators and the formulation of information retrieval

related queries will be the topic of a forthcoming pa-

per. The estimation of the retrieval effectiveness of the

BII-model for semistructured data may be more dif-

ficult, since we lack a semistructured test collection.

The same difficulties were encountered in the IOTA and

RIME projects (Chiaramella et al., 1986), (Berrut &

Chiaramella, 1989). We hope to overcome this prob-

lem by means of the usefulness measure which needs

only incomplete and therefore inexpensive relevance as-

sessments (Frei & Schauble, 1991 b). The results of the

ongoing activities will show if SPIDER will meet the

requirements stated at the outset of the introduction.
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