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Abstract—The lack of clearly noticeable forerunners, the need
to acquire large amounts of data coming from sensors sampled
at middle/high rates, and the potentially catastrophic effects of
the physical phenomenon under monitoring make rock-collapse
forecasting a challenging and valuable environmental monitoring
application. In this paper, we describe a rock-collapse forecasting
system based on a hybrid wireless–wired architecture, where a
set of acquisition units is connected through a fieldbus to a base
station, which collects and wirelessly transmits acquired measure-
ments to a remote control room. The main features of the proposed
rock-collapse forecasting system are the ability to process data
sampled at high-frequency rates locally and in real time, the
run-time remote reconfigurability of the forecasting application,
and the possibility to distribute intelligent processing through the
system layers to balance energy consumption and the application
performance. Five instances of the proposed system have been
deployed along the Swiss–Italian Alps.

Index Terms—Distributed monitoring systems, high-frequency-
sampling rock-collapse forecasting, hybrid sensor networks, intel-
ligent monitoring systems, remote reconfigurability.

I. INTRODUCTION

AMONG the wide range of physical phenomena threaten-
ing mountain regions, the collapse of rock faces represents

one of the most dangerous and is hard to predict. In fact, rock
collapse is characterized by a rapid dynamic just before the fall
and might induce catastrophic effects whenever human settle-
ments, roads, or critical infrastructures are affected. For these
reasons, an effective and real-time monitoring and forecasting
action is required to promptly raise alarms and possibly activate
emergency procedures.

Environmental forces such as those induced by thermal
stress, frost/defrost cycles during winter, and gravitation sig-
nificantly contribute to the fall, but their role is only partly
understood. From a geophysical perspective, rock collapse is
the final phase of a continuous process induced by the coales-
cence of microfractures into larger fractures. Interestingly, dur-
ing this coalescence phase, microacoustic emissions, i.e., burst
signals resembling in shape those generated by earthquakes,
are emitted whenever a fracture enlarges its size. These bursts
represent extra information that a suitable monitoring system
can acquire to open further views on the physical phenomenon
under observation. Microacoustic emissions are characterized
by middle/high sampling rates; we bounded the sampling
frequency to 2 kHz, which is a frequency coarsely associated
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with evolving millimetric-size fractures. The choice implies
that we observe burst signals with a spectrum of up to 1 kHz,
which is a reasonable frequency according to geophysicists.
This design constraint is appropriate since it is known that
frequencies progressively reduce when getting closer to the
rock fall [1].

The proposed rock-collapse forecasting system is based on a
hybrid wireless–wired hardware solution for structural health
and environmental monitoring applications presented in [2].
The peculiar characteristic of the hardware is the combined
use of wireless and wired communication, i.e., sensing units
are connected through a fieldbus to a base station (BS), which
wirelessly transmits the acquired data (or the features/events
extracted from them) to a control room. By relying on such
a hardware architecture, we developed a novel rock-collapse
forecasting system whose distinctive features are as follows.

1) The ability to acquire and locally process multiple scalar
signals with a sampling rate of up to 2 kHz.

2) The presence of intelligent processing distributed through
the network aiming at reducing the overall energy con-
sumption while maintaining the application performance.
The first level consists in a local trigger that analyzes
online the acquired data to identify those events that are
worthy to be remotely transmitted. Another intelligent
mechanism autonomously switches the working modal-
ity of the monitoring system between a normal mode
(periodic transmission) and an alarm mode (a potentially
critical situation). Finally, the intelligence is considered
at the event-classification level in the control room where
false alarms are automatically discarded.

3) The reprogrammability of the application at run time, i.e.,
the ability to modify or update the software code and/or
the parameters of the sensing units.

4) A two-layer synchronization mechanism for hybrid
wireless–wired sensor networks guaranteeing strict syn-
chronization among the acquisition units (less than 1 ms).

We emphasize that we currently have five operational de-
ployments of the proposed system for rock-collapse forecasting
in Northern Italy and Switzerland; the details of these deploy-
ments are given in Table I. Since the analysis of microacoustic
emissions for rock-collapse forecasting is still a novel and
challenging research area, the design and development of these
systems required a strict collaboration with the experts of the
field (i.e., geologists and geophysicists). Remarkably, the data
acquired by our systems represent valuable information both
from the geological/geophysical point of view (to improve the
geological/geophysical knowledge about the collapse of rock
faces) and from the technological point of view (to increase the
effectiveness and robustness of our systems).
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TABLE I
DEPLOYMENTS OF THE PROPOSED SYSTEM FOR ROCK-COLLAPSE

FORECASTING IN NORTHERN ITALY AND SWITZERLAND

This paper significantly extends a preliminary version of
the system presented in [3] and is organized as follows.
Section II describes the related literature, whereas Section III
introduces the system architecture for the proposed monitoring
system. The hardware, operating system (OS), communica-
tion, service, and intelligent application layers are detailed
in Sections IV–VIII, respectively. Section IX describes the
experimental results of the proposed system in terms of the
application performance and quantifies the gain introduced by
the intelligent processing layer.

II. RELATED LITERATURE

Although the collapse of rock faces represents a harmful
natural hazard, the lack of clear forerunners and the difficulty
of the deployment limit the number of existing available
monitoring systems. To the best of our knowledge, there is
only one other recent system acquiring acoustic emissions for
the monitoring of mountain walls [4]. Therefore, in order to
provide a more comprehensive state of the art, we also present
monitoring/forecasting systems based on wireless solutions
addressing similar scenarios (e.g., structural monitoring and
seismic or volcanic eruption monitoring). The comparison
focuses on some key aspects, i.e., the nature of the local
processing and the distributed processing, the sampling rate,
the availability of synchronization mechanisms, and the
reprogrammability ability.

An acoustic emission monitoring system designed to operate
on Alpine rock walls was presented in [4], where a threshold-
based triggering mechanism is used to extract acoustic events.
Features are extracted from events and remotely transmitted
to a control room only upon request. The sampling rate is
500 kHz. The details about the considered synchronization
algorithm are not provided, and reprogramming mechanisms
are not considered in this system.

A heterogeneous system for structural health monitoring
based on wireless sensor network (WSN) units and wired
cameras was suggested in [5]. The software architecture re-
lies on TinyOS [6]; the sampling frequency is 100 Hz. A
threshold-based detector is considered at the unit level, and the
synchronization relies on the timing-sync protocol for sensor
networks [7]. No reprogramming mechanisms are considered.

WISDEN [8] relies on a WSN solution for structural health
monitoring, i.e., it is based on TinyOS, and the sampling
frequency is 160 Hz. The system relies on a threshold-based
event detection mechanism and exploits a wavelet-based com-
pression technique to reduce the communication bandwidth.

WISDEN implements an ad hoc data time-stamping scheme
for the synchronization of the acquired data. No reprogramming
mechanisms for the units are available.

A WSN-based structural health monitoring system named
SENTRI was presented in [9]. The considered OS is TinyOS,
and the sampling frequency is 200 Hz. Due to the pecu-
liar in-line architecture (the system is organized as a line of
64 sensors), SENTRI relies on a 64-hop routing protocol. The
synchronization mechanism is based on a flooding algorithm
[10]. Units cannot be remotely reprogrammed.

The wireless intelligent sensor and actuator network
(WISAN) [11] is another intelligent WSN for structural health
monitoring. Different from previous solutions, WISAN relies
on computational intelligent mechanisms and wavelet com-
pression to make network units autonomous and to reduce the
bandwidth consumption, respectively. The system relies on an
ad hoc scheduler, whereas the sampling rate is 50 Hz.

A time-synchronized and reconfigurable WSN for structural
health monitoring was described in [12]. There, the network
units run FreeRTOS as the OS; the sampling frequency is
200 Hz, and the event detection relies on a modal analysis.
Acquisition parameters can be updated during the operational
life through remote commands. An ad hoc synchronization
algorithm, which is called μ-Sync, guarantees very strict syn-
chronization among the network units (below 10 μs).

Terrascope is a down-hole seismic monitoring system pro-
posed in [13]. It is composed of independent sensing units sam-
pling at 250 Hz and connected to a gateway through a fieldbus.
The units rely on a customized scheduler, and the gateway runs
a Linux OS. Terrascope allows updating the code running on the
units by means of an additional digital bus. Events are detected
through a trigger-based algorithm, and clock synchronization
relies on a Global Positioning System timer.

A WSN-based monitoring system for volcanic eruptions was
described in [14]. The system is based on TinyOS, and the
sampling frequency is 100 Hz. The synchronization mecha-
nism is based on a flooding algorithm. The system allows
updating its operational parameters through the execution of
remote commands, whereas the detection of events is based on
the comparison between two exponentially weighted moving
averages of incoming signals.

From literature, it comes out that existing solutions for
structural health and environmental monitoring are generally
not able to satisfy the sampling frequency as required by
a rock-collapse forecasting application. In addition, remote
reprogrammability and intelligent solutions for balancing en-
ergy consumption and the application performance are seldom
considered, hence still representing an open and cutting-edge
research challenge. In contrast, the rock-collapse forecasting
system proposed here is able to acquire and process signals
with sampling rates of up to 2 kHz, and it encompasses both
basic reprogramming mechanisms and intelligent processing,
as detailed in Sections VII-A and VIII, respectively.

III. SYSTEM ARCHITECTURE

The proposed rock-collapse forecasting system is composed
of a remote monitoring system (RMS) deployed on a rock
face and a control room that collects data from the RMS for
subsequent storage, processing, and interpretation. As shown in
Fig. 1, the RMS is composed of a set of sensing and processing
units (SPUs) that are connected through a control area network
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Fig. 1. Proposed rock-collapse forecasting system.

Fig. 2. SPUs in two deployments. (a) Val Canaria. (b) Rialba’s tower.

bus (CAN bus) to a BS. SPUs are endowed with sensors to
acquire microacoustic emissions (e.g., microelectromechanical
systems (MEMS) accelerometers and geophones) and more
traditional sensors (e.g., inclinometers, temperature sensors,
and strain gauges). The BS collects data from the SPUs and
transmits them to the control room.

From the hardware point of view, the proposed rock-collapse
forecasting system is characterized by a large heterogeneity in
terms of devices, technologies, and performance. SPUs are low-
power high-performance digital signal processing units able to
acquire, locally process, and extract the information of interest
from the data stream sampled at 2 kHz. Examples of SPUs are
shown in Fig. 2. The BS provides both the power supply and the
synchronization of the SPUs by means of the CAN bus, whereas
the control room is composed of PCs and servers organized
into a typical internet-based service-oriented network archi-
tecture. From the software point of view, the system reflects
the hardware heterogeneity where several different software
modules and mechanisms cooperate to achieve the targets of
the forecasting application.

With reference to Fig. 3, the architecture of the system
comprises the following:

1) the hardware layer, which provides the physical mecha-
nisms for data acquisition, processing, and transmission;

2) the OS layer, which provides basic software function-
alities to higher levels and mainly consists in the OS
services;

Fig. 3. System architecture of the proposed rock-collapse forecasting system.

3) the communication layer, which provides the basic mech-
anisms supporting the local communication between the
SPUs and the BS via the CAN bus and the remote
communication between the BS and the control room by
means of a WiFi/universal mobile telecommunications
system (UMTS) protocol;

4) the service layer, which provides those services support-
ing the system reconfiguration, the data transport, and the
clock synchronization functionalities;

5) the intelligent application layer, which makes available
those functionalities allowing the monitoring application
to be adaptive and autonomous.

Due to the peculiar application constraints and the large
heterogeneity of the devices, the design of the software required
an engineering approach where each software module (together
with the interaction with other modules) has been carefully
developed and tested from the functional and energetic point of
views. To achieve this goal, the designed system relies on a lay-
ered architecture, where each layer exploits the functionalities
provided by lower layers to expose functions and mechanisms
to upper layers. Unlike a vertical “cross-layer” system design,
where functionalities are tailored to the specific hardware and
layers are cross designed to optimize performance (e.g., aggre-
gation and fusion), a layered architecture is easier to design,
test, and maintain. In fact, each layer can be tested separately
(black-box testing), and an internal modification (not involving
the interfaces) does not affect the other layers. Moreover,
a layered architecture allows us to easily reuse the code in
applications running on different hardware, whereas “vertical”
approaches are generally application specific and hardware
dependent.

As a final remark, we emphasize that each layer is designed
to offer its functionalities to upper levels, minimizing both
computational complexities and memory requirements. The
layers of the proposed architecture are detailed hereinafter.

IV. HARDWARE LAYER

As described in the previous section, the proposed rock-
collapse forecasting system is based on a set of SPUs that are
connected through the CAN bus to the BS, whose goal is to
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remotely transmit the acquired information to the control room
through a wireless connection.

The SPUs gather sensor measurements, perform local pro-
cessing to extract features from the acquired data, and apply
local classification to only select those microacoustic signals
that are worth transmitting to the BS. For this reason, the SPUs
must always remain active (i.e., a 100% duty cycle), whereas
the BS can be switched off to reduce the energy consumption
(the adjustable duty-cycling mechanism of the BS is described
in Section VIII-B).

The SPUs are composed of two boards and a set of sensors.
The first board, which is based on the 40-MHz Microchip
DSPic33F microprocessor (256-kB ROM and 30-kB RAM),
performs the processing and communication tasks. The second
board contains the signal conditioning circuits for the envisaged
sensors. The sensor set comprises MEMS accelerometers and
geophones for microacoustic burst inspection, as well as more
traditional sensors such as a temperature sensor, an inclinome-
ter, and a strain gauge. The SPUs do not have local energy
harvesting capabilities and are powered by the BS through the
CAN bus power lines.

The BS plays a fundamental role in the RMS since it coordi-
nates the communication activity among the SPUs and acts as a
gateway between the RMS and the control room. The hardware
platform of the BS comprises the main board (based on a
200-MHz ARM9-based PC104 board with 32-MB RAM)
executing the application at the BS level, the energy harvesting
and management boards for energy acquisition through photo-
voltaic cells and energy management, the shutdown/wake-up
board, and the radio module (a radio link/3G UMTS modem).
The BS is endowed with rechargeable batteries (12-V 40-Ah
lead acid batteries) and solar panels (polycristalline 20-W
nominal panels).

Finally, the control room has a radio module to communicate
with the BS and hosts a database and an application server
exposing typical service-oriented network facilities.

Further details about the hardware specifications and the
energy consumption can be found in [2].

V. OS LAYER

The OS layer optimizes the use of hardware resources
and provides functionalities to the upper levels of the system
architecture.

Among the wide range of OSs for embedded systems (e.g.,
see [6], [15], and [16]), we selected FreeRTOS [17] for the
SPUs since it is multitasking, real time, modular, and officially
supported by the considered microcontroller. These features
perfectly fit the needs of our application.

As described in Section IV, the main board of the BS relies
on a PC104-based embedded computer; for this reason, we
decided to adopt Linux as the OS. Specifically, we configured
a custom Debian distribution for ARM (based on kernel 2.6) to
get fast boot and shutdown (i.e., 1.9 s) and a small flash memory
occupation (∼100 MB).

The OS layer of the control room relies on a standard Debian
GNU/Linux 5.0 distribution for X86_64 microprocessors.

VI. COMMUNICATION LAYER

The aim of the communication layer is to provide data
structures and services that allow the transmission of data and

parameters among the SPUs, the BS, and the control room. The
communication layer is organized into two modules addressing
the local communication between the BS and the SPUs and the
remote communication between the BS and the control room.

A. Local Communication

Local communication relies on the CAN fieldbus that repre-
sents a standard for wired transmissions in several critical ap-
plications such as industrial process or automotive control [2],
[18]. We selected the CAN bus among different technological
solutions, e.g., RS485, Industrial Ethernet, the Process Field
Bus (ProfiBus), and ControlNet, for two main reasons. First,
it is an open standard. Second, CAN hardware controllers are
embedded in many off-the-shelf microcontrollers and industrial
PCs (as such, it does not require additional hardware and
software modules, e.g., such as in the ProfiBus).

The CAN hardware controllers available on the market
generally provide physical and media-access-control layers,
whereas there are several options for the CAN-bus-based rout-
ing protocol, such as CANopen [19], DeviceNet [20], and
CAN Kingdom [21]. Unfortunately, these routing protocols
suffer from two main problems. First, they generally rely on a
master–slave mechanism, with a special node or a master pro-
viding all services needed to control the network. Other nodes,
or slaves, only send data to the master node. Unfortunately,
this approach requires the master to be always active, and duty-
cycling energy-saving approaches cannot be considered for the
master node (as aforementioned in Section III, the BS requires
a duty-cycling mechanism to reduce the energy consumption).
Second, CAN bus routing protocols are generally designed
to deliver a single-packet message accounting for an 8-byte
payload for a CAN message. This is a critical point since the
amount of data to be transmitted on the CAN bus is up to 8 kB
(containing the acquired measurements and the system status
information).

To solve the aforementioned problems, we designed an
ad hoc routing protocol that is able to effectively manage the
wired communication between the SPUs and the BS, and, at
the same time, keep under control the energy consumption.
The proposed protocol is based on a polling approach, with the
BS acting as the master node, i.e., each wired transmission is
started by the BS, which can either retrieve data from a SPU
(the PULL-data protocol) or dispatch a parameter update to a
SPU (the PUSH-data protocol). The BS periodically queries all
the SPUs of the network one after the other. The polling phase
ends when the BS has completed the PUSH/PULL protocols for
all SPUs.

We divided the data into CAN messages by creating the
concept of a transaction and building a framework similar to
the transmission control protocol (TCP).

In the PULL-data protocol, whose unified modeling
language (UML) sequence diagram is shown in Fig. 4(a), the
BS initiates the transaction by sending the PULL_REQmessage
to a SPU, which replies with the PULL_REQ_ACK message
specifying the number of data packets p to be transmitted.
Then, the BS sends the PULL_START message to notify the
SPU that it is ready to receive the data frames. For each
FRAME_MSG sent by the SPU, the BS acknowledges the re-
ceipt with FRAME_ACK. We emphasize that both messages
specify the sequence number of the data frame that is currently
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Fig. 4. UML sequence diagrams of the proposed PULL-data and PUSH-
parameter routing protocols for the CAN bus. (a) PULL-data routing protocol.
(b) PUSH-parameter routing protocol.

transmitted or acknowledged. After the acknowledgment of the
last data frame, i.e., the SPU receives the FRAME_ACK associ-
ated with the last FRAME_MSG, the SPU sends the PULL_END
message to the BS to terminate the transmission. Afterward,
the SPU exits the protocol. Similarly, after the receipt of the
PULL_END message, the BS exits the protocol. The PUSH-
parameter protocol is the dual of the PULL-data protocol, and
its UML sequence diagram is shown in Fig. 4(b).

B. Remote Communication

The remote communication is based on a long-range wire-
less transmission making use of either a WiFi-dedicated radio
link or a general packet radio service/UMTS mobile-based
link. This remote communication module relies on a stan-
dard TCP/IP endowed with a tunneling procedure aiming at
encrypting data and parameters (during the transmission) and
creating a virtual private network between the BS and the
control room.

VII. SERVICE LAYER

The service layer provides the reconfiguration, data transport,
and synchronization functionalities to the sensor network.

A. Reconfiguration

Several parameters are associated to each SPU, allowing the
units to undergo reconfiguration both at the data acquisition and
signal processing phases. Likewise, the BS can be reconfigured
through a set of parameters, which is mainly associated with
the duty-cycling activity. The reconfiguration service permits
the operator to modify the SPUs and the BS parameters, and
hence, the interaction of the system with the environment, as
well as its internal functional behavior.

This feature is particularly relevant in systems operating
in harsh environments and, even more, when little a priori
knowledge about the phenomenon under investigation is avail-
able. For instance, we can modify the parameters associated
with the intelligent application layer (as shown in Table III),
activate/disable acquisition channels for energy consumption

Fig. 5. Reconfiguration and data transport service of the service layer.
(a) Reconfiguration service. (b) Data transport service.

reduction, and modify the sampling rate depending on the
carried information content. An overview of the reconfiguration
service workflow is presented in Fig. 5(a).

The reconfiguration service is composed of the following
three modules.

1) The operator front end: a web application that, in ex-
ecution at the control room and as it is accessible to
authorized users, permits to change the system parameter
configuration through a web browser. By means of a web
interface that shows the set of tunable parameters, the
operator can select the target unit to be updated and the
new set of parameters.

2) The middleware: a JAVA application running at the con-
trol room that transforms the operator decisions into
commands to be sent to the remote system. Among the
available middleware for sensor networks [22]–[25], we
adopted PerLa [26]. PerLa, which was designed in our
institute, is a general-purpose middleware solution for
distributed systems aiming at presenting a standard and
abstract interface to the data and parameters of net-
work devices. Different from other middleware solutions,
PerLa provides a databaselike abstraction for the network
elements and guarantees full support for the heterogeneity
at the hardware/sensor level, both at the run time and at
the deployment time.

3) The back end: the software, running at the BS, enables
both the update of the parameters affecting the BS and
the dispatch of those to be delivered to the target SPU.
More specifically, the parameters are only updated if they
are different from the previous values. To transmit the
new set of parameters, we rely on the PUSH-data protocol
described in Section VI.

B. Data Transport

Data transport is the service responsible for delivering the
acquired data from the SPUs to the control room. The service
workflow, as described in Fig. 5(b), provides mechanisms to ad-
dress the SPU-to-BS and BS-to-control room transport phases.
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In the SPU-to-BS phase, the data transport is based on the
PULL-data protocol described in Section VI-A. The data frame
represents the image of the in-memory structure used by the
SPU to store the acquired measurements.

In the BS-to-control room phase, the BS connects to the
control room via the TCP–IP channel described in Section VI-B
and transmits the data frames collected from the SPUs.

C. Clock Synchronization

The clock synchronization among the SPUs of the RMS is
crucial to guarantee an effective analysis of the gathered data
in high-frequency applications. In fact, the localization of a
microfracture within a rock face relies on the analysis of highly
synchronized microacoustic bursts (i.e., with a maximum clock
skew of 1 ms).

The complexity of the hardware architecture of the proposed
forecasting system forced us to address the problem of synchro-
nization into two separate phases as follows.

1) Global synchronization: The SPUs, the BS, and the con-
trol room are synchronized by means of the network time
protocol (NTP) [27] whenever the BS remotely connects
to the control room.

2) Local synchronization: The SPUs are synchronized by
means of an ad hoc synchronization protocol in between
two connections of the BS with the control room. Re-
markably, the synchronization among the SPUs can take
part, even when the BS is switched off for duty cycling.

The global synchronization mechanism guarantees that all
SPUs are synchronized with the clock of the control room
whenever the remote communication is established. To accom-
plish this task, the BS and the control room rely on an NTP
client for clock synchronization (i.e., the NTP client connects
to the NTP server to get the Internet clock). Afterward, the
BS propagates the updated time to all the SPUs through a
high-priority broadcast message that, once received, permits the
SPUs to update their internal clocks.

Differently, the local synchronization guarantees the syn-
chronism among the SPUs. In fact, when the BS is switched
off during duty cycling, the SPUs keep on synchronizing
themselves to minimize the clock skew by means of the local
synchronization mechanism, i.e., one of the SPUs, which is the
synchronization master that can be either fixed in hardware or
remotely defined by the control room, periodically broadcasts a
synchronization message to all the SPUs.

In both the local synchronization and the global synchro-
nization, we introduced a mechanism to compensate for the
delay caused by the propagation time of the synchronization
messages on the CAN bus. Remarkably, this delay Td is a
deterministic offset that depends on the propagation time of the
broadcast message on the CAN bus. This delay has been con-
sidered common to all SPUs since we experimentally evaluated
that the difference of the propagation delays among the SPUs
was negligible.

Delay Td can be easily computed since it depends on the
number of bits NCAN2b of the synchronization message, trans-
mission baud rate fbr, and the message processing time TIRQ

of the SPU microcontroller, i.e.,

Td =
NCAN2b

fbr
+ TIRQ. (1)

TABLE II
MECHANISMS CONSIDERED IN THE INTELLIGENT APPLICATION

LAYER AT THE DIFFERENT SYSTEM UNITS

TIRQ is generally negligible compared with NCAN2b/fbr
because the interrupt routine associated with the synchroniza-
tion messages is executed in about 500 clock cycles (with a
40-MHz clock). The size NCAN2b of the synchronization mes-
sages is 130 bits, including the CAN bus identifier, the payload,
the cyclic redundancy check, and other fields. As an example,
by relying on (1), propagation delays Td with fbr = 125 kb/s
and fbr = 250 kb/s are 1.04 and 0.52 ms, respectively. To
compensate for this delay, in the interrupt routine, the value of
Td corresponding to the specific baud rate is added to the time
stamp received from the master sync (both local or global).

It is noted that, for burst localization purposes, the global
synchronization is less important than the local synchroniza-
tion. In fact, the local synchronization is fundamental to keep
the SPUs synchronized to correlate the acquired microacoustic
emissions (e.g., by estimating the arrival time of the acquired
burst). Clearly, a common drift for all the SPUs does not
affect this analysis, which, on the contrary, can be totally
compromised by a clock skew among the SPUs. For this
reason, we opted for a simple NTP mechanism for the global
synchronization.

The timing format is the coordinated universal time (UTC)
[28] measured with a granularity of the microsecond. A more
effective two-way synchronization procedure, e.g., see [29],
could be considered in more critical situations requiring very
strict synchronization.

VIII. INTELLIGENT APPLICATION LAYER

The application layer provides intelligent tools for acquiring,
transmitting, and processing microacoustic emissions at the
SPU, BS, and control room levels. Table II summarizes the
intelligent mechanisms adopted by the application layer.

The SPUs implement a trigger mechanism based on sliding
windows to only store microacoustic emissions characterized
by a suitable magnitude since fractures typically yield an energy
content that is far larger than most of the background signals.
All the SPUs convey bursts, i.e., microacoustic emissions stored
at the SPUs and delivered through the whole system, to the BS,
which is in charge of delivering them to the control room over
the wireless channel. When the BS is in a normal transmission
mode, these communications are scheduled in a periodic way
to reduce the number of wireless radio activations because of
energy constraints. However, the BS might switch to an alarm
transmission mode when a large number of bursts arrive from
the SPUs within a short interval of time, as this might indicate
a significant activity within the rock face and possibly a critical
situation. In these cases, bursts are delivered to the control room



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALIPPI et al.: REPROGRAMMABLE AND INTELLIGENT MONITORING SYSTEM FOR ROCK-COLLAPSE FORECASTING 7

TABLE III
MAIN PARAMETERS OF THE INTELLIGENT APPLICATION LAYER

before the scheduled time. The core of the monitoring activity
is executed at the control room, where bursts are processed
by extracting features to automatically identify false alarms
and submit only bursts that possibly indicate fractures to the
visual inspection of a geophysicist. A suitable feature subspace
for burst separation is learned by means of linear discriminant
analysis (LDA) [30], which is computed over a training set of
supervised bursts.

These intelligent mechanisms are described and discussed in
the rest of this section, whereas Table III summarizes their main
parameters.

A. Intelligent Application Layer: SPU

The application in execution at the SPUs has been organized
to address three main tasks, i.e., data acquisition, processing,
and communication. During acquisition, data are acquired by
three-axial MEMS accelerometers and geophones, which are
sampled at 2 kHz. Data are converted by an internal 12-bit
analog-to-digital converter (ADC) and stored into a memory
buffer.

The processing phase is activated after the storage of each
burst, and it consists of digital filtering, followed by a trig-
gering mechanism. First, each of the three channels of the
MEMS/geophone recordings is processed through parametric
high-pass finite-impulse response (FIR) filters. Then, events
are detected by comparing the mean squared amplitude of the
signal over two different-sized sliding windows, as in [31]. In
particular, if we denote by x̄l the average squared amplitude
over a large window of l samples (e.g., l = 128) and by x̄s the
average squared amplitude over a short window of s samples
(e.g., s = 32), an event is detected when x̄s/x̄l exceeds a user-
defined threshold ΓT , which has been experimentally set to 3.
Larger values would possibly discard true microacoustic emis-
sions, whereas smaller values would result in the unnecessary
storage of false alarms (mainly induced by noise), hence caus-
ing to quickly fill the SPU memory.

The number of samples stored in each burst is L, which is
defined by the sampling rate and the burst acquisition time. At
2 kHz, the values of L are equal to 128, 256, 512, and 1024
for acquisition times of 64, 128, 256, and 512 ms, respectively.
If needed, the acquisition time can be eventually extended up
to 4 s through downsampling. The maximum number of events

that can be stored is determined by the RAM capacity of the
SPU (7460 bytes), i.e., when the memory is about to saturate,
only the condensed information of each burst (such as the time
stamp, the signal peak value, x̄s, and x̄l) is stored.

In addition to MEMSs and geophones, which acquire high-
frequency bursts, the SPUs are equipped with temperature,
strain gauge, and three-axial clinometer sensors. These sensors
provide low-bandwidth signals, which are acquired at regular
time instants and processed by means of a parametric FIR low-
pass filter.

The application layer has been designed to guarantee the
possibility to change the application at the SPUs at the run
time through remote commands sent from the control room
and the PUSH-data protocol described in Section VII-A. For
instance, digital filters could be remotely enabled/disabled,
and application parameters (such as l, s,ΓT , and L) could be
updated.

B. Intelligent Application Layer: BS

The application layer at the BS aims at coordinating all
the activities of the RMS, i.e., the BS collects data (including
bursts) from the SPUs by means of the PULL-data protocol
described in Section VII-B. Then, the BS remotely transmits
the data to the control room by means of the remote com-
munication protocol described in Section VI-B. In the normal
transmission mode, the BS periodically communicates with the
control room to reduce the number of radio module activations
(thus lowering the energy consumption). Periodic transmissions
(e.g., every d = 7200 s) guarantee a good tradeoff between
the RMS throughput and the energy consumption but might
introduce a delay in critical or dangerous situations (e.g., when
several microacoustic emissions are acquired in a very short
time). Hence, the BS autonomously counts the number of bursts
CF over a window WB of the most recent time instants (e.g.,
WB = 180 s). As soon as this value exceeds a threshold ΓF , the
BS switches into the alarm transmission mode and immediately
delivers the bursts gathered from the SPUs to the control room.
The BS remains in the alarm transmission mode up to when
CF ≥ ΓF . When CF decreases below ΓF , the BS returns to
the normal transmission mode. ΓF has been experimentally
fixed to 3. Smaller values of this threshold would result in an
unnecessary activation of the alarm modality, whereas larger
values would induce a delay in its activation in emergency
situations.

In addition, the application at the BS dispatches commands
(received from the control room) to specific SPUs and applies
power management policies depending on the energy availabil-
ity (which is measured by its embedded hardware [2]). Period
d characterizing the normal transmission mode and threshold
ΓF can be modified from the control room. The application
at the BS also checks the exit status of all the utilities to
diagnose remote connection failures and other errors. Errors
and warnings are recorded in a log file, which is sent to the
control room for diagnosis purposes.

C. Intelligent Application Layer: Control Room

The application at the control room provides the data storage
(through an open-source relational structured query language
(SQL) database MySQL Server 5.1), presentation (through the
Spring framework running on top of a Tomcat application
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Fig. 6. Burst classification postprocessing workflow at the control room.

server), and intelligent processing of the acquired measure-
ments implemented in MathWorks MATLAB.

The application is composed of a web application to re-
motely visualize the recorded bursts and a local MATLAB
application, which implements an intelligent mechanism to
separate bursts that can be safely considered false alarms from
those that are possibly associated to fractures, which require
the visual inspection by geophysicists. Burst separation is per-
formed by a classifier trained on bursts manually annotated by
an experienced geophysicist. The burst classification workflow
is depicted in Fig. 6.

The intelligent mechanism at the control room, whose algo-
rithm is shown in Algorithm 1, operates as follows. As soon as a
new burst arrives at the control room, it is automatically aligned
and then processed to extract relevant features. Then, the LDA
[30] is applied to the extracted features to quantitatively assess
to which extent the burst indicates a false alarm (that can be
safely ignored) or a possible fracture (requiring a geophysicist’s
intervention).

1) Burst Alignment: Let Xi be the 128 × 3 matrix cor-
responding to the raw measurements of the ith burst as ac-
quired by the three-channel MEMS of the SPUs (we assume
an L = 128 measurement per axis, as shown in Table III).
Of course, Xi depends on the SPU orientation and location
since, in different SPUs, the MEMS axes are set along different
orientations. During the alignment, Xi is transformed into a
position-independent burst Si to be compared with the bursts
acquired from different SPUs. Such alignment is performed via
the principal component analysis (PCA) [32] as follows:

Si = X0
i Wi (2)

TABLE IV
FEATURES EXTRACTED FROM EACH (ALIGNED) BURST COMPONENT

where X0
i is the zero-centered matrix, and Wi is the 3 × 3 ma-

trix corresponding to the eigenvectors of (X0
i )

T
X0

i , with (·)T
denoting the matrix transpose. Matrix Xi is thus projected into
an orthonormal system identified by its principal components,
and the aligned burst Si corresponds to the scores of Xi.

It is worth discussing that the burst alignment by means of a
preliminary calibration is not a viable option, i.e., mapping each
burst into a common reference axis does not allow a meaningful
analysis since the burst orientation depends on the SPU position
w.r.t. the fracture source. In contrast, the proposed solution
transforms each burst in an adaptively defined orthonormal
system, where the burst components are ordered depending on
their magnitude (variance).

2) Feature Extraction: Features are compact descriptors of
bursts, and they provide essential information to determine
whether Xi represents a false alarm or a possible fracture.
In practice, feature extraction consists in computing a (real-
valued) feature vector Fi extracted from each aligned burst Si.

Nine independent features, which are summarized in
Table IV, are extracted from each component of the aligned
bursts, i.e., from each column of Si (exception is made for the
mean before the PCA, i.e., the mean of Xi on each axis, which
is projected into the principal component space). The features
span both the time and Fourier domains. The noise standard
deviation, which is used to compute the signal-to-noise ratio
(SNR) and the peak SNR (PSNR), is computed as in [33] using
the median of the absolute deviation estimator. The peak decay
corresponds to the slope of the line joining the highest peak and
the second highest peak. In the Fourier domain, the variance of
spectrum peaks is introduced as an indirect measure of how far
the spectrum is from being unimodal.

We achieved satisfactory discriminative capability by only
considering the features from the principal and less significant
components of Si. It follows that each burst Xi is described by
an 18-dimensional feature vector Fi.

3) Burst Separation: This last phase associates to each burst
a measure expressing to which extent it indicates a false alarm
or a possible fracture. Such a measure is entirely computed in
the feature domain via the LDA configured during the initial
training phase.

The LDA is a very popular classification algorithm that
performs dimensionality reduction by linearly projecting input
samples into the subspace where classes are better separated
by a hyperplane. For binary classification problems, the target
subspace is 1-D, and the projection corresponds to the inner
product against a vector a, which is computed from the training
set. Thus, the LDA projects each 18-dimensional feature vector
Fi into a scalar measure mi, which indicates how close Fi is to
false alarms or to potentially relevant bursts, i.e.,

mi = aFi. (3)

Then, mi is used as an indicator of the degree to which the burst
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TABLE V
DESCRIPTION, PRIORITY, DURATION, DEADLINE, R VALUE, AND

STACK SIZE OF THE TASKS RUNNING AT THE SPUS

is a false alarm, i.e., bursts yielding mi values below threshold
ΓB can be safely considered false alarms and discarded (as
illustrated in Section IX-C). Large values of ΓB could result in
discarding true bursts, whereas low values would result in the
processing of a very high number of false-positive detections.

We chose the LDA because its simple model reduces the risk
of overfitting the training set; this aspect has to be taken into
account as the feature dimension is rather large, and the number
of bursts cannot be arbitrarily increased. Of course, the LDA
projection vector a can be recomputed whenever additional
supervised bursts are available to improve the effectiveness of
the burst separation, as in (3).

IX. EVALUATION OF SYSTEM PERFORMANCE

This section aims at evaluating the performance of the pro-
posed system in terms of the schedulability of the tasks in
the execution, the clock synchronization, and the intelligent
processing.

A. Tasks Running at SPUs: Schedulability Analysis

The schedulability analysis verifies whether the execution of
all tasks running at the SPUs (as described in Section VIII-A)
grants the real-time constraint to be satisfied (or not) [34].
At first, we recall that the considered real-time FreeRTOS
is preemptive and based on a rate-monotonic fixed-priority
scheduling algorithm. Each task is characterized by a priority
value and by execution and deadline times. The priority value
is fixed and set at the design time. Tasks with a lower value
of priority can be preempted by tasks characterized by larger
priority values. The execution time, i.e., the time necessary
to execute the task, has been computed by considering the
assembly language version of the code and the execution time
of the involved instructions. The deadline time defines the time
instant by which the execution of all tasks must be completed.

The list of the tasks composing the SPU application (ordered
by decreasing priority) is given in Table V. Some tasks are
periodically executed by the SPU application (e.g., acquisition
and processing, local communication, and watchdog), whereas
other tasks (e.g., the parameter update and the routing protocol)
are triggered by external events such as communication inter-
rupts or timeouts.

In particular, Task T1 represents the acquisition and process-
ing task of the SPU described in Section VIII-A. This task is
periodically executed every time a new set of samples is ready
to be processed. As such, the deadline time of T1 is determined
by the intersampling interval, i.e., 500 μs, which sets a strong
constraint; therefore, the task is assigned the highest priority.

TABLE VI
MEMORY OCCUPATION OF THE SPUS

Task T2 is triggered by the PUSH-parameter routing protocol
of the reconfiguration service described in Section VII-A. This
task updates the parameters of the SPU, and its execution
can be postponed after the completion of task T1 but must
be completed before a new set of samples is acquired. As a
consequence, the deadline time for T2 is set to 500 μs.

Task T3 is only executed if the SPU is a local synchronization
master. Similar to T2, this periodic task, which sends the
synchronization message to all other SPUs on the CAN bus
every 3 s, must terminate before the new set of samples is
acquired. Even in this case, the deadline is 500 μs.

The communication task is organized into two subtasks, i.e.,
T4 and T5. T4 is the CAN driver task, whereas T5 represents the
routing protocol for the CAN bus, as explained in Section VI-A.
All these tasks are activated with a low frequency. The deadline
of T4 is 500 μs to guarantee that each message is sent within
the intersampling interval, whereas the deadline for task T5
is 1 s. Finally, task T6 is a periodic task that resets the watchdog
of the microcontroller. T6 must end before the watchdog fires,
and its deadline is fixed to 0.5 s.

To evaluate the schedulability of the tasks running on the
SPU, we rely on the theoretical framework outlined in [34].
For the ith task, we compute the worst case execution time
Ri = Ci +Bi + Ii, where Ci is the worst case computation
time required by the task, Bi is the worst case blocking time,
as defined in [35], and Ii is the worst case interference that
such task would experience from higher priority tasks. The
computation of Ii and Ri is described in [34].

The schedulability of the tasks is guaranteed if all the worst
case execution times Ri are below their respective deadline
times. As shown in Table V, all the tasks satisfy this constraint,
hence guaranteeing the schedulability of the SPU application
tasks.

In addition, we evaluated the memory consumption of the
SPU application. This analysis is of critical importance since
the microcontroller at the SPU is characterized by limited
ROM and RAM (as described in Section IV). This led us to
consider a manual allocation of data structures in the memory
(by modifying the compiler linker script) to exploit the available
RAM as much as possible. Table VI summarizes the available
and occupied RAM (i.e., the total occupation, the stack, and the
data segment) and ROM (i.e., the code segment). We emphasize
that the manual allocation of the data structures in the memory
allowed us to exploit up to 98% of the available RAM. More-
over, the last column in Table V shows the sizes of the memory
stack assigned to each task. It is worth noting that T5 requires
the largest amount of stack memory since it implements the
PUSH/PULL protocols described in Section VI-A.

B. Synchronization Mechanism

Here, we evaluate the effectiveness of the synchronization
mechanism described in Section VII-C. Having this in mind,
we designed an experimental setup composed of a BS, three
SPUs, and a signal function generator. The BS is connected
to the three SPUs through the CAN bus. The three SPUs run
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Fig. 7. Clock skew between SPU2 and SPU3 over time. (Top) Time horizon
of the analysis is 10 000 s. (Bottom) Analysis focuses on the first 400 s.

the same SPU application with the same parameters. SPU1 is
configured as the local synchronization master, whereas SPU2
and SPU3 are configured as slave units. An Agilent 33220A
function generator was used to generate a voltage pulse every
15 s with an amplitude of 3.3 V and a time duration of 100 ms.
The function generator is connected to both SPU2 and SPU3
through the ADC channel corresponding to a channel of the
MEMS accelerometer. With this experimental setup, both SPUs
detect synthetically generated events at the same time. We
evaluated the effectiveness of the proposed synchronization
service by measuring the clock skew between SPU2 and SPU3
over time by regularly polling both SPUs and comparing
the time stamps associated with the detected events. All the
experiments have been performed in our laboratory at a con-
stant temperature.

At first, we considered the case where no synchronization
service is employed, and SPU2 and SPU3 have been only
synchronized at the beginning of the experiment. These ex-
perimental results are presented in Fig. 7. We can observe
a clock skew between the considered SPUs, i.e., the internal
clock of SPU3 runs slower than that of SPU2, hence increasing
the clock skew over time. We recall that, as pointed out in
Section VIII, the rock-collapse forecasting application requires
the clock skew among SPUs not to exceed 1 ms. Experimental
results are interesting since, as depicted in Fig. 7(b) detailing
the time horizon of the first 400 s, they show that, without any
synchronization mechanism between the SPUs, the constraint
on the clock skew (here emphasized by the black line) is no
longer satisfied after about 60 s.

Then, we considered a synchronization mechanism with
synchronization periods, i.e., the time between the activation
of two subsequent synchronization services, ranging from 3 to
100 s and different baud rates for the CAN bus. Fig. 8 shows
the experimental results with the baud rate fixed at 125 and
250 kb/s. This figure shows the histograms of the measured
clock skew between SPU2 and SPU3 as a result of 300 exper-
iments. Several comments arise. At first, in all the considered
configurations of the baud rate, the synchronization period of
3 s guarantees the constraint on the clock skew to be largely
satisfied. Second, as expected, the maximum value of the clock
skew increases with the synchronization period. These results
are in line with those in Fig. 7 and show that the 1-ms constraint
is not satisfied with synchronization periods equal or larger than
60 s. For example, given a synchronization period of 100 s,
the clock skew between SPU2 and SPU3 can be up to 2 ms.

Fig. 8. Histograms for the synchronization skew for different baud rates of the
CAN bus. (a) 125 kb/s. (b) 250 kb/s.

Fig. 9. Bursts recorded by the system deployed at the Towers of Rialba in
February 2011. (Top) Number of bursts received by the BS every 2 h (the
time between two consecutive connections in the normal transmission mode).
(Bottom) Number of bursts received in windows of WB = 180 s.

Third, experimental results show that the baud rate has no (or
very little) influence on the measured clock skew. This is in line
with what was presented in Section VII-C. In fact, the delay
Td that was induced by the transmission on the CAN bus is
compensated via software according to the baud rate of the
CAN bus. In our real-world deployments, we opted for a con-
servative choice of the synchronization period, fixing it to 3 s
(the baud rate of the CAN bus is 250 kb/s).

C. Intelligent Processing

We report some analysis on the bursts recorded by the
deployment at the Towers of Rialba.1 Fig. 9(a) illustrates
the burst arrivals in February 2011, with each bin reporting
the number of bursts recorded in 2 h, which is the temporal
distance between two remote communications when the BS is
in the normal transmission mode. The highest peak is caused by
an artificially induced fracture in the rock face on February 21;
Fig. 9(b) details the bursts acquired on this day, reporting the
number of bursts on windows lasting WB = 180 s. The setup of
the equipment resulted in the generation of two sets of bursts.
The first set must be intended as the false alarms introduced
by the operators, whereas the last set is associated with the

1The data set of the acquired bursts is made available to the scientific com-
munity at the following web page: http://roveri.faculty.polimi.it/wp-content/
uploads/bursts.zip.

http://roveri.faculty.polimi.it/wp-content/uploads/bursts.zip
http://roveri.faculty.polimi.it/wp-content/uploads/bursts.zip
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Fig. 10. Burst features projected along the LDA axis. The first 52 markers indicate bursts corresponding to possible fractures, whereas the remaining markers
indicate false alarms. Different markers indicate the node that recorded the burst. The LDA values of bursts corresponding to possible fractures are typically larger
than those corresponding to false alarms, indicating that these two classes can be separated.

actual fracture; in both situations, the BS entered in the alarm
transmission mode.

To illustrate the performance of the burst separation algo-
rithm presented in Section VIII-C, we consider a data set of
497 bursts recorded over more than 2 years of monitoring
activity. Geophysicists visually inspected the whole data set,
classifying each of them either as bursts indicating false alarms
(445 bursts) or possible fractures (52 bursts).

Fig. 10 plots the values of the LDA projection computed on
all the bursts of the data set. To ease the visualization, the data
set has been organized to report all the possible fractures at
the beginning (followed by false alarms) and the group bursts
recorded from the same node (i.e., different markers are used
for nodes 1, 2, and 3). Therefore, the burst index on the hori-
zontal axis does not reflect the burst time arrival. The vertical
axis reports the values of the LDA projection of the respective
burst. This figure clearly shows that the separation between
possible fractures (corresponding to the initial 52 markers) and
false alarms (corresponding to the rest of the markers) in the
LDA projections is rather clear. Fig. 10 also shows two bursts
(associated with a fracture and with a false alarm, respectively)
and their LDA projection values to illustrate the difference
between false alarms and possible fractures.

The burst separability is shown in Fig. 11, which presents
the empirical distribution of the LDA projection values as
computed on the whole data set. This figure suggests that
a suitable false-positive filtering strategy is effective and re-
duces the bursts to be visually inspected by a geophysicist
to those yielding an LDA projection above ΓB = 3.8. Bursts
yielding values of LDA projections smaller than ΓB can be
safely ignored, as these correspond to a false alarm in 98% of
cases. Such a selection scheme allows significantly reducing the
number of bursts requesting intervention from a geophysicist.
The analysis will be hence focused on the remaining 50%
of the bursts, taking into account that approximately 19% of
these correspond to possible fractures. These percentage can be
modified by tuning threshold ΓB .

Fig. 11. Distribution of LDA values for bursts corresponding to possible
fractures and false alarms.

X. CONCLUSION

The aim of this paper has been to describe a reprogrammable
and intelligent rock-collapse forecasting system. The proposed
forecasting system guarantees the high-performance processing
of high-frequency data directly at the unit level, together with
an effective and efficient analysis of acquired signals to identify
and extract microacoustic emissions (that represent the possible
forerunners of a rock collapse). In addition, the proposed sys-
tem guarantees both strict synchronization among the acquisi-
tion units (which is crucial for the subsequent analyses of data
at the control room) and the ability to remotely reconfigure the
applications running at the units and at the BS. The system has
been successfully deployed in several areas of the Swiss–Italian
Alps to forecast rock falls.
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