
Computers & Security, 7 (1988) 387-396 

Refereed 
Article 

Multilevel Security 
Issues in 
Distributed 
Database 
Management 
Systems 
John McHugh 1 and Bhavani M. 
Thuraisingham 2 

Computational Logic lnc, NC, U.S.A. 
2Honeywell, Corporate Systems Development Division, Golden Valley, MN, U.S.A. 

This paper describes the security needs in 
a distributed processing environment 
common to many enterprises and dis- 
cusses the applicability o f  multilevel 
secure database management systems in 
such an environment.  

Keywords: Multilevel security, dis- 
tributed databases. 

1. Introduction 

T he advent of  computers ear- 
lier this century has led us not 

only to rely increasingly on the in- 
formation stored in them but also 
to trust their output. This alliance 
with the computer has resulted in 
the automation of  basic operations 
and management support 
functions. This was done through 
the manipulation of  computerized 

information maintained in a data- 
base. Although the creation and ma- 
nipulation o f  increasingly larger 
database systems offer many ad- 
vantages, it also produces breaches 
in security when the output of  con- 
fidential and sensitive information 
is compromised. The move to- 
wards distributed databases in- 
creases the chances of  security 
violations. Consequently, access to 
databases must be controlled to 
ensure that accidental and ma- 
licious corruption of  data is mini- 
mized or even eliminated. This 
calls for increasingly ingenious 
ways of  countering breaches in 
security. 

One such ingenious technique 
that is gaining popularity not only 
in military organizations but also 
in commercial enterprises is the 
design of  multilevel secure 

database management systems 
(MLS/DBMSL An MLS/DBMS 
addresses the rather natural expec- 
tation that users cleared to 
different levels can share a database 
containing multilevel data. This 
paper describes a particular design 
of  an MLS/DBMS that is ap- 
plicable to a distributed processing 
environment common to many 
enterprises. Most enterprises are 
migrating towards distributed da- 
tabases for information storage. 
Therefore it has to be ensured that 
these distributed databases are 
secure. 

There are two aspects to provid- 
ing security in such systems. One 
is to enforce security on the 
network that interconnects the va- 
rious hosts and the other is the 
security that has to be provided due 
to the distribution of  data. Many is- 
sues need to be investigated in or- 
der to provide a secure network. In 
many cases, the network medium 
is subject to attack. Encryption 
offers partial solution to some of  
these threats, but numerous covert 
channels, where information is sig- 
naled in such a way that security is 
violated, can exist through 
network media even when encryp- 
don is used. Network security is an 
active research area and we believe 
that solutions to many of  the secu- 
rity problems are not likely for 
some time. Therefore we will not 
describe the network security is- 
sues in this paper. Instead we will 
assume that the interconnection of  
the various hosts is secure and we 
will only concentrate on the secu- 
rity that has to be provided due to 
data distribution. 

2. Multilevel Security 
Security is the control o f  the 

flow of  data and information 

0167-4048/88/$3.50 (~) 1988, Elsevier Science Publishers Ltd. 387 



J. McHugh et al./Multilevel Security Issues 

through the system and its inter- 
faces with the outside world. This 
is done to prevent the unauthoriz- 
ed disclosure of  information or 
modification of  data protected by 
the system. This can be achieved by 
assigning data to sensitivity classes 
and restricting the types of  access 
individuals and code acting on their 
behalf can have to each of  the sen- 
sitivity classes. A security policy 
describes the set of  restrictions. 
One reasonable approach is to as- 
sociate an element from a partially 
ordered set of  security levels with 
each of  the sensitivity classes and 
with each individual, and to then 
restrict accesses so that information 
and data can only flow upward in 
level. Such a policy is called a mul- 
tilevel security policy and a system 
which enforces one is said to be 
multilevel secure. 

It is only recently and with con- 
siderable difficulty that the prob- 
lem of  providing multilevel secu- 
rity for operating systems and for 
their associated resources has been 
solved. The solution to such a 
problem is generally referred to as 
a trusted computing base (TCB). 
The TCB is an isolated subsystem, 
which must be shown to enforce, 
completely and correctly, the 
system security policy, regardless 
of  the actions of  the rest o f  the 
system. Thus it must be shown 
that the TCB will continue to func- 
tion correctly even if there is hos- 
tile code on the system trying to 
subvert the TCB. Instances of  such 
hostile code are called Trojan hor- 
ses, because it is quite likely the 
user who invokes the code is com- 
pletely unaware of  the hostile na- 
ture of  the code. In order to prove 
that the TCB is complete and cor- 
rect, a mathematical model of  the 
system and its security policy is 
developed and formal verification 

methods are used to show that the 
system design satisfies the security 
policy [9]. 

A fundamental concept in the 
development of  TCBs has been ac- 
cess controls which are embodied 
in an unbypassable and tamper- 
proof  reference monitor. These ac- 
cess control policies are based on 
the assumption that it is not feas- 
ible to verify all programs that can 
be executed in a computing 
system. Therefore there is a pos- 
sibility that the system will be at- 
tacked by hostile application pro- 
grams. The mandatory security 
pohcies are then aimed at confining 
Trojan horse programs in such a 
manner that their attempts at hos- 
tile behavior are frustrated. 

The Bell and LaPadula policy [1] 
defines security in terms of  the 
simple security property and the 
*-property. The simple security 
property states that a process-like 
entity called a subject can read 
from a file-like entity called an 
object only if its clearance is greater 
than or equal to the classification 
level of  the object. The 
*-property states that a subject 
can write into an object only if the 
subject's clearance is less than or 
equal to the classification level of  
the object. In essence, classification 
levels form a partially ordered lat- 
tice and information can flow only 
upward along the lattice unless 
otherwise authorized. Downward 
information flows are necessary to 
make a system functional, but they 
must be controlled in order to pre- 
serve security. This process is 
achieved through "trusted sub- 
jects" whose actions are verified to 
bypass the *-property in a manner 
in which it is believed will not 
violate the intent o f  the *- 
property. 

When there is a database on an 

MLS system, it is possible that not 
all o f  the data contained in the data- 
base are equally sensitive. 
However, present-day database 
management systems are not built 
with adequate controls and mecha- 
nisms to ensure that users are 
allowed to access only the data for 
which they have been granted a 
clearance and for which they have a 
legitimate reason for accessing, but 
at the same time provide for the 
sharing of  data by these users. 
Thus an (MLS / DBMS) is different 
from a conventional DBMS in at 
least the following ways. 

(1) Every data item in the data- 
base has associated with it 
one of  several classification 
or sensitivities, that may 
need to change dynamically 
over time. 

(2) A user's access to data must 
be controlled based upon the 
user's authorization with 
respect to these data 
classifications. 

Providing an MLS/DBMS 
service on current computing 
systems, even on a TCB, presents a 
new set o f  problems. The most ob- 
vious of  these problems is that the 
granularity of  classification in a 
DBMS is generally finer than a file 
and may be as fine as a single data 
element in a file, whereas that o f  
the TCB is a file. Another problem 
that is unique to databases is the 
necessity to classify data based on 
content, time, aggregation, and 
context. Furthermore, DBMSs are 
also vulnerable to subtle covert 
channel attacks in which Trojan 
horses within the DBMS encode 
sensitive information in otherwise 
benign fields and also to inference 
attacks where a user infers un- 
authorized data from the knowl- 
edge that he has accumulated 

388 



Computers and Security, Vol. 7, No. 4 

and/or  the context in which data 
are displayed. Any security policy 
for MLS/DBMS must not only 
protect against direct disclosure of  
data, but it must also attempt to 
limit the attacks from hostile users. 

The Air Force Summer Study of  
1982 [ 12] proposed near-term solu- 
tions and long-term require- 
ments for MLS/DBMSs.  The rec- 
ommended near-term solutions are 
three families of  architectures. One 
is based on integrity locks, another 
based on developing kernelized 
DBMS and the third based on dis- 
tributed data. All three families 
will use untrusted DBMSs. In the 
integrity lock approach the data are 
cryptographically sealed by a 
trusted device when it is created. 
The data record would include 
its security markings. When the 
data are subsequently queried by 
the user, the trusted DBMS 
front end would recompute the 
cryptographic checksum and 
compare it with the value attached 
to the record when it was first 
created. If  they differ, the read is 
aborted. The basis for the kernel- 
ized approach is to use untrusted 
DBMS on secure operating 
systems. The operating systems 
would segregate the data into dis- 
tinctly defined segments. A trusted 
front end operating as a shared seg- 
ment would perform security sen- 
sitive writes for users at any class- 
ification level. In the distributed fam- 
ily, untrusted back-end DBMSs 
are interconnected to a trusted 
front-end machine. The data are 
segregated among the back-end 
machines. All operations that 
require trust are performed at the 
front end. The long-term require- 
ments of  MLS / DBMSs include the 
need for classification systems that 
handle multilevel compartmented 
data and dissemination markings, 

mechanisms that classify data by 
their association with other data, 
solutions to inference and aggrega- 
tion problems, and sanitization and 
downgrade abilities. 

Several solutions are being pro- 
posed to design MLS / DBMS based 
on the report of  the Air Force 
Summer Study [3, 4, 6, 7, 10]. The 
merits and demerits of  each solu- 
tion depend on the application 
environment. For the application 
in which we are interested, namely 
the distributed processing environ- 
ment, it appears that the solution 
proposed by the Summer Study to 
achieve security based on data dis- 
tribution is most applicable. This is 
because not only does this ap- 
proach provide a solution to the 
problems due to data distribution, 
it also enables most enterprises to 
use existing untrusted state-of- 
the-art DBMSs instead of  com- 
pletely changing the designs and 
operations of  such systems. There- 
fore designs of  MLS / DBMS based 
on data distribution will be the focal 
point of  this paper. We believe that 
the realization of  such an MLS/  
DBMS is largely an engineering 
exercise. The interrelationship 
between the security and data re- 
quirements of  the application will 
influence both the architecture of  
the DBMS and its security policy. 

If the goal is to produce a work- 
ing MLS/DBMS based on data 
distribution within the next 2-3 
years, then most research questions 
such as inference and aggregation 
problems must be either resolved 
or side-stepped. It is most likely 
that this will be the case in most 
commercial applications as the 
enterprises cannot afford the 
compromises to security in the 
mean time while waiting for a 
completely secure DBMS. 
However, it is desirable that the 

design should be flexible so that it 
can evolve incrementally while 
new discoveries are made in the 
database security arena. 

3. Overview of Distributed 
Databases 

As quoted in ref. 2, a distributed 
database is a collection of  data 
which are distributed over different 
computers of  a network. Each site 
has autonomous processing capa- 
bility and can perform local ap- 
plications. Each site also par- 
ticipates in the execution of  at least 
one global application, which 
requires accessing data at several 
sites using a communication sub- 
system. A graphical representation 
of  a distributed database is shown 
in Fig. 1. 

A DDBMS supports the creation 
and maintenance of  distributed 
databases. A typical commercial 
DDBMS is depicted in Fig. 2 
(taken from ref. 2). Its components 
are as follows. 

(1) The database management 
component (DB). 

(2) The data communications 
component (DC). 

(3) The data dictionary (DD) 
which is extended to repre- 
sent information about the 
distribution of  data in the 
network. 

(4) The distributed database 
component (DDB). 

The services that are support- 
ed by a DDBMS include the 
following. 

(1) Remote database access. 
(2) Distribution transparency. 
(3) Consistency and integrity 

maintenance. 
(4) Concurrency control and 

recbvery. 
The access of  remote databases 
may be necessary in order to 

389 



J. McHugh et al./Multilevel Security Issues 

SITE 1 SITE 2 

Communication 
Network 

Fig. 1. Distributed Database. 

SITE 3 

process queries. I f  the data are dis- 
tributed, then a user's query will be 
decomposed into subqueries if  
necessary and routed to the 
appropriate sites. At each site a 
response will be generated and 
these responses will be assembled 
at user's site or some other con- 
venient site. The assembled res- 
ponse will be returned to the user. 
Distribution transparency shields 
users from the knowledge of  the lo- 
cation of  the data. There is a heavy 
trade-offbetween distributed trans- 
parency and performance. Con- 
sistency maintenance is necessary 
because of  replicated copies of  the 
data. In other words, if  the data 
that are updated are replicated, 
then it has to be ensured that all 
copies of  this data are consistent. 

Integrity maintenance is required 
in order to ensure that the data in 
the system are correct at all times. 
Concurrency control algorithms 
handle the situation where a data- 
base needs to be accessed by multi- 
ple users at the same time. 
Recovery techniques handle site 
crashes. 

As quoted in ref. 2, distributed 
databases are important for econo- 
mic, organizational, and technolo- 
gical reasons. They can be im- 
plemented in long haul networks, 
local area networks, or front-end 
machines having point-to-point 
connections to back-end machines. 
It is envisaged that as the availabi- 
lity of  distributed databases in- 
creases the number of  applications 
will grow rapidly. 

4. Designs of MLS/DBMS 
Based on Data Distribution 

The architectures proposed by 
the Air Force Summer Study for an 
MLS / DBMS are generalized in 
Fig. 3. The M(M > = 1) users 
access the N(N > = 1) back-end 
machines. This access is controlled 
v iaL(L>  = I , L <  = N , L <  = M )  
front-end machines. The method 
by which users are connected to the 
front ends is immaterial, but must 
meet the criteria that are predeter- 
mined. These criteria depend on 
the features such as security, in- 
tegrity, and performance that are 
desired of  the system. Each back- 
end machine may have point-to- 
point connection to the front-end 
machines or it may be connected 
through a local area network. For 
reasons described earlier, we as- 
sume that this interconnection is 
s ecu re .  

The design strategy for the 
MLS / DBMS architecture depends 
on the hardware components, 
interconnection media, software 
interfaces, and the methods used 
to distribute the data. Two of  the 
techniques that have been proposed 
for data distribution are perlevel 
distribution and replicated dis- 
tribution. In both cases, the archi- 
tecture consists of  a front-end 
machine having point-to-point 
connections to two or more back- 
end machines. We assume a set o f  
levels ordered HI > . . .  > LO. In 
the perlevel design, each back end 
contains data at a single level, thus 
a given back end operates at a sin- 
gle level in the range {LO ...HI}. 
In the replicated design, each 
machine contains all the data up to 
a given level in the range 
{LO ... HI} and operates in the 
system high mode at that level. 

In the above discussion we have 

390 



Computers and Security, Vol. 7, No. 4 

D8 

CO 

SITE 1 

SITE 2 

DO 

Fig. 2. Components of a Distributed 
DBMS (Taken from ref. 2). 

assumed that the levels are hier- 
archical. However, this is not always 
the case. For example, in an office 
environment, it is likely that the 
levels assigned to secretaries and 
engineers may be incomparable 
while the managers could access 
both the secretaries' and the engi- 
neers' information. In such a case 
the level of  the manager will be an 
upper bound of  the levels of  the 
secretary and engineer. However, 
such incomparable levels can lead 
to combinatorial explosion. As an 
example, three incomparable levels 
will result in seven different access 
groups. In such cases the problems 
of  designing an MLS/DBMS are 
compounded. Therefore our dis- 

Terminals 

\ /  
CC [X~ 

CD 

D(38 

Terminals 

cussion will assume that the levels 
are hierarchical. We do believe that 
the design has to be extended to 
include non-hierarchical levels in 
order to produce any realistic 
system. 

The main advantage of  the per- 
level design over the replicated one 
is that the updates do not result in 
inconsistencies. This is because in 
the perlevel design the data are not 
replicated. The replicated design 
has an advantage in terms of  query 
processing. As all the information 
pertaining to a user's level is stored 
in one machine, a user's query has 
to be directed only to that machine. 
In the perlevel design, a user's query 
may be directed to different ma- 

chines. Some decomposition may 
also be necessary before the query 
is routed. The responses are 
generated at each machine and they 
will be assembled possibly at the 
front end. 

We will illustrate the above dis- 
cussion with an example. Suppose 
the database consists of  a relation 
EMP with the attributes NAME, 
ADDRESS, SOC_SEC. PHONE,  SALARY 

AND PROJECT. L e t  SOC_SEC be the 
key value. Let the attributes NAME. 
ADDRESS, SOC_SEC, and PHONE be at 
the level of  the secretary and the 
attributes SALARY and PROJECT be at 
the level of  the manager. In the 
perlevel design, the secretary data- 
base will store the attributes s o c  
SEC, NAME, and PHONE while the 
manager database will store soc_ 
SEC, SALARY, and PROJECT. It should 
be noted that since SOC_SEC is the 
key, it is stored in both databases. 
Alternatively, we could have used 
tuple_IDs which depend on the 
key in order to identify the tuples. 

The tuple_IDs may be generated 
by the front end. Suppose a man- 
ager wants to obtain all the infor- 
marion about the relation EMP. 
This query will be decomposed 
first and then routed to the two 
back-end machines. The responses 
generated at these machines will 
then be assembled. Ifa secretary 
wants to obtain information about 
EMP, then the query is modified to 
get only the attributes that are in 
the secretary database. This mod- 
ified query will be routed to the 
secretary's machine and the res- 
ponse will be generated. In this case 
no assembly is needed. In the case 
of  the update operation, a request 
by a secretary to update a tuple in 
the relation EMP will be decom- 
posed and sent to both machines. A 
manager, however, can only up- 
date his own database. He will not 

391 



J. McHugh et al./Multilevel Security Issues 

u I - 

Ui (I <= i <= M) Users 

Fi (I ,¢= i <.  L ) Frontend Machines 

Bi (1 < .  i <° N) Backend Machines 

Fig. 3. MLS/DBMS Architectures. 

be able to update the secretary's 
database as this will violate the 
*-property. 

In the replicated design, the 
secretary database will contain the 
same information as in the case of  
the perlevel design. The manager's 
database, however, will contain the 
entire relation EMP. A query 
request by the manager will be 
directed to the manager's database 
and a query request by the 
secretary will be directed to the 
secretary database. The response 
generated will be returned to the 
user and no assembly is necessary. 
In the case of  updates, a manager 
can update his own database 
whereas a secretary can update 
both databases. However,  it should 
be ensured that the replicated data 
in both machines are consistent. 

In order to operate an enterprise 
efficiently, performance is an im- 
portant factor in selecting a par- 
ticular design for an MLS/DBMS.  
As an example, the choice of  the 
designs can be heavily influenced 
by the frequency of update and 
query operations. If  the system is a 
read-often write-seldom one then 
the replicated design is preferred. If 
the situation is reversed, then one 
should consider the perlevel design 
seriously. In addition to the 
frequency of  updates and query 
operations, performance objectives 
should also be established at the 
MLS/DBMS component level 
such as the front-end and the back- 
end machines in order to achieve 
the overall objective of  a high per- 
formance system. The subsystems 
that impact the overall perfor- 

mance of  the front end include the 
security kernel which consists of  
trusted code, the data 
dictionary / directory manager 
which contains information about 
the locations of  the back-end 
machines and the necessary meta- 
data, the speed of  the processor, 
and the size of  the memory.  The 
performance objectives for the 
components of  the back end must 
reflect the fact that we expect a 
greater proportion of  the process- 
ing to be accomplished at the back 
end. However,  owing to security 
considerations, some of  this pro- 
cessing may have to be accomplished 
at the front end. Other factors that 
influence the selection of  the design 
are the security considerations, 
functionality, and ease of  
implementability. We believe that 
both designs can be implemented 
easily and they offer an acceptable 
level of  functionality. Since the 
objective is to produce a secure 
MLS/DBMS for an operational 
enterprise, the security considera- 
tions merit a detailed discussion. 

5. Security Aspects of the 
Designs 

In this section we discuss in 
more detail the impact o f  security 
considerations on the realization of  
the MLS/DBMS as a distributed 
system and vice versa. The security 
aspects o f  the designs can be des- 
cribed in terms of  the functionality 
of  the TCB at the front end. Depend- 
ing on the application, such a TCB 
can range from a simple guard to a 
substantial reimplementation of  
much of  the back end functional- 
ity. In the discussion that follows, 
we will assume that the following 
structures are typical of  the 
DBMS. 

A database consists o f  one or 

392 



Computers and Security, Vol. 7, No. 4 

more relations, relation schemas, 
and views. A DBMS can support 
one or more databases at a given 
time. A relation is a table having 
rows and columns. A column of  a 
relation represents an attribute or 
field of  the relation. All entries in a 
column are of  the same type, that 
is, they are elements of  some value 
set associated with the attribute. 
The tuple of  a relation is a cross- 
section containing a corresponding 
element from each column in the 
relation. The classification of  a row 
dominates the classifications as- 
sociated with its individual 
elements. 

Elements are the atomic data 
items of  the relation. Element 
classifications can be determined 
on an individual basis or inherited 
from the column classifications. 
The latter case is likely to be more 
common as there are relatively few 
cases in which value taken out o f  
context justifies an exceptional 
classification. Context can cause a 
particular row, column, or relation 
at a level that exceeds the class- 
ification of  any of  its elements. 

We can define a multilevel rela- 
tion as an extension of  the table 
formulation described above. The 
tabular structure is augmented 
with security labels that provide 
the classification of  the relation, its 
columns, its rows, and possibly its 
elements. For any given level, we 
can create another relation which is 
a (possibly multilevel) view of  a 
multilevel relation in which the 
classifications of  the relation, its 
columns, its rows and its elements 
are all dominated by the given 
level. 

In the distributed MLS/DBMS,  
the actual storage o f  relations will 
be performed by the untrusted 
back-end machines. It will be the 
job of  the front-end TCB to pro- 

vide users with the appropriate 
views to ensure that multilevel in- 
formation is accurately labeled. 
The TCB functionality and, as a 
consequence, its size, complexity, 
and cost can vary greatly depend- 
ing on the architecture of  the 
DBMS system and the application 
requirements. 

We will consider the perlevel and 
the replicated distributions of  data 
among the back-end DBMSs and 
examine their impact on TCB func- 
tionality. We assume that tuples 
containing data at multiple levels 
occur frequently enough to require 
special provision for their entry 
into the system. The operations to 
be supported should include data- 
base definition, MLS data entry, 
query operations, update, and ap- 
plication influence. 

Database Definition 
Database definition is the crea- 

tion and processing of  a new data- 
base description. This includes the 
definition of  a master schema, 
views, the preparation of  a data 
dictionary, relation definition etc. 
In addition to the usual DBMS 
functionality, MLS database deft- 
nition includes the assignment of  
security levels to database entities 
and partitioning the database struc- 
ture to fit the storage distributions. 

Because the partitioning is secu- 
rity related, at least part of  this 
code must be in the TCB. Much of  
the schema construction and manip- 
ulation can be done with un- 
trusted code, but as a minimum, a 
trusted review and checking pro- 
gram must be supplied to ensure 
that the MLS schema property 
reflects the intent of  the DBMS 
designer. This program would 
operate at the highest level required 
for classifying any part o f  the 
DBMS schema and would have the 

necessary upgrade-downgrade 
authority to install the partitioned 
schemas on the back-end mach- 
ines. It would also produce data 
structures to be used by the TCB in 
mediating access to the back end. 

MLS Data Entry 
Single level tuples can be entered 

into the DBMS at their own level. 
Prior experience indicates that this 
is likely to be the case and no 
special impact on the TCB is fore- 
seen. Even so, it seems likely that 
multilevel data streams from 
other trusted systems as well as 
occasional manual inputs will be 
required. For these cases, a trusted 
application is envisioned to permit 
such entry. It functions at the level 
required by the highest data being 
entered and has the downgrade 
authority to cause the appropriate 
lower level entries to take place. 
This application will be restricted 
to data input operations so that it 
does not become a conduit for 
wholesale downgrading of  the 
DBMS contents. Its purpose is to 
allow proper distribution of  a cor- 
rectly labeled multilevel input 
stream over the database. Because 
the process generates single-level 
transactions that are further pro- 
cessed by the TCB, it can be in- 
dependent of  the distribution tech- 
nique. Automatic classification of  
data, on the basis o f  context, time, 
context etc., would require sophis- 
ticated trusted applications. We 
believe that this is not feasible in 
the near term. 

Query Opera t ions  
We assume that the distributed 

MLS/DBMS will support the 
same set o f  relational query opera- 
tions as those supported by the 
normal DBMS. These include the 
primitive operations of  union, set 

393 



J. McHugh et al./Multilevel Security Issues 

difference, cartesian product, 
projection and selection [11]. The 
extended operations intersection, 
quotient, and various join forms are 
also supported. If all the data 
required to answer a given query 
are present on a single DBMS 
machine, the TCB's task in query 
processing is minimal. This will be 
the case for most operations on 
replicated distributions. For a 
perlevel distribution, queries in- 
volving data on multiple machines 
must be decomposed, processed in 
part at the various levels and the 
results combined by the TCB. This 
may require trusted code, duplicat- 
ing much of  the back-end DBMS 
functionality, if the multilevel na- 
ture of  the responses is to be pre- 
served. If an implicit upgrade of  
portions of  the response is ac- 
ceptable, some of  this functionality 
can be placed in untrusted code 
residing in the front end outside the 
TCB, but code that communicates 
down to the lower level DBMSs 
must still be part of  the TCB. 

Update 
Update operations cause poten- 

tial problems in both distributions. 
It is hoped that the frequency of  
multilevel or downgrading updates 
will be sufficiently low so that rela- 
tively simple procedures can be 
used for this purpose. Every effort 
should be made to organize the ap- 
plication in such a way that updates 
are initiated at the level o f  the data 
being altered. In the perlevel dis- 
tribution, the effect of  such an up- 
date is restricted to a single back- 
end machine. In the replicated dis- 
tribution, updates at lower levels 
imply automatic upgrades and up- 
dates at the higher level or levels. 
This creates potential synchroniza- 
tion and transient inconsistency 

problems but no particular security 
problems. The TCB will be re- 
sponsible for generating the ap- 
propriate update operations for the 
higher level views of  the system. 

Application Requirements 
Application requirements can 

also influence the TCB construc- 
tion. It has been noted that the 
replicated distribution does not 
provide a true MLS capability 
because the security labeling for 
lower level portions of  data 
retrieved from a DBMS containing 
multiple levels cannot be trusted. If 
such data are ultimately being 
processed by an untrusted applica- 
tion at the high level, this is unim- 
portant, as results coming from 
such an application must be as- 
sumed to be at its level. It is neces- 
sary to ensure accurate labeling 
from a security standpoint only if 
the data are to be processed by a 
trusted application that will keep 
the label information intact 
through processing and transform- 
ation. In all cases, a downgrading 
process must be used, even if the 
data are thought to be of  a lower 
level than their processing environ- 
ment. Should applications that can 
process multilevel data be con- 
sidered, the use ofperlevel dis- 
tribution or the addition of  in- 
tegrity locks to the replicated dis- 
tribution would seem to be 
indicated. 

Summary  of TCB Functionality 

The above discussion indicates 
that the TCB of  an MLS/DBMS 
using data distribution to achieve 
security can range from relatively 
simple to quite complex. The 
simplest TCBs result from repli- 
cated distributions in cases where 
accurate labeling of  data in the 

mixed levels DBMSs is not 
required. In this case the TCB func- 
tionality is restricted to providing 
separation facilities to ensure that 
the queries and responses flow cor- 
rectly from single-level users to the 
appropriate replicated DBMS and 
that updates are reflected in all 
DBMSs operating above the level 
initiating the update. From a prac- 
tical standpoint, trusted applica- 
tions for database definition, MLS 
data entry, and downgrading are 
also required. 

At the other extreme, a TCB for 
a perlevel distribution in which 
true multilevel query responses are 
required would duplicate much of  
the functionality of  the back ends. 
At both extremes, the TCB must 
have substantial knowledge of  the 
functionality of  the back-end 
DBMSs. This means that its in- 
terface definition is likely to in- 
cludea substantial portion of  the 
back-end interface. The richness of  
this interface will influence the 
complexity of  the TCB. 

6. Conclusion 

In this paper we have described 
issues involved in the design and 
implementation of  an 
MLS/DBMS based on data dis- 
tribution applicable to a distributed 
processing environment common 
to many enterprises. We have also 
discussed the impact of  security 
considerations on the realization of  
the MLS/DBMS. 

Our design does have some limi- 
tations. It has been heavily in- 
fluenced by the hierarchical levels 
of  classification. This has to be 
extended to include incomparable 
levels. We have also assumed that 
the interconnection of  the various 
machines within an enterprise is 

394 



Computers and Security, Vol. 7, No. 4 

secure and we have also side- 
stepped the long-term require- 
ments of  an M L S / D B M S  such as 
content and context-dependent 
classification, dynamic class- 
ification, inferences and aggrega- 
tion. Another  crucial issue that has 
to be considered is data integrity. 
Various integrity policies for com- 
mercial systems are being for- 
mulated. Therefore it is important  
that such functions be incorporated 
into the system as it evolves. 

In spite of  its limitations, the im-  
plementation of  our  design is 
achievable using existing products. 
For example, Honeywell ' s  A1- 
rated Secure Communica t ions  Pro- 
cessor (SCOMP) [8] can act as a 
front end to Honeywell 's  Distri- 
buted Database Testbed System 
(DDTS), a superior distributed 
DBMS prototype [5]. Although 
the performance of  such an 
M L S / D B M S  is yet to be deter- 
mined, it will offer the promise of  a 
high degree of  security and func- 
tionality sufficient to satisfy a large 
class of  users. 

Acknowledgments 

The authors would like to thank 
Dr. Saeed Rahimi, Ms. Patricia 
Dwyer,  Dr. Krishna Mikilineni, 
and Mr. Emmanuel  Onuegbe  from 
the Honeywell ,  Corporate Systems 
Development  Division and Profes- 
sor Wei-Tek Tsai from the 
Universi ty  of  Minnesota for their 
valuable suggestions. 

References 
[1] D. Bell and L. Lapadula, Secure 

Computer Systems: Mathematical 
Foundations, ESD-TR-73-278, Vol. 

1, AD 770 768, The Mitre Corpora- 
tion, Bedford, MA, 1 May 1973. 

[2] S. Ceri and G. Pelagatti, Distributed 
Databases, Principles and Systems, 
McGraw-Hill, New York, 1984. 

[3] D.E. Denning, S.K. Aid, M. Mor- 
genstern, P.G. Neumann, R.R. 
Schell and M. Heckman, Views for 
multilevel database security, Proc. 
1986 IEEE Symp. on Security and 
Privacy, April 1986, pp. 156-172. 

[4] D.E. Denning, T.F. Lunt, R.R. 
ScheLI, M. Heckman and W. 
Schoddey, A multilevel relational 
data model, Proc. Syrup. on Security 
and Privacy, April 1987. 

[5] C. Devor, R. Elmasri, J. Larson, S. 
Rahimi andJ. Richardson, Five- 
schema architecture extends DBMS 
to distributed applications, Electron. 
Des., (March 1982) 27-32. 

[6] B.B. Dillaway andJ.T. Haigh, A 
practical design for a multilevel 
secure database management 
system, Aerospace Security Conf., 
McLean, VA, December 1986. 

[7] P.A. Dwyer, G.D.Jelatis and M.B. 
Thuraisingham, Multilevel security 
in database management systems, 
Comput. Secur., 6 (3) (1987) 252- 
260. 

[8] L. Fraim, SCOMP: A solution to the 
multilevel security problem, IEEE 
Tram. Comput., 16 (7) (July 1983) 
26-34. 

[9] R. Kemmerer, A brief summary of a 
verification assessment study, Proc. 
9th Ann. Nat. Computer Security 
Conf., NBS, Gaithersburg, MD, 
1986. 

[10] M.B. Thuraisingham, Security 
checking in relational database 
management systems augmented 
with inference engines, Comput. 
Secur., 6 (6) (1987) 479-492. 

[11] J. UNman, Principles of Database 
S),st~,ns, Computer Science, Rock- 
ville, MD, 1982. 

[12] Multilevel data management secu- 
rity, Committee on Multilevel Data 
Management Security, Air Force Stu. 
dies Board, Commission on Engineering 
and Technical Systems, National 
Research Council, National Academy 
Press, Washington, DC, 1983. 

Dr. John MeHugh received the B.S. 
degree in physics from Duke University 
in 1963, the M.S. degree in computer 
science from the University of Maryland, 
College Park in 1974, and the Ph.D. 
degree in computer science from the 
University of Texas, Austin, in 1983. He 
is a Vice President and head of the North 
Carolina office of Computational Logic 
inc. He is also an Adjunct Assistant Pro- 
fessor of computer science at Duke 
University. From 1983 to 1986 he was a 
Senior Computer Scientist at the Research 
Triangle Institute in Research Triangle 
Park, NC. From 1973 to 1978, he worked 
for the Naval Research Laboratory as a 
mathematician and for the University of 
Minnesota Hospital as an application pro- 
grammer. From 1965 to 1973, he worked 
for the National Oceanic and Atmos- 
pheric Administration as a com- 
puter systems analyst. From 1964 to 
1965, he was a patent examiner in the 
United States Patent Office. His research 
interests include formal specification and 
verification, software fault tolerance, 
secure systems, reliable software design, 
and muhiprocessor applications. Dr. 
McHugh is a member ot the Institute of 
Electrical and Electronics Engineers 
(IEEE), IEEE Computer Society and 
Association for Computing Machinery. 

Dr. Bhavani M. Thuraisingham is a 
Principal Research Scientist at Honeywell 
Corporate Systems Development Divi- 
sion and an Adjunct Professor of com- 
puter science and member of the Graduate 
Faculty at the University of Minnesota. 
Her research interests include all aspects 
of Data-Knowledge Base Management 

395 




