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A Survey of Elastic Matching Techniques for Handwritten

Character Recognition

SUMMARY  This paper presents a survey of elastic matching (EM)
techniques employed in handwritten character recognition. EM is of-
ten called deformable template, flexible matching, or nonlinear template
matching, and defined as the optimization problem of two-dimensional
warping (2DW) which specifies the pixel-to-pixel correspondence between
two subjected character image patterns. The pattern distance evaluated un-
der optimized 2DW is invariant to a certain range of geometric deforma-
tions. Thus, by using the EM distance as a discriminant function, recog-
nition systems robust to the deformations of handwritten characters can be
realized. In this paper, EM techniques are classified according to the type
of 2DW and the properties of each class are outlined. Several topics around
EM, such as the category-dependent deformation tendency of handwritten
characters, are also discussed.

key words: elastic matching, handwritten character recognition, deforma-
tion, optimization, survey

1. Introduction

One of the main problems of handwritten character recog-
nition is how to deal with geometric deformations of char-
acters. In [37, p. 106], the geometric deformations of
handwritten characters are classified into the following four

types:

o fluctuation of stroke thickness due to noise and inap-
propriate binarization,

e linear deformations, such as translation, scaling, shear,
and rotation,

¢ nonlinear and topology-preserving deformations, such
as the deviation from original geometric balance, and

e deformations changing topology, such as the disappear-
ance of loops.

The use of features invariant to those deformations will
be a popular solution of the problem. For example, the hor-
izontal projection profile [34] is a classical feature invariant
to horizontal shifts of character patterns. The use of shape
normalization techniques is another solution [21], [24]. For
example, linear scaling of the bounding box of a character
is the simplest normalization technique and enough to re-
alize scale-invariant recognition. Line density equalization
proposed by Yamada et al. [65] is a nonlinear shape normal-
ization technique and can adjust nonlinear deformations.

An alternative to those solutions is elastic matching
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(EM), which is also called deformable template [50], flexi-
ble matching [32], or nonlinear template matching [31]. EM
has been employed in not only handwritten character recog-
nition but also many other image pattern matching prob-
lems, such as face recognition, fingerprint recognition, ges-
ture recognition, medical image analysis, automatic image
morphing, computer vision (e.g., stereo), and motion analy-
sis.

In EM, one character image A is treated like a “rub-
ber sheet” and fitted to another character image B as close
as possible. Formally speaking, EM is defined as an opti-
mization problem with respect to a linear or nonlinear pixel-
to-pixel mapping, called two-dimensional warping (2DW),
from A to B. The distance evaluated under the optimized
2DW is invariant to the deformations compensable by 2DW.
Thus, by using the distance as a discriminant function,
recognition systems robust to the deformations of handwrit-
ten characters can be realized.

The advantages of EM over invariant features and nor-
malization techniques are as follows:

e EM is adaptive and thus generally possesses higher
ability to compensate various deformations than invari-
ant features and normalization techniques.

e The optimized 2DW itself describes the deformation of
subjected character. This fact shows that EM possesses
useful properties of structural analysis techniques.

e EM can be linked to statistical and stochastic
frameworks. Active shape models [6],[45],[56] and
(pseudo-)2D HMMs [1],[20], [22], [38] are two good
examples.

The characteristics of EM mainly depend on two fac-
tors: (i) the formulation of 2DW, and (ii) the optimization
strategy of 2DW. The first factor affects the range of com-
pensable deformations. Thus, 2DW should be formulated by
considering the deformation characteristics of handwritten
characters. For example, when we can assume that hand-
written characters mainly undergo rubber-sheet-like defor-
mations, topology-preserving 2DW is a natural choice. The
second factor affects the accuracies of the results of EM,
namely, the accuracies of the minimized distance and the
optimized 2DW. Generally speaking, optimization strategies
for globally optimal solutions will provide more accurate re-
sults than those for sub-optimal solutions. Note that these
two factors mutually affect the computational complexity of
EM.

The purpose of this paper is to overview various EM
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techniques employed in handwritten character recognition
and to grasp unsolved problems around EM. In Sect.2,
EM is outlined by its mathematical formulation and gen-
eral properties. In Sect. 3, EM techniques are classified ac-
cording to the formulation of 2DW. The properties of each
class, such as computational complexity and other practical
issues, are also discussed in this section. In Sect. 4, several
topics around EM are discussed. Some of those topics have
not been well investigated in previous researches. Finally, in
Sect. 5 conclusions are presented along with future research
topics.

Note that, throughout this paper, we mainly concern the
EM techniques for two “planer” patterns; other types of EM
developed for handwritten character recognition are beyond
the scope of this paper. Thus, EM between a 1D pattern and
a planer pattern (e.g., [40], [44]) and EM between two 1D
patterns (e.g., contour matching proposed in [63], [66] and
thinned pattern matching proposed in [7]) are not included
in this survey.

2. Outline of EM
2.1 Problem Formulation of EM

Consider two N x N handwritten character image patterns
A = {a;;} and B = {(b,,}, where a;; and b,, are pixel
feature vectors at pixel (i, j) on A and (x,y) on B, respec-
tively. Let F denote a 2D-2D mapping from A to B, i.e.,
F : (i, j)— (x,y) (Fig. 1).

EM is formulated as the minimization problem of the
following objective function with respect to F:

Jas(F) = D(A, Bp), 1

where D(-,) is a simple “rigid” distance metric (e.g., Eu-
clidean distance, or absolute distance) between two charac-
ter image patterns and Bp is the character pattern obtained
by fitting B to A, i.e., B = {bFp j}.

Let F denote the 2DW F minimizing J4 g(F) of (1).
Then, EM distance Dgy(A, B) is defined as

Dgm(A, B) = min J4 p(F) = Jag(F). 2

Clearly, Dgm(A, B) = D(A, By). Thus, EM distance is the
rigid distance between A and By, i.e., the rigid distance be-
tween A and B after fitting B to A as close as possible.

2D-2D mapping F
(2D warping)

N B=(b,, )

A={ a;; }

X

Fig.1 2DW defined between two handwritten character images.
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2.2 Properties of EM Distance

The EM distance (2) is different from rigid distance metrics
at the following three properties.

(a) EM distance is deformation-invariant.

The EM distance Dgy(A, B) is invariant to the de-
formations which are compensable by F. For example, if
the 2DW F is defined as affine transformation, Dgy(A, B)
is theoretically invariant to any affine transformed version
of B. This property suggests that EM-based recognizers
are robust to geometric deformations within a category and
thus expected to attain better recognition rates than rigid
distance-based recognizers.

Unfortunately, this property also suggests that similar-
shaped characters of different categories may be misrecog-
nized by EM-based recognizers. For example, if F is affine
transformation, Dgm (97, “6”) is, theoretically, very close to
Dpm(“97,“9”) because affine transformation can compen-
sate 180° rotation. Thus, the input “9” may be misrecog-
nized to the different category “6”. This is the phenomenon
called overfitting. Generally speaking, there is a trade-off
between the ability of compensating deformations within a
category and the risk of overfitting.

(b) EM distance is anisotropic.

The conventional Euclidean distance is isotropic in the
pattern space and the set of patterns equidistant from a cer-
tain pattern form hypersphere in the pattern space. In con-
trast, the EM distance Dgm(A, B) is generally anisotropic
and the set of patterns equidistant from a certain pattern do
not form hypersphere.

This fact can be confirmed from the experimental re-
sult of Fig.2[26]. The small dots are actual handwritten
numeral patterns {A;} of a category (displayed in the 2D
subspace spanned by their first two principal axes), and the
black triangle is their centroid R. When Euclidean distance
is used, the centroid R, which minimizes ) ; D(Ag, R), is
placed around the center of pattern distribution (Fig. 2 (a)).
In contrast, when the EM distance is used, the centroid R,
which minimizes }}; Dpm(Ag, R), is not placed around the
center (Fig. 2 (b)).

(@) (b)

Fig.2 The centroids of handwritten character patterns under (a) Eu-
clidean distance and (b) EM distance. The character patterns and the cen-
troids are displayed in 2D subspace.
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(c) EM distance is often asymmetric.

The EM distance defined by (2) is asymmetric, i.e.,
Dgpm(A, B) # Dpm(B, A), because only B is deformed by F
for the optimal matching between A and B. Thus, the EM
distance (2) is, formally, not a distance metric. This asym-
metric property, however, is not crucial; in many recognition
tasks, the EM distance (2) is successfully used as a discrim-
inant function.

There are several ways to obtain a symmetric EM dis-
tance. Among them, the sum of two asymmetric distances,
Dpm(A, B) + Dpm(B, A), is the simplest one. Bi-directional
EM where not only B but also A are deformed by 2DW is
another and a more elaborated way.

2.3 Comparison with Shape Normalization

Shape normalization, such as line density equalization [65],
is closely related to EM in the sense that both of shape
normalization and EM have the same purpose of provid-
ing a deformation-invariant distance. They, however, differ
at the ability of compensating deformations. As shown in
Fig. 3 (a), EM shifts B to a pattern close to A. In contrast, as
shown in Fig. 3 (b), shape normalization shifts A to a pattern
having some ideal property, and shifts B independently to
another pattern having the same property. Thus, EM is po-
tentially more powerful in compensating deformations. Un-
fortunately, this fact does not guarantee better performance
of EM over shape normalization; as noted in Sect. 2.2 (a),
this fact also indicates that EM has more risks of providing

A

B

dist. bet. A and B 7\‘0

dist. bet. A and B

pattern space

pattern space

(a) (b)

Fig.3 Distance between A and B given by EM (a) and normalization
(b).
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underestimated distance between two character patterns of
different categories, namely, EM has more risks of overfit-
ting.

Note that EM and shape normalization are not rival.
That is, they can be utilized in a collaborative manner. In
fact, a simpler 2DW is enough if reasonable shape normal-
ization is available. Tsukumo’s EM technique [51] is a very
good example where blurring normalization and a simple
2DW are successfully combined.

3. Classification of EM Techniques

In this section, EM techniques for handwritten character
recognition are classified according to the formulation of
2DW, which is one of the two factors determining the char-
acteristics of EM (as noted in Sect. 1). Figure 4 shows a
classification tree. As shown in this figure, the EM tech-
niques can be roughly divided into two classes, i.e., para-
metric 2DW-based EM and non-parametric 2DW-based EM.
In non-parametric 2DW, each variable which controls F di-
rectly represents pixel correspondence. In parametric 2DW,
each variable does not represent pixel correspondence but
represents a parameter that controls 2DW indirectly.

Each of those two classes is further divided into sev-
eral classes. As shown in Fig. 4, each class is closely related
to several optimization strategies. That is, if a 2DW of a
class is chosen, possible optimization strategy is almost de-
termined.

3.1 Parametric 2DW
3.1.1 Linear 2DW

Most of parametric EM techniques for handwritten char-
acter recognition assume that the geometric deformations
of handwritten characters can be described by some linear
transformations. Specifically, the 2DW F : (i, j) — (x,y)
are formulated as a linear function,

) = (i +az2j + a3, a4l + asj+ ag), (3)

where a1, @3, . . ., @ are real-valued parameters that control

elastic image matching
for handwritten character recognition

parametric 2DW

N

iterative iterative iterative

c linear orthogonal
2 ffine)
§x | (o AN
£q |

N . ) S
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© z | methods/ methods methods /
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Fig.4 Classification of EM techniques employed in handwritten character recognition.
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F. If those six parameters are independent, F is affine trans-
formation. Note that x and y provided by (3) are generally
not integer and therefore several interpolation techniques
should be employed to obtain the pixel feature b, ;.

Even if 2DW is defined as a linear transformation, its
optimization problem becomes nonlinear, since the parame-
ters to be optimized are involved in a nonlinear image pat-
tern function B. Thus, the optimization problem is often
tackled with iterative solutions or approximate solutions in-
stead of deterministic solutions.

Wakahara and his colleagues [58], [59] have proposed
affine transformation-based 2DW techniques, called GAT,
for handwritten character recognition. In GAT, 2DW is de-
scribed by a single global affine transformation. The opti-
mization problem of GAT is approximated as a linear prob-
lem by fixing the parameters in the nonlinear part of an ob-
jective function at constant values. This approximated prob-
lem can be solved by the successive iteration method.

The tangent distance method[15], [47] has been pro-
posed as another linear 2DW-based EM" where a nonlinear
optimization problem of linear 2DW is approximated as a
linear problem by Taylor series expansion. Recently, this
idea is successfully linked with statistic framework [17].

There have been several trials for optimizing linear
2DW in an exhaustive manner. Yasuda et al. [67] proposed
the perturbed correlation method, where a 2D reference pat-
tern is “perturbed” by affine transformation with discretized
parameter values. Each of perturbed patterns is rigidly
matched with a 2D input pattern. Since the number of pos-
sible parameter values becomes very large, this method re-
quires numerous and repetitive 2D-2D rigid matchings. Re-
cent hardware, however, makes the method computationally
tractable one. A similar method can be found in [8].

3.1.2  Orthogonal 2DW

In several EM techniques, 2DW is represented as a linear
combination of orthogonal functions, i.e.,

K
(X)) = ) audelis J) @)
k=1

where, ¢1(i, j),..., ¢, J), ..., ¢x(i, j) are 2D-2D orthog-
onal functions, i.e., (¢(i, j), ¢:i(i, ) = O for k # I, and
ap,...,Q, ...,k are parameters to be optimized.

Jam and Zongker [14] have proposed a 2DW where
{¢x(i, j)} are 2D orthogonal sinusoids. The optimization
of the parameters {ay} is done by a coarse-to-fine strategy
that the parameters of low-frequency sinusoids are firstly
determined by the gradient descent method (i.e., an itera-
tive method) and then the parameters of high-frequency si-
nusoids are determined similarly. Thus, their optimization
strategy is doubly iterative.

Active shape model (ASM) proposed by Cootes et
al. [6] can be employed for handwritten character recogni-
tion as an orthogonal 2DW. In ASM, 2DW is represented
by a linear combination of principal deformations of de-
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formable patterns. The principal deformations are orthog-
onal and provided by applying principal component anal-
ysis (PCA) to actual deformations collected from training
patterns. Inspired by ASM, Shi et al. [45] have proposed a
1D-2D EM technique for the character recognition task. In
[45] a linear (e.g., 1D) reference pattern is fitted to a 2D
input pattern. The fitting is governed by the principal defor-
mations of the 1D reference pattern and the optimal fitting
is searched for by a gradient descent method. Uchida and
Sakoe [56] have extended ASM to fully 2D-2D EM, i.e., pla-
nar EM and applied into handwritten character recognition.
A related idea can be found in [19], where the displacement
between the strokes of two skeletonized handwritten char-
acters is evaluated by the Maharanobis distance.

3.2 Non-parametric 2DW

Non-parametric 2DWs can be divided into two classes; con-
tinuous 2DW and discrete 2DW. The continuous 2DW

(Section 3.2.1) is defined as a mapping F (i, j) €
R?> — (x,y) € R?’ The discrete 2DW is a defined
by 2N? variables ((X1,1,1.1)s - - > (Xi.j» Vi )s - - - » (XN.N> YNN))

where (x; j, y; ;) denotes the pixel on B corresponding to the
pixel (i, j) on A.

The discrete 2DW is further divided into two classes;
unconstrained 2DW (Section 3.2.2) and constrained 2DW
(Section 3.2.3). In unconstrained 2DW, the mapping of pixel
(@, j), i.e., (xij, i), is independent of the mapping of other
pixels. On the other hand, in constrained 2DW, the mapping
of pixel (i, j) depends on the mapping of adjacent pixels of

(@, j)-
3.2.1 Continuous 2DW

Non-parametric and continuous 2DW is often assumed as
a continuous and differentiable function and optimized by
some iterative optimization strategy where 2DW is itera-
tively updated. In this sense, non-parametric and continuous
2DW is similar to parametric 2DWs.

Deterministic relaxation [43] is an iterative optimiza-
tion strategy for variational problems. When optimizing
non-parametric and continuous 2DW F by deterministic
relaxation, the Euler-Lagrange equation of the underlying
variational problem (1) is firstly discretized to obtain a sys-
tem of nonlinear equations. Then the sub-optimal 2DW
can be obtained by solving the equations by some itera-
tive method, such as the Gauss-Seidel method. One should
take care about the following three points on the practical
use of this optimization strategy. First, the Euler-Lagrange
equation is only a necessary condition for the optimal so-
lution of the variational problem. Second, since the sys-

In principle, the tangent distance method can deal with non-
linear deformations, if the displacement fields by the nonlinear de-
formations can be defined explicitly. In fact, the method has been
extended to deal with several nonlinear deformations [56]. Since
the original method [47] was examined with mainly linear trans-
formations, it is classified as a linear 2DW in this paper.
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tem of equations is nonlinear, the Gauss-Seidel method can-
not guarantee even its convergence. Third, numerical er-
rors will occur in approximated derivatives and interpo-
lated pixel-values. For relaxing these problems, regulariza-
tion techniques and/or coarse-to-fine strategies are effective.
Mizukami et al.[28] have successfully employed the de-
terministic relaxation in handwritten character recognition
while using a regularization technique and a careful coarse-
to-fine strategy.

Webster and Nakagawa [61] and Nakagawa et al. [33]
have proposed a motion equation-based EM technique. In
their techniques, an elastic membrane created from B is
falling into a potential field created from A. The state of the
membrane showing B is iteratively updated by calculating
its motion equation until an equilibrium state.

3.2.2 Discrete and Unconstrained 2DW

Local perturbation [3], [11], [13], [23], [27], [42], [64] (also
called image distortion model in [15],[16]) is the most sim-
ple optimization strategy for discrete 2DWs. Local pertur-
bation is based on pixel-independent optimization; that is,
for each pixel on a character image, its best corresponding
pixel on another character image is searched for locally and
independently.

Local perturbation possesses great merit that it requires
far less complexity than other optimization strategies. How-
ever, local perturbation possesses a weak-point that the re-
sulting 2DW becomes jaggy due to the noise and the ambi-
guity in pixel features. Thus, careful coarse-to-fine strate-
gies [13], [27], smoothing of local displacements [3],[11],
sequential (outside-to-inside) optimization with mild con-
straints [11], and/or sophisticated pixel features[16],[42]
will be indispensable to expect sufficient performance.

3.2.3 Discrete and Constrained 2DW

For regulating flexibility, discrete 2DWs often employs con-
straints between two adjacent pixels. For example, continu-
ity constraints, such as |x;; — x; ;j-1] < A,; where A,; is a
positive small value, are often imposed on 2DW to exclude
large “gaps” from 2DW. Under such constraints, local per-
turbation cannot guarantee globally optimal 2DW or cannot
provide any 2DW satisfying the constraints.

Dynamic programming (DP) is the most popular strat-
egy for optimizing constrained 2DW. Its merits can be sum-
marized as follows:

e Accuracy: DP can provide globally optimal 2DW.

o Versatility: For example, DP accepts undifferentiable
objective functions. Position-dependent constraints
and pixel features are also acceptable. Because of this
versatility, the incorporation of the various properties
of handwritten characters can be easily done.

e Numerical stability: DP is purely a combinatorial (i.e.,
discrete) optimization strategy and thus free from nu-
merical assumptions.
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Fig.5 Types of DP-based EM. For each type, a possible 2DW is illus-
trated as a deformed mesh. The link of the mesh indicates that the pixels
connected by the link are restricted by some constraints.

HMM, which is a popular framework of EM, can be consid-
ered as a stochastic extension of DP. Thus, HMM and DP
are not distinguished in this section unless otherwise men-
tioned.

The previous discrete and constrained 2DWs optimized
by DP can be classified into DP1-DP7 of Fig. 5. Type DP1-
DP4 are not fully two-dimensional 2DWs. That is, all the
pixels on the ith column (the jth row) of A are mapped
together to the (same) xth column (the yth row) of B and
therefore those types cannot compensate truly 2D deforma-
tions, such as rotation and slant. Type DP5-DP7 are fully
two-dimensional techniques. Note that every type except for
DPS5 has its transposed (i.e., 90° rotated) version. Also note
that as shown in Fig. 5 it is often assumed that all 2DWs are
restricted by boundary constraints that any boundary pixel
of A corresponds to a boundary pixel of B.

(a) DP1

DP1 is the simplest 2DW and can compensate de-
formations that all the pixels of each column are shifted
equally. The constraints of DP1 are:

0< Xij = Xi-1,j < Axi
DPIZ xi,j = xi,j_l,
Yij=J

DP1 itself has been employed in word recognition [5], [25],
[29], [46] rather than isolated handwritten character recog-
nition. The optimization of DP1 with DP requires O(N?)
computations.

DP1 is often repeated to compensate complex defor-
mations of handwritten characters and words. Nakano et
al. [35] have proposed a DP-based EM technique where the
vertical version of DP1 is optimized after the horizontal ver-
sion is optimized. Hallouli et al. [9] have compared several
combinations of vertical and horizontal versions of DP1 in
the framework of HMM. In [36], DP1 is repeated four times
under different feature vectors having different roles on rep-
resenting spatial distribution of strokes. Wang et al. [60]
firstly use a horizontal DP1 for segmenting a handwritten
word into its component characters and secondly use a ver-
tical DP1 for compensating the vertical deformation of each
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of those component characters.

(b) DP2

DP2 is comprised of independent one-dimensional ver-
tical warpings. DP2 cannot compensate any horizontal de-
formation. The constraints of DP2 are:

Xij=1
DP2:§ W7
{ 0 <yij—Yij-1 <4y

The optimization of DP2 with DP requires O(N?) computa-
tions.

DP2 is often repeated like DP1. In [12], the vertical
version of DP2 is optimized after the horizontal version is
optimized. Tsukumo [51] has proposed an EM technique
where a character image is firstly decomposed into four im-
ages each of which contains 0° (&), 45° (), 90° (1), or
—45° (~) components of the character. Then DP2 is or-
thogonally applied to each of them. Specifically, for the im-
age of 0° components, the vertical version of DP2 is applied
to compensate, for example, the vertical shifts of horizontal
strokes. Although the horizontal shifts of horizontal strokes
cannot be compensated by his 2DW, they are successfully
eliminated in advance by the horizontal blurring operation.

(c) DP3

DP3 can be considered as a combination of DP1 and
DP2. Among DP1-DP7, DP3 is the most popular one.
This may be because DP3 can compensate both vertical and
horizontal deformations simultaneously with polynomial-
order computations. The HMM version of DP3 is so-
called Pseudo-2D HMM [1], [20], [22] and widely used in
recognizing handwritten characters [22], machine-printed
words [1],[20], [68], and handwritten words[2]. The con-
straints of DP3 are:

0<xij—xic1,j S Ay
DP3: )C,',j = xi,j—l’

0 < yij=Yij-1 <Ay

The computational amount required for optimizing DP3 is
O(N*), i.e., still in a polynomial order.

Recently, DP3 has been extended by Keysers et al. [16].
Their 2DW allows column-wise local perturbation on the
2DW given by DP3. This extended DP3 can provide truly
2D warping with a feasible amount of computations. It
should be careful, however, that local perturbation guaran-
tees neither continuity nor monotonicity of 2DW and there-
fore resulting 2DW may show gaps and fold-overs.

(d) DP4

DP4 is a topology-preserving 2DW, while DP2 and
DP3 are not topology-preserving 2DWs (because of the lack
the constraint between y; ; and y;_1 ;). Thus, DP4 can avoid
the overfitting of “P” to “b” while it can be happen in DP2
and DP3. The constraints of DP4 are:

0<xij—xic1,j S Ay
Xi,j = Xi,j-1»

[yij = yi-1,j < Ay,

0 <yij—vij1 <Ay

DP4:
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Although the difference between the constraints of DP4 and
those of DP3 seems small, the computational amount of DP4
is far larger than DP3. In fact, the DP-based optimization
of DP4 requires O(N3A£’j) computations, i.e., exponential-
order computations. Simply speaking, this is because we
should keep all possible warping of the (i — 1)th column on
examining the warping of the ith column. DP4 is a restricted
version of DP5 and therefore its algorithm can be easily de-
rived from DP5 [52], [53].

(e) DP5

In DP5, the mappings of 4-adjacent pixels are mutually
constrained. Thus, it is easy to regulate the flexibility of
2DW. The constraints of DP5 are:

0<xij—xXi-1,; <Ay
|xij — xi j-1] < Ay
[Vij = Vi1, < Ayi
0 < yij=Yyij-1 <Ay

DPS5:

Levin and Pieraccini [22] have proposed “monotonic” 2DW
where A,i, Ayj, Ay, and A,; are set at infinity. Thus, their
2DW can preserve upper/lower and left/right relationships
and does not care about continuity of character patterns.
Inspired by Levin and Pieraccini, Uchida and Sakoe [52],
[53] have proposed a monotonic and continuous 2DW where
Ay = Ayj = 2and A,; = Ay; = 1. In some sense, the
monotonic and continuous version of DP5 is the most fun-
damental and widely acceptable 2DW, because it approxi-
mates “rubber-sheet” EM.

Unfortunately, the optimization of DP5 (as well as
DP4) is an NP-hard problem [18]. Even if character im-
ages are small (N ~ 20), it is impossible to obtain the glob-
ally optimal 2DW. Thus, some approximation should be
introduced for the practical use of DPS5. In [52],[53], beam
search is incorporated into the DP optimization process to
obtain a sub-optimal 2DW with fewer computations. One
can employ other local search-based approximation algo-
rithms for DP-based EM. In [48], the optimization of DP5
is performed as a sequential and greedy process; after the
warping of the (i — 1)th column is determined, the warping
of the ith column is determined satisfying inter-column con-
straints. Chen and Willson [4] have developed a similar ap-
proximation algorithm where the above sequential process
is iterated. After the first iteration, the warping of the ith
column is determined considering not only the warping of
the (i — 1)th column but also the warping of the (i + 1)th col-
umn. In [39], the iteration proceeds alternately in horizontal
and vertical directions. Uchida and Sakoe [54] have pro-
posed an approximation algorithm which exploits the fact
that the global optimization of DP5 can be done very fast if
an image pattern is elongated one.

(f) DP6 and DP7

DP6 and DP7 [41], [55] have been proposed as com-
putationally tractable versions of DP5. Both of DP6 and
DP7 were derived from DP5 by piecewise-linear approxi-
mation. In DP6, each column of A is fitted to B as a broken
line with one corner, called pivot. The correspondence of
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the pixels except for the pivot and boundary pixels is deter-
mined by linear interpolation. Despite of those piecewise-
linear approximations, DP6 still can compensate fully two-
dimensional deformations. DP7 undergoes heavier approx-
imation than DP6; it has no pivot and each column of A is
fitted to B as a straight and slanted line. The computational
amounts for the global optimization of DP6 and DP7 are
O(N®) and O(N*), respectively.

(g) Others

Another type of DP-based EM has been proposed in
[30], [49], [62], where the matching proceeds diagonally
from one corner (1, 1) to its opposite corner (N, N) while
extending a rectangular matched region. Despite of their
theoretical interests and computational feasibility, it seems
that the flexibilities of their 2DWs do not match actual de-
formations of handwritten characters.

3.3 Hybrid between Parametric 2DW and Non-parametric
2DW

The boundary between parametric 2DW and non-parametric
2DW is ambiguous. In fact, the following EM techniques
are their hybrids having the properties of both parametric
2DW and non-parametric 2DW.

In local affine transformation (LAT) proposed by
Wakahara [57], 2DW is described by a set of many locally-
effective affine transformations. Thus, LAT is a paramet-
ric 2DW in a microscopic sense and simultaneously a non-
parametric 2DW in a macroscopic sense.

Uchida and Sakoe [56] have proposed an EM technique
whose 2DW is defined as a linear combination of eigen-
deformations, which are principal deformations in a cate-
gory of handwritten characters. This 2DW is formulated as
(4) and thus a parametric and orthogonal 2DW. The eigen-
deformations themselves, however, are estimated from the
results of some non-parametric EM. Thus, this technique
can be considered as a parametric 2DW on its optimization
and as a non-parametric 2DW on the ability of compensat-
ing deformations.

4. Related Topics
4.1 Reference Patterns for EM

The setting of reference patterns is generally important for
handwritten character recognition. This importance is the
same for EM-based recognizers. Although EM implicitly
produces multiple reference patterns from one reference pat-
tern B by applying F (as shown in Fig. 3), its producible
reference patterns are generally limited (in order to avoid
overfitting). Thus, for topology-preserving 2DWs, multiple
reference patterns should be set when some category con-
tains topologically different allograph.

Despite of the importance, most of EM-based charac-
ter recognition techniques do not pay strict attention to this
task. In fact, prototypes have been designed manually in
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Fig.6  Inconsistency in pixel feature. Two pixels depicted by small filled
circles are truly corresponding pixels and thus should be matched by 2DW.
Their directional features, however, are rather different.

many EM-based recognizers. Otherwise, all training pat-
terns are directly used as prototypes, at the cost of computa-
tional complexity (e.g., [14],[47]).

Clustering is the most promising way to setting pro-
totypes automatically. Matsumoto et al. [26] have pointed
out that the objective function of clustering should be de-
signed using EM distance instead of conventional Euclidean
distance. This is because the prototypes optimized under
Euclidean distance-based clustering are not optimal for EM
distance-based discrimination. (See also Fig.2.) In [26], a
k-means algorithm based on EM distance is proposed. In
[10], several clustering algorithms based on the tangent dis-
tance (see Sect. 3.1.1) have been proposed.

4.2 Pixel Feature

In EM, pixel feature vectors are required to be less ambigu-
ous; only two pixels corresponding truly should have similar
pixel feature vectors. This is because ambiguous pixel fea-
ture vectors, such as grey-level feature, may confuse pixel-
to-pixel correspondences.

As less ambiguous pixel feature vectors, local con-
text[16] and directional feature [28], [53] are simple and
reasonable choices. Those shape-sensitive features, how-
ever, face a problem. That is, those feature vectors of cor-
responding pixels are often not the same (Fig.6). Thus,
strictly speaking, one should modify the feature vectors ac-
cording to 2DW. Invariant features, such as moments, will
relax this problem.

4.3 Category-Dependent Deformation Tendency

Most of conventional EM techniques assume that all cate-
gories have the same deformation tendency. Although the
assumption is approximately correct, we should accept the
existence of category-dependent deformation tendency. Fig-
ure 7 is a simple example that proves its existence. If an EM
technique based on the assumption can compensate the de-
formations of “M” (Fig.7 (a)), it may suffer from the over-
fitting of “H” to “A” (Fig.7 (b)). This simple example indi-
cates the necessity of category-dependent EM techniques.
This necessity can be confirmed from the experimen-
tal result of Table 1, where the recognition results of several
DP-based EM techniques of Fig. 5 are shown. This recogni-
tion experiment was conducted on 26 character categories of
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Table 1  The number of misrecognized samples. The error rate can be derived by dividing each
number by 500. DP1, DP3, DPS, and DP6 are DP-based EM techniques illustrated in Fig. 5. The
number is underlined at the best EM of each category.
[ ca. JA[B] C[D[E[ F[G[H] I] JJK[L] M[NJO[ P[Q[R[ S[T[UJ[ V[W][X]Y] Z] Total |
rigid || 6 (48|10 1448|161 |20 |10(18|33 19| 3|108|18|54|17|12|45(29| 7[10|31|28|22| 3|45| 719
DP1(| 2| 9| 1| 3|15|18|16| 9| 6| 1| 7| 6| 311512 7| 6[19|21| 5| 4| 6| 3|11|0|17]|[ 250
DP3 || 1| 4| O 4(10|13| 2| 9| 9| 1| 5|12| 23|17| 4| 8| 5| 4| 6|10|11| 5| 4| 5| 1| 5| 178
DP5( 1| 6| O| 4|12|21| 4| 3|12| 2| 1|12 6|10 4|31 5| 8| 6|14 5| 6| 3| 25| 7| 190
DP6[ 1] 2] o| L[1r[12] 1| 2| 6| 2| o 7| 10| 9| 3| 2| 4| 3| 4[10] 5| 7| 2| L[ 1| 9f 115
classes is further divided into several classes. Each class
© © and its optimization strategy are related closely. For exam-
ple, dynamic programming (DP) is often chosen for the opti-
(a) (b) mization of non-parametric, constrained, and discrete 2DW.
. ) Future research on EM for handwritten character
Fig.7  Example of category-dependent deformation tendency. (a) In cat-

egory “M”, two parallel vertical strokes are often slanted to be closer. (b)
In category “H”, however, the same deformation is rarely observed.

capital English alphabets. For each category, 600 handwrit-
ten character samples of ETL6 [69] were prepared. Four-
dimensional directional features (0° (<), 45° (), 90° (),
and —-45° (~)) were extracted at each pixel and used as
a five-dimensional pixel feature vector together with one-
dimensional gray-level feature. Each sample were linearly
scaled to 20 x 20. The first 100 samples of each category
were simply averaged to create one reference pattern B. The
remaining 500 samples were used as test samples A. As DP-
based EM techniques, DP1 (A,; = 2), DP3 (A = Ayj = 2),
DPS5 (A, = Ayj = 2,A;; = Ay; = 1), and DP6 were chosen.

The results of Table 1 indicates a simple and impor-
tant fact the most appropriate flexibility is different in each
category. The most flexible 2DW (DP5) could not pro-
vide the best result in many categories; on the contrary,
the most simple 2DW (DP1) and even rigid matching could
provide the best result for several categories. That is,
each category has its own range of deformations and ex-
cessive/insufficient flexibility often degrades the recogni-
tion performance. In this sense, category-dependent EM
techniques, such as HMM and ASM-based EM, are more
promising than category-independent ones.

5. Conclusion and Future Work

Elastic matching (EM) techniques employed in handwritten
character recognition tasks were surveyed. Formally, EM
is defined as the optimization problem of two-dimensional
warping (2DW) which specifies the pixel-to-pixel corre-
spondence between two subjected character image patterns.
The image distance evaluated through 2DW is called EM
distance and invariant to a certain range of geometric de-
formations. Thus, by using EM distance as a discriminant
function, we can develop recognition systems robust to de-
formations of handwritten characters.

A classification of EM techniques was done according
to the types of 2DW. There are two classes of 2DWs; para-
metric 2DW and non-parametric 2DW. Each of those two

recognition should tackle the following problems:

e Design of 2DW based on the actual deformations. As
shown in Sect.4.3, category-dependent deformation
tendencies should be incorporated into 2DW by ob-
serving the deformations of actual handwritten charac-
ters. Statistic and/or stochastic frameworks will be use-
ful. Discriminative learning of 2DW will also be useful
to suppress the misrecognitions due to overfitting.

o Combination of parametric 2DW and non-parametric
2DW. The deformations of handwritten characters can
be decomposed into global deformations and local de-
formations. Scaling, rotation, translation and projec-
tive transformation of an entire character image are ex-
amples of global deformations. Independent and par-
tial changes of stroke direction, curvature, and length
are the examples of local deformations. EM should
compensate both deformations. Since parametric 2DW
and non-parametric 2DW are suitable for compensat-
ing global deformations and local deformations respec-
tively, their cooperative combination will be promising.

e Reduction of computational complexity. Generally
speaking, EM requires a fair amount of computations.
This fact is crucial especially for characters comprised
of many categories, such as Chinese characters. Thus,
acceleration of the EM algorithm is necessary. Coarse
classification based on a rigid distance is a possible
remedy.

e Combination with shape normalization. As noted in
Sect. 2.3, shape normalization can compensate many
deformations and therefore it is useful to narrow the
range of 2DW.

e Reference pattern. There are few investigations on set-
ting reference patterns for EM-based handwritten char-
acter recognition. As noted in Sect. 4.1, conventional
clustering techniques based on Euclidean distance are
not appropriate for EM. The number of reference pat-
tern per category will depend on the property of 2DW.

e Feature extraction. As noted in Sect. 4.2, less ambigu-
ous pixel features are required for accurate 2DW. If
such a desirable pixel feature is available, we will be
able to use unconstrained 2DW instead of costly con-
strained 2DW.



UCHIDA and SAKOE: A SURVEY OF ELASTIC MATCHING TECHNIQUES FOR HANDWRITTEN CHARACTER RECOGNITION

EM for handwritten word recognition. EM techniques
employed in word recognition are rather simple like
DP1 of Sect.3.2.3. In handwritten words, not only de-
formations within individual characters but also defor-
mations between adjacent characters are observed. The
compensation of such complex deformations is chal-
lenging.

Utilization of optimized 2DW. In handwritten character
recognition, only EM distance is often important as a
discriminant function and 2DW obtained on minimiz-
ing the EM distance is not emphasized. The optimized
2DW, however, is very meaningful because the opti-
mized 2DW between A and B represents the deforma-
tion of B relative to A. From the viewpoint of struc-
tural analysis, the utilization of 2DW is very promising
to extract various properties of handwritten characters.
Automatic generation of active shape models is one ex-
ample [56]. Writer identification and character synthe-
sis are also promising.
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