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Iterative Multimodel Subimage Binarization
for Handwritten Character Segmentation

Amer Dawoud and Mohamed S. Kamel

Abstract—Existing binarization methods are categorized as ei-
ther global or local. In this paper, we present a new category, where
the image is considered a collection of subimages. Each subimage
provides a statistical model for the handwritten characters that
can be used to optimize the binarization of other subimages based
on gray-level and stroke-run features. The proposed method uses
these multimodels to iteratively arrive at the optimal threshold for
each subimage. It can be applied to different types of documents
where prior knowledge about the noisiness of the subimages is not
available. Experimental results showed significant improvement in
the binarization quality in comparison with other well-established
algorithms.

Index Terms—Document binarization, document processing,
handwritten character segmentation, subimage binarization.

I. INTRODUCTION

EXISTING binarization techniques can be categorized as
either global or local. Global thresholding algorithms use

a single threshold, while local thresholding algorithms compute
a separate threshold for each pixel (or group of pixels) based
on a neighborhood of the pixel. Many binarization methods
were proposed over the last 20 years. Sahoo et al. [8] com-
pared the performance of more than 20 global thresholding al-
gorithms using uniformity or shape measures. The comparison
showed that Otsu’s method [7] gave best performance. Trier
and Jain [10] evaluated the performance of 11 well-established
local thresholding algorithms. In their evaluation, algorithms of
Niblack [6] and Yanowitz and Bruckstein [11] produced high
recognition rates. The following algorithms are examples of al-
gorithms that were developed recently. Liu and Srihari’s algo-
rithm [5] uses texture features to select an optimal threshold
from a set of candidate thresholds. Solihin and Leedham’s al-
gorithm [9] selects an optimal threshold using histograms mod-
ified by integral ratio techniques. Zhao’s et al. method [13]
uses multiple window size operation to select local thresholds.
Cheriet’s et al. method [2] uses a recursive technique that ex-
tends Otsu’s approach. Dawoud and Kamel [3] proposed an iter-
ative model-based binarization technique. The method we pro-
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pose in this paper can be considered as a generalization of the
methods reported by Dawoud and Kamel [3] and Liu and Sri-
hari’s algorithm [5].

We propose a new category of image binarization where the
image is divided into subimages. Let us assume that a document
image is divided into subimages: Image Image
Image , where is the total number of subimages. Fig. 1
shows an example of such a document image that contains five
subimages, . We will also assume that the levels of back-
ground noise in the subimages are independent and unknown,
and that the characters in all subimages have been written by the
same pen. The underlying principle of our approach is that since
handwritten characters of different subimages come from the
same source and are captured under the same conditions, they
possess similar characteristics, regardless of their background
type.

The objective of our approach is to find an optimal threshold,
, for each subimage that would elim-

inate background noise, while preserving as much handwritten
stroke data as possible.

The rest of the paper is organized as follows: Section II
presents the multimodel binarization algorithm and how to
optimize its criteria for stopping the iterations. Comparative
performance evaluation results are presented in Section III. The
conclusions of this work are stated in Section IV.

II. ITERATIVE MULTIMODEL BINARIZATION ALGORITHM

We will use Fig. 2 as an example to demonstrate the applica-
tion of steps of the algorithm. As a preprocessing step, nonchar-
acter structures, like baselines and frame boxes, are cropped.
These structures usually have different gray-level and stroke-run
characteristics than those of the handwritten characters; there-
fore, they should be cropped so that they are not confused with
handwritten strokes. This preprocessing step, as shown in Fig. 2,
is performed before doing the iterative feature extraction.

The subimages are then binarized at a sequence of candidate
thresholds , where is the lowest possible threshold in
gray-scale histogram. The difference between two successive

s was chosen to be eight gray-levels, which we found to be
satisfactory. As the iteration number increases, the handwritten
strokes become thicker and more connected, but, at the same
time, there will be a higher risk of background noise interfer-
ence, because the will also be closer to the background re-
gion of gray-scale histogram. Our objective is to find the optimal
threshold for each subimage that will extract as much hand-
written strokes as possible without allowing the background
noise interference.

1057-7149/04$20.00 © 2004 IEEE



1224 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEPTEMBER 2004

Fig. 1. Document image containing five subimages.

Fig. 2. Three subimages and their binarization at a sequence of candidate thresholds.

A. Feature Extraction
Notice that in Fig. 2 failed to eliminate the background

noise in Image (1). We want to infer such failure by comparing
features of the binarized Image (1) with those of the other

subimages. We used the gray-level and stroke-run features,
which mainly reflect the underlying characteristics of the pen
used in writing and are invariant to handwriting style or con-
tent. Now, because failed to eliminate Image (1) noise, we
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Fig. 3. Hypothesis test.

conclude that the (the one that precedes the failure) is the
optimal threshold; it preserved as much handwriting stroke data
as possible without allowing the background noise interference.

1) Gray-Level Feature: We will show how to optimize the
binarization of Image using information from other another
subimage, Image . Suppose that all subimages are binarized
at a . If the binarized subimage Image is noise free,
then its gray-level statistics of the extracted pixels (pixels with
gray-level lower than only) can be used to estimate the pa-
rameters of a Gaussian distribution . An em-
pirical study done by Dawoud and Kamel [3] showed that the
Gaussian distribution is the best among other distributions in
representing the handwriting gray-level population. If the bina-
rized subimage Image is noise free also, then we expect its
gray-level statistics of its extracted pixels to be similar to

. When fails to eliminate Image noise, these statis-
tics will become different from . Experimentally, we found
this expectation to be true, regardless of the noise’s pattern or
characteristics. So, by testing the following null and alternative
hypotheses, we can infer whether or not a eliminated back-
ground noise from Image

(1)

(2)

The hypothesis test is conducted by calculating the gray-level
that corresponds to 5% of Image noise-free Gaussian dis-
tribution. Then, as shown in Fig. 3, we calculate the number
of pixels above this gray-level as a percentage of the total
number of extracted pixels in the Image . This percentage
is interpreted as , the probability of error associated
with accepting the hypothesis that the gray-level statistics of
the Image obey the Gaussian model obtained from the

Image , where and . As long
as eliminates Image background noise, this error will
be small (around 5%), given that Image is noise free also.
However, this error will significantly increase when the
fails to eliminate the noise, which is illustrated in the increase
of Image (1)’s and at iteration 7 and Image (2)’s

at iteration 8. The gray-level feature for all subimages
will be a matrix in the following form:

...
...

...
...

(3)

For example, the first row of this matrix is the probabilities of
error associated with accepting the hypothesis that the gray-
level statistics of the Image (1) obey the Gaussian models ob-
tained from other subimages. The decision to accept or reject

is reached by comparing with a predetermined pa-
rameter called the gray-level rejection criterion [(GRC) the se-
lection of GRC is discussed in Section II-B]. If error
exceeds GRC, is rejected; otherwise, it is accepted. When
noise interferes in Image at a certain , then Image
can no longer be used as a valid model to judge other subimages.
Therefore, we remove it from the list of valid subimages used
to calculate at the following iterations, where ,

.
When the noise interference starts at the same for two

subimages Image and Image , there is a chance that nei-
ther nor will increase to reflect this noise interfer-
ence. In this case, this feature may fail to detect the interference.

2) Stroke-Run Feature: Another feature that was used to
infer a ’s failure to eliminate noise in a subimage is the
stroke-run histogram, referred to as , , and
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TABLE I
SUMMARY OF STATISTICAL DECISIONS

, where is the total number of subim-
ages, and , where is the longest run to be
counted. Our statistical study on stroke-run histograms of 4 200
check images (250 ppi) showed that the mean of the longest
stroke run was about five pixels and the thinnest is about three
pixels; therefore, we set . This histogram is created by
scanning the binary images both horizontally and vertically
to compensate for the variations in handwriting direction,
and it records the frequency at which the run lengths occur.
We noticed that a ’s failure to eliminate noise is always
accompanied by a sharp increase in the frequency of stroke
run of length one. This increase is demonstrated at for
Image (1), for Image (2), and for Image (3) of Fig. 2.
This increase was noticed even when the background produced
stroke-like patterns or patterns similar to handwriting. This is
true because, regardless of the shape or pattern of background
noise, it initially appears as scattered dots.

The stoke-run analysis calculates unit-run feature

(4)

where is the number of iteration. When exceeds a
predetermined parameter called the stroke rejection criterion
[(SRC) the selection of GRC is discussed in Section II-B], we
decide that the background noise has interfered and therefore
we stop the iterations for that subimage. The selection of SRC
should distinguish between the ’s moderate increase caused
by normal formation of the characters and the sharp increase
caused by noise interference. Unlike the gray-level feature,
the calculation of this feature does not depend on information
from other subimages. Therefore, it will not be affected by
the noise interference in other subimages. In the situation
where all subimages are equivalently complex and difficult,
this feature will detect the background interference better than
the gray-level feature.

B. Setting Rejection Criteria

In deciding whether a has succeeded or failed to elimi-
nate a subimage noise, two types of error could be committed:
type I error, which occurs when a succeeds and we decide
that it failed, and type II, which occurs when a fails and we
decide it that succeeded. These statistical decisions are summa-
rized in Table I. Setting the rejection criteria GRC and SRC is
critical part in optimizing this decision. If the rejection criteria

are set at low values, type I error will increase, and if they are
set at high values, type II error will increase. The costs of these
errors depend on how these errors affect OCR readability of the
extracted characters. Type I error results in terminating the al-
gorithm; therefore, its cost will be high when the formation of
characters is not complete. In the worst case, this error might
cause the extracted characters to be broken and, as a result, diffi-
cult to be read by OCR. Type II error allows background noise to
be extracted; therefore, its cost will increase with the increase of
extracted noise. As we can see, the cost of these errors actually
depends on growth of the extracted characters. To minimize the
cost of these errors, we need to measure this growth, and then
to let GRC and SRC be decreasing functions of that measure.
We found the stroke-width feature to be a true measure
of the characters’ thickness and connectivity. is defined as
the stroke run with the highest frequency in the stroke-run his-
togram of a subimage. That is

(5)

This feature reflects the average width of the extracted charac-
ters in Image .

The literature of handwritten character recognition contained
many methods for the estimation of stroke width. For example,
Arica et al. [1] introduced the two-scan procedure. The first scan
calculates the stroke-run histogram by counting the black hor-
izontal runs. Then, the mean width is taken as an upper limit.
The second horizontal scan discards those strokes whose run
length is greater than maximum width. Finally, stroke width is
estimated as the average width of the strokes in the second scan.
Ye et al. [12] proposed a stroke model to depict the local fea-
tures of the characters as double edges in a predefined size. Their
model detected thin connected components selectively, while ig-
noring large relatively large backgrounds. Our method to esti-
mate the stroke width of the characters is simpler. The effect of
background is eliminated by the iterative binarization in the first
place.

Now, to reduce the cost of Type I and II errors, GRC and SRC
are set to high values at lower , and then reduced with the
increase of . s with are skipped (GRC and
SRC are omitted for ), because the characters will be
in their early stages of formation.

Table II summarizes the range of rejection criteria values that
we used. As increases, GRC and SRC are decreased by
1/4. These ranges were determined experimentally, and we rec-
ommend using values within these ranges. Using values outside
this range will increase either Type I or Type II errors.

C. Selecting Subimages Optimal Thresholds

To decide that a has failed to eliminate the background
noise in a subimage, at least one feature of that subimage has
to exceed its corresponding rejection criteria value. When this
happens, we stop the iterations for that subimage, and we also
stop using its gray-level statistics as a model to judge other
subimages by removing it from the list of valid subimages
at the following iterations. The iterations are also terminated
when f , which means that extracted characters in
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TABLE II
SUMMARY OF THE RANGE OF REJECTION CRITERION PERCENTAGES AS FUNCTIONS OF SW

Fig. 4. Flowchart of multimodel approach applied on one subimage.

that subimage have reached full growth. In all cases, the optimal
threshold for a subimage is chosen to be the highest that
eliminated its background noise. When this iterative search was

applied to the subimages shown in Fig. 2, the following deci-
sions were made.

1) Iterations : skipped because .
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Fig. 5. Comparison result.

2) Iterations : background noise was not detected in
any subimage.

3) Iteration : background noise was detected in Image
(1), because , as well as

. Therefore, is the optimal
threshold for Image (1). Also, Image (1) is removed from
the list of valid subimages at following iterations.

4) Iteration : background noise was detected in Image
(2), because , as well as

. Therefore, is the optimal threshold for
Image (2). Also, Image (2) is removed from the list of
valid subimages at following iterations.

5) Iteration : background noise was detected in Image
(3), because . Therefore, is
the optimal threshold for Image (3).

Fig. 4 summarizes the flowchart of the multimodel algo-
rithm’s application on one subimage, and it should be applied
on the remaining subimages also.

This method is actually a generalization of Liu and Srihari
[5] and Dawoud and Kamel [3] algorithms. In Liu and Srihari’s
algorithm, candidate thresholds are generated by the iterative
application of Otsu’s method. The stroke-run histogram at each
candidate threshold is used to extract texture features that will
evaluate the binarization at these candidate thresholds. The unit
run feature is one of these features. An optimal threshold is
then selected from these candidate thresholds to achieve cer-
tain desirable binarization qualities. Its main disadvantage is
that the difference between two candidate thresholds is rela-
tively large. The beginning of noise interference may not be de-
tected when it happens at a threshold that lies between these
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TABLE III
SUMMARY OF CHARACTER RECOGNITION AND ERROR RATES

widely spaced candidate thresholds. In the multimodel algo-
rithm, the difference between two candidate thresholds is lim-
ited to eight gray-levels; therefore, the beginning of noise in-
terference is guaranteed to be detected. In addition to that, Liu
and Srihari’s algorithm relied only on features extracted from
the stroke-run analysis, while the multimodel algorithm also re-
lied on the gray-level features. As we will see in Section III, the
multimodel algorithm performed significantly better than Liu
and Srihari’s algorithm in suppressing background noise.

Dawoud and Kamel’s algorithm [3] optimizes the binariza-
tion of a part of a document image that suffers from noise
interference, called the target subimage, using information
extracted from another noise-free part of the same image,
the model subimage. It requires prior knowledge about the
noisiness of such subimages. The multimodel algorithm is a
generalization because it does not require such information.

III. EXPERIMENTAL RESULTS

The multimodel binarization algorithm was tested using a set
of 4 200 check images (250 ppi), provided by our industrial
partner. These images were selected so that they would represent
a wide range of background complexity, noise levels, and pen
types. Based on visual judgment, the multimodel algorithm per-
formed significantly better than other algorithms. Fig. 5 shows
an input gray-level image that contains three subimages and
also shows a comparison between the binarization outputs of
the multimodel algorithm, Liu and Srihari [5] algorithm, Solihin
and Leedham’s algorithm [9], and Cheriet’s et al. algorithm
[2], and Otsu’s [7] algorithm. The multimodel algorithm per-
formed exceptionally well, even when the images were very
noisy or when the background produced noise patterns similar
to handwriting.

An equally important part of the research is the quantita-
tive comparative evaluation of the performance. Performance
evaluation of low-level image processing algorithms, such as
binarization, segmentation, edge detection, thinning, etc., is
inherently difficult. A meaningful way to compare alternative
algorithms is by integrating each alternative into an end-to-end
OCR system and comparing their impact on overall system
performance. We compared the multimodel algorithm with

five other binarization algorithms: Yanowitz and Bruckstein’s
method [11], Otsu’s method [7], Liu and Srihari’s method [5],
Cheriet’s et al. method [2], and Solihin and Leedham’s method
[9]. These algorithms were selected because they performed
well in Dawoud and Kamel’s [3] comparative study.

Here, the date area, the payee area, and the legal amount area
of the check image were used as Image (1), Image (2), and
Image (3), respectively. All algorithms except the multimodel
algorithm were applied on each subimage separately. The mul-
timodel algorithm was applied on the three subimages simulta-
neously. The binarization outputs of the three subimages were
then fed into an off-line handwritten recognition engine. Then,
we used scoring package [4] to automatically analyze the recog-
nition results; the hypothesized string generated by the recog-
nition system is reconciled with the reference (correct) string,
using the dynamic string alignment algorithm. This algorithm
uses dynamic programming to find the minimum distance be-
tween the two strings given penalties for character substitutions,
deletions, and insertions. Table III summarizes the character
recognition and error rates for total of 2 136 checks. The multi-
model algorithm performed significantly better than other bina-
rization algorithms; it resulted in the highest recognition rate
and the lowest substitution rate, which means that it consis-
tently preserved the handwritten characters. The insertion errors
of other binarization algorithms were relatively high. This was
due to the fact that OCR was actually trying to classify, as char-
acters, parts of the background that were not eliminated. Our
algorithm maintained low insertion rate because it was able to
eliminate the background efficiently.

IV. CONCLUSION

Multimodel approach deals with the binarization of subim-
ages; the threshold of each subimage is optimized using in-
formation extracted easily from the same subimage and from
other subimages also. Simple spatial features, which capture
the underlying characteristics of the strokes and are invariant
to the handwriting style or content, are used to detect and elimi-
nate the background noise interference. It can be applied to dif-
ferent types of documents where we do not have prior knowl-
edge about the noisiness of the subimages.
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In conclusion, superior performance was demonstrated
via extensive experiments with our algorithm as compared
with other algorithms. When applied to a set of images that
represent wide range of background complexity and noise
levels, the multimodel algorithm succeeded in eliminating the
background, and in preserving the handwritten characters. As a
result, higher recognition rate and lower substitution, insertion,
and deletion error rates were achieved.
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