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Abstract—We propose a novel semisupervised local discrim-
inant analysis method for feature extraction in hyperspectral
remote sensing imagery, with improved performance in both ill-
posed and poor-posed conditions. The proposed method combines
unsupervised methods (local linear feature extraction methods
and supervised method (linear discriminant analysis) in a novel
framework without any free parameters. The underlying idea is
to design an optimal projection matrix, which preserves the local
neighborhood information inferred from unlabeled samples, while
simultaneously maximizing the class discrimination of the data
inferred from the labeled samples. Experimental results on four
real hyperspectral images demonstrate that the proposed method
compares favorably with conventional feature extraction methods.

Index Terms—Classification, feature extraction, hyperspectral
remote sensing, semisupervised.

I. INTRODUCTION

HYPERSPECTRAL sensors collect information as a set of
images represented by hundreds of spectral bands. While

offering much richer spectral information than regular RGB
and multispectral images, this large number of spectral bands
creates also a challenge for traditional spectral data process-
ing techniques. Conventional classification methods perform
poorly on hyperspectral data due to the curse of dimensionality
(i.e., the Hughes phenomenon [1]: for a limited number of
training samples, the classification accuracy decreases as the
dimension increases). Feature extraction aims at reducing the
dimensionality of hyperspectral data while keeping as much
intrinsic information as possible. Relatively few bands can
represent most information of the hyperspectral images [2],
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making feature extraction very useful for classification, detec-
tion, and visualization of remote sensing data [2]–[5].

A number of approaches exist for feature extraction of
hyperspectral images [2]–[4], [6], [7], ranging from unsuper-
vised methods to supervised ones. One of the best known
unsupervised methods is principle component analysis (PCA)
[8], which is widely used for hyperspectral images [2], [9],
[10]. Recently, some local methods, which preserve the prop-
erties of local neighborhoods were proposed to reduce the
dimensionality of hyperspectral images [2], [11]–[13], such
as locally linear embedding [12], Laplacian eigenmap [14],
and local tangent space alignment [15]. Their linear approxi-
mations, such as neighborhood preserving embedding (NPE)
[16], locality preserving projection (LPP) [17], and linear local
tangent space alignment (LLTSA) [18] were recently applied to
feature extraction in hyperspectral images [2], [19]. By consid-
ering neighborhood information around the data points, these
local methods can preserve local neighborhood information and
detect the manifold embedded in the high-dimensional feature
space.

Supervised methods rely on the existence of labeled samples
to infer class separability. Two widely used supervised feature
extraction methods for hyperspectral images are the linear
discriminant analysis (LDA) [20] and nonparametric weighted
feature extraction (NWFE) [7]. Many extensions to these two
methods have been proposed in recent years, such as modified
Fisher’s LDA [21], regularized LDA [6], modified nonparamet-
ric weight feature extraction using spatial and spectral informa-
tion [22], and kernel NWFE [23].

In real-world applications, labeled data are usually very
limited, and labeling large amounts of data may sometimes
require considerable human resources or expertise. On the
other hand, unlabeled data are available in large quantities at
very low cost. For this reason, semisupervised methods [5],
[24]–[29], which aim at improved classification by utilizing
both unlabeled and limited labeled data gained popularity in
the machine learning community. Some of the representative
semisupervised learning methods include cotraining [26] and
transductive support vector machine (SVM) [27], [28], and
Graph-based semisupervised learning methods [25], [29]. Some
semisupervised feature extraction methods add a regulariza-
tion term to preserve certain potential properties of the data.
For example, semisupervised discriminant analysis (SDA) [30]
adds a regularizer into the objective function of LDA. The
resulting method makes use of a limited number of labeled
samples to maximize the class discrimination and employs both
labeled and unlabeled samples to preserve the local properties
of the data. The approach of [31] proposed a general semisuper-
vised dimensionality reduction framework based on pairwise
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TABLE I
SOME NOTATIONS USED IN THIS PAPER

constraints, which employs regularization with sparse repre-
sentation. Other semisupervised feature extraction methods
combine supervised methods with unsupervised ones using a
tradeoff parameter, such as semisupervised local Fisher dis-
criminant analysis (SELF) [32]. However, it may not be easy
to specify the optimal parameter values in these and similar
semisupervised techniques, as mentioned in [31] and [32].

In this paper, we propose a novel semisupervised local dis-
criminant analysis (SELD) method to reduce the dimensionality
of the hyperspectral images. The proposed SELD method aims
to find a projection which can preserve local neighborhood
information and maximize the class discrimination of the data.
We combine an unsupervised method (from the class of lo-
cal linear feature extraction methods (LLFE), such as NPE,
LPP and LLTSA) and a supervised method LDA in a novel
framework without any tuning parameters. Contrasting to re-
lated semisupervised methods, such as SELF [32], we do not
combine supervised and unsupervised methods linearly. Instead
of using both labeled and unlabeled samples together, we first
divide the samples into two sets: labeled and unlabeled. Then,
we employ the labeled samples through the supervised method
(LDA) only and the unlabeled ones through an unsupervised,
locality preserving method (LLFE) only. Preliminary results
for one specific instance of the present approach were pre-
sented in [33]. In this paper, we give much more extended
theoretical motivation, we show a more general framework
where different LLFE methods can be combined with the su-
pervised one, and we present much more extended experimental
evaluation.

We propose a natural way to combine unsupervised and
supervised methods without any free parameters, making fully
the use of strengths of both approaches in different scenarios.
The supervised component maximizes class discrimination (for
the available number of labeled samples), and the local unsu-
pervised component ensures neighborhood information preser-
vation. While we employ the LLFE [16]–[18] and LDA [20]
methods, this novel framework can be applied in combination
with other supervised and unsupervised methods too. Another
advantage is that our method can extract as many features as the
number of spectral bands. This also increases classification ac-
curacy with respect to methods where the number of extracted
features is limited by the number of classes (LDA and SDA).
The results demonstrate improved classification accuracy when
compared to related semisupervised methods.

The organization of the paper is as follows. Section II
provides a brief review of existing feature extraction methods
that are most relevant for this work. In Section III, we present

the proposed SELD method. The experimental results on four
hyperspectral images are presented and discussed in Section IV.
Finally, the conclusions of the paper are drawn in Section V.

II. BACKGROUND AND RELATED WORK

Let {xi}Ni=1, xi ∈ �d denote high-dimensional data,
{zi}Ni=1, and zi ∈ �r its low-dimensional representations with
r ≤ d. In our application, d is the number of spectral bands
of hyperspectral images, and r is the dimensionality of the
projected subspace. The assumption is that there exists a map-
ping function f : �d → �r, which can map every original data
point xi to zi = f(xi) such that most information of the high-
dimensional data is kept in a much lower dimensional projected
subspace. This mapping is usually represented by a d× r
projection matrix W

zi = f(xi) = WTxi. (1)

In many feature extraction methods, the projection matrix
W can be obtained by solving the following optimization
problem, where W denotes one of the vectors in the projection
matrix W:

wopt = argmax
w

wTSw

wTSw
. (2)

The matrices S and S have specific meaning in different
methods as we discuss later in the text. The solution to (2)
is equivalent to solving the following generalized eigenvalue
problem:

Sw = λSw. (3)

Or equivalently

S−1Sw = λw. (4)

The projection matrix W = (w1,w2, . . . ,wr) is made up
by the r eigenvectors of the matrix S−1S associated with
the largest r eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr. Some notations
used throughout this paper are summarized in Table I.

A. Unsupervised Methods

Unsupervised feature extraction methods deal with the cases
where no labeled samples are available, aiming to find another
representation of the data in the lower dimensional space by
satisfying some given criterion. In particular, LLFE [15]–[17]
methods reviewed in [34] seek a projection direction on which
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neighborhood data points in the high-dimensional feature space
�d are kept on neighborhood in the low-dimensional projected
subspace �r as well. By considering neighborhood information
around the data points, the goal of these methods is to preserve
the local properties of the original data. We will employ these
methods in our approach. Although the LLFE methods in
[16]–[18] have some characteristic differences [16], [18], they
are all linear approximations to local nonlinear feature extrac-
tion methods and share more or less the same technique of
linearization. The optimal solution of all these three methods
can be computed by eigendecomposition.

We explain here in some more detail NPE [16] as one
of the unsupervised LLFE methods. For details on LPP and
LLTSA, the readers should consult [17], [18]. NPE first finds
e nearest neighbors (eNN) for each data point xi. The eNN is
determined first by calculating the distance (we use Euclidean
distance here) between data point xi and all the data points,
then sorting the distance and determining nearest neighbors
based on the eth minimum distance. Then, the reconstruction
weights Qij are calculated by minimizing the reconstruction
error, which results from approximating xi by its e nearest
neighbors

min
∑

i

∥∥∥xi −
∑e

j=1 Qijxj

∥∥∥2 S.t.
∑e

j=1 Qij = 1. (5)

The extracted features zi in the low-dimensional projected
subspace that best preserve the local neighborhood information
are then obtained as

min
∑

i

∥∥∥zi −∑e
j=1 Qijzj

∥∥∥2 S.t. zTi zi = I. (6)

The projection matrix WNPE = (w1,w2, . . . ,wr) can be
optimized as follows:

wNPE = argmax
w

wTXXTw

wTXMXTw
(7)

where M = (I−Q)T (I−Q) and I represents the identity
matrix.

We can express the optimal projection matrix of all LLFE
methods from [16]–[18] in a unified way as follows:

wLLFE = argmax
w

wTXCXTw

wTXCXTw
. (8)

For NPE [16], C = I and C = M. For LPP [17], C =
D and C = L, where D is a diagonal matrix and L is the
Laplacian matrix [17]. For LLTSA [18], C = I and C = B,
where B is the alignment matrix [18]. By setting S = XCXT

and S = XCXT , we obtain the projection matrix WLLFE =
(w1,w2, . . . ,wr) as in (2). The reasoning behind LLFE is
that neighboring points in the high-dimensional space �d are
likely to have similar representation in the low-dimensional
projected subspace �r as well. Therefore, LLFE methods pre-
serve the local neighborhood information of the data in the low-
dimensional representation.

B. Supervised Methods

The best known supervised method is LDA [20], which seeks
projection directions on which the ratio of the between-class
covariance to within-class covariance is maximized. Taking
the label information into account, LDA results in a linear
transformation zi = f(xi, yi) = WTxi, where yi is the label
of the data point xi. The corresponding projection matrix
WLDA = (w1,w2, . . . ,wr) is optimized as follows:

wLDA = argmax
w

wTSbw

wTSww
(9)

where

Sb =
C∑

k=1

nk

(
u(k) − u

)(
u(k) − u

)T

(10)

Sw =

C∑
k=1

(
nk∑
i=1

(
x
(k)
i − u(k)

)(
x
(k)
i − u(k)

)T
)

(11)

where nk is the number of samples in the kth class, u is the
mean of the entire training set, u(k) is the mean of the kth class,
x
(k)
i is the ith sample in the kth class. Sb is called the between-

class scatter matrix and Sw the within-classs scatter matrix. (9)
is equivalent to

wLDA = argmax
w

wTSbw

wTStw
(12)

with

St =
N∑
i=1

(xi − u)(xi − u)T (13)

form (10), (11), and (13), we have St = Sb + Sw.
By setting S = Sb and S = Sw or S = St, we obtain the

projection matrix WLDA = (w1,w2, . . . ,wr) as in (2). LDA
seeks projection direction on which the data points within the
same class are close while separating all the data points from
different classes apart. However, as the rank of the between-
class scatter matrix Sb is C − 1, LDA can extract at most C − 1
features, which may not be sufficient to represent essential
information of the original data.

C. Semisupervised Methods

Recently, semisupervised feature extraction methods have
been proposed and applied to pattern recognition [30], [32]. The
idea behind these methods is to infer the class discrimination
from labeled samples, as well as the local neighborhood in-
formation from both labeled and unlabeled samples. SDA [30]
imposes a regularizer in LDA

wSDA = argmax
w

wTSbw

wTStw + αJ(w)
(14)

where J(w) = wTXLXTw is the constraint based on graph
Laplacian regularization [30], and L is the Laplacian matrix
[17]. The parameter α controls the influence of local neighbor-
hood information; for α = 0, SDA reduces to LDA. SDA has
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the same limitation as LDA in the number of extracted features,
because the rank of the between-class matrix Sb is C − 1.

SELF [32] combines linearly PCA and LFDA [35]

wSELF = argmax
w

wT [(1− β)Slb + βSt]w

wT [(1− β)Slw + βI]w
(15)

where Slb and Slw are local between-class scatter matrix and
local within-class scatter matrix [35], β(∈ [0, 1]) is a trade off
parameter, which controls the contribution of the supervised
method LFDA and unsupervised method PCA. By setting β
to a value between zero and one, SELF can separate samples
from different classes while maximizing the variance of the data
inferred from both the labeled and unlabeled samples. SELF
overcomes some limitations of LDA and SDA (it can extract as
much features as the number of the dimensions).

III. PROPOSED SEMISUPERVISED LOCAL

DISCRIMINANT ANALYSIS (SELD)

In this section, we propose a novel semisupervised feature
extraction method for hyperspectral images, which we call
SELD. As discussed above, some semisupervised methods,
such as SDA and SELF, can achieve a good class discrim-
ination and preserve the local properties of the data with
properly optimized parameters. One important issue is how
to optimize tuning parameters, which is common to some
related semisupervised methods [31], [32]. One solution is
to employ cross-validation for this purpose. However, except
for the computational cost of parameter optimization, cross-
validation is not reliable when the number of labeled samples
is small [35] (which is sometimes the real case in hyperspectral
images). Focusing on class discrimination, LDA is in general
well suited to preprocessing for the task of classification, since
the transformation improves class separation. However, when
only a small number of labeled samples are available, LDA
tends to perform poorly due to overfitting. LLFE works directly
on the data without any ground truth and incorporates the
local neighborhood information of data points in its feature
extraction process.

Motivated by these facts, we propose a novel semisupervised
approach, which combines LLFE and LDA methods in a way
that adapts automatically to the fraction of the labeled samples
without any parameters. The main idea of our approach is to
first divide the samples into two sets: labeled and unlabeled.
The labeled samples will be used only by LDA (to maximize
the class discrimination), and the unlabeled ones only through
LLFE (to preserve the local neighborhood information). This
will yield a natural way to combine the two as we show next.

Suppose a training data set X is made up of the labeled set
Xlabeled = {(xi, yi)}ni=1, yi ∈ {1, 2, . . . , C}, where C is the
number of classes, and the unlabeled set Xunlabeled =
{xi}Ni=n+1 with u unlabeled samples, N = n+ u,
X = {Xlabeled,Xunlabeled} = {x1, . . . ,xn,xn+1, . . . ,xN}.
The kth class has nk samples with

∑C
k=1 nk = n. Without

loss of generality, we center the data points by subtracting the
mean vector from all the sample vectors, and assume that the
labeled samples in Xlabeled = {x1,x2, . . . ,xn} are ordered
according to their labels, with the data matrix of the kth class
X(k) = {x(k)

1 ,x
(k)
2 , . . . ,x

(k)
nk } where x

(k)
i is the ith sample

in the kth class. Then, the labeled set can be expressed as
Xlabeled = {X(1),X(2), . . . ,X(C)}. We have

S′
b =

C∑
k=1

nk

(
u(k)

)(
u(k)

)T

=
C∑

k=1

nk

(
1

nk

nk∑
i=1

x
(k)
i

)(
1

nk

nk∑
i=1

x
(k)
i

)T

=

C∑
k=1

X(k)P(k)
(
X(k)

)T

where P(k) is the nk × nk matrix with all the elements equal to
1
nk

. If we define a n× n matrix Pn×n as

Pn×n =



P(1) 0 . . . 0
0 P(2) . . . 0
...

...
. . .

...
0 0 . . . P(C)




the between-class scatter matrix S′
b can be written as

S′
b =

C∑
k=1

X(k)P(k)
(
X(k)

)T

= XlabeledPn×n(Xlabeled)
T .

(16)

By subtracting the between-class scatter matrix from the to-
tal scatter matrix S′

t, the within-class scatter matrix S′
w is

obtained as

S′
w =S′

t − S′
b

=Xlabeled(Xlabeled)
T −XlabeledPn×n(Xlabeled)

T

=Xlabeled(In×n −Pn×n)(Xlabeled)
T . (17)

In our approach, the LDA component will use the labeled
samples only (to maximize the class discrimination), so we
reformulate (9) as

w′
LDA = argmax

w

wTS′
bw

wTS′
ww

=argmax
w

wTXlabeledPn×n(Xlabeled)
Tw

wTXlabeled(In×n−Pn×n)(Xlabeled)Tw
.

(18)

Equivalently, we reformulate the optimization problem of
LLFE in (8), so that it only uses the unlabeled samples

w′
LLFE = argmax

w

wTXunlabeledCu×u(Xunlabeled)
Tw

wTXunlabeledCu×u(Xunlabeled)Tw
.

(19)

We define the following matrics:

P =

[
Pn×n 0
0 0

]
I =

[
In×n 0
0 0

]

C =

[
0 0
0 Cu×u

]
C =

[
0 0
0 Cu×u

]
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Now, the reformulated optimization problems of LDA and
LLFE in (18) and (19) can be written as follows:

w′
LDA = argmax

w

wTXPXTw

wTX(I−P)XTw
(20)

w′
LLFE = argmax

w

wTXCXTw

wTXCXTw
. (21)

Note that full data vector X appears in (20) and (21), but
due to the structure of the matrices P, I, C, and C, the LDA
(20) makes use of the labeled samples only, and LLFE (21)
makes use of the unlabeled samples only. In order to make
full use of the strengths of both two methods without parameter
optimization, we propose a natural way to combine them as

wSELD = argmax
w

wTSSELDw

wTSSELDw
(22)

where

SSELD =XlabeledPn×n(Xlabeled)
T

+XunlabeledCu×u(Xunlabeled)
T

= [Xlabeled,Xunlabeled]

[
Pn×n 0
0 Cu×u

]

× [Xlabeled,Xunlabeled]
T

=X(P+C)XT (23)

SSELD =Xlabeled(In×n −Pn×n)(Xlabeled)
T

+XunlabeledCu×u(Xunlabeled)
T

= [Xlabeled,Xunlabeled]

[
In×n −Pn×n 0

0 Cu×u

]

× [Xlabeled,Xunlabeled]
T

=X
(
(I−P) +C

)
XT . (24)

The resulting method combines supervised and unsupervised
components in a nonlinear way, making fully the use of their
strengths in different scenarios. In the case when all the samples
are labeled, the proposed method reduces to LDA, and in the
case when all the samples are unlabeled, it reduces to LLFE.

To obtain the projection matrix, we solve the generalized
eigenvalue problem of the proposed SELD method, which is
equivalent to (3)

SSELDw = λSSELDw. (25)

Through its nonlinear combination of supervised and unsu-
pervised components, the proposed SELD seeks a projection
direction on which the local neighborhood information of the
data can be best preserved, while simultaneously the class
discrimination is maximal.

It is important to note that LDA confronts sometimes with
the difficulty that the matrix Sw is singular. The fact is that
sometimes the number of labeled training samples n is much
smaller than the number of dimensions d. In this situation, the
rank of Sw is at most n as it is evident from (17), while the
size of the matrix X(I−P)XT in (20) is d× d. This implies

that the within-class matrix Sw can become singular. Simulta-
neously, the between-class matrix Sb in the LDA method uses
the labeled samples only. The rank of Sb is C − 1 [as it can be
seen from (16)], implying that LDA can extract at most C − 1
features, which is not always sufficient to represent essential
information of the original data.

The proposed SELD method overcomes these problems.
The matrices SSELD and SSELD in our approach are both
symmetric and positive semidefinite, which makes sure that
SELD can extract as much features as the number of the spectral
bands and the corresponding eigenvalues are not negative. Since
our method can be combined with different LLFE methods, we
will use a subscript to identify the particular LLFE methods
employed, e.g., SELDNPE , SELDLPP , or SELDLLTSA.

A. Algorithm

The algorithmic procedure of the proposed SELD is formally
stated below:

1) Divide the training set X into two subsets: Xlabeled

and Xunlabeled, with X = {Xlabeled,Xunlabeled} =
{x1, . . . ,xn,xn+1, . . . ,xN}. Suppose that the n labeled
training samples in Xlabeled = {x1, . . . ,xn} are ordered
according to their labels, with data matrix of the kth
class X(k) = {x(k)

1 , . . . ,x
(k)
nk } where x

(k)
i is the ith sam-

ple in the kth class, then the labeled subset can be
expressed as Xlabeled = {X(1),X(2), . . . ,X(C)}. u =
N − n unlabeled samples constitute the unlabeled subset
Xunlabeled = {xi}Ni=n+1.

2) Construct the labeled weight matrices P and I from the
labeled subset Xlabeled.

3) Construct the “nearest neighbors” weight matrix C and
C from the unlabeled subset Xunlabeled. The particular
construction depends on the chosen LLFE methods. For
NPE: C = I and C = M; for LPP: C = D and C = L,
where D is a diagonal matrix and L is the Laplacian
matrix [17]; for LLTSA: C = I and C = B, where B is
the alignment matrix [18].

4) Compute the eigenvectors and eigenvalues for the gener-
alized eigenvector problem in (25). The projection ma-
trix WSELD = (w1,w2, . . . ,wr) is made up by the r
eigenvectors of the matrix S−1

SELDSSELD associated
with the largest r eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr.

5) SELD embedding: project the original d dimensional data
into a lower r dimensional subspace by

x → z = WT
SELDx.

In many real-world applications, it is usually difficult, expen-
sive, and time-consuming to collect sufficient amount of labeled
samples. Meanwhile, it is much easier to obtain unlabeled
samples. In this case, the within-class scatter Sw becomes very
small, the eigendecomposition becomes inaccurate. Our ap-
proach in (22) overcomes this problem: if a small number of the
labeled samples is available, the projection matrix is estimated
through LLFE using a large number of unlabeled samples.
Simultaneously, the available labeled samples are fully used to
maximize the class discrimination. In the opposite case, when
more labeled samples are available, the LDA dominates. In this
way, the proposed SELD magnifies the advantages of LDA
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TABLE II
COMPARISON OF SDA, SELF, AND THE PROPOSED SELD METHOD

TABLE III
DATA SETS USED IN THE EXPERIMENTS

and LLFE, and compensates for disadvantages of the two at
the same time. The main differences between the proposed
SELD method and related semisupervised methods SDA [30]
and SELF [32] are summarized in Table II.

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Image Data Sets

We use four real hyperspectral data sets in our experiments:
the Indian Pine (a mixed forest/agricultural site in Indiana
[36]), Kennedy Space Center (KSC) [37], the Washington DC
Mall [36] (urban site), and Okavango Delta, Botswana [37].
Table III shows the number of labeled samples in each class for
all the data sets. Note that the color in the cell denotes different
classes in the classification maps (Figs. 2–5).

Indian Pine data set was captured by Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) over northwestern
Indiana in June 1992, with 220 spectral bands in the wavelength
range from 0.4 to 2.5 µm and spatial resolution of 20 m by
pixel. The calibrated data are available online (along with de-
tailed groundtruth information) from http://cobweb.ecn.purdue.
edu/~biehl/. The whole scene, consisting of the full 145 ×
145 pixels, contains 16 classes, ranging in size from 20 to
2468 pixels. Thirteen classes were selected for the experiments
(see Fig. 2).

KSC data set was acquired by NASA AVIRIS instrument
over the KSC, Florida in 1996 and consists of 224 bands of

10-nm width with center wavelengths from 0.4–2.5 µm. The
data, acquired from an altitude of approximately 20 km, have a
spatial resolution of 18 m. Several spectral bands were removed
from the data due to noise and water absorption phenomena,
leaving a total of 176 bands to be used for the analysis. For
classification purposes, 13 classes representing the various land
cover types that occur in this environment were defined for the
site, Fig. 3 shows an RGB composition with the labeled classes
highlighted. For more information, see [37] and http://www.csr.
utexas.edu/hyperspectral/.

DC Mall data set was collected with an airborne sensor
system over the Washington DC Mall, with 1280 × 307 pixels
and 210 spectral bands in the 0.4–2.4 µm region. This data set
consists of 191 spectral bands after elimination of water ab-
sorption and noisy bands and is available at http://cobweb.ecn.
purdue.edu/~biehl/. Seven land cover/use classes are labeled
and are highlighted in the Fig. 4.

Botswana data set was acquired over the Okavango Delta,
Botswana in May 31, 2001 by the NASA EO-1 satellite, with
30-m pixel resolution over a 7.7-km strip in 242 bands covering
the 0.4–2.5 µm portion of the spectrum in 10-nm windows. Un-
calibrated and noisy bands that cover water absorption features
were removed, leaving a total of 145 radiance channels to be
used in the experiments. The data consist of observations from
14 identified classes intended to reflect the impact of flooding
on vegetation, Fig. 5 shows an RGB composition with the
labeled classes highlighted. For more information, see [37] and
http://www.csr.utexas.edu/hyperspectral/.

http://cobweb.ecn.purdue.edu/~biehl/
http://cobweb.ecn.purdue.edu/~biehl/
http://www.csr.utexas.edu/hyperspectral/
http://www.csr.utexas.edu/hyperspectral/
http://cobweb.ecn.purdue.edu/~biehl/
http://cobweb.ecn.purdue.edu/~biehl/
http://www.csr.utexas.edu/hyperspectral/
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TABLE IV
HIGHEST OCA USING EXTRACTED FEATURES (THE NUMBER OF EXTRACTED FEATURES IS

WRITTEN IN THE BACK BRACKETS) APPLIED TO FOUR DIFFERENT DATA SETS IN CASE 1

B. Experimental Setup

The training set X is made up of labeled subset Xlabeled

and unlabeled subset Xunlabeled (such that X = Xlabeled ∪
Xunlabeled, and Xlabeled ∩Xunlabeled = ∅). A number of unla-
beled samples u = 1500 was randomly selected from the image
parts with no labels to compose Xunlabeled. The training of
the classifiers (estimation of the SVM parameters) was carried
out using the labeled subset Xlabeled. In our experiments,
70% randomly chosen samples from the labeled data set was
initially assigned to the training set and the remaining 30%
was used as the test set. In order to investigate the influence
of the training set size on the classifier performance, the initial
training set (consisting of 70% of the labeled samples) was
further subsampled randomly to compose the labeled subset
Xlabeled, with sample size conforming to one of the following
two distinct cases:

• Case 1 (nk = 10) in ill-posed condition: n < d and
nk < d.

• Case 2 (nk = 40) in poor-posed condition: n > d and
nk < d.

We used three common classifiers: 1-nearest neighbor (1NN)
like in [19], [23], [31], quadratic discriminant classifier (QDC)
[38], and SVM [39]. The SVM classifier with radial basis
function (RBF) kernels in Matlab SVM Toolbox, LIBSVM
[40], is applied in our experiments. SVM with RBF kernels
has two parameters: the penalty factor C and the RBF kernel

widths γ. We apply a grid search on C and γ using five-
fold cross-validation to find the best C within the given set
{10−1, 100, 101, 102, 103} and the best γ within the given set
{10−3, 10−2, 10−1, 100, 101}.

All classifiers were evaluated against the test set. We use
overall classification accuracy (OCA) to evaluate the feature
extraction results. The results were averaged over ten runs,
we compare the resulting classification accuracies using the
proposed SELD method with those resulting from the fol-
lowing methods: Raw data, where the classification is simply
performed on the original data sets without dimensionality
reduction; PCA [8]; LDA [20]; LLFE [15]–[17] (including NPE
[16], LPP [17], LLTSA [18]); NWFE [7]; SDA [30], of which
the parameter α is optimized with fivefold cross-validation
within the given set {0.1, 0.5, 2.5, 12.5, 62.5}; and SELF [32],
where the parameter β is chosen from {0, 0.1, 0.2, . . ., 0.9, 1}
by fivefold cross validation.

C. Numerical Comparison

Tables IV and V display the classification accuracies of
testing data in cases 1, 2, respectively. The best accuracy of
each data set (in column) is highlighted in bold font.

From these tables, we have the following findings:
1) The results confirm that feature extraction can improve

the classification performance on hyperspectral images.
Most information can be preserved even with a few
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TABLE V
HIGHEST OCA USING EXTRACTED FEATURES (THE NUMBER OF EXTRACTED FEATURES IS

WRITTEN IN THE BACK BRACKETS) APPLIED TO FOUR DIFFERENT DATA SETS IN CASE 2

extracted features. In particular, for the raw data set with
QDC classifier, the results can be improved a lot by using
feature extraction as a preprocessing. SVM classifier with
RBF kernel function did not perform well in the raw data
set of Indian Pine, this can be improved by using feature
extraction.

2) When the number of labeled samples is very limited
such as in Case 1, the supervised LDA performs much
worse than other methods. By considering the local
neighborhood information inferred from both labeled and
unlabeled samples, SDA improves over LDA. However,
one limitation of both LDA and SDA methods is that the
number of extracted features depends on the number of
classes.

3) By selecting β = 1 optimized with fivefold cross-
validation within the given set {0, 0.1, 0.2, . . ., 0.9, 1},
SELF performs as PCA in both cases. For the Botswana
data set with QDC classifier in Case 1, SELF and PCA
give a better performance when small number of bands
are used, while for the KSC data set in Case 2 (Fig. 1),
SELF and PCA perform worse than other methods when
small number of bands are used. It should be noted though
that for a small number of features, the OCAs are usually
very small and useless in practice.

4) The proposed SELD outperforms the other feature ex-
traction methods in both cases. In the ill-posed classifi-
cation problems (Case 1, nk = 10 < n < d), the highest
OCA in Indian Pine, KSC, DC Mall, and Botswana data
sets are 0.698 (SELDNPE with 1NN classifier), 0.874

(SELDNPE with SVM classifier), 0.976 (SELDLPP

with 1NN classifier) and 0.91 (SELDLLTSA with SVM
classifier), respectively. In Case 2 (nk = 40 < d < n),
the highest OCA among for the same four images
are 0.792 (SELDNPE with 1NN classifier), 0.936
(SELDNPE with SVM classifier), 0.998 (SELDNPE

with SVM classifier) and 0.951 (SELDNPE with 1NN
classifier), respectively.

In ill-posed (Case 1) and poor-posed (Case 2) classification
problems, the QDC classifier cannot be developed to the raw
data sets since the input dimension is higher than the number of
available training samples. In these situations, 1NN and SVM
classifier show better performances than QDC. The results in
Tables IV and V show that the proposed method yields best
OCA on all four data sets.

The experimental results in Tables IV and V also show that
none of the three classifiers achieves the highest accuracy on
every data set. This can also be seen in Fig. 1. The reason may
be that the distributions of data sets are very different as was
mentioned in [23], [41], and [42]. In the following, we take the
Indian Pine and KSC images in Case 2 as examples to explore
the performances of different methods when the number of
extracted features increases, the results were shown in Fig. 1.
The statistical significance of differences was computed using
McNemars test, which is based upon the standardized normal
test statistic [47]

Z =
f12 − f21√
f12 + f21
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Fig. 1. Performance of each feature extraction method in Case 2 for Indian Pine and KSC data sets. Each experiment was repeated ten times, the average was
acquired. By selecting β = 1 optimized with fivefold cross-validation within the given set {0, 0.1, 0.2, . . ., 0.9, 1}, SELF has the same performance as PCA. The
proposed SELD method is the one which combines LDA and NPE. (a) Indian Pine with QDC classifier. (b) Indian Pine with 1NN classifier. (c) Indian Pine with
SVM classifier. (d) KSC with QDC classifier. (e) KSC with 1NN classifier. (f) KSC with SVM classifier.

TABLE VI
STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) WITH QDC CLASSIFIER IN CASE 2. EACH CASE OF THE TABLE REPRESENTS

Zrc WHERE r IS THE ROW AND c IS THE COLUMN. THE BEST RESULTS OF EACH METHOD OVER TEN RUNS ARE USED

TABLE VII
STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) WITH 1NN CLASSIFIER IN CASE 2. EACH CASE OF THE TABLE REPRESENTS

Zrc WHERE r IS THE ROW AND c IS THE COLUMN. THE BEST RESULTS OF EACH METHOD OVER TEN RUNS ARE USED

TABLE VIII
STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) WITH SVM CLASSIFIER IN CASE 2. EACH CASE OF THE TABLE REPRESENTS

Zrc WHERE r IS THE ROW AND c IS THE COLUMN. THE BEST RESULTS OF EACH METHOD OVER TEN RUNS ARE USED
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Fig. 2. Classification maps for Indian Pine with nk = 40 (Case 2) (a) Ground truth of the area with 13 classes, and thematic map using (b) 1NN classifier
without feature extraction (r = 220), (c) PCA and SELF features and QDC classifier (r = 10), (d) LDA features and 1NN classifier (r = 11), (e) NPE features
and SVM classifier (r = 13), (f) NWFE features and SVM classifier (r = 8), (g) SDA features and 1NN classifier (r = 12), and (h) The proposed SELDNPE

features and 1NN classifier (r = 20).

Fig. 3. Classification maps for KSC with nk = 40 (Case 2) (a) RGB composition with 13 classes labeled and highlighted in the image, and thematic map
using (b) SVM classifier without feature extraction (r = 176), (c) PCA and SELF features and SVM classifier (r = 19), (d) LDA features and SVM classifier
(r = 12), (e) LPP features and SVM classifier (r = 20), (f) NWFE features and SVM classifier (r = 18), (g) SDA features and SVM classifier (r = 12), and
(h) The proposed SELDNPE features and SVM classifier (r = 19).

where f12 indicates the number of samples correctly by clas-
sifier 1 and incorrectly by classifier 2. The difference in ac-
curacy between classifiers 1 and 2 is said to be statistically
significant if |Z| > 1.96. The sign of Z indicates whether
classifier 1 is more accurate than classifier 2 (Z > 0) or
vice versa (Z < 0). Tables VI–VIII show the results using

the best results of each method in the same bands over
ten runs.

1) On Indian Pine data set, NWFE outperforms the other
methods for QDC and SVM classifiers, the differ-
ence is statistically significant, with |Z| > 1.96. For
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Fig. 4. Classification maps for DC Mall with nk = 40 (Case 2) (a) RGB composition with seven classes labeled and highlighted in the image, and thematic map
using (b) SVM classifier without feature extraction (r = 191), (c) PCA and SELF features and QDC classifier (r = 7), (d) LDA features and SVM classifier
(r = 6), (e) NPE features and QDC classifier (r = 17), (f) NWFE features and QDC classifier (r = 13), (g) SDA features and QDC classifier (r = 6), and
(h) The proposed SELDNPE features and SVM classifier (r = 12).

Fig. 5. Classification maps for Okavango Delta, Botswana with nk = 40 (Case 2) (a) RGB composition with 14 classes labeled and highlighted in the image,
and thematic map using (b) SVM classifier without feature extraction (r = 145), (c) PCA and SELF features and SVM classifier (r = 7), (d) LDA features and
1NN classifier (r = 12), (e) NPE features and SVM classifier (r = 8), (f) NWFE features and QDC classifier (r = 10), (g) SDA features and SVM classifier
(r = 6), and (h) The proposed SELDNPE features and 1NN classifier (r = 18).

1NN classifier, the proposed SELD method yields the
highest OCA of 79.2%, which is better than NWFE
with SVM classifier 77.5%. The difference between

the best results of SELD with 1NN classifier and
NWFE with SVM classifier is statistically significant
(Z = 3.86).
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Fig. 6. Distributions of training samples and testing samples for “Scrub,” “Graminoid marsh,” and “Salt marsh” of KSC data set using the first two significant
features obtained from different methods. In each method, the left scatter plot is for training data, and the right one is for testing data (nk = 10, Case 1). (a) PCA
and SELF. (b) LDA. (c) NPE. (d) NWFE. (e) SDA. (f) SELD.

2) On KSC data set, SELD performs better than the other
methods with all the three classifiers. The statistical dif-
ference of accuracy |Z| > 1.96 clearly demonstrates the
efficiency of the proposed SELD.

3) Using only C − 1 features may not be enough in some
real situation, which is one limitation of both LDA and
SDA. NPE can improve its performance by using more
extracted features, as shown in Fig. 1(f). When more
features are used, the OCA can be improved.

The results in Tables IV–VIII and in Fig. 1 show that SELD
with 1NN classifier can have a better performance in Indian
Pine image, while in the KSC image, SELD with SVM classi-
fier will be a better choice.

In order to compare the classified maps visually, we generate
classification maps with the combination of the highest OCA
using different methods and classifiers in Case 2 (nk = 40),
displayed in Figs. 2–5. The results demonstrate that:

1) By incorporating the local neighborhood information
of the data, SELD preserves well spatial consistency
in the classification maps, for example, the “Grass” in

DC Mall image (Fig. 4). SELD also produces smoother
homogeneous regions in the classification maps, which
is particularly significant when classifying the “Stone-
steel towers” and “Grass/Trees” in the Indian Pine image
(Fig. 2).

2) SELD also yields good class discrimination. For Indian
Pine image, it is easy to find that SELD outperforms
other feature extraction methods in “Grass/Pasture,”
“Grass/Trees,” “Soybeans-notill,” and “Soybeans-clean”
parts (Fig. 2). For DC Mall image, SELD discriminates
“Water” better than the other methods (Fig. 4).

The plots in Fig. 6 give more insight into class discrimination
by different methods. The training and testing samples of three
classes of KSC image in Case 1 are projected into the feature
space formed by the first two eigenvectors of different feature
extraction methods. The results in Fig. 6 show that LDA has
overfitting problems, because in Case 1 (n < d, and nk < d),
both the within-classs scatter matrix Sw and the between-
class scatter matrix Sb are singular, Sw cannot be inverted,
and both Sw and Sb are not accurate. By considering the
local neighborhood information inferred from both labeled and
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Fig. 7. Comparision of computational time (second) and OCA with different sample size, e = 12 and u = 1500. The experiments was repeated ten times, the
average was acquired. The highest OCA with r changing from 1 to 20 is recorded. (a) Computational cost. (b) OCA.

Fig. 8. Surface of (a) the OCA as a function of labeled and unlabeled samples, r = 13 and e = 12. (b) The computation time as a function of labeled and
unlabeled samples, r = 13 and e = 12. (c) The OCA as a function of unlabeled samples and nearest neighbors, nk = 10 and r = 13.

unlabeled samples, SDA improves over LDA, but the test data
are projected with different classes mixed. The distributions of
projected data obtained by SELD are more concentrated and
more distinct as compared with those of PCA, LDA, NPE,
NWFE, and SDA. This explains also classification improve-
ment in Tables IV and V.

D. Algorithm Analysis

In this section, we analyze the proposed semisupervised
algorithm in terms of the computational cost, the selection of
unlabeled samples, and the selection of nearest neighbors.

1) Computational Cost: The computational complexity of
the proposed SELD is mainly in finding the e nearest neighbors
for all the selected unlabeled training samples. To find the
e nearest neighbors for u selected unlabeled training sam-
ples in the d dimensional Euclidean space, the complexity
is O(du2). However, some methods can be used to reduce
the complexity of searching the e nearest neighbors, such as
K-D trees [43]. SELDNPE and SELDLLTSA have additional
complexities over SELDLPP in calculating the reconstruc-
tion weights, which is O(due3). For storing the matrix C or
C in (21), the complexity is O(N2), where N is the total
training samples including labeled and unlabeled ones. For
example, if we use all the samples in the Botswana data
set to train, N = 1476× 256, this will exceed the memory

capacity of an ordinary PC even though the matrix is sparse.
In order to reduce the computational complexity and memory
consumption, some of unlabeled samples were selected in our
experiments.

We compared the computational cost of different approaches.
All the methods were implemented in Matlab. The experiments
were carried out on 64-bit, 2.67-GHz Intel i7 920 (8 core) CPU
computer with 12-GB memory, Fig. 7 shows the computational
time of different approaches, and the OCA with 1NN classifier.
The recorded times were only consumed in the process of
feature extraction. This included the time consumed on the
parameter determination of some methods (such as α in SDA,
and β in SELF). We can see that PCA and LDA are the fastest,
and the proposed SELD is more efficient than NWFE, SDA, and
SELF as the number of training samples increases. The reason
is that the parameter determination in SDA and SELF is time
consuming.

2) Selection of Unlabeled Samples: The choice of unlabeled
samples is very important step in the semisupervised meth-
ods. Selection of too many unlabeled samples will increase
computational complexity, while a small number of unlabeled
samples is not sufficient to exploit the local neighborhood
information of the data sets. One easy solution is selecting
unlabeled samples randomly from the whole image. Fig. 8(a)
shows an example of the performances with different number
of labeled and unlabeled samples. The number of unlabeled
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samples was evaluated from 200 to 3000 with a step of 200.
Fig. 8(b) shows the corresponding computation times. The
classification accuracy of SELD will be improved as more
unlabeled samples are used, particularly in ill-posed (Case 1)
classification problems. Generally, semisupervised methods
can achieve better classification results by using more unlabeled
samples than labeled ones [45], [46]. However, the usage of
a large number of unlabeled samples will cause problems in
computational complexity and memory consumption. This may
be improved by using some spatial selection methods [44].

3) Selection of Nearest Neighbors: In graph-based feature
extraction methods, the number of nearest neighbors (e) is
an important parameter. We can employ cross-validation to
optimize e. However, we found in our experiments that our
approach produces consistently good results over a large range
of e values, which suggests insensitivity to this parameter in
a broad range. Fig. 8(c) shows the performance with different
number of unlabeled samples and nearest neighbors when e is
changed from 2 to 30 with a step of 2. Note that the maximal
dimensionality of SELDLLTSA was set to e− 2 (e should be
greater than r [15]).

V. CONCLUSION

In this paper, we present a new semisupervised feature
extraction method, and we apply it to classification of hyper-
spectral images. The main idea of the proposed method is to
divide first the samples into the labeled and the unlabeled sets.
The labeled samples are employed through the supervised LDA
only and the unlabeled ones through the unsupervised method
only. We combine the two in a nonlinear way, which makes
full use of the advantages of both approaches. Experimental
results on hyperspectral images demonstrate advantages of our
method and improved classification accuracy compared to some
related feature extraction methods. Moreover, we do not need
to optimize any tuning parameters, which makes our method
more effecient. Also, the new method removes the limitation
of LDA and SDA in terms of the number of extracted features.
Future work will include selection of unlabeled samples and a
kernelized version of this method.
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