
INTRINSIC DIMENSIONALITY ESTIMATION AND DIMENSIONALITY REDUCTION
THROUGH SCALE SPACE FILTERING

Konstantinos Karantzalos

Laboratoire de Mathematiques Appliquees aux Systemes (MAS)
Ecole Centrale de Paris, Chatenay-Malabry, France

konstantinos.karantzalos@ecp.fr
http://www.mas.ecp.fr/vision/Personnel/karank/Demos.html

ABSTRACT
Dimensionality reduction techniques are designed to exploit
the fact that most high-dimensional datasets from the real
world do not uniformly fill the hyperspaces in which they are
represented but instead their distributions usually concentrate
to nonlinear manifolds of lower intrinsic dimensions. How-
ever, when these techniques are applied directly to the initial
degraded and noisy data, the assumptions on the possible sta-
tistical separation of real world classes do not, in the general
case, hold. In this paper, we argue that scale space filtering, by
denoising and simplifying effectively the initial dataset, ame-
liorate the way the properties of our observations are been
encoded, strengthening, thus, the assumptions on the possi-
ble statistical separation of real world classes. Experimen-
tal results on real hyperspectral datasets demonstrate that ap-
propriate vector-valued scale space filtering significantly con-
tributes to the intrinsic dimension estimation and dimension-
ality reduction of high dimensional datasets.

Index Terms— Multidimensional Data, Hyperspectral
Imaging, Manifold Learning, Mathematical Morphology,
Levelings, Anisotropic Diffusion, Image Simplification, De-
noising

1. INTRODUCTION

The basic goal of hyperspectral data processing, in almost
all application areas, is to classify or identify objects. One
would expect that, as the number of hyperspectral bands in-
creases, the accuracy of classification should, also, increase.
However, this is not the case [1] and in particular, the re-
ported average classification accuracy of remote sensing im-
agery is about 73% and it has not changed significantly in
recent years. Therefore, although the hyperspectral imaging
market is rapidly increasing there still remain several chal-
lenges, regarding their multidimensional data processing. De-
noising high dimensional data and optimally reducing their
dimensionality are two major ones [2].

On the one hand, the natural variability of the material
spectra, noise, physical disturbances and degradation added

by the transmission media and the sensor system, reduce the
discrimination of the different structures in hyperspectral im-
agery and diminish the accuracy of subsequent segmentation
and classification processes. The increased significance of
smaller spatial and spectral variations among pixels implies,
also, that smaller amounts of noise are now likely to have a
bigger impact on the results extracted from this kind of im-
agery. Even thought any denoising process has a significant
impact on the accuracy of the results, many studies do not use
any strict optimizing criteria when selecting the appropriate
smoothing methods, thus, negatively affecting the outcome of
subsequent analysis [3].

On the other hand, dimensionality reduction [4], which is
a transformation into a meaningful representation of reduced
dimensionality, is a crusial step at most high-dimensional data
processing procedures. Both linear and nonlinear techniques
( [5] and the references therein), which may discard some
bands which contain valuable information or project and blur
data into a low-dimensional subspace, are actually a trade-off
between making the problem simpler and losing on classi-
fication accuracy [2, 6, 7]. The assumptions on the possible
statistical interpretation/ separation of terrain classes do not,
in the general case, hold when these methods are applied di-
rectly to the initial degraded and noisy hypercube an not to an
elegantly simplified version of it.

In this paper, we argue that vectorial scale space filtering
ameliorates intrinsic dimensionality estimation and dimen-
sionality reduction procedures. Firstly, by choosing appro-
priate nonlinear scale space representations noise can be re-
moved and at the same time the data are efficiently simpli-
fied. Secondly, these elegantly simplified hypercubes by de-
scribing in a more distinct way the spectral and spatial signa-
tures of our observations, form more appropriate versions of
the initial/raw data for estimating their intrinsic dimension-
ality. Moreover, the computation of complex lower dimen-
sional manifolds -either with linear/nonlinear, local or global
approaches- is more efficient since the variance of the em-
bedded hyperspace is more compact. Experimental results on
real data and the performed qualitatively and quantitative as-
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sessment, demonstrate the potentials of advanced scale space
filtering for the tasks of intrinsic dimensionality estimation
and dimensionality reduction.

2. SCALE SPACE ON THE HYPERCUBE

Lets denote with I : Ω ⊂ Rd → RN a hyperspectral im-
age with a normalized hyperspectrum of N spectral chan-
nels. During our experiments, vector-valued Anisotropic Dif-
fusion Filtering (ADF) and Anisotropic Morphological Lev-
elings (AML) [8], [9] were employed and are briefly detailed
in this section.

Excluding atmospheric effects which are tackled during
a specific atmospheric correction stage, the dark or photon
shot noise and the readout noise, which appears as uncor-
related high-frequency variations in the spatial and spectral
space without forming a coherent structure, is what a filter-
ing procedure should be able to address [8]. However, un-
constrained spatial smoothing is not desirable and in addi-
tion, spectral resolution and band adjacency are, usually, high
enough to assume that the spectral vector is a good approxi-
mation to the spectral signature of the pixel, i.e the mixture of
the spectral signatures of the objects within the pixel plus at-
mospheric, scatter and radiometric effects. Last but not least,
in the spatial directions all the desired properties of the 2D
levelings must be retained. To sum up a sophisticated vecto-
rial leveling formulation should retain all its 2D properties for
the spatial directions and at the same time respect gross vari-
ations among adjacent spectral signatures and only suppress
the broad spectral variations (spike-like features).

Towards this end, levelings’ construction mechanism is
formulated in a way to include a comparison with the adjacent
spectral signatures:

f ∧ (δgs ∨ δ′gc) ≤ g ≤ f ∨ (εgs ∧ ε′gc) (1)

where δgs denotes an extensive marker in the spatial axis
and δ′gc an extensive marker in the spectral one (the anti-
extensive operators εg are equally defined). The spatial gs

marker acts as in the 2D case ensuring an elegant simplifica-
tion in the spatial neighborhood of a pixel and the spectral gc

accounts for the spike-like features by enforcing its relevant
operators (δ′ and ε′) to have a much broader effect. Under
this framework and employing always a marker function h
for levelings’ construction the process is decomposed and the
spectral and spatial spaces are treated differently according to
the posed constrains. Rephrasing Equation (1) and in a unique
parallel step we have that:

g = Λ(f, h) = (f ∧ (δhs ∨ δ′hc)) ∨ (εhs ∧ ε′hc) (2)

Hyperspectral data can be viewed like any video data,
where the wavelength corresponds to time or like MRI vol-
umes in medical imaging, where wavelength corresponds to
another spatial axis. Instead of defining the stack of a hyper-
spectral image as I : Ω ⊂ Rd → RN , whereN is the number

Fig. 1. Spatial simplification: Comparing the filtering result
of ADF, ML (channel by channel process) and AML. Two
line plots with the cross-sections along the y-axis of the dif-
ferent filters are shown. AML did simplify the initial image
by enlarging and creating new flat zones and at the same time
followed more constantly and closely original image’s inten-
sity values and variation. AML did retain all its elegant 2D
properties.

of spectral channels and I = (I1(x, y), ..., IN (x, y)) ∈ RN ,
a hypercube can be defined, also, as a 3D function I : Ω ⊂
R3 → R, where I(x, y, z) = Iz(x, y)).

Following this notation, multiscale levelings can be con-
structed when the initial (reference) hypercube I is associ-
ated with a series of marker functions {h1, h2, ..., hn} -all h
are increasingly smoother hypercubes inR3. The constructed



Fig. 2. Spectral simplification: Comparing the filtering re-
sult of ADF, ML and AML. Two line plots with the cross-
sections along the spectral axis of the different filtered hyper-
cubes are shown. The proposed AML did surpassed broad
spectral variations (spike-like features) among adjacent spec-
tral signatures and at the same time followed more constantly
the initial intensity.

levelings are respectively

g1 = I, g2 = Λ(g1, h1), g3 = Λ(g2, h2),
g4 = Λ(g3, h3) , ..., gn = Λ(gn−1, hn−1)

(3)

A series gn of simpler and simpler hypercubes, with
fewer and fewer smooth zones are produced forming a 4D
scale space with g : Ω ⊂ R4 and g(x, y, z, n) = gn(x, y, z).
Anisotropic diffused markers were chosen, since they have
proven to be effective for scalar images [10]. In addition,

Table 1. Quantitative Evaluation for ADF and AML methods

Test Data Filter
Type

Quantitative Measures

RMSE NMSE SSIM

HYDICE
dataset

ADF 0.012 0.009 0.996

ML 0.009 0.004 0.998

AML 0.006 0.002 0.999

since levelings are highly constrained by the type of the
marker used [11], only those markers who are fully suitable
for hyperspectral imagery were appropriate for our case. The
recent formulations of [8] provide a suitable diffusion frame-
work which respects the special characteristics of hyperspec-
tral data by separating the elegant vector-valued diffusion
approach of [12] in the spatial and spectral space.

Following such a formulation, ADF and AML can effi-
ciently denoise and smooth data. In particular, as it is demon-
strated at Figures 1 and 2, where cross sections along the spa-
tial y-axis and the spectral axis are presented, ADF smoothed
strongly the data -but created some intensity shifts, in contrast
to AML which simplified the data but kept a closer relation
with the initial hypercube intensity values. In addition, one
can observe that even thought all the compared filters did not
displace edges, AML almost everywhere stayed closer to the
initial hypercube. AML simplified the image in the spatial
directions by enlarging or creating new flat zones (leveled re-
gions with constant intensity values), retaining all its 2D scale
space properties. In the spectral direction it accounted for
large intensity variations (spike-like features) and at the same
time stayed close to the initial hypercube values. The above
observations can be further confirmed by the performed quan-
titative evaluation (Table 1). In all cases, the AML resulted to
the lower RMSE and NMSE values and to the larger struc-
tural similarity with the original image (SSIM). For the quan-
titative evaluation the standard RMSE and NMSE measures
-which give a quantitative sense for the extent of variation
between the intensity values of the compared images- were
employed along with the recently proposed complementary
quality measure of SSIM [13].

By employing such a scale space filtering and by produc-
ing elegantly simplified hypercubes, estimating the intrinsic
dimensionality of high-dimensional datasets can be more ef-
ficient.

3. ESTIMATING THE INTRINSIC
DIMENSIONALITY

The intrinsic dimensionality of data is the minimum num-
ber of parameters that is required to account for the observed



properties of the data. Knowledge about the intrinsic dimen-
sionality can be used to set input parameters at the dimension
reduction algorithms. In addition, nearest neighbor searching
algorithms can also profit from a good dimension estimate.
Several techniques have been proposed in order to estimate
the intrinsic dimensionality d of a dataset X ( [14–17] and
the references therein). There are estimators that are based
on the analysis of local properties of the data like the corre-
lation dimension estimator, the nearest neighbor dimension
estimator and the maximum likelihood estimator and estima-
tors that are based on the analysis of global properties like
the eigenvalue-based estimator, the packing number estima-
tor and the geodesic minimum spanning tree estimator. In
addition, the estimation is computed either by projection or
geometric procedures [16].

Projection procedures explicitly construct a mapping, and
usually measure the dimension by using some variants of
principal component analysis. Another general scheme in the
family of projection techniques is to turn the dimensional-
ity reduction algorithm from an embedding technique into
a probabilistic, generative model, and optimize the dimen-
sion as any other parameter by using cross-validation in a
maximum likelihood setting. On the other hand, methods
based on the geometric properties do not require any explicit
assumption on the underlying data model or the input pa-
rameters. Most of the geometric methods use the correlation
dimension from the family of fractal dimensions due to the
computational simplicity of its estimation.

During our experiments two estimators were employed.
The Maximum Likelihood Estimator (MLE), which is a local
approach and the global Geodesic Minimum Spanning Tree
(GMST). Similar to the correlation dimension and the near-
est neighbor dimension estimator, the MLE [17] estimates the
number of datapoints covered by a hypersphere with a grow-
ing radius r. However, it does so by modelling the number of
datapoints inside the hypersphere as a Poisson process. The
GMST estimator is based on the observation that the length
function of a geodesic minimum spanning tree is strongly de-
pendent on the intrinsic dimensionality d. The GMST is the
minimum spanning tree of the neighborhood graph defined on
the dataset X . The length function of the GMST is the sum
of the Euclidean distances corresponding to all edges in the
geodesic minimum spanning tree. The intuition behind the
dependency between the length function of the GMST and
the intrinsic dimensionality d is similar to the intuition behind
local intrinsic dimensionality estimators.

ADF and AML scale space filtering was applied to a num-
ber of hyperspectral datasets and the MLE and the GMST
intrinsic dimensionality estimators followed. Datasets from
i) the HySpex VNIR-1600 airborne sensor ( c©Norsk Elek-
tro Optikk A/S) with 160 channels (400-1000nm), ii) the
CASI-1500 airborne sensor ( c©ITRES) with 36 channels
(380-1050nm), iii) the HYDICE sensor with 210 bands
over the range 0.4-2.5 microns and iv) the EOS-1 Hyperion

Table 2. Intrinsic Dimensionality Estimation

MLE GMST Mean

Initial HC 10.6 8.3 9

Noisy HC (speckle 2%) 42.3 24.3 33

ADF at Noisy HC 21.9 13.5 18

AML at Noisy HC 33.4 13.5 23

ADF at Initial HC 8.5 7.5 8

AML at Initial HC 9.6 6.2 8

( c©USGS) spaceborne sensor with 220 channels were avail-
able. Throughout the evaluation procedure the compared
ADF was the same with the one that was used for the con-
struction of the AML and each scale n was derived after three
iterations t.

As it is demonstrated in Table 2, the estimated intrinsic
dimension of HYDICE’s dataset with the MLE method is
11 and 8 with the GMST. When the same initial hypercube
(HC) is contaminated with a speckle noise then the estimated
mean dimensionality significantly increases at 33. By apply-
ing ADF and AML scale space filtering a decrease of about
30% and 50% is achieved. Smoothing the noisy hypercube
with the ADF method resulted into an estimation of about 18
(the mean value). Simplifying with the AML approach a de-
crease of about 30% has been also achieved. In both cases the
same filtering scale scale (n=5) was used. Furthermore, when
applying ADF and AML at the initial dataset with a smaller
scale (n=2), then both methods agree that dataset’s intrinsic
dimensionality is 8 (mean value).

4. REDUCING THE DIMENSIONALITY

Having estimated the intrinsic dimensionality of the available
datasets their transformation into a meaningful representation
of reduced dimensionality follows. Ideally, the reduced repre-
sentation has a dimensionality that corresponds to its intrinsic
one which is the minimum number of parameters needed to
account for the properties our observations [5, 18]. Lets de-
note with D the dimensionality of a dataset X described by a
matrix mxnxD. X which consists of mxn datavectors, has
an intrinsic dimensionality d with d < D and often d << D.
In geometric terms, intrinsic dimensionality means that the
points in dataset X are lying on or near a manifold with di-
mensionality d that is embedded in the D-dimensional space.
A dimensionality reduction technique transforms dataset X
into a new dataset Y with dimensionality d, while retaining
the geometry of the data as much as possible.

Apart from the traditional methods of Principal Com-



ponent Analysis (PCA) and Multidimensional Scaling, other
linear and nonlinear have been proposed like the ISOMAP, the
Kernel PCA (KPCA), the Diffusion Maps, the Multilayer Au-
toencoders (MA), the Locally Linear Embedding, the Lapla-
cian Eigenmaps, the Hessian Eigenmaps, the Local Space
Tangent Analysis and the Semidefinite Embedding [4, 5].
Most of these techniques are based on the intuition that data
lies on or near a complex low-dimensional manifold that is
embedded in the high-dimensional space. Ideally, the target
dimensionality is set equal to the intrinsic dimensionality of
the dataset.

For our experiments we employed the PCA, the ISOMAP,
the KPCA and the MA techniques. Briefly, the PCA con-
structs a low-dimensional representation that describes as
much of the variance in the data as possible. This is done by
finding a linear basis of reduced dimensionality for the data,
in which the amount of variance in the data is maximal. The
ISOMAP [19] resolves the problem by attempting to preserve
pairwise geodesic (or curvilinear) distances between the dat-
apoints of X . KPCA is the reformulation of traditional linear
PCA in a high-dimensional space that is constructed using
a kernel function [20]. Finally, MA are feed-forward neural
networks with an odd number of hidden layers [21]. The tar-
get dimensionality of the low-dimensional data representation
was specified by the MLE and GMST estimators.

The quantitative measures presented in Table 3, demon-
strate that the use of ADF and AML scale space filtering ame-
liorated the dimensionality reduction procedure. The initial
HC had a standard deviation (SD) of about 0,021 and a vari-
ance of about 0,0002, while the noisy HC (speckle 2%) had
a SD of about 0,414 and a variance of about 0,2332. Having
already (from the previous section) estimated the intrinsic di-
mensionality of the simplified noisy HC (Table 2: ADF and
AML to noisy HC cases) the dimensionality reduction meth-
ods were applied. Table 3 presents the resulted SD and vari-
ance values. It is clear that after the application of ADF and
AML an important improvement on the statistical measures
was achieved. For example, the Noisy HC had an overall SD
of about 0,023 which was increased at 0,269 when it was sim-
plified by the AML and reduced to a lower representation by
the PCA method. Same conclusions are derived by obser-
vations made to the other experimental cases when a noisy
datasets was simplified with the ADF and AML approaches.

Furthermore, when comparing the variance of the reduced
initial hypercube (IHC) with the one from the reduced sim-
plified hypercube (ADF at the IHC and AML at the IHC) an
increase has been also taken place. The dimensionality reduc-
tion has been facilitated by the vectorial scale space filtering,
The elegantly simplified hypercubes encode in a more com-
pact way world’s spectral and spatial characteristics, forming,
thus, more appropriate versions/represantations for estimat-
ing complex lower dimensional manifolds.

Table 3. Quantitative Evaluation for the Noisy Hypercube
(NHC) and the Initial Hypercube (IHC)

Before the Dimensionality Reduction

NHC ADF at the NHC AML at the NHC

SD 0.023 0.021 0.023

Variance 3.1E-05 1.9E-05 2.6E-05

After the Dimensionality Reduction

IHC ADF at the IHC AML at the IHC

SD 0.36 0.41 0.42

Variance 0.203 0.220 0.245

5. CONCLUSIONS

We have introduced a framework for an efficient intrinsic di-
mensionality estimation and dimensionality reduction. By
choosing appropriate nonlinear scale space representations,
noise was removed and data were elegantly simplified. The
simplified hypercubes described in a more distinct way the
spectral and spatial signatures of our observations, forming
appropriate versions for adequately estimating the intrinsic
dimensionality of our initial/raw data. In addition, the com-
putation of complex lower dimensional manifolds was more
efficient, since the variance of the embedded hyperspace was
more compact.

Experimental results on real data, along with the per-
formed qualitatively and quantitative assessment, demon-
strated that scale space filtering, by denoising and simplifying
effectively the initial dataset, ameliorated the way the prop-
erties of our observations were encoded, strengthening, thus,
the assumptions on the possible statistical separation of real
world classes.
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