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Abstract— We introduce an interpolatory approach to H∞
model reduction for large-scale dynamical systems. Guided
by the optimality conditions of [26] for best uniform rational
approximants on the unit disk, our proposed method uses the
freedom in choosing the d-term in the reduced order model
to enforce 2r + 1 interpolation conditions in the right-half
plane for any given reduction order, r. 2r of these points
are initialized by the Iterative Rational Krylov Algorithm of
[16]; and then the d-term is chosen to minimize the H∞ error
for this initial set of interpolation points. Several numerical
examples illustrate the effectiveness of the proposed method.
It consistently yields better results than balanced truncation.
In all cases examined its performance is very close to or
better than that of Hankel norm approximation. For the special
case of state-space symmetric systems, important properties
are established. Finally, we examine H∞ model reduction
from a potential theoretic perspective and present a second
methodology for choosing interpolation points.

I. INTRODUCTION

The model reduction problem seeks to replace a given
set of differential equations with a much smaller set while
keeping the behavior of both systems similar in an appro-
priately defined sense. The need for model reduction results
from the desire for high accuracy in mathematical models of
complex physical phenomena that lead to a large number of
differential equations, i..e. large-scale dynamical systems. In
such large-scale settings, the resulting computational burden
can be overwhelming Hence, model reduction, i.e. reducing
the number of differential equations while preserving the
original system behavior, becomes a necessary component
in such large-scale settings. For an overview, see [1].

In this paper, we consider single input/single output
(SISO) linear dynamical systems in state-space form:

ẋ(t) = Ax(t) + bu(t), y(t) = cTx(t) (1)

where A ∈ Rn×n and b, c ∈ Rn. In (1) x(t) ∈ Rn, u(t) ∈
R, y(t) ∈ R, are its state, input, and output, respectively.
The transfer function of the system is H(s) = cT (sI −
A)−1b. Using the standard abuse of notation, we denote both
the system and its transfer function by H . The dimension
of the state vector x is called the order of H(s). Hence,
H(s) in (1) has order n. By Hk

∞(R), we denote the set of
rational functions of order at most k, which are bounded and
analytic in the closed right half of the complex plane and we
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assume that H ∈ Hn
∞(R). In this setting, the goal of model

reduction is to construct another system

ẋr(t) = Arxr(t) + bru(t), yr(t) = cTr xr(t) + dru(t) (2)

of smaller dimension r � n, with Ar ∈ Rr×r and br, cr ∈
Rr such that yr(t) approximates y(t) well in a certain
norm for all bounded inputs u(t). Note that without loss
of generality, we have assumed that, unlike for the reduced-
order model (ROM) Hr(s), the d-term for the original system
H(s) is 0. The general case of the non-zero d term for H(s)
can be recovered by replacing the reduced-order quantity dr
by dr − d throughout the text.

In this paper, we will focus on model reduction in the H∞
norm: The H∞ norm of the SISO dynamical system (1) is
defined as ‖H‖H∞ = max

ω∈R
| H(ω) | . The H∞ norm is

the L2 induced operator norm of the underlying convolution
operator for H . So to ensure that the output error y(t)−yr(t)
is small in a root mean square sense for t > 0 uniformly over
all inputs u(t) with bounded energy, one needs to ensure that
the H∞ norm of the error system H−Hr is small. This leads
to the optimal H∞ model reduction problem: For the full-
order model H ∈ Hn

∞(R), and a given reduced order r < n,
find Hr ∈ Hr

∞(R), that solves

min
Ĥr∈Hr

∞(R)

∥∥∥H − Ĥr

∥∥∥
H∞

. (3)

This problem is an active area of research [2]. For a given r, a
lower bound on the achievable error is given by the (r+1)th

Hankel singular value of H . A conceptual solution is given
in [17]. However, the method of [17] is not computationally
feasible since it assumes the knowledge of the minimum
of (3). On the other hand, gramian-based model reduction
methods such as balanced truncation [21], [22] and optimal
Hankel norm approximation [11] are known to yield small
approximation errors in the H∞ norm [15], [1] and are
commonly used in obtaining satisfactory H∞ approximants.
In this paper, we will present a new framework in the
interpolation setting for tackling the optimal H∞ approxi-
mation problem. By connecting ideas from interpolatory H2

model reduction [16], realization theory [19], and complex
Chebyshev approximation [26], we develop a numerically
efficient interpolation-based method for the optimal H∞
problem.

The paper is organized as follows: In Section I-A, we
briefly review interpolatory model reduction and revisit the
optimal H2 method of Gugercin et al [16], a main tool in our
methodology. Section III presents the proposed method for
H∞ model reduction. Section IV presents the properties of
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the proposed method for the special case of symmetric state-
space systems followed by a potential theoretic approach to
H∞ model reduction in Section V. Conclusions and future
directions are presented in Section VII.

A. Interpolatory model reduction

Given a full-order model H(s) and the interpolation points
{si}qi=1, the goal of interpolatory model reduction is to
construct a ROM, Hr(s), that interpolates H(s) at si, for
i = 1, . . . , q; i.e. H(si) = Hr(si). The next theorem, due
to Grimme [12], shows how to solve this problem in a
projection setting.

Theorem 1: Given H(s) = cT (sI − A)−1b and 2r
interpolation points s1, . . . , s2r ∈ C, let

V r = [(s1I −A)−1b . . . (srI −A)−1b] (4)

W r = [(s̄1I −AT )cT . . . (s̄rI −AT )cT ] (5)

Assume W T
r V r is nonsingular. Define the ROM Hr(s) =

cTr (sIr −Ar)−1br + dr by:

Ar = (W T
r V r)−1W T

rAV r cr = V T
r c

br = (W T
r V r)−1W T

r b, and dr = 0. (6)

Then H(si) = Hr(si), for i = 1, . . . , 2r. Moreover, if si =
si+r for i = 1, . . . , r, then H ′(si) = H ′r(si) for i = 1, . . . , r.

B. H2 -Optimal Interpolation Conditions

Even though Theorem 1 shows how to enforce interpola-
tion, it does not specify a good/optimal strategy for choosing
the interpolation points. This problem has been resolved
recently for the special case of the H2 norm. For a SISO
system H(s), the H2 norm is defined as

‖H‖H2
=

(
1

2π

∫ ∞
−∞
| H(ω) |2 dω

)1/2

. (7)

Then, for the full-order model H(s), and a given reduced
order r < n, the optimal H2 approximation problem is to
find a reduced-model Hr(s) that solves

min
Ĥr∈Hr

∞(R)

∥∥∥H − Ĥr

∥∥∥
H2

. (8)

The optimization problem (8) has been studied in the litera-
ture extensively, see, for example, [20], [28], [16], [25], [27],
[14], [5], [7], [29] and the references there in. In this note,
we only present its solution in the interpolation framework.

Theorem 2 ([20]): For a given H(s), let Hr(s) solve the
optimal H2 problem (8). Also, let λ̂1, . . . , λ̂r denote the
poles of Hr(s) for i = 1, . . . , r. Then, for i = 1, . . . , r,

H(−λ̂i) = Hr(−λ̂i), and H ′(−λ̂i) = H ′r(−λ̂i). (9)
Theorem 2 states that the solution of the optimal H2 model
reduction problem is a Hermite interpolant. However, con-
structing this interpolant requires interpolation conditions
to be enforced at the mirror images of the poles of the
reduced-order system. Clearly, the poles of Hr(s) are not
known a priori. This problem has been recently overcome
by the Iterative Rational Krylov Algorithm (IRKA) of [16].
Starting from an initial selection of interpolation points,

IRKA successively corrects these points until the first-order
necessary conditions (9) for H2 optimality are satisfied. A
brief sketch of IRKA is outlined below:

Algorithm 1 (Iterative Rational Krylov Algorithm):
1) Make an initial selection of interpolation points σi, for

i = 1, . . . , r that is closed under complex conjugation
and fix a convergence tolerance tol.

2) Choose V r and W r as in Theorem 1.
3) while (relative change in {σi} < tol) a.)

a) Make a basis change so that W T
r V r = Ir.

b) Ar=W T
rAV r

c) Assign si ← −λi(Ar) for i = 1, . . . , r.
d) Update V r and W r to satisfy hypotheses of

Theorem 1 with new si’s.
4) Ar=W T

rAV r, br=W T
r b, and cr = V T

r cr.
It has been observed that IRKA has fast convergence behav-
ior, and tends to converge to at least a local minimum of the
H2 optimal model reduction problem [16], producing high-
fidelity reduced-order models in a numerically efficient way.
Note that the only cost of IRKA is solving a sequence of
linear systems. For details on IRKA, we refer to the original
source [16].

II. THE dr-TERM IN THE INTERPOLATORY OPTIMAL H∞
PROBLEM

The transfer function of an rth-order ROM has 2r+1 free
parameters. Theorem 1 determines all of these parameters
by forcing 2r interpolation conditions and setting dr = 0.
Setting dr = 0 forces H(s)−Hr(s) = 0 at s =∞. This last
interpolation condition is nonoptimal forH∞ approximation,
which requires control over precisely 2r + 1 interpolation
points in the interior of the right half plane. This fact is stated
in the following theorem, a slight variation of a theorem due
to Trefethen [26].

Theorem 3: Given the full-order model H(s), let Hr(s)
be an rth order approximation to H(s). If H(s) − Hr(s)
has at least 2r + 1 zeros in the right half plane, and the
image of the imaginary axis under H(s) − Hr(s) is a
perfect circle about the origin, then Hr(s) is an optimal H∞
approximation to H(s).
As [26] discusses, while a perfectly circular error curve
with winding number at least 2r + 1 indicates an optimal
approximation, a nearly circular error curve that does not
pass through origin with at least 2r + 1 zeros indicates a
nearly optimal approximation as noted in the next result,
once more a slight variation of the result from [26].

Theorem 4: Given the full-order model H(s), let Hopt
r (s)

denote an rth order optimal H∞ approximation to H(s). Let
Hr(s) be an rth order approximation such that H(s)−Hr(s)
has at least 2r + 1 zeros in the right half plane, and the
image of the imaginary axis under H(s) −Hr(s) does not
pass through the origin. Then

min
ω∈R
|H(ω)−Hr(ω)| ≤ ‖H −Hopt

r ‖H∞ ≤ ‖H −Hr‖H∞

Inspired by Theorem 3, we aim to place 2r + 1 inter-
polation points in the desired location (right-half plane in
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this case) as opposed to the 2r interpolation points used in
Theorem 1. Therefore we need to exploit the freedom in
choosing dr to get the (2r+ 1)th interpolation point. So, we
need a modification of Theorem 1 that will allow interpo-
lation at the desired locations s1, . . . , s2r while keeping dr
a free parameter. The next theorem achieves precisely this
goal. For a proof of this result, we refer to [19] and [6].

Theorem 5: Given H(s) = cT (sI − A)−1b and the 2r
interpolation points s1, . . . , s2r ∈ C, let V r, W r, Ar, br,
and cr be as defined in Theorem 1. For any given dr ∈ R,
define the new ROM

Hdr
r (s) = c̃Tr (sI − Ãr)−1b̃r + dr (10)

with

Ãr = Ar + dr(W T
r V r)−1eeT ,

b̃r = br − dr(W T
r V r)−1e, and c̃r = cr − dre, (11)

where e denotes the vector of ones. Then H(si) = Hdr
r (si),

for i = 1, . . . , 2r. Moreover, if si = si+r for i = 1, . . . , r,
then H ′(si) = (Hdr

r )′(si) as well, for i = 1, . . . , r.

The new ROM of Theorem 5 is denoted by Hdr
r (s) to

emphasize the parametric dependency on dr. By R(Hr, dr)
we will denote the set of all Hdr

r (s). The freedom in the
dr parameter is significant for at least two reasons. First,
R(Hr, dr) is a parameterization of the set of all rational func-
tions of degree r satisfying the same interpolation constraints
as Hr(s). A proof of this can be found in [19]. Second, it
is now possible to construct reduced-order models of order
r satsifying 2r + 1 interpolation conditions. Since Hdr

r (s)
interpolates H(s) at s1, . . . , sr for any dr, one can find a dr
that satisfies Hdr

r (s2r+1) = H(s2r+1), which is a rootfinding
problem. However, we will choose dr in a special way to
lower the H∞ error which will in turn automatically choose
the (2r + 1)th interpolation point.

III. AN INTERPOLATORY APPROACH FOR H∞
APPROXIMATION

Now that we have a tool at hand to enforce interpolation
at 2r+1 points we aim to satisfy the conditions of Theorem
4, by carefully choosing 2r interpolation points known to
perform robustly in the H∞ norm, and then use the dr-
term to center the error about the origin, driving down the
H∞-error over the set R(Hr, dr). As shown in [16], [3],
the H2 optimal interpolation points due to IRKA not only
produce optimal H2 behavior, but also a high fidelity H∞
reduced model whose H∞ error norm is less than or at
least comparable to that of balanced truncation. Therefore,
the H2 optimal interpolation points of Section I-B, i.e. the
interpolation points resulting from IRKA, provide us with
a good initial choice to start the search for the dr term.
Based on this observation, we propose the following heuristic
method:

Algorithm 2: H∞ approximation using IRKA points:
1) Run IRKA, i.e. Algorihm 1, to compute theH2 optimal

interpolation points.

2) Use the resulting interpolation points and find the best
dr term by solving

d∗r = arg min
dr∈R

∥∥H(s)−Hdr
r (s)

∥∥
H∞

where Hdr
r (s) is constructed as in Theorem 5.

3) Construct the final H∞ approximant Hd∗r
r using d∗r in

Theorem 5.
The most expensive part of Algorithm 2 is Step 2, a scalar
non-linear optimization problem. The main cost in this step
is the computation of the cost function, the H∞ norm,
during the optimization. However, this is not specific to
our approach since any optimization algorithm will require
function evaluations. On the other hand, to make the algo-
rithm cheaper, we also performed an approximant H∞ norm
evaluation in Step 2 by sampling the transfer function over
the imaginary axis and used a discrete set for the H∞ norm
computation. We have observed that the sampling of the
transfer function yielded almost the same accuracy as using
the exact H∞ norm computation; an encouraging result in
making the algorithm faster.

A. Numerical Results for Algorithm 2

We demonstrate Algorithm 2 on the CD player model
of order n = 120. For details on this model, see [9]. We
reduced the order to r = 4, 8, 12. We stopped at r = 12
since the relative error fell below 10−3. IRKA in Step 1
of the algorithm was randomly initialized. For comparison
purposes, in Step 2 of the algorithm, we used both the exact
H∞ computation and the sampling-based H∞ computation
at 75 sampling points logarithmically spaces between 10−2

and 106. We compare Algorithm 2 to balanced truncation and
Hankel norm approximation. Note that the generic balanced
truncation will yield dr = d. Therefore, to present a fair
comparison to balanced truncation, we have also varied the
dr term in balanced truncation and found the best dr-term
yielding the minimum H∞ norm. Hence, through out the
paper, whenever we refer to balanced truncation, we mean
the balanced truncation with the optimally chosen dr term.
The results are illustrated in Table I where Hd∗r

r -sample and
H

d∗r
r -exact denotes the reduced models of Algorithm 2 where

the sampling-based and exact H∞ norm computations are
used, respectively; HBAL

r denotes the reduced-model due
to balanced truncation and HHNA

r the one due to Hankel
norm approximation. The first observation is that approxi-
mating the H∞-norm by sampling is essentially equivalent
to computing the H∞-norm of the error exactly at each step
of the minimization. Moreover, by an interpolation-based
method of reduced order modeling, for this example we are
consistently able to produce smaller H∞ error norms than
balanced truncation and Hankel norm approximation.

IV. A SPECIAL CASE: H∞ MODEL REDUCTION OF
STATE-SPACE-SYMMETRIC SYSTEMS

In this section, we examine the special case of state-space-
symmetric (SSS ) systems. H(s) = cT (sI−A)−1b is called
SSS if A = AT and c = bT .
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TABLE I
RELATIVE H∞-NORM ERROR NORMS FOR THE CD PLAYER MODEL

r H
d∗r
r -sample H

d∗r
r -exact HBAL

r HHNA
r

4 2.2× 10−2 2.1× 10−2 2.3× 10−2 2.0× 10−2

8 5.2× 10−3 4.9× 10−3 6.4× 10−3 6.0× 10−3

12 6.8× 10−4 6.5× 10−4 9.7× 10−4 7.4× 10−4

A. SSS interpolants satisfying the H2 optimality conditions

While reducing SSS systems using Theorem 1, it is
important to preserve the symmetric structure in the resulting
reduced-order model. Indeed, like balanced truncation, IRKA
applied to an SSS system preserves the symmetry as well.
One obtains V r = W r throughout Algorithm 1 and the
reduced-model can be obtained by

Ar = QT
rArQr, br = cr = QT

r b, (12)

where Qr is an orthonormal basis for V r; hence, preserving
the SSS structure. However, even more can be said about
the model reduction of SSS systems using (12). In the SISO
case, IRKA, i.e. Algorithm 1, is a fixed point iteration. Even
though it has been shown to converge rapidly for numerous
numerical examples even for very bad initialization strategies
[16], [14], [3], convergence could not be guaranteed except in
the Newton formulation of IRKA. However, a much stronger
statement can be made for IRKA in the case of SSS systems.

Theorem 6: Let IRKA be applied to a stable SSS system
H(s). Then every fixed point of IRKA which is a local
minimizer is locally attractive, and every fixed point which
is a local max or a saddle point is repellent.

Proof: The proof makes use of Appendix I in [18], in
addition to several technical lemmas; and is left out due to
the page limitations. It will be included in the full paper.

Due to Theorem 6, we expect IRKA to converge even faster
for SSS systems than the general case. This is crucial since
this will make Algorithm 2 even faster in this special case.
Moreover, we are guaranteed that IRKA will never converge
to a local max or to a saddle point.

B. Main results for the SSS case

In this section, we will present some (local) optimality
results for the approximant once we initiate the algorithm
with an IRKA interpolant. These results make use of the
properties of SSS IRKA interpolants. We state two theorems
without proofs. The proofs are omitted due to the page
limitation and will be included in the full paper. We refer
the reader to [10] for details.

Let Edr (s) denote the error system H(s) − Hdr
r (s).

Theorem 7 presents a necessary condition for H∞ optimality
over R(Hr, dr) similar to the necessary condition given by
Antoulas and Astolfi for H∞ optimality over Hr

∞(R) [2].
Theorem 7: Let H(s) be a stable SSS system and Hr(s)

a reduced-order model computed from IRKA. Suppose d∗r =
arg min

dr∈R
‖Edr (s)‖H∞ , and Ed∗r

(0) =
∥∥Ed∗r

∥∥
H∞

. Then there

exists at least one point ω∗ such that ω∗ ∈ R ∪ {∞} and
Ed∗r

(0) = |Ed∗r
(ω∗)|.

Theorem 8: Suppose Hr(s) is a reduced order model of
H(s) computed by IRKA, and let

D = {dr ≥ 0 : Edr
(0) = ‖Edr

‖H∞ and Hdr
r (s) stable}

and assume D 6= ∅. If d∗r = supD then d∗r ∈ D, and there
exists some point ω∗ ∈ R ∪ {∞} such that Ed∗r

(0) =
Ed∗r

(iω∗) =
∥∥Ed∗r

∥∥
H∞

. Furthermore, if −d∗r < dr < d∗r ,
then ‖Edr‖H∞ >

∥∥Ed∗r

∥∥
H∞

. If ω∗ = ∞, then d∗r =

arg min
dr∈R

∥∥H(s)−Hdr
r (s)

∥∥
H∞

.

Theorem 8 is a sufficient condition for optimality over
R(Hr, dr), which is computationally inexpensive to enforce,
requiring at most one computation of the H∞ norm. Al-
gorithm 3 shows how we may use Theorems 7, and 8 to
compute the optimal value d∗r .

Algorithm 3: H∞ approximation for SSS systems:
1) fix a tolerance tol
2) Compute Hr(s)=(Ar,br,cr,0) from IRKA.
3) Solve H(0)−Hdr

r (0)− dr = 0
4) Sample Edr

(s) along the imaginary axis once at
some points ω1, . . . , ωn and find |Edr

(ω∗)| =
max{|Edr

(ωi)|}.
5) If |Edr (ω∗)| ≤ dr end.

else, Compute d∗r > dr such that |Ed∗r
(0) −

Ed∗r
(ω∗)| ≤ tol

end

C. Numerical examples for the SSS case

In this section, we illustrate Algorithm 3 for the spiral
inductor system PEEC model [9], a SSS systems. The system
is of order n = 1434. We will use σi to denote the ith
Hankel singular value of the full-order system. The order of
approximation is r = 4. Here the optimal Hd∗r

r (s) satisfies
|Ed∗r

(0)| = |Ed∗r
(ω∗)| =

∥∥Ed∗r
(s)
∥∥
H∞

, ω∗ < ∞. The
resulting H∞ error norm is 1.35×10−4. The H∞ error norm
for balanced truncation and the Hankel norm approximation
were 2.78 × 10−4 and 1.24 × 10−4. Note that the lowest
achievable error is σ5 = 1.22 × 10−4; hence the proposed
method is very close to producing the true optimal H∞
approximant. The reduced-model due to Algorithm 3 results
in 2r + 1 = 9 interpolation points in the right-half plane
as desired and a nearly circular error curve as illustrated in
Figure 1.

V. A POTENTIAL THEORETIC APPROACH TO H∞
APPROXIMATION

Using the overwhelming numerical evidence that the opti-
mal H2 interpolation points yields accurate H∞ approxima-
tions as well, our approaches of the previous sections used
the 2r interpolation points from IRKANote that of the 2r+1
zeroes of the resulting error system there are r distinct zeroes
with multiplicity 2. However, unlike the H2 approximation
problem, the double zeroes are not a part of the sufficient
conditions for H∞ optimality. Hence, even though we were
able to obtain high fidelity H∞ approximants using IRKA
points as initialization, in this section, we will look at a

6794



!! !" # " !

$%"#
!&

!"'(

!"

!#'(

#

#'(

"

"'(
$%"#

!&
)*+,-./%0-12314

5617%8$-.

94
1
2
-:
1
3*
%8
$-
.

Fig. 1. Nyquist Plot of Ed∗r (s) for PEEC Model

slightly different interpolation-based approach and construct
approximants with 2r + 1 distinct zeroes in the right-half
plane. Here, r of the 2r + 1 zeroes will again be the mirror
images of the poles of the reduced-system and the remaining
r+ 1 zeroes will be chosen upon the basis of an analysis of
the error system through the lens of potential theory.

Given a full order system H(s) = cT (sI −A)−1b, and
an approximation Hr(s) = cr(sIr − Ar)−1br + dr, the
logarithm of the error system Er(s) can be written as

log |Er(s)| =
n+r∑
i=1

log |s− zi| −
n+r∑
i=1

log |s− λi|, (13)

where the zi, λi are the zeros and poles of Er(s) respec-
tively. The summands of (13) are the expressions for the
potential due to a point-charge of amplitude −1 or 1 placed
at the points zi or λi respectively, and therefore (13) yields
an expression for the potential difference induced by the
total charge configuration associated with the zeros and poles
of Er(s). Viewing the error in this form, we will try to
place 2r + 1 negative charges (the interpolation points) in
the right half plane in such a way that the imaginary axis is
an equipotential of the total charge configuration.

Note, however, that in (13) there are n + r negative
charges present. 2r + 1 of these negative charges will be
controlled by the choice of interpolation points. We denote
the remaining set of n − r − 1 negative charges which are
not explicitly controlled by the interpolation conditions by
µ. In [10] we observed that, after normalizing each point
in µ and λ(A), the spectrum of A, by its distance to the
imaginary axis, µ was a very close approximation to a fixed
set of full order poles, which we denote by λmatch. We have
observed in [10] that good/near optimal approximations in
the H∞-norm place interpolation points near the remaining
points in the set −λunmatch = −(λ(A) \ λmatch) as well
as points at or near −λ(Ar). We have also observed that
λunmatch corresponds strongly to the set of r dominant poles
of H(s), dominant in the sense of [23], and we will therefore
identify λunmatch with the r most dominant poles. To induce

an equipotential along the imaginary axis we first seek to
replace the total charge distribution given by λ(A) and µ
with a set of r + 1 “equivalent charges,” which induce a
nearly equivalent potential. The interpolation points will then
be chosen as the reflection of these equivalent charges over
the imaginary axis. Given that µ ≈ λmatch but the charges
associated with each set are opposite, we expect that the
potential induced by λ(A) ∪ µ will be dominated by the
charges associated with λunmatch. Thus, to compute a set of
equivalent charges we must account for the predominance
of the poles in λunmatch. One way of doing this is to use
−λunmatch as shifts in the rational arnoldi iteration. For a
hermitian matrix M , Beckermann et. al. [8] have shown that
the rational Ritz values computed from the rational Arnoldi
iteration are asymptotically optimal approximations to the
charge distribution which minimizes the potential difference
between the distribution of the shifts, and the eigenvalues
of M . In general, we might therefore anticipate that r + 1
rational Ritz values constitute a set of equivalent charges
which “sees” the contribution made by all the charges in
λ(A) ∪ µ, but is weighted towards the contribution made
by λunmatch. The strategy for choosing equivalent charges as
interpolation points is outlined in Algorithm 4. For further
information on rational Arnoldi, see [24], [8].

Algorithm 4: H∞ Approximation Using Equivalent
Charges (EC) Method

1) select a convergence tolerance tol
2) Compute λunmatch, the r most dominant poles of H(s).
3) Compute a set of r+ 1 rational ritz values, {λ̃i}, from

rational Arnoldi applied to A, initialized with -λunmatch
and b.

4) Select one real-valued point γ from {−λ̃i} and con-
struct W r and V r using the r interpolation points
si = {−λ̃i} \ {−γ}

5) while (relative change in {si} < tol)
a) Make a basis change so that W T

r V r = Ir.
b) Ar=W T

rAV r, br=W rb, cr=cV r.
c) Find dr satisfying Hdr

r (γ) = H(γ)
d) Assign si ← −λi(Ãr) for i = 1, . . . , r, where
Ãr is defined as in Theorem 5.

e) Update only V r to satisfy hypotheses of Theorem
1 with new si’s.

6) Define Hdr
r (s) as in Theorem 5 from Ar, br, cr, and

dr.
Overall, we obtain 2r + 1 interpolation points which are
chosen based on viewing the error term in (13) as the
potential difference and eliminating the dominant terms from
this expression. We finally note that Step 2) can be achieved
in a computationally effective way by making use of the
dominant pole algorithm of [23]; hence there is no need for
a full eigenvalue decomposition.

A. Numerical Results: EADY Model 4

The full-order model is the EADY model of order n =
598. For further details concerning this model see [9]. Here
we compare the equivalent charge distribution method of
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Algorithm 4 with balanced truncation, and the Hankel norm
approximation for r = 2, 4, 6; stopping at r = 6 because the
relative error fell below 10−3 for the Hankel norm Approxi-
mation. The resulting relative H∞ error norms are tabulated
in Table V-A where HEC

r denotes the reduced model due to
Algorithm 4. For all orders of approximation, Algorithm 4
performs consistently better than balanced truncation. Even
though the Hankel norm approximation yields the smallest
error, Algorithm 4 performs very close to Hankel norm
approximation.

TABLE II
RELATIVE H∞ ERROR NORMS FOR THE EADY MODEL

r HBAL
r HHAN

r HEC
r

2 1.11× 10−1 7.63× 10−2 9.70× 10−2

4 4.02× 10−2 2.44× 10−2 3.77× 10−2

6 1.05× 10−2 4.79× 10−3 1.03× 10−2
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VII. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced an interpolation framework for H∞ model
reduction of large-scale dynamical systems. The main tool
is, for a given reduced-order r, the ability to enforce 2r+ 1
interpolation conditions using the freedom in choosing the
dr-term in interpolatory model reduction. We discussed two
different approaches to choose the interpolation points, one
inspired by the H2 optimal points and one by the potential
theoretic inspection of the H∞ error. Numerical experiments
illustrated the effectiveness of the both approaches, in some
cases almost achieving the acceptable lower bound.

Several future directions are possible. One is the investi-
gation of different initialization technique for the potential
theoretic approach. Can we analytically classify the set
λunmatch? Is there a better initialization than the dominant
poles of H(s)? Also, the theory and computations are
presented for the SISO case. How does the discussion extend
to the MIMO case? Are the numerics modified drastically?
All these questions will be the focus of future research.
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