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a b s t r a c t

In this paper, the synchronization problem of a complex dynamical network with coupling
time-varying delays via delayed sampled-data controller is investigated. In order to make
full use of the sawtooth structure characteristic of the sampling input delay, a discontinu-
ous Lyapunov functional is proposed based on the Extended Wirtinger Inequality. From a
convex representation of the sector-restricted nonlinearity in system dynamics, the stabil-
ity condition based on Lyapunov stability theory is obtained by utilization of linear matrix
inequality formulation to find the controller which achieves the synchronization of a com-
plex dynamical network with coupling time-varying delay. Finally, two numerical exam-
ples are given to illustrate the effectiveness of the proposed methods.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

During the last decade, complex dynamical networks, which are a set of interconnected nodes with specific dynamics,
have been attracted increasing attention in various fields such as physics, biology, chemistry and computer science [1–3].
As science and society have been developed, our everyday life has been closed to complex dynamical networks, for instance,
transportation networks, World Wide Web, coupled biological and chemical engineering systems, neural networks, social
networks, electrical power grids and global economic markets. Many of these networks exhibit complexity in the overall
topological and dynamical properties of the network nodes and the coupled units. One of the significant and interesting phe-
nomena in complex dynamical networks is the synchronization. Synchronization of complex dynamical networks can be di-
vided into two points of view. One is the synchronization of a complex network that is called ‘inner synchronization’ [4–13].
It means that all the nodes in a complex network eventually approach to trajectory of a target node. The other is called ‘outer
synchronization’ [14–16] which considers the synchronization between two or more complex networks. In this paper, a new
control problem for inner synchronization will be investigated.

In real world situation, time delay is ubiquitous in many physical systems [17–21] due to the finite switching speed of
amplifiers, finite signal propagation time in networks, finite reaction times, memory effects and so on. Furthermore, the time
delay may cause undesirable dynamic behaviors such as oscillation, instability and poor performance. Therefore, the syn-
chronization problem of complex dynamical networks with time delays has become a topic of both theoretical and practical
importance. In this regard, some synchronization criteria for the general complex dynamical network with coupling delays
which are both delay-independent and delay-dependent conditions are derived in [5]. Wang and Guan [6] presented several
new exponential synchronization stability criteria for some general complex dynamical network models with time delays,
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which are less conservative than the work of [5]. But, those papers [5,6] considered the constant time delays. However, it is
more general and desirable to consider time-varying delays instead of constant delays in the view of real applications. From
this perspective, many results for the problem have been focused on time-varying delays. For example, the synchronization
criterion of the neutral complex dynamical networks with time-varying delays was proposed in [7]. In addition, for Lur’e type
complex dynamical networks with time-varying delays, Ji et al. [8] proposed a less conservative synchronization stability
condition than existing ones in the literature.

In general, all the dynamic behaviors of the nodes in complex dynamical networks is not synchronized up to each other.
Therefore, some attention of the problem, how to achieve the synchronization of asynchronous complex dynamical net-
works, has been increasing rapidly. Until now, in order to treat the synchronization control problem for complex dynamical
networks, several control schemes are applied. For example, the impulsive control scheme has been applied to achieve the
projective synchronization of a complex dynamical network in [9]. In [10], the state observer based control scheme has been
proposed. In [11], the adaptive control scheme has been adopted to carry through the synchronization of a complex dynam-
ical network, whereas in [16], the adaptive control for the synchronization between two complex dynamical networks has
been investigated. Recently, in [12], the pinning-controllability and the method of choosing pinning nodes for the synchro-
nization of a complex dynamical network are suggested. In addition, in [13], the synchronization of the complex dynamical
network with linearly and nonlinearly coupling terms via pinning control has been studied.

Because of the rapid growth of the digital hardware technologies, the sampled-data control method, whose the control
signals are kept constant during the sampling period and are allowed to change only at the sampling instant, has been more
important than other control approaches. These discontinuous control signals which have stepwise form cause big trouble to
control or analyze the system. In order to effectively deal with sampled-data control, Mikheev et al. [22] and Astrom and
Wittenmark [23] introduced a concept that discontinuous sampled control inputs treat time-varying delayed continuous sig-
nals, although applied actual control signals are discontinuous. Since the works of [22,23], many types of the sampled-data
control scheme by using the concept in [22,23] have been proposed. For instance, in [24], the robust H1 sampled-data con-
trol has been proposed. In [25], the sampled-data fuzzy controller has been proposed as well. Moreover, many researchers
have adopted the sampled-data control scheme to solve control problems in various systems such as chaotic system [26],
fuzzy system [27], neural networks [28] and so on. However, there are only a few papers for complex dynamical networks
using the sampled-data control approach [29]. Besides, the sampled-data control with the signal transmission delay has not
been discussed in [29]. The signal transmission delay is important factor because it cause serious situation such as instability
and pure performance by combining sampling intervals. Therefore, it is very worth to consider the sampled-data control
method in the presence of the signal transmission delays for complex dynamical networks.

From motivation mentioned above, this paper proposes a discontinuous Lyapunov functional approach to achieve asymp-
totic synchronization of a complex dynamical network with coupling time-varying delays using sampled-data control in the
presence of the constant signal transmission delay. The discontinuous Lyapunov functional makes full use of the sawtooth
structure characteristic of sampling input delays and thus get less conservative synchronization criterion for the system. A
convex representation of the nonlinearity in system dynamics is introduced, and then a sector-bounded constraint of the
nonlinearity is represented to an equality constraint. The derived sufficient condition for the stability is formulated by a lin-
ear matrix inequality that is easily solvable using various numerical convex optimization algorithms [30].

This paper is organized as follows. A problem statement is described in Section 2. Section 3 provides the design method of
a stabilizing sampled-data controller in the presence of a constant input delay for the synchronization of a complex dynam-
ical network with coupling time-varying delays. Two numerical examples are given in Section 4 to show the effectiveness of
the derived results. Conclusions are drawn in Section 5.

Notation 1. Rn is the n-dimensional Euclidean space, Rm�n denotes the set of m� n real matrix. X > 0 (respectively, X P0)
means that the matrix X is a real symmetric positive definite matrix (respectively, positive semi-definite). I denotes the
identity matrix. diagf� � �g denotes block diagonal matrix. H in a matrix represents the elements below the main diagonal of a
symmetric matrix. k � k refers to the Euclidean vector norm and the induced matrix norm. � stands for the notation of
Kronecker product. Co denotes the convex hull.

2. Problem formulation

Consider a complex dynamical network consisting of N linearly coupled identical nodes as follows:

_xiðtÞ ¼ AxiðtÞ þ Bf ðxiðtÞÞ þ
XN

j¼1

cijxjðt � sðtÞÞ þ uiðtÞ; i ¼ 1; . . . ;N; ð1Þ

where xi ¼ ðxi1; xi2; . . . ; xinÞT 2 Rn is the state vector of the ith node, A 2 Rn�n; B 2 Rn�n are constant matrices, f : Rn ! Rn is a
smooth nonlinear vector field and uiðtÞ is the control input of ith node, sðtÞ is the coupling time-varying delay satisfying

0 6 sðtÞ 6 sM ; _sðtÞ 6 l;
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where sM and l are known constants. C ¼ ðcijÞN�N is the coupling matrix of the network, where the coupling configuration
parameter, cij, is defined as follows: if there is a connection from node i to node j ði – jÞ then cij ¼ 1; otherwise cij ¼ 0 ði – jÞ,
and the diagonal elements of matrix C are assumed by

cii ¼ �
XN

j¼1;j–i

cij ¼ �
XN

j¼1;j–i

cji; i ¼ 1; . . . ;N:

Throughout this paper, the following assumption is used.

Assumption 1. The smooth nonlinear function f ð�Þ is satisfied the following sector and slop bound conditions:

bk 6
fkðxikðtÞÞ

xikðtÞ
6 ak;

bk 6
dfkðxikðtÞÞ

dxikðtÞ
6 ak; k ¼ 1; . . . ;n ð2Þ

where bk; ak are lower and upper sector bounds, and bk; ak are lower and upper slope bounds, respectively.
Our objective of the paper is to design stabilizing controllers uiðtÞ for asymptotical synchronization between all nodes of a

complex dynamical network and a target node which is denoted by following definition.

Definition 1. A complex dynamical network is said to achieve the asymptotical inner synchronization, if

x1ðtÞ ¼ x2ðtÞ ¼ � � � ¼ xNðtÞ ¼ sðtÞ as t !1;

where sðtÞ 2 Rn is a solution of a target node, satisfying

_sðtÞ ¼ AxðtÞ þ Bf ðsðtÞÞ: ð3Þ

For our synchronization scheme, let us define the error vectors as follows:

eiðtÞ ¼ sðtÞ � xiðtÞ: ð4Þ

From Eq. (4), the error dynamics is given to

_eiðtÞ ¼ AeiðtÞ þ B f ðsðtÞÞ � f ðxiðtÞÞð Þ �
XN

j¼1

cijejðt � sðtÞÞ � uiðtÞ ¼ AeiðtÞ þ B�f iðtÞ �
XN

j¼i

cijejðt � sðtÞÞ � uiðtÞ; i ¼ 1; . . . ;N;

ð5Þ
where �f iðtÞ ¼ f ðsðtÞÞ � f ðxiðtÞÞ.

By the well-known mean value theorem, there exists a constant m 2 ðxikðtÞ; sikðtÞÞ such that

fk skðtÞð Þ � fk xikðtÞð Þ ¼ dfkðmÞ
dm

skðtÞ � xikðtÞð Þ: ð6Þ

From the slope bounds given in Assumption 1, we have

bk 6
dfkðmÞ

dm
6 ak: ð7Þ

By using Eqs. (6), (7) and eiðtÞ ¼ sðtÞ � xiðtÞ, we have

bkeikðtÞ 6 �f ik eikðtÞð Þ 6 akeikðtÞ: ð8Þ

Therefore, Eq. (8) can be represented the following equality condition by properties of the convex hull:
�f iðeiðtÞÞ ¼ DieiðtÞ; ð9Þ

where Di is an element of a convex hull Cofa; bg.

Remark 1. The slope bound of nonlinear function, f ð�Þ, becomes new sector bound of the nonlinear function �f ðeiðtÞÞ
¼ f ðsðtÞÞ � f ðxiðtÞÞ. And this condition can be represented by a convex combination of the sector bounds ak and bk. This
method was proposed in [8]. In general, most of nonlinear functions which consist of nonlinear system such as Chua’s circuit
[31], the rotational-translational actuator system [32] and so on, satisfy this condition. Also, this condition includes Lipschitz
condition as a special case.

On the other hand, in order to design the controller with the sampled-data signal, the concept of the time-varying delayed
control input which is proposed in [22,23], is adopted in this paper. For this, the following state feedback controller is
considered

uiðtÞ ¼ KieiðtkÞ; tk 6 t < tkþ1; ð10Þ

where Ki is the gain matrix of feedback controller to be determined.
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Denote by tk the updating instant time of the Zero-Order-Hold (ZOH), and suppose that the updating signal (successfully
transmitted signal from the sampler to the controller and to the ZOH) at the instant tk has transmitted with the constant
signal transmission delay g. We assume that the sampling intervals satisfy

tkþ1 � tk ¼ hk 6 h; ð11Þ

for any integer k P 0, where h is a positive scalar and represents the largest sampling interval.
Thus, we have that

tkþ1 � tk þ g 6 hþ g ¼ d: ð12Þ

Therefore, by defining dðtÞ ¼ t � tk þ g; tk 6 t < tkþ1, the controller (10) can be represented as following:

uiðtÞ ¼ Kieiðtk � gÞ ¼ Kieiðt � dðtÞÞ; tk 6 t 6 tkþ1: ð13Þ

From (12), we can find that g 6 dðtÞ < tkþ1 � tk þ g 6 d and _dðtÞ ¼ 1 for t – tk. Substituting (13) into (5) gives

_eiðtÞ ¼ AeiðtÞ þ B�f iðeiðtÞÞ �
XN

j¼i

cijejðt � sðtÞÞ � Kieiðt � dðtÞÞ; tk 6 t < tkþ1; i ¼ 1; . . . ;N: ð14Þ

Then Eq. (14) can be rewritten as a vector–matrix form

_eðtÞ ¼ ANeðtÞ þ BNFðeðtÞÞ � CNeðt � sðtÞÞ � Keðt � dðtÞÞ; ð15Þ

where eðtÞ ¼ ½eT
1ðtÞ; . . . ; eT

NðtÞ�
T
; FðtÞ ¼ ½�f Tðe1ðtÞÞ; . . . ;�f TðeNðtÞÞ�T , K ¼ diagfK1; . . . ;KNg; AN ¼ IN � A; BN ¼ IN � B and

CN ¼ C � In.

Remark 2. Many systems such as the continuous-time systems with the digital control, the networked control systems and
so on, can be modeled by sampled-data systems. Now days, most of controllers are the digital controller or networked to the
system, so the sampled-data control approach is eligible to receive much attention. In addition, the signal transmission delay
naturally rises with connections of each parts, but most papers about the sampled-data system [22–29] do not consider it.
Hence, this paper investigates a control problem with the sampled-data control in the presence of the constant signal
transmission delay. This idea is depicted in Fig. 1.

3. Main results

In this section, a design problem of the sampled-data feedback controller for the synchronization of a complex dynamical
network with coupling time-varying delays will be investigated via a discontinuous Lyapunov functional approach. Before
proceeding further, the following lemmas are given.

Lemma 1 (Jensen Inequality [33]). For any matrix M > 0, scalars c1 and c2 satisfying c2 > c1, a vector function x : ½c1; c2� ! Rn

such that the integrations concerned are well defined, then

Z c2

c1

xðsÞds

 !T

M
Z c2

c1

xðsÞds

 !
6 ðc2 � c1Þ

Z c2

c1

xTðsÞMxðsÞds: ð16Þ

Lemma 2 (Extended Wirtinger Inequality [34]). Let xðtÞ 2W½a; bÞ and xðaÞ ¼ 0. Then for any matrix R > 0 the following inequal-
ity holds:

Z b

a
xðsÞT RxðsÞds 6

4ðb� aÞ2

p2

Z b

a

_xðsÞT R _xðsÞds: ð17Þ

Now, the main result is given by the following theorem.

Fig. 1. The structure of the sampled-data control in this paper.
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Theorem 1. For given a scalar c and a matrix D, there exists a sampled feedback controller (10) for synchronization of the complex
dynamical network (1) if there exist positive-definite matrices P; Q ; R1; R2; R3; Z1; Z2; Z3; D 2 RnN�nN, matrices
H; N1; N2 2 RnN�nN and a block diagonal matrix G ¼ diagfG1; . . . ;GNg ðGi 2 Rn�nÞ satisfying the following linear matrix
inequality:

C ¼

C11 C12 0 C14 Z2 �H 0 C18

H C22 Z1 0 0 0 0 �cCT
NGT

H H C33 0 0 0 0 0

H H H C44 0 0 0 cBT
NGT

H H H H C55 C56 0 0

H H H H H C66 Z3 �cHT

H H H H H H C77 0

H H H H H H H C88

26666666666666664

37777777777777775
; ð18Þ

where

C11 ¼ GAN þ AT
NGT þ Q þ R1 þ R2 � Z1 � Z2 þ N1Dþ DNT

1;

C12 ¼ Z1 � GCN;

C14 ¼ GBN � N1 þ DNT
2;

C18 ¼ P � Gþ cAT
NGT ;

C22 ¼ �ð1� lÞQ � 2Z1;

C33 ¼ �R1 � Z1;

C44 ¼ �N2 � NT
2;

C55 ¼ �R2 þ R3 � aD� Z2 � Z3;

C56 ¼ Z3 þ aD;

C66 ¼ �2Z3 � aD;

C77 ¼ �R3 � Z3;

C88 ¼ s2
MZ1 þ g2Z2 þ h2Z3 þ h2D� cG� cGT ;

D ¼ diagfD1; . . . ;DNg:

Also, the desired control gain matrix (10) can be given by K ¼ G�1H.

Proof. Consider the following discontinuous Lyapunov functional for the error system (14)

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ; t 2 ½tk; tkþ1Þ; ð19Þ

where

V1ðtÞ ¼ eTðtÞPeðtÞ;

V2ðtÞ ¼
Z t

t�sðtÞ
eTðsÞQeðsÞdsþ

Z t

t�sM

eTðsÞR1eðsÞdsþ sM

Z 0

�sM

Z t

tþh

_eTðsÞZ1 _eðsÞdsdh;

V3ðtÞ ¼
Z t

t�g
eTðsÞR2eðsÞdsþ

Z t�g

t�d
eTðsÞR3eðsÞdsþ g

Z 0

�g

Z t

tþh

_eTðsÞZ2 _eðsÞdsdhþ ðd� gÞ
Z �g

�d

Z t

tþh

_eTðsÞZ3 _eðsÞdsdh;

V4ðtÞ ¼ ðd� gÞ2
Z t

tk�g
_eTðsÞD _eðsÞds� p2

4

Z t�g

tk�g
ðeðsÞ � eðtk � gÞT DðeðsÞ � eðtk � gÞÞds:

It is noted that V4ðtÞ can be rewritten as

V4ðtÞ ¼ ðd� gÞ2
Z t

t�g
_eTðsÞD _eðsÞdsþ bV 4ðtÞ; ð20Þ

where

bV 4ðtÞ ¼ ðd� gÞ2
Z t�g

tk�g
_eTðsÞD _eðsÞds� p2

4

Z t�g

tk�g
eðsÞ � eðtk � gÞð ÞT D eðsÞ � eðtk � gÞð Þds:

According to Lemma 2, it is easy to find that bV 4ðtÞP 0. In addition, it is correct that limt!t�
k

VðtÞP VðtkÞ, because bV 4ðtÞ
will disappear at t ¼ tk.

Here, the time derivative of V(t) is
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_V1ðtÞ ¼ 2eTðtÞP _eðtÞ; ð21Þ

_V2ðtÞ ¼ eTðtÞQeðtÞ � ð1� lÞeTðt � sðtÞÞQeðt � sðtÞÞ þ eTðtÞR1eðtÞ � eðt � sMÞR1eðt � sMÞ þ s2
M

_eTðtÞZ1 _eðtÞ

� sM

Z t

t�sðtÞ
_eTðsÞZ1 _eðsÞds� sM

Z t�sðtÞ

t�sM

_eTðsÞZ1 _eðsÞds

6 eTðtÞQeðtÞ � ð1� lÞeTðt � sðtÞÞQeðt � sðtÞÞ þ eTðtÞR1eðtÞ � eðt � sMÞR1eðt � sMÞ

þ s2
M

_eTðtÞZ1 _eðtÞ �
eðtÞ

eðt � sðtÞÞ

� �T Z1 �Z1

H Z1

� �
eðtÞ

eðt � sðtÞÞ

� �
�

eðt � sðtÞÞ
eðt � sMÞ

� �T Z1 �Z1

H Z1

� �
eðt � sðtÞÞ
eðt � sMÞ

� �
; ð22Þ

_V3ðtÞ ¼ eTðtÞR2eðtÞ � eTðt � gÞR2eðt � gÞ þ eðt � gÞR3eðt � gÞ � eTðt � dÞR3eðt � dÞ þ g2 _eTðtÞZ2 _eðtÞ þ h2 _eTðtÞZ3 _eðtÞ

� g
Z t

t�g
_eTðsÞZ2 _eðsÞds� h

Z t�g

t�dðtÞ
_eTðtÞZ3 _eðsÞds� h

Z t�dðtÞ

t�d

_eTðsÞZ3 _eðsÞds

6 eTðtÞR2eðtÞ � eTðt � gÞR2eðt � gÞ þ eðt � gÞR3eðt � gÞ � eTðt � dÞR3eðt � dÞ þ g2 _eTðtÞZ2 _eðtÞ þ h2 _eTðtÞZ3 _eðtÞ

�
eðtÞ

eðt � gÞ

� �T Z2 �Z2

H Z2

� �
eðtÞ

eðt � gÞ

� �
�

eðt � gÞ
eðt � dðtÞÞ

� �T Z3 �Z3

H Z3

� �
eðt � gÞ

eðt � dðtÞÞ

� �
�

eðt � dðtÞÞ
eðt � dÞ

� �T Z3 �Z3

H Z3

� �
eðt � dðtÞÞ

eðt � dÞ

� �
; ð23Þ

_V4ðtÞ ¼ h2 _eTðtÞD _eðtÞ � p2

4
eðt � gÞT

eðt � dðtÞÞT

" #
D �D

H D

� �
eðt � gÞ

eðt � dðtÞÞ

� �
: ð24Þ

From the convex representation (9), we can obtain the following equation:

FðtÞ ¼ DeðtÞ: ð25Þ

The constraint (25) is rewritten as

D �I½ �
eðtÞ
FðtÞ

� �
¼ 0: ð26Þ

For matrices N1 and N2, the following equality are always satisfied:

2
eðtÞ
FðtÞ

� �T N1

N2

� �
D �I½ �

eðtÞ
FðtÞ

� �
¼ 0: ð27Þ

Also, according to the error system (15), for any appropriately dimensioned matrix G, the following equation holds:

2 eTðtÞGþ c _eTðtÞG
� �

� _eðtÞ þ ANeðtÞ þ BNFðtÞ � CNeðt � sðtÞÞ � Keðt � dðtÞÞ½ � ¼ 0: ð28Þ

By adding the left sides of (27) and (28) to _VðtÞ and letting H ¼ GK, we can obtain the following new upper bound of time
derivative of Lyapunov functional VðtÞ

_VðtÞ 6 fðtÞTCfðtÞ; ð29Þ
where

fðtÞ ¼ eTðtÞeTðt � sðtÞÞeTðt � sMÞFTðtÞeTðt � gÞeTðt � dðtÞÞeTðt � dÞ _eTðtÞ
h iT

:

Thus, Eq. (29) implies

_VðtÞ < ��keðtÞk2 ð30Þ

where � is the largest eigenvalue of C. This completes the proof. h

If the term V4ðtÞ is neglected, then the discontinuous Lyapunov functional (19) becomes the continuous Lyapunov func-
tional. If D ¼ 0 in (19) choose zero matrix, then we can obtain the following theorem.

Corollary 1. For given a scalar c and a matrix D, if there exist positive-definite matrices P; Q ; R1; R2; R3; Z1; Z2; Z3 2 RnN�nN,
any matrices G; H; N1; N2 2 RnN�nN and a scalar k > 0 satisfying the LMI (18) such that (18)jD=0, then there exists a sampled
feedback controller (10) which achieves the synchronization of the complex dynamical network (1). Moreover, the desired control
gain matrix in (10) can be given by K ¼ G�1H.

T.H. Lee et al. / Applied Mathematics and Computation 219 (2012) 1354–1366 1359
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Remark 3. The synchronization criteria for a complex dynamical network via the discontinuous and continuous Lyapunov
functional come from Theorem 1 and Corollary 1, respectively. The point of two types of the Lyapunov functional is the exis-
tence of V4ðtÞ which originates from [35] and makes full use of the sawtooth structure characteristic of sampling input
delays. Thus, theoretically the conservatism of Theorem 1 is less than Corollary 1, which will be validated by numerical
examples in the next section.

4. Numerical examples

In order to show the effectiveness of the proposed methods, we present two numerical examples which are the synchro-
nization of a complex dynamical network with coupling time-varying delays using the sampled-data control in the absence
of the constant signal transmission delay. In the both examples, MATLAB LMI toolbox is used to solve LMI problems and the
parameter c is given 0.01.

Example 1. The first example is about the synchronization of a complex dynamical network with five linearly coupled
identical nodes which are Chua’s chaotic circuit [31] and its chaotic behavior is displayed in Fig. 2. Thus, the complex
dynamical network system consisting of five nodes is described by:

_xiðtÞ ¼ AxiðtÞ þ Bf ðxiðtÞÞ þ
X5

j¼1

cijxjðt � sðtÞÞ þ uiðtÞ; i ¼ 1; . . . ;5; ð31Þ

where

A ¼
�am1 a 0

1 �1 1
0 �b 0

264
375; B ¼

�aðm0 �m1Þ 0 0
0 0 0
0 0 0

264
375;

f ðxikðtÞÞ ¼
1
2
ðjxikðtÞ þ cj � jxikðtÞ � cjÞ; k ¼ 1; . . . ;n

with the parameters are a ¼ 9; b ¼ 14:28; c ¼ 1; m0 ¼ �1=7; m1 ¼ 2=7, and the nonlinear function f ð�Þ belongs to sector
½0;1� and slope ½0;1�.

Here, Chua’s circuit is also chosen as a target node, sðtÞ. In this example, initial conditions of each nodes are chosen:
x1ð0Þ ¼ ½�0:1 � 0:5 � 0:7�; x2ð0Þ ¼ ½�0:1 � 0:40:3�; x3ð0Þ ¼ ½0:6 � 1:50�; x4ð0Þ ¼ ½0:10:10:1�, x5ð0Þ ¼ ½00:5 � 0:4� and
sð0Þ ¼ ½0:10:5 � 0:7�. The coupling time-varying delay is assumed as sðtÞ ¼ 0:4þ 0:1 sinðtÞ, then the parameters associated
with sðtÞ are obtained as sM ¼ 0:5; l ¼ 0:1 and the coupling matrix, C, is given by
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Fig. 2. The chaotic behavior of Chua’s circuit.
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Table 1
The maximum values of sampling intervals h for different signal transmission delays g in Example 1.

g 0.01 0.02 0.03 0.04 0.05

Theorem 1 0.17 0.16 0.16 0.14 0.12
Corollary 1 0.12 0.11 0.10 0.09 0.01
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Fig. 3. The state orbits of the system (31) and the target node.
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Fig. 4. The error signals of the controlled system (31).
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C ¼ 0:2�

�3 1 1 0 1
1 �4 1 1 1
1 1 �3 1 0
0 1 1 �3 1
1 1 0 1 �3

26666664

37777775: ð32Þ

By Theorem 1 and Corollary 1, we can obtain the maximum sampling interval h for the signal transmission delay, g, given
in Table 1. Table 1 shows the maximum values of h, for different g. It can be seen from Table 1 that Theorem 1 get the more
improved solution than Corollary 1 as mentioned above in Remark 3.

In order to show effectiveness of the controller, the state orbits of the uncontrolled system (31) and the target system
(dashed line) are depicted in Fig. 3. And by solving LMI problem (18) in Theorem 1 with h ¼ 0:15 and g ¼ 0:02, we can obtain
the following control gains:

K ¼ diagfK1; . . . ;K5g; ð33Þ

where

K1 ¼
4:7881 2:8699 �1:1342
0:7692 0:5493 0:0721
�1:5394 �1:7523 4:5927

264
375; K2 ¼

4:8307 2:9759 �1:0884
0:7823 0:5909 0:0772
�1:3436 �1:7391 4:8728

264
375;

K3 ¼
4:7306 2:9611 �1:1360
0:7395 0:5521 0:0729
�1:4960 �1:8393 4:6115

264
375; K4 ¼

4:7843 2:9705 �1:1296
0:7337 0:5511 0:0431
�1:4765 �1:8283 4:6594

264
375;

K5 ¼
4:7383 2:8358 �1:1672
0:7674 0:5579 0:0893
�1:4534 �1:7825 4:7738

264
375:

Under the above control gains, the simulation result of the controlled system (31) and the sampled control inputs are pre-
sented in Fig. 4 and Fig. 5, respectively. As seen in Fig. 4, the trajectories of error systems are indeed well stabilized. It means
that all states are synchronized up to the states of the target node by control inputs which are seen in Fig. 5. In order to show
more clearly the performance of the proposed sampled-data control method, Fig. 6 is presented. Fig. 6 shows the state orbits
of the system (31) and the target system (dashed line). In this figure, control inputs are applied to the system at 20 sec. From
this figure, it is clear that the synchronization between each nodes and the target node do not achieved until 20 sec, however
after activating the controller all states are synchronized up to the states of the target node.
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Fig. 5. The control input signals of Example 1.
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Example 2. Next example is about the synchronization of a complex dynamical network with three linearly coupled
identical nodes which are described by [29]:

_xiðtÞ ¼ AxiðtÞ þ Bf ðxiðtÞÞ þ
X3

i¼1

cijxjðt � sðtÞÞ þ uiðtÞ; i ¼ 1; . . . ;3; ð34Þ

where

A ¼
�0:5 0:2

0 0:95

� �
; B ¼

1 0
0 �1

� �
; C ¼ 0:5�

�1 0 1
0 �1 1
1 1 �2

264
375;

f ðtÞ ¼
tanhð0:2xi1ðtÞÞ

tanhð0:75xi2ðtÞÞ

� �
; sðtÞ ¼ 0:2þ 0:05 sinð10tÞ:

So, we have sM ¼ 0:25; l ¼ 0:5 and the sector and slope bound of the nonlinear function f ð�Þ in (34) are ½0; 1� and ½0; 1�,
respectively. And a target node is also chosen as same system.

Under the above simulation setting, Table 2 which specifies the values of the maximum sampling interval, h, for different
g can be obtained by Theorem 1 and Corollary 1.

When the sampling interval h ¼ 0:1 and the signal transmission delay g ¼ 0:04, the control gain matrix which is calcu-
lated by Theorem 1 is given by

K ¼ diagfK1;K2;K3g; ð35Þ

where

K1 ¼
3:9837 0:1410
0:0735 4:8353

� �
; K2 ¼

3:9837 0:1410
0:0735 4:8353

� �
; K3 ¼

4:6674 0:0727
0:0382 4:9740

� �
:
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Fig. 6. The state orbits of Example 1.

Table 2
The maximum values of sampling intervals h for different signal transmission delays g in Example 2.

g 0.01 0.02 0.03 0.04 0.05

Theorem 1 0.15 0.13 0.11 0.10 0.08
Corollary 1 0.09 0.08 0.07 0.06 0.05
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The error signals of the uncontrolled and controlled system (34) by the control gain K are presented in Fig. 7 and Fig. 8,
respectively. Comparing with Fig. 7 and Fig. 8, error signals of the controlled system become zero as time goes infinity, how-
ever, in the case of the uncontrolled system, error signals do not approach to zero. It implies that our proposed controller
achieve the synchronization of a complex dynamical network (34). The applied control inputs which consisted of sampled
signals are displayed in Fig. 9.
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Fig. 7. The error signals of the system (34).
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5. Conclusions

In this paper, the sampled-data control for the synchronization of a complex dynamical network with time-varying delays
has been discussed in the framework of the signal transmission delay. Based on Extended Wirtinger Inequality, a discontin-
uous Lyapunov functional which gives full information of sawtooth structure characteristic of the sampling delay has been
proposed. The results have been shown that the use of the discontinuous Lyapunov functional gets less conservatism than
the use of the continuous Lyapunov functional. Then existence criterion of the controller has been derived in terms of LMI
which is based on Lyapunov stability theory and the sector-slope restricted nonlinearity conditions. Two numerical exam-
ples have been illustrated to show the performance of the proposed controller.
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